Proc. ofF THE 1991 INT’L. CoNF. ON LOGIC PROGRAMMING

Combined Determination of
Sharing and Freeness of Program
Variables Through Abstract

Interpretation’

K. Muthukumar?
MCC and Department of Computer Science

The University of Texas at Austin
Austin, TX 78712 - USA

muthu@cs.utexas.edu

M. Hermenegildo

Universidad Politécnica de Madrid (UPM)
Facultad de Informatica

28660-Boadilla del Monte, Madrid - Spain

herme@cs.utexas.edu O7T herme@fi.upm.es

Abstract

In this paper, abstract interpretation algorithms are described for computing
the sharing as well as the freeness information about the run-time instantiations of
program variables. An abstract domain is proposed which accurately and concisely
represents combined freeness and sharing information for program variables. Ab-
stract unification and all other domain-specific functions for an abstract interpreter
working on this domain are presented. These functions are illustrated with an exam-
ple. The importance of inferring freeness is stressed by showing (1) the central role
it plays in non-strict goal independence, and (2) the improved accuracy it brings to
the analysis of sharing information when both are computed together. Conversely,
it is shown that keeping accurate track of sharing allows more precise inference of
freeness, thus resulting in an overall much more powerful abstract interpreter.

1 Introduction

The technique of abstract interpretation [7] has been studied in the context of flow
analysis of logic programs giving rise to a number of frameworks and applications
(2], [13], [8], [17], [18], [3], [5], [12], [6], [11] ...). A shortcoming of many previ-
ously proposed approaches (specially when targeted at the optimization of parallel
execution) has been the lack of accurate inference of program variable sharing and
freeness information. In an earlier paper [14], algorithms were proposed for per-
forming abstract unification which, when combined (in the spirit of Bruynooghe’s
framework) with the top-down driven abstract interpretation algorithm presented
in [16], can be used to obtain accurate variable sharing and groundness information
for a program and a given query. This combined information is termed simply as
sharing in this paper. However, knowledge of the sharing information alone does
not allow the determination of the freeness of program variables in the subgoal:
i.e. sharing only tells whether two variables can be potentially aliased or whether a

1This research was supported in part by ESPRIT projects 2471 “PEPMA” and 5246
“PRINCE,” CICYT project 361.208, and also in part by MCC.

2Part of the research reported in this paper was performed when this author was visiting
University of Madrid (UPM).

variable is bound to a ground term. However, sharing does not distinguish between
a variable which is just bound to another variable and one which is bound to a
complex term. Such a variable is said to be free in the former case and non-free in
the latter. It turns out that freeness information is very useful for at least two rea-
sons. First, the information itself is vital in the detection of non-strict independence
among goals, a condition which allows efficient parallelization of programs, and also
in the optimization of unification, goal ordering, avoidance of type checking, gen-
eral program transformation, etc. Second, by computing this freeness information
in combination with the sharing it is possible in turn to obtain much more accurate
sharing information. Conversely, keeping accurate track of sharing also allows more
precise inference of freeness. The overall effect is thus a more precise analysis than
if two separate analyses were performed. These two points are further illustrated
in the following two subsections (1.1,1.2) and in the descriptions of the algorithms.
The rest of the paper proceeds as follows: section 2 reviews some basic concepts in
abstract interpretation. Section 3 then presents our abstraction framework. Section
4 presents the abstract unification algorithm for this framework. Section 5 illus-
trates the abstract unification algorithm through an example. Section 6 explains the
synergistic interaction between sharing and freeness and, finally, section 7 presents
our conclusions.

1.1 Interaction between sharing and freeness

Consider the following clause used in a matriz multiplication program:

multiply([VO|Rest], V1, [Result|Others]):-
vmul (VO,V1,Result), multiply(Rest, V1, Others).

In a typical use of the multiply/3 predicate, multiply/3 takes a matrix (first
argument) and a vector (second argument) and places the product of these two in
the third argument i.e., when this clause is called, the first and the second arguments
of multiply/3 are bound to ground terms and its third argument is a free variable.
Using this freeness information about the third argument it is possible to infer
that the variables Result and Others are free and independent (i.e. they do not
share), when this clause is called. This makes it possible, for example, to simplify
the code generated for the unification of this third argument, and also to conclude
that the atoms vmul(V0,V1,Result) and multiply(Rest, V1, Others) will be
independent goals —i.e., executable in parallel in an Independent And-Parallel (IAP)
system without an independence check. It is important to note that this could not
be done without the freeness information: if the third argument were not known to
be free, the variables Result and Others could be potentially aliased to each other
and, therefore, the two subgoals in the body of multiply/3 could be executed in
parallel only after an independence check. Other ways in which sharing and freeness
interact will be clear in the descriptions of the abstract unification functions.

