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Abstract. Effective static analyses have been proposed which allow in-
ferring functions which bound the number of resolutions or reductions.
These have the advantage of being independent from the platform on
which the programs are executed and such bounds have been shown
useful in a number of applications, such as granularity control in par-
allel execution. On the other hand, in certain distributed computation
scenarios where different platforms come into play, with each platform
having different capabilities, it is more interesting to express costs in
metrics that include the characteristics of the platform. In particular,
it is specially interesting to be able to infer upper and lower bounds on
actual execution time. With this objective in mind, we propose a method
which allows inferring upper and lower bounds on the execution times
of procedures of a program in a given execution platform. The approach
combines compile-time cost bounds analysis with a one-time profiling of
the platform in order to determine the values of certain constants for that
platform. These constants calibrate a cost model which from then on is
able to compute statically time bound functions for procedures and to
predict with a significant degree of accuracy the execution times of such
procedures in the given platform. The approach has been implemented
and integrated in the CiaoPP system.

Keywords: Execution Time Estimation, Cost Analysis, Profiling, Re-
source Awareness, Cost Models, Mobile Computing.

1 Introduction

Predicting statically the running time of programs has many applications rang-
ing from task scheduling in parallel execution to proving the ability of a program
to meet strict time constraints in real-time systems. A starting point in order to
attack this problem is to infer the computational complexity of such programs
(or fragments thereof). This is one of the reasons why the development of static
analysis techniques for inferring cost-related properties of programs has received
considerable attention. However, in most cases such cost properties are expressed
using platform-independent metrics. For example, [4, 5] present a method for au-
tomatically inferring functions which capture an upper bound on the number of
resolution steps or reductions that a procedure will execute as a function of the



size of its input data. In [10, 11] the method of [4, 10] was fully automated in
the context of a practical compiler and in [6, 10] a similar approach was applied
in order to also obtain lower bounds, which are specially relevant in parallel
execution. Such platform-independent cost information (bounds on number of
reductions) has been shown to be quite useful in various applications. This in-
cludes, for example, scheduling parallel tasks [8, 10, 11], where such cost bounds
allow an approximate comparison among tasks (and such tasks will generally be
executed in the same, parallel, machine).

However, in distributed execution and other mobile/pervasive computation
scenarios, where different platforms come into play with each platform having
different computing power, it becomes necessary to express costs in metrics that
can be later instantiated to different architectures so that actual running time
can be compared using the same units. With this objective in mind, we present
a framework which combines cost analysis with profiling techniques in order
to infer functions which yield bounds on platform-dependent execution times
of procedures. Platform-independent cost functions are first inferred which are
parameterized by certain constants. These constants aim at capturing the exe-
cution time of certain low-level operations on each platform. For each execution
platform, the value of such constants is determined experimentally once and
for all by running a set of special-purpose synthetic benchmarks and measuring
their running times with a profiling toolkit that we have also developed. Once
these constants are determined, they are fed into the model with the objective of
predicting with a certain accuracy execution times. We have studied a relatively
large number of cost models, involving different sets of constants in order to ex-
plore experimentally which of the models produces the most precise results, i.e.,
which parameters model and predict best the actual execution times of proce-
dures. In doing this we have taken into account the trade-off between simplicity
of the cost models (which implies efficiency of the cost analysis and also simpler
profiling) and the precision of their results. With this aim, we have started with
a simple model and explored several possible refinements.

In addition to cost analysis, the implementation of profilers in declarative
languages has also been considered by various authors. Debray [3] showed the
basic considerations to have in mind when profiling Prolog programs: handling
backtracking and failure. Ducassé [7] showed a trace analyzer for Prolog, which
can be applied to profiling. Sansom and Peyton Jones [13] focused on profiling of
functional languages using a semantic approach and highlighted the difficulty in
profiling such kind of languages. Jarvis and Morgan [12] showed how to profile
lazy functional programs like those in Haskell. Brassel et al. [1] solved part of
the difficulty in profiling when considering special features in functional logic
programs, like sharing, laziness and non-determinism. All this work focuses on
providing tools and techniques to help discover why a part of a program does not
exhibit some expected performance, whereas our aim is to predict performance.
Also, regarding the use of the profiler, instead of only profiling a program with
fixed input arguments, we use the profiler to calibrate the values for the con-
stants that appear in the cost functions, which will be instrumental in yielding
execution times of procedures for a given platform and cost model.
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2 Static Platform-Dependent Cost Analysis

