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Abstract

Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular,
Java source and bytecode. However, while most existing work deals with the problem of finding expressive
abstract domains that track accurately the characteristics of a particular concrete property, the underlying
fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpre-
tation based–) fixpoint algorithms rely on relatively inefficient techniques for solving inter-procedural call
graphs or are specific and tied to particular analyses. We also argue that the design of an efficient fixpoint
algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algo-
rithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number
of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used
and it can be applied to different domains as “plug-ins”-, multivariant, and flow-sensitive. Also, is based on
a program transformation, prior to the analysis, that results in a highly uniform representation of all the
features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions
are given and discussed with an example. We also provide some performance data from a preliminary
implementation of the analysis.
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1 Introduction

Analysis of the Java language (either in its source version or its compiled byte-

code [19]) using the framework of abstract interpretation [8] has been the subject of

significant research in the last decade (see, e.g., [20] and its references). Most of this

research concentrates on finding new abstract domains that better approximate a

particular concrete property of the program analyzed in order to optimize compila-

tion (e.g., [3,31]) or statically verify certain properties about the run-time behavior

of the code (e.g., [13,17]). In contrast to this concentration and progress on the

development of new, refined domains there has been comparatively little work in

the underlying fixpoint algorithms and frameworks. In fact, many existing abstract

interpretation-based analyses use relatively inefficient fixpoint algorithms. In other

cases, the fixpoint algorithms are specific and/or tied to particular analyses and

cannot easily be reused for other domains.

Instead, interesting progress on fixpoint algorithms has been made for exam-

ple in functional and logic programming, where a number of solutions have been

proposed to speed up analysis fixpoint convergence (see, e.g., [24,6,14,29] and its

references). However, the formulation of these algorithms is strongly tied to the

operational semantics of those languages. As a result, their adaptation to Java and

Java bytecode is not straightforward, since fundamental aspects of the semantics

of object-oriented programming such as virtual calls, object instantiation, static

methods and variables, destructive update, etc. are not dealt with, at least directly.

We argue that the design of an efficient fixpoint algorithm is pivotal to sup-

porting the analysis of large programs. In this paper we propose and describe in

detail a novel algorithm for analysis of Java bytecode which includes a number of

optimizations in order to reduce the number of iterations as well as other unique

characteristics. In particular, dependencies are kept during analysis so that only

the really affected parts need to be revisited after a change during the convergence

process. The algorithm deals thus efficiently with mutually recursive call graphs.

In addition, recomputation is avoided using memoing. The proposed algorithm is

parametric in the sense that it is independent of the abstract domain used and it

can be applied to different domains. The algorithm specifies a reduced number of

basic operations that each domain must implement. This allows having a single

implementation to which the designer of new analyses can add new domains as

“plug-ins.” The algorithm is also multivariant : abstract calls to a given method

that represent different input patterns are automatically analyzed separately. This

is both more precise and efficient than alternative techniques such as cloning meth-

ods for each call site, since cloning can produce either too many versions of methods

(if two call sites are determined to use the same input pattern) or too few (if two

different, separate input patterns arise from a single call site). The algorithm is also

top-down/flow-sensitive, in order to allow modeling properties that depend on the

data flow characteristics of the program.

Finally, another interesting characteristic of the algorithm is that it is preceded

by a program transformation, prior to the analysis, that results in a highly uniform

representation of all the features in the language and therefore simplifies analy-

sis. This program transformation includes a certain level of decompilation of the
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bytecode which recovers part of the original code structure lost in the bytecode rep-

resentation. Our decompilation process is based in part on existing tools [23,35] to

which we add a number of steps (normalizing the intermediate representation which

is actually analyzed, representing different classes of statements in a unified way,

automatically introducing relational information between initial and final states on

methods calls, etc.) which we argue greatly simplify the burden of designing new

analyses and abstract operations. While not the subject of this paper, the algorithm

can also be applied to Java source code, applying a similar transformation.

Java programs rely heavily on libraries and analysis thus usually expands to

many imported classes. Thus, modular analysis is definitely an important issue in

this context. However, and in order to concentrate on the description of the fixpoint

algorithm, we will not deal with modular analysis issues in this paper. Instead, we

assume that methods exported by libraries are annotated in an assertion language

that describes which output abstract states are provided for certain input abstract

states (we use a particular assertion language based on [28] but adapted to resemble

the Java Modeling Language [16], however we omit also a detailed description of this

assertion language from the description for brevity). A solution for modular analysis

in the context of Java can be found for example in [27], and, more specifically

relevant to our algorithm, in [4,7].