1.2 Freeness and non-strict Independence

The idea behind independent and-parallelism is to execute in parallel goals which
are independent, in the sense that they cannot affect each other’s search space.
In traditional (strict) independent and-parallelism only goals which do not share
variables are executed in parallel. Two run-time goals g; and g2 are thus defined
to be strictly independent if vars(gi) Nvars(g2) = 0. It turns out that sharing
information is sufficient to infer this property in many cases. However, as pointed
out before, inference of variable freeness can improve the accuracy of the sharing
and groundness information. But, most importantly, freeness information is vital
in the detection of non-strict goal independence [9, 19], a concept which extends
the applicability of independent and-parallelism to a much larger set of goals (and
thereby achieve increased parallelism) by allowing them to share variables, provided

they don’t “compete” for the bindings of such variables. The condition of “no
competition” for bindings translates into a series of requirements that some variables
be independent (which can be determined as before) and others be free (“nv-bound”)
before and after the execution of the parallel goals. It is in order to ensure that this
latter condition holds that the freeness analysis is required. Compile-time analysis
is especially important in non-strict independence because some of the information
required cannot easily be obtained at run-time.

2 Abstract Interpretation of Logic Programs

Abstract interpretation is an elegant and useful technique for performing a global
analysis of a program in order to compute, at compile-time, characteristics of the
terms to which the variables in that program will be bound at run-time for a given
class of queries. In principle, such an analysis could be done by an interpretation of
the program which computed the set of all possible substitutions (collecting seman-
tics) at each step. However, these sets of substitutions can in general be infinite
and thus such an approach can lead to non-terminating computations. Abstract
interpretation offers an alternative in which the program is interpreted using ab-
stract substitutions instead of actual substitutions. An abstract substitution is a
finite representation of a, possibly infinite, set of actual substitutions in the con-
crete domain. The set of all possible abstract substitutions for a clause represents
an “abstract domain” (for that clause) which is usually a complete lattice or cpo
of finite height — such finiteness required, in principle, for termination of fixpoint
computation. The ordering relation for this partial order is herein represented by
“C.” Abstract substitutions and sets of concrete substitutions are related via a pair
of functions referred to as the abstraction (&) and concretization () functions. In
addition, each primitive operation u of the language (unification being a notable
example) is abstracted to an operation u' over the abstract domain. Soundness of
the analysis requires that each concrete operation u be related to its corresponding
abstract operation u' as follows: for every z in the concrete computational domain,
u(z) C y(u'(afz)))-

The input to the abstract interpreter is a set of clauses (the program) and set of
“query forms” i.e., names of predicates which can appear in user queries and their
abstract substitutions. The goal of the abstract interpreter is then to compute the
set of abstract substitutions which can occur at all points of all the clauses that
would be used while answering all possible queries which are concretizations of the
given query forms. It is convenient to give different names to abstract substitutions
depending on the point in a clause to which they correspond. Consider, for example,
the clause h :- p1,...,p,. Let A; and A1 be the abstract substitutions to the left
and right of the subgoal p;,1 < i < n in this clause. See figure 1(b).

Definition 1 \; and \;+1 are, respectively, the abstract call substitution and the
abstract success substitution for the subgoal p;. For this same clause, A1 is the
abstract entry substitution (also represented as Pentry) and Any1 is the abstract
exit substitution (also represented as Bezit).

Control of the interpretation process can itself proceed in several ways, a par-
ticularly useful and efficient one being to essentially follow a top-down strategy
starting from the query forms.? A purely bottom-up analysis scheme is also possi-
ble ([8],[1], [12], [4]). The following description is based on the top-down framework
of Bruynooghe [2].

In a similar way to the concrete top-down execution, the abstract interpretation
process can be represented as an abstract AND-OR tree, in which AND-nodes and
OR-nodes alternate. A clause head h is an AND-node whose children are the literals
in its body p1, ..., p, (figure 1(b)). Similarly, if one of these literals p can be unified

3More precisely, this strategy can be seen as a top-down driven bottom up computation.

Figure 1: Tllustration of the abstract interpretation process

with clauses whose heads are hq,...,h;,, p is an OR-node whose children are the
AND-nodes hy, ..., hy (figure 1(a)). During construction of the tree, computation
of the abstract substitutions at each point is done as follows:

e Computing success substitution from call substitution: Given a call substi-
tution A.qu for a subgoal p, let hq,...,h,;, be the heads of clauses which unify
with p (see figure 1(a)). Compute the entry substitutions B1,,y; - -, BMepsy, for
these clauses. Compute their exit substitutions 81,,:,...,8M..; as explaineé} be-
low. Compute the success substitutions Algyccess, - - - y ATsyccess corresponding to
these clauses. The success substitution Agyccess is then the least upper bound (LUB)
of AMlgyuccessy -« -y AMigyccess- Of course the LUB computation is dependent on the
abstract domain and the definition of the C relation.

e Computing exit substitution from entry substitution: Given a clause h :-

p1,---,Pn whose body is non-empty and an entry substitution A;, A; is the call
substitution for p;. Its success substitution As is computed as above. Similarly,
A3,..., Ant1 are computed. Finally, A,41 is obtained, which is the exit substitution

for this clause. See figure 1(b). For a unit clause (i.e. whose body is empty), its
exit substitution is the same as its entry substitution.

Based on this framework, we had described an efficient top-down driven (and ab-
stract domain independent) abstract interpretation algorithm in [16]. In addition to
the abstraction and concretization functions, the following abstract domain-specific
functions — which together help perform abstract unification — need to be described
in order to make the abstract interpreter complete:

e call_to_entry: this function computes the entry substitution for a clause C
given a subgoal Sg (which unifies with the head of C) and the projection of
its call substitution,

e exit_to_success: this function computes the projection of the success substitu-
tion for a subgoal Sg given its call substitution and the exit substitution for
a clause C whose head unifies with Sg.

e [ub, project, extend: these functions respectively compute the LUB of two
abstract substitutions, project an abstract substitution on a subgoal and ex-
tend the projection of an abstract success substitution on a subgoal to all the
variables of the clause in which the subgoal occurs.