In this Section we present the compile-time cost bounds analysis component of
our combined framework. This analysis has been implemented and integrated in
CiaoPP [9] by extending our previous implementations of reduction-counting cost
analyses. The inferred (upper or lower) bounds on cost are expressed as functions
on the sizes of the input arguments as well as several platform-dependent param-
eters. Once these platform-dependent parameters are instantiated with values for
a given platform, such functions yield bounds on the execution times required
by the computation on such platform. The analyzer can use several metrics for
computing the “size” of an input, such as list-length, term-size, term-depth,
integer-value, etc. Types, modes, and size measures are first automatically in-
ferred by other analyzers which are part of CiaoPP and then used in the size
and cost analysis.

2.1 Platform-Independent Static Cost Analysis

As mentioned before, our static cost analysis approach is based on that developed
in [4, 5] (for estimation of upper bounds on resolution steps) and further extended
in [6] (for lower bounds). In these approaches the time complexity of a clause can
be bounded by the time complexity of head unification together with the time
complexity of each of its body literals. For simplicity, the discussion that follows
is focused on the estimation of upper bounds. We refer the reader to [6] for
details on lower bounds analysis. Consider a clause C defined as “H : −L1, ..., Lm”.
Because of backtracking, the number of times a literal will be executed depends
on the number of solutions that the literals preceding it can generate. Assume
that n is a vector such that each element corresponds to the size of an input
argument to clause C and that each ni, i = 1 . . . n, is a vector such that each
element corresponds to the size of an input argument to literal Li , τ is the cost
needed to resolve the head H of the clause with the literal being solved, and SolsLj

is the number of solutions literal Lj can generate. Then the cost complexity of
clause C, CostC(n), can be expressed as:

CostC(n) ≤ τ +
m∑

i=1

(
∏
j≺i

SolsLj
(nj))CostLi

(ni), (1)

Here we use j ≺ i to denote that Lj precedes Li in the literal dependency graph
for the clause.

Our current implementation also considers the cost of the terms created
for the literals in the body of predicates, which can affect the cost expression
significantly. To further simplify the discussion that follows, we restrict ourselves
to the simple case where each literal is determinate, i.e., produces at most one
solution. This does not mean however that our implementation is limited to
deterministic programs, and our system system in fact handles non determinism
(presence of several solutions for a given call) in the cost analysis. In this case,
equation (1) simplifies to:

CostC(n) ≤ τ +
m∑

i=1

CostLi (ni). (2)
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A difference equation is set up for each recursive clause, whose solution (using
as boundary conditions the cost of non-recursive clauses) is a function that yields
the cost of a clause. The cost of a predicate is then computed from the cost of
its defining clauses. Since it is generally not known in advance how many of
the solutions generated by a predicate will be demanded, a conservative upper
bound on the computational cost of a predicate can be obtained by assuming
that all solutions are needed, and that all clauses are executed (thus the cost
of the predicate is assumed to be the sum of the costs of its defining clauses).
Taking mutual exclusion into account in order to obtain a more precise estimate
of the cost of a predicate is relatively easy: the complexity for deterministic
predicates can be approximated with the maximum of the costs of mutually
exclusive groups of clauses.

Although the aim of the analysis of [4, 5] was the estimation of number of
resolution steps, it was also pointed out that it is possible to use a number
of alternative metrics as the unit of cost in the analysis, so that instead of
the number of resolution steps for example the number of unifications or the
number of instructions executed could be counted. In the rest of this section we
explore this open issue more deeply and study how the original cost analysis can
be extended in order to infer cost functions using more refined and parametric
cost models, which in turn will allow achieving accurate execution time bound
analysis.