Regarding other related work, as mentioned before, most published analyses

based on abstract interpretation for Java or Java bytecode do not provide much

detail regarding the implementation of the fixpoint algorithm. Also, most of the

published research (e.g., [3,5]) focuses on particular properties and therefore their

solutions (abstract domains) are tied to them, even when they are explicitly mul-

tipurpose [18]. In [25] the authors mention a choice of several univariant and mul-

tivariant computations, but no further information is given. The more recent and

quite interesting Julia framework [33] is intended to be generic and targets byte-

code as in our case. Their fixpoint techniques are based on prioritizing analysis

of non-recursive components over those requiring fixpoint computations and using

abstract compilation [15]. However, few implementation details are provided. Also,

this is a bottom-up framework, while our objective is to develop a top-down, multi-

variant framework. While it is well-known that bottom-up analysis can be adapted

to perform top-down analyses by subjecting the program to a “magic-sets”-style

transformation [30], the resulting analyzers typically lack some of the characteris-

tics that are the objective of our proposal, and, specially, multivariance. Finally,

in [21] a generic static analyzer for the modular analysis and verification of Java

classes is presented. The algorithm presented is also bottom-up, and only a naive

version of it (which is not efficient for mutually recursive call graphs) is presented.

2 Intermediate program representation

We start by describing the first phase of the analysis: the translation of the Java

bytecode into an intermediate representation. In order to concentrate on the fixpoint

algorithm, which is the main objective of the paper, this description is summarized,

concentrating on the characteristics of the transformation and illustrating it with

a relatively complete example (the full description can be found in [22]). The
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prog ::= ({meta1, . . . , metam} , {or − tp1, . . . , or − tpn})

meta ::= subclass(k1, k2) | implements(k, {par1, . . . , parn})

or − tp ::= method(name, {par1, . . . , parn} , k, attr, body(stmt))

par ::= (name, t)

stmt ::= assignStmt | invokeStmt

condStmt | returnStmt

nopStmt | {stmt1, . . . , stmtn}

assignStmt ::= assign(var, rvalue) | assign(var, var, field)

invokeStmt ::= invoke(name, {par1, . . . , parn} , k)

condStmt ::= guard(imm1 condop imm2)

condop ::= 〈 | 〉 | = | ! = | ≤ | ≥

returnStmt ::= return

nopSmt ::= nop

imm ::= var | constant

rvalue ::= concreteRef | imm | expr

concreteRef ::= field | var.field

expr ::= imm1 binop imm2 | invokeExpr | new type

binop ::= + | − | = | 6= | ≤ | ≥ | ∗ . . .

Fig. 1. Internal representation of the bytecode.

translation process produces a structured, decompiled representation of the Java

bytecode and is based on the SOOT framework [35] which has been successfully

used in previous analyses [9,2]. However, instead of analyzing directly the Jimple

representation –based on gotos– it is processed further in order to build a control

flow graph (CFG) in a similar way to the Dava tool [23]. The idea is also analogous to

the approach of [13,33] but the graph obtained is somewhat different since we do not

distinguish between stack and local variables, and all the operands are explicit in the

expressions. The actual internal representation used is described by the grammar in

Fig. 1. 5 In our current implementation we deal only with the fundamental features

of the language such as inheritance, virtual calls, and method visibility.

Here and in the rest of the paper, we will denote by V the set of variables

in the program and by M the set of method names. The types T of the appli-

cation include classes K and atomic types. The decompilation process represents

methods as OR-tuples (name, fp, kcallee, body) ∈ M × P(V × T ) × K × P(Stmt).

The domain of OR-tuples is denoted by O and therefore a program P is just an

element of P(O). A first key idea in the transformation is to have a single repre-

sentation for all types of loops, as well as for conditional structures and standard

methods, which are all transformed into OR-tuples. For example, an uncondi-

tional jump in the bytecode is first decompiled as a conditional block, which is

further converted into a “pseudo” method. This label refers to the fact that those

methods did not exist in the original bytecode. Given a statement if cond1 stmt1
else if cond2 stmt2 . . . else stmtn in the context of a class k, n OR-tuples

are obtained of the form {(name if, {(v1, k1), . . . , (vn, kn)} , k, [cond1, stmt1]), . . . ,

(name if, {(v1, k1), . . . , (vn, kn)} , k, [cond1, . . . , condn−1, condn, stmtn])}. The tag

name if uniquely identifies the set of OR-tuples. The formal parameters (vi, ki)

are the variables (and their classes) referenced inside the intermediate if block.

A second important aspect in the representation of the code is the meta-

information stored about it. Although that information could be indirectly retrieved

from intermediate data structures, a more convenient approach is to maintain a ta-

5 This grammar has been simplified slightly for better understanding. An intuition of its complete form
can be derived from Fig. 2.
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class Element{
int value;
Element next;}

class Vector{
Element first;

public void append(Vector v){
1 Element e = first;
2 if (e == null)
3 first = v.first;
4 else{
5 while (e.next != null)
6 e = e.next;
7 e.next = v.first;}

}
public void add(Element element){

Element e = new Element();
e.value = element.value;
Vector v = getNewVector();
v.first = e;
append(v);

}
}
class ZipVector extends Vector{

public void add(Element element){
Vector v = getNewVector();
element.next = null;
v.first = element;
append(v);

}
}

(a)

class Element extends java.lang.Object{
int value;
Element next;
[...]