In the next section, we introduce an abstract domain which can be used to describe
both sharing and freeness. In the following section, we describe the above functions
for this abstract domain. Subsequently, we illustrate these functions with the help
of an example.

3 Abstraction Framework

The representation of abstract substitutions used herein is described in this sec-
tion. In the framework proposed abstract substitutions are elements of D, =
p(p(Pvar)) x p(Pvar — {G,F,NF}). Each abstract substitution is therefore
a 2-tuple. Intuitively, the first element holds the sharing information, while the
second holds the freeness information. Accordingly, “_sharing” and “_freeness”
are used to designate the corresponding elements of the tuple such that D, =
D, _sharing x D, _freeness. For example, A.qy, the call substitution for a subgoal,
is Aeaur = (A_sharecqn, A_freeness,,;). The two components of D, are further
described in the following sections.

3.1 Sharing Component

The sharing component provides information about potential aliasing and variable
sharing among the program variables (as well as groundness). Its structure is the
same as in our earlier paper [14] and that of Jacobs and Langen [10]. However,
for the sake of keeping this paper self-contained, we give a brief description of the
domain for sharing and some definitions and results that are used in section 4.

The sharing component of the abstract substitution for a clause is defined to
be a set of sets of program variables in that clause. Informally, a set of program
variables appears in the sharing component if the terms to which these variables
are bound share a variable.

More formally, a (concrete) substitution for the variables for a clause is a map-
ping from the set of program variables in that clause (Pvar) to terms that can be
formed from the universe of all variables (Uvar), and the constants and the functors
in the given program and query. We consider only idempotent substitutions.

The function Occ takes two arguments, 6 (a substitution) and U (a variable in
Uvar) and produces the set of all program variables X € Pvar such that U occurs in
vars(X0). The domain of a substitution 6 is written as dom(). The instantiation
of a term t under a substitution @ is denoted as tf and vars(tf) denotes the set of
all variables in 6.

Definition 2 (Occ)
Occ(0,U) = {X|X € dom(0),U € vars(X0)}
The sharing component of the abstraction of a substitution 6 is defined as:
Definition 3 (Abstraction(sharing) of a substitution)
Asharing(0) = {O0cc(8,U) | U € Uvar}

Given a set of program variables S and a subgoal pred(ui,...,us),
pos(pred(uy, .. .,uy),S) gives the set of all argument positions of this subgoal in
which at least one element of S occurs.

Definition 4 (pos)
pos(pred(uy, . ..,uy),S) = {i|S Nvars(u;) # 0}

Given a subgoal pred(ui,...,u,) and the sharing component A_share of an
abstract substitution, the function P(pred(ui,...,u,), A_share) computes the de-
pendencies among the argument positions of this subgoal due to A_share. This is
expressed as a subset of the powerset of {1,...,n}

Definition 5 (P)
P(pred(us, ..., un), _share) = {pos(pred(uy,...,u,),S)|S € A_share}

Definition 6 (Closure under union) For a set of sets SS, the closure SS* of
SS is the smallest superset of SS that satisfies: S; € SS* NSz € S§* = S1US, €
SS*.

The following theorem describes an important result which is used in section 4.
The reader is referred to [16] for its proof.

Theorem 3.1 Let A_share.q; and A_sharegyccess be respectively the sharing com-
ponents of the abstract call and success substitutions of a subgoal Sg. Let
B-share,,;,, be the sharing component of the entry substitution of a clause C' due
to the unification of its head with Sg. Then the following statements are true:

L)\—Sharesuccess g)\—Sharecall*
e P(head(C), B_share) C (P(Sg, A-sharecqu))*

entry

3.2 Freeness Component

The freeness component of an abstract substitution for a clause gives the mapping
from its program variables to an abstract domain {G, F, NF'} of freeness values i.e.
D, _freeness = p(Pvar — {G,F,NF}). X/G means that X is bound to only
ground terms at run-time. X/F means that X is free, i.e., it is not bound to a
term containing a functor. X/NF means that X is potentially non-free, i.e., it can
be bound to terms which have functors. During the process of performing abstract
unification, we use a set of temporary freeness values of the form NF(e) (where e
is a normalized unification equation). After abstract unification is performed, these
values are changed to NF. X/NF'(e) means that X was free prior to unification
by the equation e = X = f(t1,...,t,) but became non-free due to the equation e.
The important consequence of this is that it does not introduce any new sharing
between the variables in vars(f(ti,...,tn)) nor does it change their freeness values.
Suppose, subsequently, that equation e’ = X = Term (where e # ') is processed.
Now, the freeness values of X and all variables in vars(f(t1,-..,t,)) and Term are
changed from N F(e) to NF. The three freeness values are related to each other by
the following partial order: LC FC NF, LCGCNF
More formally, the freeness value of a term is defined as follows:

Definition 7 (Abstraction(freeness) of a Term)