2.2 Proposed Platform-Dependent Cost Analysis Models

Since the cost metric which we want to use in our approach is execution time, we
take τ (in expression 2) to be the time needed to resolve the head H of the clause
with the literal being solved plus some possible costs associated to the resolution
of the clause, which we will assimilate to the cost of the head (and we will also
associate to it the cost of body literals). In the following, we will refer to τ as the
clause head cost function, under the assumption that these other costs are also
taken into account. We will consider different values for τ , each of them yielding
a different cost model. These cost models make use of a vector of platform-
dependent constants, together with a vector of platform-independent metrics,
each one corresponding to a particular low-level operation related to program
execution. Examples of such low-level operations considered by the cost models
are unifications where one of the terms being unified is a variable and thus behave
as an “assignment”, or full unifications, i.e., when both terms being unified are
not variables, and thus unification performs a “test” or produces new terms, etc.
Thus, we assume that τ is a function parameterized by the cost model, so that:

τ = time(Ω) (3)

where time(Ω) is a function that gives the time needed to resolve the head H of
the clause with the literal being solved (plus some possible costs associated to the
execution of the clause such as, e.g., whether an activation record is allocated)
for the cost model named Ω. We study a family of cost models such that time(Ω)
is a function defined as follows:

time(Ω) = time(ω1) + · · ·+ time(ωv), v > 0 (4)
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where each time(ωi) provides that part of the execution time which depends on
the metric ωi. We assume that:

time(ωi) = Kωi
× I(ωi) (5)

where Kωi
is a platform-dependent constant, and I(ωi) is a platform-independent

cost function.
Since time(Ω) is a linear combination of platform-independent cost functions,

we can write equation (4) as:

time(Ω) = KΩ • I(Ω) (6)

where KΩ is a vector of platform-dependent constants, I(Ω) is a vector of
platform-independent cost functions, and • is the dot product.

Accordingly, we generalize the definition of equation (2) introducing the
clause head cost function τ as a parameter:

CostC(τ, n) ≤ τ +
m∑

i=1

CostLi
(ni). (7)

A particular definition of I(Ω) yields a cost model. We have tried with several
cost models, by using different vectors I(Ω) constructed by choosing some (or
all) of the following I(ωi) cost functions (for example, the cost model that uses all
such functions is I(Ω) = (I(step), I(viunif), I(vounif), I(giunif), I(gounif))).
In the following an input argument is one for which the term being passed by
the calling literal is known to be non-var at the time of head unification. An
output argument is one for which the term being passed by the calling literal is
known to be a variable at the time of head unification. Whether unifications are
input or output can be inferred using well-known techniques for mode analyses
(in our case, those provided by CiaoPP).

– I(step) = 1.
Here we assume that there is a constant component of the execution time
when a clause is resolved (a clause neck “:-” is crossed). I.e., following
equation (5), we are assuming for this component that:

time(step) = Kstep

– I(vounif) = the number of variables in the clause head which correspond to
“output” argument positions.
Here we assume that there is a component of the execution time that is di-
rectly proportional to the number of cases where we know that both terms
being unified are variables and thus unification really implies a simple as-
signment with a (presumably small) constant cost:

time(vounif) = Kvounif × I(vounif)

– I(viunif) = the number of variables in the clause head which correspond to
“input” argument positions.
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Here we assume that there is a component of the execution time that is di-
rectly proportional to the number of cases where we know that the incoming
term is non-var and the argument position in the clause is a variable. In
this case the head unification for that argument is also an assignment with
a small, constant cost, and there is also a cost associated with creating the
input argument at the calling point, which for simplicity we will also consider
constant. Given these assumptions:

time(viunif) = Kviunif × I(viunif)

– I(gounif) = The number of function symbols, constants, and variables in
the clause head which appear in output arguments.
We are assuming that there is a component of the execution time that is
directly proportional to the size of the terms that have to be written into
variables passed in by the calling literal, and which is proportional to the size
of the number of function symbols, constants, and variables which appear in
output arguments in the clause head:

time(gounif) = Kgounif × I(gounif)

– I(giunif) = The number of function symbols, variables, and constants in
the clause head which appear in input arguments.
Here we are assuming that there is a component of the execution time that
is directly proportional to the number of “input” unifications, i.e., when
both terms being unified are not variables, and thus unification performs a
“test,” and which is actually proportional to the number of function symbols,
variables, and constants in the clause head which appear in input arguments
(this is obviously an approximation):

time(giunif) = Kgiunif × I(giunif)

– I(nargs) = arity(H).
Here we are assuming that there is a component of the execution time that
depends on the number of arguments in the clause head:

time(nargs) = Knargs × arity(H) (8)

This component is obviously redundant with respect to the previous ones,
but we have included it as a statistical control: the experiments should show
(and do show) that it is irrelevant when the others are used.

Clearly, other components can be included (such as whether activation records
are created or not) but our objective is to see how far we can go with the com-
ponents outlined above.