}
class Vector extends java.lang.Object{

Element first;
public void append(Vector){

Vector r0, r1;
Element r2, $r3, $r4, $r5;

r0 := @this: Vector;
r1 := @parameter0: Vector;

1 r2 = r0.<Vector: Element first>;
2 if r2 != null goto label0;
3 $r3 = r1.<Vector: Element first>;
3 r0.<Vector: Element first> = $r3;

goto label2;
label0:

5 $r4 = r2.<Element: Element next>;
5 if $r4 == null goto label1;
6 r2 = r2.<Element: Element next>;

goto label0;
label1:

7 $r5 = r1.<Vector: Element first>;
7 r2.<Element: Element next>= $r5;

label2:
return;

}
[...]

public class ZipVector extends Vector
[...]

(b)

subclass(’user:vector’,java.lang.object,[]).
subclass(’user:zipvector’,’user:vector’,[]).
subclass(’user:element’,java.lang.object,[]).
implements(’user:vector’,’add’,[’user:vector’,’user:element’,’void’]).
implements(’user:zipvector’,’add’,[user:zipvector’,’user:element’,’void’]).

[...]

method(’user:vector:append’,’user:vector’,’void’,recursive(not),
formal([(R0,’user:vector’),(R1,’user:vector’)]),
local([(R2,’user:element’),(R3,’user:element’),

(R4,’user:element’),(R5,’user:element’)]),
body([

1 staticinvoke(’check_not_null’,[(R0,’user:vector’)],java.lang.object),
1 assign(R2,R0,first,’user:element’),

conditionalinvoke(’user:vector:append_if00’,
[(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),
(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)])

])).

method(’user:vector:append_if00’,’user:vector:append’,’user:vector’,’void’,
formal([(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),

(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)]),
body([

2 guard(R2==null),
3 staticinvoke(’check_not_null’,[(R1,’user:vector’)],java.lang.object),
3 assign(R3,R1,first,’user:element’),
3 staticinvoke(’check_not_null’,[(R0,’user:vector’)],java.lang.object),
3 setfield(R0,first,R3,’user:element’),

return(’user:vector:append’)
])).

method(’user:vector:append_if00’,’user:vector:append’,’user:vector’,’void’,
formal([(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),

(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)]),
body([

4 guard(not(R2==null)),
5 assign(R4,R2,next,’user:element’),

loopinvoke(’user:vector:append_if00_while00’,[(R1,’user:vector’),
(R2,’user:element’),(R4,’user:element’),(R5,’user:element’)])

])).

method(’user:vector:append_if00_while00,’,’user:vector:append’,’user:vector’,’void’,
formal([(R1,’user:vector’),(R2,’user:element’),(R4,’user:element’),

(R5,’user:element’)]),
body([

5 guard([R4==null]),
6 staticinvoke(’check_not_null’,[(R1,’user:vector’)],java.lang.object),
6 assign(R5,R1,first,’user:element’),
6 staticinvoke(’check_not_null’,[(R1,’user:element’)],java.lang.object),
6 setfield(R2,next,R5,’user:element’)

])).

method(’user:vector:append_if00_while00’,’user:vector:append’,’user:vector’,’void’,
formal([(R1,’user:vector’),(R2,’user:element’),(R4,’user:element’),

(R5,’user:element’)]),
body([

5 guard(not([R4==null])),
7 staticinvoke(’check_not_null’,[(R2,’user:element’)],java.lang.object),
7 assign(R2,R2,next,’user:element’),
7 staticinvoke(’check_not_null’,[(R2,’user:element’)],java.lang.object),
7 assign(R4,R2,next,’user:element’),

loopinvoke(’user:vector:append_if00_while00’,[(R1,’user:vector’),
(R2,’user:element’),(R4,’user:element’),(R5,’user:element’)])

]) ).
(c)

Fig. 2. Vector example

ble containing which classes implement which methods, as well as the hierarchy,

interface relations, etc. In this way, we can easily determine (for example) the set

of classes in which a virtual call might take place without having to resort every

time to an abstract syntax tree transversal.

A third key idea is to expose the internal structure of the more complex bytecode

instructions. Java bytecodes are sometimes high-level instructions that encode rela-

tively complex operations. Instead of delegating the treatment of such complexities

to the abstract domain, we make these aspects of the operational semantics explicit

in the intermediate representation itself using program transformations as in [13].

In the same way, a pivotal aspect in languages with destructive updates is the stor-
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age of relational information about the formal parameters in a method invocation,

so that on method exit we can distinguish whether the parameter state should be

propagated back to the caller or it refers to a new, fresh instance. In [25,32] the

solution is based on the framework by altering call semantics. Instead we intro-

duce explicit assignments to temporal variables which are undone at the end of

the method’s body. We argue that the solutions that we apply result in simple do-

main implementations (important for our parametric approach), as well as increased

portability of the domains: analysis of similar languages (e.g., C#) can (almost)

reuse existing abstractions, provided that the compilation phase decompiles in this

way the language-dependent features. We also argue that the representation pro-

posed greatly facilitates later analyses.

Example 2.1 Figure 2 shows three representations of the same code, an alternative

implementation of the JDK Vector class. We include the original source in Fig. 2a

for better understanding of the example. Figure 2b is the output of the SOOT

(de-)compiler, in Jimple format, for the Vector bytecode. Stack and local elements

have been converted into named variables and all the expressions are typed, but

the presence of gotos complicates later analyses. Meta-information about class

hierarchies, overwritten methods, etc. is also implicit in the code.