Afreeness(Term) =
{ if wars(Term)=0 then G

if vars(Term)={Y}ATerm =Y then F
else NF

3.3 Integration of the Sharing and Freeness Components

In some sense, one can think of Sharing and Freeness as orthogonal components of
an abstract substitution in that the former gives the aliasing information while the
latter provides the typing information and so one may be tempted to think that they
do not interact with each other. On the contrary, and as mentioned before, there
is a symmetric interaction between the two components in the abstract unification
algorithms, the presence of the sharing component increasing the precision of the
information in the freeness component derived by the analysis and vice versa. This
is further illustrated in section 6. Moreover, the two components A_sharing and
A_freeness of an abstract substitution A are related to each other by the following
condition: X ¢ vars(A_sharing) < X/G € _freeness

Definition 8 (Abstraction of a set of substitutions)

a(@) = (Uﬁe@Asha’r‘ing (0): {X/FS | Fs= sup -Afreeness (Term)})
X/Termef,0c©

Definition 9 (Concretization of an abstract substitution)

v(Asubst) = {0 | 0 is a substitution, Asparing(0) C Asubstsharing,
VX/Term € 6. 3X/Fs € Asubstireeness- Afreeness(L'erm) C Fs}
where Asubst = (Asubstsparing, ASubst freeness)

The set inclusion relation in the concrete domain induces a partial order on the
abstract substitutions, i.e., Ay C A2 iff (A1) C v(A2). It can be easily shown that
A1 C)\, iff the following conditions are satisfied: (1) A1 sharing C A2,sharing and (2)
(X/Fsl € A freeness N X/F$2 € Ay, freeness = Fs1 C Fs2).

The function lub computes the least upper bound of two abstract substitutions
Asubstl and Asubst2 by taking the least upper bound of their sharing and freeness
components.

Definition 10 (lub)

lub(Asubstl, Asubst2) = (Asubstlspare U Asubst2spare,
lub_freeness(Asubstl freeness, Asubst2freeness))
where (Asubstlshare, Asubstl frecness) = Asubstl
and (Asubst2share, Asubst2freeness) = Asubst2

The function lub_freeness computes the least upper bound of the freeness com-
ponents of two abstract substitutions Asubstl and Asubst2.

Definition 11 (lub_freeness)

lub_freeness(Al_freeness, A2_freeness) =
{X/Fs| X/Fsl € Al_freeness, X/Fs2 € A2_freeness,
Fs <« if (Fsl = Fs2) then Fsl else NF}

4 Algorithms for Computing Abstract Entry Sub-
stitution and Abstract Success Substitution

In this section, we present algorithms for computing the abstract entry substitution
(call_to_entry) and the projection of the abstract success substitution of a subgoal
(exit_to_success). The notation for the variables used in these algorithms is described
in figure 2. We also describe functions for some basic operations that deal with our
abstract domain like project and extend. Unless otherwise noted, all substitutions
referred to in the rest of this paper are abstract substitutions.

The top-level function, call_to_entry, takes as its input the arguments A (the
projection of the call substitution on the subgoal), Sg (the subgoal), and C (the
clause whose head has the same functor as Sg and whose entry substitution is to
be computed)? and returns Beniry (the entry substitution for the clause C). The
following gives an intuitive description of the basic steps in this function:

1. First, the unification equation Sg = head(C) is simplified into a set of irre-
ducible equations by the function simplify_equations.

2. Starting with the given freeness values of the variables in S¢ and the freeness
values of all the variables in C being F', we perform abstract unification using
the function abs_unify. abs_unify performs two important functions: (1)
propagate groundness, (2) and propagate freeness. This function, along with
the function partition forms the core of our algorithm.

41t is assumed that Sg and head(C) are unifiable, otherwise the values of both the entry
substitution and the success substitution are 1. Also, it is assumed that the variables in C are
renamed so that vars(Sg) Nwvars(C) = 0.

Acall s Asuccess - Call and Success substitutions for the subgoal Sg

A - Projections of the Call and Success substitutions on the subgoal Sg

Bentry,Bexit - Entry and Ezit substitutions for the Clause C' when its head

is unified with subgoal Sg

X,Y - program variables in Sg or C'

V- {X/Fs|X € vars(Sg) or X € vars(C)}

Fs,Fs1,Fs2 - variables from the domain {G, F, NF, NF(e)}

E, E' - sets of unification equations

e, e’ - unification equations

Sg_share - updated sharing information about the variables in Sg after
unification

S,S', P, Py, P, - sets of program variables

SS - set of sets of program variables

_- “don’t care value” for a variable

Figure 2: Notation for the variables

3. Since some program variables might have become ground due to abstract
unification, Sg_share, the updated sharing information for variables in Sg, is

computed using the function update_sharing.

4. Using the sharing information in E, the set of simplified equations obtained
by abstract unification and in Sg_share, the (updated) sharing information in
Acall, & conservative estimate of the sharing information in Bentry is computed

by the functions powerset_of_set_of-sets and partition.