We adopt the same approach as [5, 6] for computing bounds on cost of pred-
icates from the computed values for the cost of the clauses defining it. However,
we introduce the clause head cost function τ as a parameter of these cost func-
tions.

Let Costp(τ, n) be a function which gives the cost of the computation of a
call to predicate p for an input of size n (recall that the cost units depend on the
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definition of τ). Given a predicate p, and a clause head cost function time(Ω)
of the form defined in equation (6), we have that:

Costp(time(Ω), n) = KΩ • Costp(I(Ω), n) (9)

where KΩ , I(Ω) and Costp(I(Ω), n) are vectors of the form:
KΩ = (Kω1 , . . . ,Kωv ),
I(Ω) = (I(ωi), . . . , I(ωv)), and
Costp(I(Ω), n) = (Costp(I(ω1), n), . . . , Costp(I(ωv), n))

Equation (9) gives the basis for computing values for constants Kωi via pro-
filing (as explained in Section 4). Also, it provides a way to obtain the cost of
a procedure expressed in a platform-dependent cost metric from another cost
expressed in a platform-independent cost metric.

3 Refining the Cost Model: Dealing with Builtins

In this section we present our approach to the cost analysis of programs which call
builtins, or more generally, predicates whose code is not available to the analyzer.
We assume that there is a cost function (expressed via trust assertions [9]) for
builtin predicates. In some cases, this cost function for each builtin predicate
is approximated by a constant value, and in others, it is approximated by a
function that depends on properties of the (input) arguments of the predicate.
In particular, the cost of arithmetic builtin predicates (such as =:=/2, =\=/2,
or >/2) is approximated by a function that depends on the number and type of
arithmetic operands appearing in its arguments.

Note that this is an important improvement over the cost analysis proposed
in [5] (which infers number of resolution steps), since one of the assumptions
made in such analysis, is that calls to certain builtin predicates are not counted
as a resolution step, and are thus completely ignored by cost analysis. This
assumption is not realistic if we want to estimate execution times, since the cost
of executing such builtins has to be taken into account.

Going into more detail, we assume that each builtin contributes with a new
component to the execution time as expressed in Equation (4), that is, our
cost model will have a new component time(ωi) for each builtin predicate and
arithmetic operator. Let �/n be an arithmetic operator. The execution time due
to the total number of times that such operator is evaluated is given by:

time(�/n) = K�/n × I(�/n)

where K�/n is a platform-dependent constant, and I(�/n) is a platform-independent
cost function. K�/n approximates the cost (in units of time) of evaluating the
arithmetic operator �/n. I(�/n) could be the number of times that the arith-
metic operator is evaluated. Alternatively, it can be a cost function defined as:

I(�/n) =
∑
a∈S

EvCost(�/n, a)
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and where S is the set of arithmetic expressions appearing in the clause body
which will be evaluated; and EvCost(�/n, a) represents the cost corresponding
to the operator �/n in the evaluation of the arithmetic term a, i.e.:

EvCost(�/n, A) =



0 if A is a constant
or a variable

1 +
n∑

i=1

EvCost(�/n, Ai) if A = �(A1, ..., An)
m∑

i=1

EvCost(�/n, Ai) if A 6= �(A1, ..., An)

∧ A = �̂(A1, ..., Am)
for some operator �̂/m

For simplicity, we assume that the cost of evaluating the arithmetic term t to
which a variable appearing in A will be bound at execution time is zero (i.e. we
ignore the cost of evaluating t). This is a good approximation if in most cases
t is a number and thus no evaluation is needed for it. However, a more refined
cost model could assume that this cost is a function on the size of t.

Note that this model ignores the possible optimizations that the compiler
might perform. However, experimental results show that our simplified cost
model gives a good approximation of the execution times for arithmetic builtin
predicates. With these assumptions, equation (9) (in Section 2.2) also holds for
programs that perform calls to builtin predicates, by introducing b/n and �/n
as new cost components of Ω.