The data structure that represents the Control Flow Graph that is the input

to our fixpoint algorithm is shown in Fig. 2c. The meta-information part (first

five lines) states that ZipVector is a direct descendant of the user-defined Vector

class. Both implement an add method that receives an Element object and returns

nothing. We now focus on the append method. Most of the statements in the

Jimple representation are kept in a very similar format (the line numbers will help

the reader identify the correspondences) except for gotos and ifs which are now

OR-tuples. For example, the if block starting at line 2 corresponds to the two

OR-tuples named user:vector:append if00, which have as formal parameters all

the variables of the container method because they are referenced in their bodies.

The while loop in lines 5-6 is constructed in a similar way, although recursive calls

are inserted by the compiler. Space limitations prevent us from showing how the

relational information is copied at the beginning and end of every method.

3 Top-down Approach to Bytecode Analysis

The program transformations of Sect. 2 greatly simplify our bytecode analysis

since we only have two possible flows in the CFG: the branching invocations

of OR-tuples or serial execution of all other statements. For the first case we

will not distinguish in analysis between real (existing in the source) and pseudo

(generated via program transformation) methods, which are semantically equiv-

alent. In the event of an invocation i = invoke(mname, ap, k caller) ∈ M ×

P(V × T ) × K the semantics of both is computed by calculating the least upper

bound of the semantics of all possible OR tuples compatible with such invocation:

SSJinvoke(mname, ap, kcaller)Kσ = ⊔(SSJstmtiKσ) if (name, fp, kcallee, stmti) ∈ O

and comp(i, o). The function comp returns a boolean value indicating if a particu-

lar implementation o = (name, fp, kcallee, stmti) is compatible with the invocation:

i.e., if their names are identical and their signatures and the class where they are

6



defined are compatible according to a partial order for Java classes ≤T like the one

described in [17].

comp(i, o) =



















true if name = mname and kcaller ≤T kcallee and

|ap| = |fp| and api.k ≤T fpi.k i = 1 . . . n

false otherwise

However, this high-level description of the semantics of an invocation does not

take into account implementation issues like the particular strategy (bottom-up or

top-down) followed or fixpoint calculations. We now develop a refined approach to

the problem, which in fact handles the two types of flows in a uniform fashion.

A particularly useful and efficient way of controlling the interpretation process

is to follow a top-down strategy starting from the program main entry point and an

abstraction of the input data (or a topmost value, if such abstraction is not avail-

able). The top-down strategy proposed implicitly creates a graph during analysis

where nodes (statements) with several descendants correspond to branches in the

concrete execution (conditionals, virtual calls, loops), all of them abstracted as invo-

cations of OR-tuples. Nodes with one descendant indicate serial execution and are

abstracted by recursively applying the process to the child node. More precisely,

an invocation is an OR-node whose children are the bodies of all the OR-tuples

whose signature matches that of the call, and each body is an AND-node where the

semantics of each statement (possibly containing further OR-nodes) are composed.

Given a call state CA prior to a statement stmt, the exit state CP is computed

by the function SSJstmtK : D 7→ D, with three subcases:

(i) If the statement is a invocation i = invoke(mname, ap, kcaller), let o1, . . . , on

be the OR-tuples such that comp(i, oi) = true. First we restrict the actual

state to those variables that are in ap. This is performed by means of the

project operation described below and results in a new state λ = CA|ap. The

description is further modified to rename the variables so they work in each

context of the callee: βi = λ|fp
ap . Then we call recursively SSJstmtiKβi in order

to obtain an exit state for the callee β
′

i . Now we proceed in the opposite direc-

tion, first by renaming back all variables so that each abstraction is described

in terms of the variables in the caller and then by lubbing their partial results:

λ
′

=
⊔

β
′

i|
ap
fp. The last step implies conjoining λ

′
with the initial description

via the extend operation described below: CP = extend(CA,λ
′
).

(ii) If the statement is a concatenation of statements {stmt1, . . . , stmtn}, the out-

put state is calculated as the composition of the semantics of each element in

the list, starting with the initial state: CP = SSJstmtnK(. . .SSJstmt1K(CA))

(iii) If the statement is atomic (does not include further statements) we have a base

case that is resolved directly by the domain: CP = SSJstmtK(σi).

The interprocedural, top-down approach requires the designer of the domain to

provide two extra operations in addition to the standard [8] lattice functions such

as least upper bound or ordering. The project : D × P(V) 7→ D operator restricts

the current abstraction to the set of variables specified. The intuition behind it is

the removal of irrelevant information in the actual state, in the sense that it does
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not relate to the actual parameters of the invocation, reflecting the scoping rules of

the blocks being analyzed. The second operation is extend : D × D 7→ D, which

updates an abstract state CA based on another description λ
′

that involves only

variables in CA. The purpose of extend is somehow symmetric to the projection,

because after returning from a method invocation we need to reconcile the result

of the call (affecting only a few variables within the scope of the caller) with the

previous state (affecting all the variables in such scope).