5. Finally, Bensry is computed by computing its components 3_share,,;,, (which
is obtained by pruning B_share so that it agrees with the sharing information

in Acanr) and B-freeness,,,,, (using the function project_freeness).
Definition 12 (call to_entry)

call to_entry(A, Sg,C) = (B-share,,,,.,, B-freeness ..,)
where [_share,,,,, = {{X}|X € body(C), X ¢ head(C)}
U{S|S € B_share, pos(head(C),S) € (P(Sg,Sg_share))*}

and f_freeness,,,,., = project_freeness(C, collapse non_free(V'))

and [_share = powerset_of _set_of _sets(project_share(head(C),
partition(V, E, Sg_share)))

and Sg_share = update_sharing(V, _share)

and (V,E) = absunify(A_freeness U {X/F|X € vars(C)},
simpli fy_equations({Sg = head(C)}))

and (A_share, _freeness) = A

The other top-level function exit_to_success, is quite similar to call_to_entry in
the sense that it also performs abstract unification®. It takes as its input arguments
Bezit (the exit substitution of the clause C), subgoal Sg, clause C, and X\ and
computes)\, the projection of the success substitution on Sg. The following are
the salient differences in the basic steps between this function and the function

call_to_entry:

5An implementation of these functions would take advantage of the fact that the abstract
unification which is performed for call_to_entry is almost the same as the one for ezit_to_success..
Hence it would save the result of abstract unification performed for call_to_entry and reuse it when

computing ezit_to_success.

e First, Besit is projected on head(C) using the function project(head(C), Begit)-

e The function abs_uni fy makes use of the freeness values from S.;;; in addition
to A.

e The function partition makes use of the sharing information in Sg_share as
well as B_share’.

e Finally, A_share' is computed by pruning Sup_A_share' so that it agrees with
the sharing information in both A.qy; and Begi:-

Definition 13 (exit_to_success)

exit_to_success(Begit, Sg, C,\) = (A_share’,_freeness’)
where X_share' = {S|S € (Sup__share’ N A_share*),
pos(Sg, S) € P(head(C), B_share')}
and _freeness' = project_freeness(Sg, collapse non_free(V))
and Sup_)_share' = powerset_of _set_of sets(project_share(Sg,
partition(V, E,Sg_share U B_share')))
and Sg_share = update_sharing(V, A_share)
and (V,E) = abs_unify(_freeness U B_freeness’,
simpli fy_equations({Sg = head(C)}))
and B' = (B_share', B_freeness') = project(head(C), Bezit)
and (A_share, _freeness) = A

The function simplify_equations takes as its input E, the set of unification equa-
tions and recursively simplifies them until all equations are of the form X = Term.

Definition 14 (simplify_equations)
simpli fy_equations(E) =
if Je€eE.e= f(t1,-..,tn) = flur,...,up)
= { then simplify_equations(EU {t1 = u1,...,tn = un} — {e})
else E

The function abs_unify takes as input V' (set of freeness value assignments for the
variables in Sg and head(C)) and E (the set of normalized unification equations
obtained from Sg = head(C)) and computes (V', E') where V' and E' are the
updated values of V and E after abstract unification is performed.

Assume that E = {ey,...,e,}, where e; is of the foom X =Y or X =
f(t1,...,tm). This function performs fixpoint computation on the ordered pair
(V, E). During each iteration, each e;,i = 1,...,n is visited using the function au-
nify. After all the equations have been visited, it is checked if any freeness value or
equation has changed during the current iteration. If so, the fixpoint computation
is continued, otherwise it outputs (V| E).

Definition 15 (abs_unify)
abs_unify(V, E) =
if aunify(V,E,0)=(V,E)
= { then (V,E)
else absunify(V', E') where (V', E') = aunify(V, E,)

The function aunify has three input parameters: V, E,E'. V is the same as
in abs_unify, E and E' are sets of normalized unification equations. This function
is invoked by the function abs_unify with E' = 0 and performs one iteration (of
abstract unification) by visiting each of the equations in E.

During each step, an equation e; € F is removed from E. The freeness values in
V are updated using this equation. e; is added to E' if and only if all the variables
in this equation have not become ground at this step.

Definition 16 (aunify)
aunify(V,{X =Term}UE,E') =
(if (X/G) €V then aunify(V — {(Y/)|Y € vars(Term)}U
{Y/@)|Y € vars(Term)}, E,E")
if wars(Term) =0 or VY € vars(Term). (Y/G) € V
then aunify(V —{X/_} U{X/G},E,E'")
if Term=Y and (X/F) eV and(Y/F)eV
then aunify(V,E,E'U{X = Term})
if Term=Y and (X/NF)eVor (Y/NF)eV)
then aunify(V — {X/ Y/ }U{X/NF,Y/NF},
E,E' U{X Term})
if Term=Y and (X/NF()eVand (Y/F)eV
then aunify(V —{Y/F}U{Y/NF(e)},E,E' U {X =Term})
if Term=Y and (X/F) €V and (Y/NF(e))
then aunify(V —{X/F}U{X/NF(e)},E,
if Term=Y and (X/NF(e)) € V and (Y/N
=4 then aunify(V — {X/NF(JY/NF(e')} U
E, X =Term})
if Term=Y and (X/NF())eVand (Y/NF(e)) eV
then aunify(V,E,E'U{X = Term})
if Term = f(tl,...,tn) and (X/F) eV
then aunify(V —{X/F}U{X/NF(X =Term)},
E,E'"U{X =Term})
if Term = f(t1,...,tn) and (X/NF(X = f(t1,...,tn)) €V
then aunify(V,E,E' U{X = Term})
if Term = f(t1,...,tn) and (X/NF(e)) €V and e Z X =Term
then aunify(V —{X/NF(e)} —{(Y/)|Y € vars(Term)}
U{X/NF}U{(Y/NF)|Y € vars(Term)},E,E' U{X = Term})
if Term = f(t1,...,t,) and (X/NF) eV
then aunify(V — {(Y/)|Y € vars(Term)}U
{Y/NF)|Y € vars(Term)},E,E' U{X = Term})