A similar approach can be used for other (non-arithmetic) builtins b/n using
the formula:

time(b/n) = Kb/n × I(b/n)

4 Calibrating Constants via Profiling

In order to compute values for the platform-dependent constants which appear
in the different cost models proposed in Section 2.2, our calibration schema takes
advantage of the relationship between the platform-dependent and -independent
cost metrics expressed in Equation (9). In this sense, the calibration of the
constants appearing in KΩ is performed by solving systems of linear equations
(in which such constants are treated as variables).
Based on this expression, the calibration procedure consists of:

1. Using a selected set of calibration programs which aim at isolating specific
aspects that affect execution time of programs in general. For these calibra-
tion programs it holds that Costp(I(ωi), n) is known for all 1 ≤ i ≤ v. This
can be done by using any of the following methods:
– The analyzers integrated in the CiaoPP system infer the exact cost func-

tion, i.e. Costpl(I(ωi), n) = Costpu(I(ωi), n) = Costp(I(ωi), n) ,
– Costp(I(ωi), n) is computed by a profiler tool, or
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– Costp(I(ωi), n) is supplied by the user together with the code of program
p (i.e., the cost function is not the result from any automatic analysis
but rather p is well known and its cost function can be supplied in a
trust assertion).

2. For each benchmark p in this set, automatically generating a significant
amount m of input data for it. This can be achieved by associating to each
calibration program a data generation rule.

3. For each generated input data dj , computing a pair (Cpj
, Tpj

), 1 ≤ j ≤ m,
where:
– Tpj is the j-th observed execution time of program p with this generated

input data.
– Cpj = Costp(I(Ω), nj), where nj is the size of the j-th input data dj .

4. Using the set of pairs (Cpj
, Tpj

) for setting up the equation:

Cpj •KΩ = Tpj (10)

where KΩ is considered a vector of variables.
5. Setting up the (overdetermined) system of equations composed by putting

together all the equations (10) corresponding to all the calibration programs.
6. Solving the above system of equations using the least square method. A

solution to this system gives concrete values to the vector KΩ (and hence,
to the constants Kωi

which are the elements composing it).
7. Calculating the constants for builtins and arithmetic operators by performing

repeated tests in which only the builtin being tested is called, accumulating
the time, and dividing the accumulated time by the number of times the
repeated test has been performed.

5 Assessment of the Calibration of Constants

We have assessed both the constant calibration process and the prediction of
execution times using the previously proposed cost models in two different plat-
forms:

– “intel” platform: Optiplex Dell, Pentium 4 (Hyper threading), 2GHz, 512MB
RAM memory, Fedora Core 4 operating System with Kernel 2.6.

– “ppc” platform: Apple iMac, PowerPC G4 (1.1) 1.5GHz, 1GB RAM memory,
with Mac OS X 10.4.5 Tiger.

In section 4 we presented equation 10, and we mentioned that it can be
solved using the least squares method. We used the householder algorithm, which
consists in decomposing the matrix C = {Cpj

}, which has m rows and n cols
into the product of two matrices Q and U such that C = QU , where Q is an
orthonormal matrix (i.e. , QT Q = I, the m x m identity matrix) and U an upper
triangular m x n matrix. Then, we can rewrite equation 10 as

U •K = QT • T = B
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Program
Environment test
Call test
Recursion not optimized
Verify a list
Input deep ground terms
Output deep ground terms
Input flat ground terms
Output flat ground terms
Build a list of input var terms
Build a list of output var terms
Unify two lists
Head with many arguments

Table 1. Description of calibration programs used in the estimation of constants.

where, for clarity of exposition, we denote K = KΩ and T = Tpj
. We can take

advantage of the structure of U and define V as the first n rows of U , being n
the number of columns of C and b the first n rows of B, then K can be estimated
solving the following upper triangular system, where K̂ stands for the estimate
for K:

V • K̂ = QT • T = b

Since this method is being used to find an approximate solution, we define
the residual of the system as the value

R = T − CK̂

Let
RSS = R •R

be the residual square sum, and let

MRSS =
RSS

m− n

be the mean of residual square sum, and finally let

S =
√

MRSS

be the estimation of the model standard error, S. In order to experimentally
evaluate which models better approximate the observed time in practice, we
have compared the values of MRSS (or S) for several proposed models. Table 2
shows the estimated values for the vector K using the calibration programs in
Table 1, as well as the standard error of the model, sorted from the best to the
worst model. For example, the first row in the table shows the model that has
as components step, nargs, giunif, gounif, viunif, vounif for the intel platform.
It has a standard error of 6.2475 µs and the values for each of the constants are
21.27, 9.96, 10.30, 8.23, 6.46, and 5.69, respectively.