Example 3.1 A pair-sharing domain approximates pairs of variables that

might point to the same location in memory [32]. An abstract state like

{{X,Y } , {X,X} , {Y, Y } , {Z,Z}} is an abstraction of a particular heap configu-

ration where variables X and Y might point to the same object, while Z defi-

nitely references another position in memory. Projection σ|V is defined as {S | S =

S
′
∩ V, S

′
∈ σ}. In the example of Fig. 2c, assume that the actual state before

the call to vector:append if00 while00 is CA = {{R0, R1} , {R0, R2} , {R1, R2} ,

{R0, R0} , {R1, R1} , {R2, R2}}. Since the invocation involves only variables V =

{R1, R2, R4, R5} we get λ = CA|V = {{R1, R2} , {R1, R1} , {R2, R2}}.

The extend operation is less straightforward. Assume the existence of a method

foo(R0, R1) called in state CA = {{R0, R0} , {R0, R2} , {R1, R1} , {R2, R2}}.

After analyzing the body of foo the resulting state is λ
′

=

{{R0, R1} , {R0, Ro} , {R1, R1}}, probably because some field in R0 has been

assigned to R1 or to any of its non null fields (or vice versa) within the

method. The information discovered is propagated back to the caller and, thus,

extend(CA,λ
′
) = {{R0, R1} , {R0, R2} , {R1, R2} , {R0, R0} , {R1, R1} , {R2, R2}}.

Note that precision can be further improved if, for example, the abstraction cap-

tures the run-time class of the objects invoked. Our solution to this issue makes use

in the implementation of object orientation by allowing specialization of the base

framework through subclassing. For the particular example in hand, domains con-

taining class analysis information [1,10] would just overwrite the implementation of

the comp predicate in order to obtain smaller sets of candidate methods to analyze.

In addition to the points above, there is one more issue that needs to be ad-

dressed. The overall abstract interpretation framework scheme described works in

a relatively straightforward way if the (transformed) program has no recursion (i.e.,

there are no loops or recursion in the original bytecode). Consider, on the other

hand, a recursive OR-tuple. If there are two OR-nodes for the tuple in the tree such

that the actual parameters apars and input state CA are identical, and one node is

a descendant of the other, then the tree is infinite and analysis does not terminate.

In order to ensure termination, some sort of fixpoint computation is needed. This

is the subject of the following section.

4 Generic Top-Down Analysis Algorithm

We now describe our generic top-down analysis algorithm. The algorithm computes

the least fixed point making use of memo tables [12,36,11]. A memo table contains

the results of computations already performed and it is typically used to avoid

needless recomputation. However, in our context it is also used to store results

8



Analyze(P, Stmt, CA, MT, Set)
case Stmt of

conditional:
return AnalyzeCond(P, Stmt, CA,MT , Set)

recursive:
return AnalyzeLoop(P, Stmt, CA, MT, Set)

no recursive:
return AnalyzeNoLoop(P, Stmt, CA, MT, Set)

special:
return AnalyzeSpecial(P, Stmt, CA, MT, Set)

builtin:
return AnalyzeBuiltin(Stmt, CA)

end

AnalyzeCond(P, I, CA, MT, Set)
λ:=CA
I = (N, , )
entry:=Find(MT, 〈N, λ〉, complete)
if entry 6= ∅ then

entry = 〈λ
′

, 〉
else

λ
′

:=⊥
M :=Lookup(I)
foreach m ∈ M

m = (N, , , Stmts)
〈λ′

m, MT, Set〉:=
EntrytoExit(P, λ, Stmts, MT, Set)

λ
′

:=λ
′

⊔ λ′
m

end
Let ID be an unique identifier

MT :=Insert(MT, 〈N, λ, λ
′

, complete, ID〉)
end

CP :=λ
′

return 〈CP, MT, Set〉

AnalizeNoLoop(P, I, CA, MT, Set)
I = (N, Ap, )
apars = vars(Ap)
λ:=Project(CA, apars)
entry:=Find(MT, 〈N, λ〉, complete)
if entry 6= ∅ then

entry = 〈λ
′

, 〉
else

λ
′

:=⊥

λ:=λ|
{R0,...,Rn}
apars

M :=Lookup(I)
foreach m ∈ M

m = (N, Fp, , Stmts)
fpars:=vars(Fp)
V :=vars(Stms)
β :=Project(λ, fpars)
β :=Augment(β, V )

〈β
′

, MT, Set〉:=EntrytoExit(P, β ,Stmts, MT, Set)

λ
′

m:=Project(β
′

, apars)

λ
′

m:=λ
′

m|apars

{R0,...,Rn}

λ
′

:=λ
′

⊔ λ
′

m
end
Let ID be an unique identifier

MT :=Insert(MT, 〈N, λ, λ
′

, complete, ID〉)
end

CP :=Extend(CA, λ
′

)
return 〈CP, MT, Set〉

Fig. 3. The fixpoint algorithm (A)

obtained from an earlier round of iteration and whether a certain entry represents

final, stable results for the method, or intermediate approximations obtained half

way during the convergence of fixpoint computations. An entry : M×D×S×D×I+

in the memo table has the following fields: method name, its projected call state

(λ), its status, its projected exit state (λ
′
) and a unique identifier. find : MT ×

M×D×S 7→ D × I+ returns a tuple (λ
′
, ID) corresponding to an entry from the

memo table if there exists a renaming such that this entry matches with the given

method name and its λ. Other memo table operations are: findStatus : MT ×

M×D 7→ D×I+×S, updStatus : MT ×M×D×S 7→ MT , updLambdaPrime :

MT × M × D × D 7→ MT , and insert : MT × E 7→ MT . We also assume a

procedure called lookup : M 7→ P(M) which given a method description returns

all methods that implement it.