E’ U{X =Term})
(eY)eVandeZe
{X/NF,Y/NF},
(e

auni}y(V, 0,E)=(V,E)

Some program variables may become ground after abstract unification is per-
formed. The function update_sharing takes as input V' (freeness values of variables
after abstract unification) and A_share and computes Sg_share (the updated shar-
ing information for variables in Sg) as per the information in V. Consider a set
S € A_share. S is added to Sg_share, if and only if S does not have a variable
which is ground according to V.

Definition 17 (update_sharing)
update_sharing(V,SS) ={S|S eSS, VX €S X/G¢V}

Along with aunify, the function partition forms the “core” of our abstract uni-
fication algorithm. Its three input parameters are V, E and Share. V and E are
as before, while Share gives the sharing information among the variables in Sg
and/or head(C). Making use of these three input values, this function computes
the partitions of the “connection graph” for the variables in Sg and head(C).

First, we consider the cases when E # () and therefore an equation X = Term
isin E.

o If (X/NF(X = Term)) € V, then this equation introduces sharing only® between

6Most of the other algorithms, including the algorithm that we had published earlier [14],
introduce a sharing between Y and Y’ and thus lose precision. In this case, we are able to avoid
this pitfall only because we have the additional freeness information.

10

X and an Y € vars(Term) and not between Y and Y’ where Y, Y’ € vars(Term).
o If (X/NF) €V, then sharing is introduced not only between X and

Y but also between Y and Y for all Y)Y’ € vars(Term).
o If (X/F) € V, then Term =Y and therefore a sharing is introduced between X
and Y.

We next consider the case when E = () i.e. all unification equations have been
processed. If an (X/F's) € V is such that F's = G (i.e. X is ground) or X is in
vars(Share) (i.e. X’s partition already exists), then nothing is done. Otherwise, a
new partition containing only X is added.

Definition 18 (partition)
partition(V,{X = Term} U E, Share) =
(if (X/NF(X =Term))eV
then partition(V, E, Share) — {P|P € partition(V, E, Share),
X € Porvars(Term) NP # 0} U{P,UP|P,P, €
partition(V, E, Share), X € Py,vars(Term)N P, # 0}
if (X/NFYeV
then partition(V, E, Share) — {P|P € partition(V, E, Share),
= X € Porvars(Term)NP #Q}U{UP|P €
partition(V, E, Share), X € P or vars(Term) NP # 0}
if (X)F)eV
then partition(V, E, Share) — {P1, P} U {P, U P2}
where Term =Y and X € P, andY € P, and
L Py, P, € partition(V, E, Share)

partition(V, 0, Share) = {{X} | X/Fs € V,Fs # G,X ¢ vars(Share)} U Share
Definition 19 (powerset_of_set_of_sets)
powerset_of _set_of _sets(SS) = U p(S)
sess

The function collapse_non_free is needed because we use more than three values
for freeness viz, G, F, NF, NF(e) while performin g abstract unification, but sub-
sequently, we use only three freeness values G, F, N F for the variables. Essentially,
this function converts all NF(e) to NF.

Definition 20 (collapse_non_free)

collapse_non_free(V) =
{X/Fs|X/Fs' €V, Fs « if (Fs' = NF(e)) then NF else Fs'}

The inputs to the function project are Term (which could be an atom or a clause)
and Asubst (abstract substitution). The output of this function is the projection
of Asubst on Term.

Definition 21 (project)

project(Term, (Asubstspare, Asubstfreeness)) =
(project_share(Term, Asubstspqre),
project_freeness(Term, Asubstfreeness))

The function project_share, projects Asubstspare (the sharing component of
Asubst) on Term.

Definition 22 (project_share)

project_share(Term, Asubstspore) =
{S|S = (S' Nwars(Term)),S" € Asubstshare}

11

The function project_freeness projects Asubstreeness (the freeness component
of Asubst) on Term.

Definition 23 (project_freeness)

project_freeness(Term, Asubstfreeness) =
{X/Fs|X|Fs € Asubstfreeness, X € vars(Term)}

Given the inputs Sg (the subgoal), Acqi (the call substitution for sg), and X
(the projection of the success substitution on Sg), the function extend computes
Asuccess (the success substitution for Sg).

The freeness component of Ay ccess 18 computed by taking in the freeness values
of the variables in Sg from)\'. The freeness values of the other variables in the clause
of Sg (which have not become ground due to the execution of Sg) are computed
as follows: If either the freeness of X is NF in M.y or X and another variable
Y which occurs in Sg are potentially aliased (according to A_sharegyccess) and the
freeness of Y is NF, then the freeness of X is NF', otherwise it is F.

The sharing component of Agyccess i8S computed as follows: Consider the sets
in the sharing component of A.,;; whose variables do not appear in Sg. These are
not obviously affected by the execution of Sg and hence are added to the sharing
component of Agyccess- Lhe remaining sets have variables that do appear in Sg and
hence we consider the closure of these sets under union and add those sets whose
projections appear in the sharing component of \'.

Definition 24 (extend)

extend(Sg, Acait; ') = (A_sharesyccess; A-fTEENESS sy cress)

where A_freeness,, ...s = \-freeness' U{X/G|X € vars(_share q)—
vars(A_sharesyccess) } U{X/Fs|X € vars(A_sharesyccess)—
vars(A-share'), F's « if (X/NF € _freeness ,; vV (3Y3S. X € S,
Y € 5,8 € Asharesyccess, Y/NF € A_freeness')) then NF else F}

and A_sharesyccess = {S|S € {S'|S" € A_share qu, S’ Nvars(Sg) # 0},
S Nwars(Sg) € A_share'} U {S|S € A_share q, S Nvars(Sg) = 0}

and (A_sharecq, _freeness.,;) = Acall

and (A_share',_freeness') = X'

Proposition 1 Given a subgoal Sg whose abstract call substitution is Acq and a
clause C whose head unifies with Sg, let Bentry be the abstract entry substitution for
C as computed by the function call to_entry.” Then, Beniry is a safe approzimation
in the following sense: In the concrete interpretation, let Qeniry be the set of entry
substitutions for clause C computed from Sg’s set of call substitutions y(Acanr)-
Then; Qent’r‘y g W(ﬂentry)-

The reader is referred to [15] for a proof of this proposition, which is omitted
here for lack of space.
5 Example
We illustrate the algorithm call_to_entry in section 4 with the aid of an example®.

This example is rather contrived and its main function is to illustrate the mechanics
of the algorithm as it deals with different cases.

7 A similar proposition about the safety of the abstract substitution A’ computed by the function
exit_to_success can also be stated and proved. However, due to lack of space, we do not present
it here.

8The function exzit_to_success is similar to this function and therefore not illustrated.

12

Subgoal Sg pred(f(X1, Xs), f(X5, Xy), X3, X5, X6, X6)
Head of clause C pred(Y1,Y1,a,Y2,Ys, f(Y1,Y3))

)_ShaTecall {05{X2}){X3}>{X5}7{X6}7{X17X2}}
A_freeness,,; {X1/F,Xs/[NF,X3/F, X4]G, X5]F, X¢/F}

Let vars(body(C)) = {Y1,Y5}. In the following, we illustrate, in a step-by-step
fashion, how Beniry, the entry substitution for the clause C' is computed given the
above information:

o simplify_equations({Sg = head(C)}) = {Y1 = f(X1,X2),Y1 = f(X35,X4), X5 =
ay.Y'Q = X57Y.2 = X67X6 = f(.Y-l7Y£3)}

e The computation of (V, E) using the function abs_unify is long and we won’t show
it in full detail. Rather, we highlight some important steps which illustrate the key
cases considered in the function aunify and also the fact that fixpoint computation
is performed when the function abs_unify is called.

e During the first round of fixpoint computation (using the function aunify), the
freeness value of Y] is changed first from F to NF(Y; = f(X1,X32)) and then to
NF as the equation Y7 = f(X3,X4) is considered. This changes the freeness value
of X3 to NF. Subsequently, this value is changed to G after the equation X3 = a.
Finally, the freeness value of Xs is changed to NF(Xg = f(Y1,Y3)).

e In the second round of fixpoint computation, the freeness value of X; is changed
from F' to NF since the freeness value of Y; is now NF. Subsequently, the freeness
value of Y] is changed from NF to G when the equation Y; = f(X3,X4) is consid-
ered; now, the freeness values of both X3 and X4 are GG. The freeness value of Y5
is changed from F' to NF(Xs = f(Y1,Y3)) after the equation Y2 = Xs.

o After two more rounds of using the function aunify, fixpoint is reached and the final
value of V is {Xl/G,Xg/G,X3/G,X4/G,X5/NF(X6 = f(Yi,Yg)),Xﬁ/NF(Xﬁ =
f(Y1,Y3)),Y1/G, Yo /NF(Xe = f(Y1,Y3)),Ys = F} and the final value of E is
{X5 =Y, X = Yo, X = f(leavai)}

Sg_share = update_sharing(V, A_share) = {0,{Xs},{X6}}
partition(V, E, Sg_share) = {{X5, Xg,Y>,Y3}}
project_share(head(C), partition(V, E, Sg_share)) = {{Y>,Y3}}
B-share = {0,{Y2},{Y3},{Y2,Y3}},

ﬂ—f’reenessentry = {le/G7 sz/NFl: Yé/F}

P(Sg, Sg-share) = {{4},{5,6}}

(P(Sg, Sg-share))* = {{4},{5,6},{4,5,6}}.

B-share ., = {0,{Y2,Y3}}.

call to-entry(,89,C) = ({0, {%s, Y3} }, (¥i/G, Y2/ NF, Y/ F})

6 Synergistic Interaction between Freeness and
Sharing

In section 1.1, we saw how freeness information could help to increase the accuracy
of sharing information achievable by analysis. In this section, we show how the
converse works i.e. how the presence of the sharing component leads to a more
accurate estimation of the freeness component. Thereby, we demonstrate the sym-
metric interaction and synergy that exists between these two components of the
abstract substitution.