The actual analysis algorithm is shown in pseudocode in Figs. 3 and 4. 6 There

are three major subcases. If the statement is an invocation of a non recursive

method, AnalyzeNoLoop handles the call. It first checks whether there is an entry in

the memo table for the name of the invoked method and its λ. In that case the stored

value of λ
′

is immediately passed to the Extend operation to yield the exit state.

Otherwise, the variables of its λ are renamed to the set of variables {R0, . . . , Rn}

and for each method m returned by the Lookup procedure the following actions are

carried out: a projection of λ onto the m variables and addition of the variables of

6 This description does not include the abstract operation of widening. It is straightforward to modify the
algorithm to include widening of call and answer patterns, we omit it for simplicity.
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AnalyzeLoop(P, I, CA, MT, Set)
I = (N, Ap, )
apars:=vars(Ap)
λ:=Project(CA, apars)
entry:=FindStatus(MT, 〈N, λ〉)

λ:=λ|
{R0,...,Rn}
apars

if entry 6= ∅ then

entry = 〈λ
′

1, ID, status〉
case status of

complete:

λ
′

2 :=λ
′

1
fixpoint:

λ
′

2 :=λ
′

1
Set:=Set ∪ {ID}

approximate:
MT :=UpdStatus(MT, 〈N, λ〉, fixpoint)

〈λ
′

2, MT, Set〉:=
CompFixpo(P, I, λ, MT, Set)

end
else

λ
′

:=⊥
M :=Lookup(I)
foreach non-recursive m ∈ M

m = (N, Fp, , Stms)
fpars:=vars(Fp)
V :=vars(Stmts)
β :=Project(λ, fpars)
β :=Augment(β,V )

〈β
′

, MT, Set〉:=EntrytoExit(P, β ,Stms, MT, Set)

λ
′

m:=Project(β
′

, apars)

λ
′

m:=λ
′

m|apars

{R0,...,Rn}

λ
′

:=λ
′

⊔ λ
′

m
end

MT :=Insert(MT, 〈N, λ, λ
′

, fixpoint, ID〉)

〈λ
′

2, MT, Set〉:=CompFixpo(P, I, λ, MT, Set)
end

CP :=Extend(CA, λ
′

2)
return 〈CP, MT, Set〉

EntrytoExit(P, β , Stmts, MT, Set)
CA:=β
foreach Stmt ∈ Stmts until Stmt = return

〈CP, MT, Set〉:=Analyze(P, Stmt, CA, MT, Set)
CA:=CP

end

β
′

:=CP

return 〈β
′

, MT, Set〉

CompFixpo(P, I, λ, λ
′

, MT, Set)
I = 〈N, Ap, 〉
apars:=vars(Ap)
entry:=Find(MT, 〈N, λ〉, )
setI :=∅
changed:=false
repeat

fixpoint:=true

entry = 〈λ
′

, ID〉
M :=Lookup(I)
foreach m ∈ M

m = (N, Fp, , Stmts)
if N is recursive or changed

fpars:=vars(Fp)
V :=vars(Stmts)
β :=Project(λ, fpars)
β :=Augment(β, V )

〈β
′

, MT, setStmts〉:=
EntrytoExit(P, β ,Stmts, MT, ∅)

λ
′

m:=Project(β
′

, apars)

λ
′

m:=λ
′

m|apars

{R0,...,Rn}

λ
′

old
:=λ

′

λ
′

:=λ
′

old
⊔ λ

′

m

if λ
′

old
6= λ

′

then
fixpoint:=false
changed:=true

MT :=UpdLambdaPrime(MT, 〈N, λ〉, λ
′

)
end
setI :=setI ∪ setStmts

end
end

until (fixpoint = true)
if setI \ {ID} = ∅ then

status:=complete
else

status:=approximate
end

MT :=UpdStatus(MT, 〈N, λ
′

〉, status)
Set:=Set ∪ setI \ {ID}

return 〈λ
′

, MT, Set〉

Fig. 4. The fixpoint algorithm (B)

the m body to yield its corresponding β . Then, each statement in the body of m

is analyzed by calling the EntrytoExit procedure resulting in a set of exit states

which are “lubbed.” These states have been previously projected onto the variables

of the invoked method and renamed in terms of these variables. This “lubbed” state

is inserted as an entry in the memo table and characterized as complete. Finally,

the Extend operation is applied in order to produce the exit state.