Consider a subgoal Sg = pred(X;,Xs) whose call substitution is
({@,{Xl},{X3},{X2,X4}}, {Xl/F,XQ/F,X3/F, X4/F}) Let the value of the pro-
jection of its success substitution be ({0,{X;},{X2}},{X1/NF, X3/NF}). The
problem is to compute the success substitution from its projection. Following the
algorithm in section 4, we get the value of the success substitution to be ({0, {X1},
{Xs}, {X2, Xu}}, {X1/NF, X5/NF, X3/F, X4/NF}). Focussing on the freeness
values of X3 and X,, we notice that the former has the same freeness value of F'

13

before and after the execution of Sg, while the latter has changed from F' to NF.
Why this difference in spite of the fact that both of them do not occur in Sg? This
can be explained by the fact that X3 is not aliased to any other variable in Sg’s
call substitution while X, is potentially aliased to X5. Therefore, X3 is not affected
by the execution of Sg while X4 is. It can potentially become non-free since the
freeness value of X5 has changed from F' to NF.

Consider an analysis wherein we have the freeness information but not the shar-
ing information. Assume the same value for the freeness component of the projected
success substitution: the freeness values of both X; and X» have changed from F' to
NF'. In this case, we do not know the sharing information among the four variables
and hence we have to do the analysis assuming the worst case i.e. all four variables
could be aliased to each other. Therefore, the freeness values of both X3 and X,
would be changed from F to NF.

Thus we see that, in the absence of sharing information, we can only infer
that the freeness value of X3 is NF rather than the more accurate value of F' in
Sg’s success substitution that can be obtained by using the sharing information.
Clearly, the presence of sharing information enhances the accuracy of the freeness
information achievable by analysis.

7 Conclusions

An abstraction framework and abstract unification algorithms for combined infer-
ence at compile-time of groundness, sharing, and freeness information have been
presented. The algorithms presented can be combined with a variety of abstract
interpretation frameworks to provide analyses useful in the detection of non-strict
independence among goals, a condition which ensures efficient parallelization of
programs, and in the optimization of unification, goal ordering, avoidance of type
checking, general program transformation, etc. It has been shown how such analy-
ses gain in power from the increased precision arising from the combined inference
of sharing and freeness information proposed in this paper. It will be interesting
to implement this framework and study the tradeoffs between the cost of carrying
around the extra information (freeness) and the increased precision it brings to the
analysis.

References

[1] R. Barbuti, R. Giacobazzi, and G. Levi. A declarative approach to the abstract
interpretation of logic programs. Technical Report TR-20/89, Dipartamento
di Informatica, Universita di Pisa, 1989.

. Bruynooghe. ramework for the stract Interpretation of Logic Pro-

2] M. B he. A Fi k for the Ab I i f Logic P
grams. Technical Report CW62, Department of Computer Science, Katholieke
Universiteit Leuven, October 1987.

[3] M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation In-
tegrating Type and Mode Inference. In Fifth International Conference and
Symposium on Logic Programming, pages 669-683, Seattle, Washington, Au-
gust 1988. MIT Press.

[4] M. Codish, D. Dams, and E. Yardeni. Abstract unification for the analysis
of groundness and aliasing in logic programs. Technical Report TR-CS90-10,
Weizmann Institute of Computer Science, August 1990.

[5] C. Codognet, P. Codognet, and M. Corsini. Abstract Interpretation of Concur-
rent Logic Languages. In North American Conference on Logic Programming,
pages 215-232, October 1990.

14

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Corsini and G. File. The abstract interpretation of logic programs: A
general algorithm and its correctness. Research report, Department of Pure
and Applied Mathematics, University of Padova, Italy, December 1988.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.

In Fourth ACM Symposium on Principles of Programming Languages, pages
238-252, 1977.

S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Pro-
grams. Journal of Logic Programming, 5(3):207-229, September 1988.

M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In
1990 International Conference on Logic Programming, pages 237-252. MIT
Press, June 1990.

D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In 1989 North American Conference on Logic
Programming. MIT Press, October 1989.

A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The Impact of
Abstract Interpretation: an Experiment in Code Generation. In Sixth Interna-
tional Conference on Logic Programming, pages 33—47. MIT Press, June 1989.

K. Marriott and H. Sgndergaard. Semantics-based dataflow analysis of logic
programs. Information Processing, pages 601-606, April 1989.

C. Mellish. Abstract Interpretation of Prolog Programs. In Third Interna-
tional Conference on Logic Programming, number 225 in LNCS, pages 463-475.
Springer-Verlag, July 1986.

K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming, pages 166—-189. MIT Press, Oc-
tober 1989.

K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. Technical
Report STP-368-90, Microelectronics and Computer Technology Corporation
(MCC), Austin, TX 78759, December 1990.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs.
Theoretical Computer Science, 34:227-240, 1984.

R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global
Flow Analysis of Logic Programs. In Fifth International Conference and Sym-
posium on Logic Programming, pages 684—699. MIT Press, August 1988.

W. Winsborough and A. Waern. Transparent And-Parallelism in the Presence
of Shared Free variables. In Fifth International Conference and Symposium on
Logic Programming, pages 749-764, Seattle,Washington, 1988.

15