In conditional methods the decompilation ensures that the formal parameters

of the method are indeed named as in the caller. Furthermore, caller and callee

have an identical scope so in an invocation I = 〈N,Ap, 〉 to a conditional method,

all the compatible tuples m = 〈N,Fp, , Stmts〉 verify vars(Stmts) = vars(Fp)

(i.e., they have no extra local variables) and vars(CA) = vars(Ap) = vars(Fp) =

{R0, . . . , Rn}. This property is used in AnalyzeCond to speed up analysis, since the

Project and Extend operations can be skipped.
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Finally, when a method is recursive the fixpoint computation defined by the

AnalyzeLoop procedure in Fig 4 is required since analysis needs to be repeated

until fixpoint is reached for the abstract and-or tree, i.e., until it remains the same

before and after one round of iteration. In order to do this, we keep track of a

flag to signal the termination of the fixpoint computation. Firstly, AnalyzeLoop

begins analyzing those non-recursive instances of the invoked method in the same

way as AnalyzeNoLoop. With this, we are able to yield a possible λ
′
different from

⊥ which will accelerate the further fixpoint computation, and then an entry in the

memo table is inserted with this information and characterized as fixpoint. After

this, the CompFixpo procedure (also defined in Fig. 4) is called. At each iteration, a

similar process to that described in AnalyzeNoLoop is performed. However, between

the end of one iteration and the beginning of the next one, the values of the previous

λ
′
and the new λ

′
are compared. If they are the same, then fixpoint has been reached

and the procedure finishes ensuring that the least fixed point has been computed.

Otherwise, the least fixed point has not been reached yet and a new iteration will

be performed.

Dealing with Mutually Recursive Methods. For the sake of simplicity, the

description of the analysis so far has omitted some details which are needed in or-

der to support mutually recursive methods. In this case, our algorithm operates as

follows. Firstly, we need to use new values for the status field in memo table entries.

fixpoint is used when the fixpoint has not been reached yet. approximate repre-

sents when the fixpoint has been reached for a method m1 in this entry but by using

a possibly incomplete value of λ
′
of some other method m2 (i.e., a value that does

not correspond yet to a fixpoint). Finally, complete is used when fixpoint has been

reached for this method. Furthermore, we also need to use the ID field in order to

detect occurrences of mutual recursion. We also need to use a set of ID’s to keep

track of the recursive methods during the analysis. When a fixpoint computation is

started, the analysis searches for an entry in the memo table. Given a method and

its λ, if there exists an entry characterized as complete, then the λ
′
is obtained from

it. If the entry is characterized as fixpoint means that the method is recursive

and thus we add its ID in the set of ID’s. If the entry is approximate, then the

method or one of its successors in the and-or tree has an approximate value of its

exit state. Thus, we need to mark it as fixpoint and start its fixpoint computation

again. Finally, after a fixpoint computation is reached we need to verify the ID’s

contained in the set of ID’s. If this set contains only the ID corresponding to the

method which is being analyzed, then the value of its λ
′
is complete. Otherwise, the

method depends on other ID’s (i.e., methods) and so, we mark its output abstract

value as approximate. In both cases, we eliminate the method’s ID from the set of

ID’s.

Example 4.1 We now illustrate how the fixpoint algorithm described in Sect. 4

works for the program in Fig. 2. The domain used will be pair sharing. The

objective is to analyze the semantics of the append method in the context of the

Vector and ZipVector classes.

Space limitations obviously prevent us from showing the entire process in detail.

We will instead assume that the starting program point for analysis is right before

11



var byt var src line

R0 this −

R1 v −

R2 e 1

R3 this.first 3

R4 e.next 5

R5 v.first 7

Fig. 5. Equivalence of variables between source code and internal representation

the call to append in the Vector implementation of add. Note that the method

creates a vector V which contains a shallow copy of Element so that the three

objects (This, Element and, V ) cannot point to the same location in memory and

CAV ector
append = {{This, This} , {Element,Element} , {V, V }}.

The invocation is classified as non recursive and handled by AnalyzeNoLoop.

We now have to project CAV ector
append over the two actual parameters and then rename

these to the equivalent formal parameters. 7 Since R0 is This and R1 is V we get

λappend = {{R0, R0} , {R1, R1}}. To simplify notation we will denote append if00

and append if while00 by if and while respectively. Analysis of the append body

results in a call to AnalyzeCond, since the last statement is an invocation to if. At

that point CAif = {{R0, R0} , {R0, R2} , {R1, R1} , {R2, R2}} because e (R2) points

to a field of this (R0).

Conditional invocations are simpler to handle: no project, extend, or re-

name operations are required. Instead, we directly examine the two meth-

ods corresponding to if. The first branch implies that R2 is null and

that a R0’s field and R3 point to the vector passed as argument R1,

Thus, λ
′

if,1 = {{R0, R1} , {R0, R3} , {R1, R3} , {R0, R0} , {R1, R1} , {R3, R3}}. The

second compatible method with the invocation implies R2 6= null but

its semantics depends on a loop call to while. Control of the algo-

rithm is passed to the AnalyzeLoop subroutine which projects and renames

CAwhile = {{R0, R2} , {R2, R4} , {R0, R0} , {R1, R1} , {R2, R2} , {R4, R4}} again

yielding λwhile = {{R2, R4} , {R1, R1} , {R2, R2} , {R4, R4}}. The non recursive

part is then analyzed first. Since termination depends on R4 being null and the

final assignment (line 7 in the source) forces R1 and R2 to share through inter-

mediate variable R5 we have λ
′

while,1 = {{R1, R2} , {R2, R5} , {R1, R5} , {R1, R1}

, {R2, R2} , {R5, R5}}. A new entry e1 =(while,λwhile,fixpoint,λ
′

while,1,id1) is in-

serted in the memo table.

Fixpoint computation starts by analyzing (recursive) methods that are compat-

ible with the invocation. The only tuple found (last in Fig. 2c) is processed in

a straightforward manner until the self-invocation, which triggers a search in the

memo table with return value e1 (AnalyzeLoop subroutine). We use the current

approximation of the while semantics, derived from the base case. On return to the

fixpoint routine, we will calculate a λ
′

while,2 which is identical to λ
′

while,1, because

the statements in the body of the recursive tuple do not really alter any information

about variables in λwhile. The relation (λwhile, λ
′

while) did not change after one sin-

gle iteration and the process can be considered as complete for the while method.

7 For better understanding of the variable equivalence check Fig. 5.
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PS

#tp #rp #up #σ t

dyndisp 71 68 3 114 30

clone 41 38 3 42 52

dfs 102 98 4 103 68

passau 167 164 3 296 97

qsort 185 142 43 182 125

intgrqsort 191 148 43 159 110

pollet01 154 126 28 276 196

zipvector 272 269 3 513 388

cleanness 314 277 37 360 233

Fig. 6. Analysis times, number of program points, and number of abstract states.

The memo table status of the e1 tuple is updated accordingly.

Coming back to the semantics of the second branch of the if

method, we observe that it has to be identical to extend(CAif , λ
′

while,1),

which forces further sharings with the R0 object to produce λ
′

if,2 =

{{R0, R1} , {R0, R3} , {R1, R3} , {R0, R0} , {R1, R1} , {R3, R3}}. We now write a

new entry in the memo table: (if, CAif , complete, λ
′

if,1⊔λ
′

if,2,id2). This entry, pro-

jected over the formal parameters of append results in yet another entry (append,

{{R0, R0} , {R1, R1}}, complete, {{R0, R1} , {R0, R0} , {R1, R1}},id3). This seman-

tics is congruent with the concatenation that takes place inside the method.

We are now in the position of inferring the abstract se-

mantics of add in class Vector. Remember that CAV ector
append =

{{This, This} , {Element,Element} , {V, V }} and that the call to append results

(after renaming) in {{This, V } , {This, This} , {Element,Element} , {V, V }}. We

repeat the same process of projecting over the formal parameters thus CP V ector
add =

{{This, This} , {Element, Element}}. In the ZipV ector there is a different call

state prior to append invocation, derived from the insertion of the element in

v (instead of copying its fields, like in Vector): CAZipV ector
append = {{Element, V } ,

{This, This} , {Element,Element} , {V, V }}. Nevertheless, AnalyzeLoop will find

the λ entry already in the memo table, since CAV ector
append|This,V = CAZipV ector

append |This,V

thus λV ector
append = λZipV ector

append . We can reuse the computed semantics to get

the same λ
′

append for the call. On extension with CAZipV ector
append it results in

CPZipV ector
add = {{This,Element} , {This, This} , {Element,Element}}. If we

repeat the process for a call state CAappend where This and V share, CPappend

will remain the same on exit, but the memo table now contains two entries for the

same method reflecting the two different call contexts (multivariance).

5 Some Experimental Results

We have completed a preliminary implementation of our framework, and coded a

pair sharing (PS) analysis extending the operations described in [32] in order to

handle some additional cases required by our benchmark programs such as primi-

tive variables, visibility of methods, etc. The benchmarks used have been adapted

from previous literature on either abstract interpretation for Java or points-to anal-

ysis [32,26,25,34]. Our experimental results are summarized in Fig. 6. The first
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column (#tp) shows the total number of program points (commands or expres-

sions) for each program. Column #rp then provides, for each analysis, the total

number of reachable program points, i.e., the number of program points that the

analysis explores, while #up represents the (#tp−#rp) points that are not analyzed

because the analysis determines that they are unreachable. Since our framework is

multivariant and can thus keep track of different contexts at each program point,

at the end of analysis there may be more than one abstract state associated with

each program point. Thus, the number of abstract states is typically larger than

the number of reachable program points. Column #σ provides the total number

of these abstract states inferred by analysis. The level of multivariance is the ratio

#σ/#rp. In general, such a larger number for #σ tends to indicate more pre-

cise results. The t column in Fig. 6 provides preliminary results regarding running

times for the different benchmarks, in milliseconds, on a Pentium III 2.0Ghz, 1Gb

of RAM, and averaging several runs after eliminating the best and worst values.

6 Conclusions

We have presented a novel algorithm for analysis of Java bytecode which includes a

number of optimizations in order to reduce the number of iterations. The algorithm

is parametric in the sense that it is independent of the abstract domain used. The

algorithm is also multivariant and top-down/flow-sensitive. Also, the algorithm uses

a program transformation, prior to the analysis, that results in a highly uniform

representation of all the features in the language and which simplifies analysis.
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