Note that the estimation of K is done just once per platform. In the case of
the intel platform it took 15.62 seconds and in ppc 17.84 seconds, repeating the
experiment 250 times by each program.
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Plat. Model S (µs) KΩ

intel step nargs giunif gounif viunif vounif 6.2475 (21.27, 9.96, 10.30, 8.23, 6.46, 5.69)
step giunif gounif viunif vounif 9.3715 (26.56, 10.81, 8.60, 6.17, 6.39)
step giunif gounif vounif 13.7277 (27.95, 11.09, 8.77, 7.40)
step 68.3088 108.90

ppc step nargs giunif gounif viunif vounif 4.7167 (41.06, 5.21, 16.85, 15.14, 9.58, 9.92)
step giunif gounif viunif vounif 5.9676 (43.83, 17.12, 15.33, 9.43, 10.29)
step giunif gounif vounif 16.4511 (45.95, 17.55, 15.59, 11.82)
step 116.0289 183.83

Table 2. Global values for vector constants in several cost models (in nanoseconds),
sorted by S, the standard error of the model.

6 Assessment of the Prediction of Execution Times

We have tested our implementation of the proposed cost models in order to assess
how they predict the execution time of other programs (not used in the calibra-
tion process) statically, without performing any runtime profiling with them.
We have performed experiments with all the 63 possible cost models that result
of the combination of one or more of the components described in Section 2.2.
However, for space reasons and for clarity, we only show the three most accurate
cost models (according to a global comparison that will be presented later) plus
the step model, which has special interest as we will also see later. Experimental
results are shown in Table 3. Prog. lists the program names. The analyzers inte-
grated in the CiaoPP system infer the exact cost function for all the programs in
that table under the I(ωi) metric, which means that the upper and lower bound
are the same, i.e. Costpl(I(ωi), n) = Costpu(I(ωi), n) = Costp(I(ωi), n). There
are several rows for each program in the table. The first three rows show results
corresponding to the prediction of execution times with the three more accurate
cost models. The fourth row shows the prediction obtained by the cost model
step that only considers resolution steps, i.e., it assumes that the execution time
of a procedure call is directly proportional to the number of resolution steps per-
formed by the call. This means that for this simple cost model we are assuming
that time(step) = Kstep, since I(step) = 1, for a constant Kstep, which repre-
sents the time taken by a resolution step. Note that CostC(I(step), n) gives the
number of resolution steps performed by clause C. The last row per benchmark
program presents the observed execution times (i.e. measured execution times)
and allows measuring the accuracy of the different predictions. In this sense,
values in the Model column are the names of the four cost models. The value
observed identifies the row corresponding to the observed values. The following
two columns show results corresponding to the “intel” execution platform.

Column Estimate shows execution times computed by using the average
value of the constant KΩ as estimated in Table 2:

Estimate = KΩ • Costp(I(Ω), n)

Deviations respect to the observed values (in the observed row) are also shown
between parenthesis in the column Estimate.
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Prog. Model intel ppc
Estimate Tca Estimate Tca

(µs) (%) (s) (µs) (%) (s)

evpol step nargs giunif gounif viunif vounif 89.72 (44) 2.002 77.4 (23) 4.461
step giunif gounif viunif vounif 85.06 (38) 74.96 (26)
step giunif gounif vounif 82 (35) 70.28 (33)
step 90.12 (45) 85.07 (13)
observed 58.43 97.08

hanoi step nargs giunif gounif viunif vounif 319 (31) 2.145 398.5 (4) 4.903
step giunif gounif viunif vounif 243.3 (3) 358.8 (7)
step giunif gounif vounif 205.6 (14) 301.3 (25)
step 340.7 (38) 538.6 (34)
observed 235.3 384.2

nrev step nargs giunif gounif viunif vounif 131.3 (68) 2.022 179.4 (26) 4.691
step giunif gounif viunif vounif 101.1 (39) 163.6 (16)
step giunif gounif vounif 82.51 (18) 135.2 (3)
step 144.4 (80) 243.8 (59)
observed 69.25 139.2

palind step nargs giunif gounif viunif vounif 131.8 (18) 2 179.8 (5) 4.7
step giunif gounif viunif vounif 101 (9) 163.7 (5)
step giunif gounif vounif 86.91 (24) 142.1 (19)
step 167.2 (43) 282.2 (52)
observed 110 171.6

powset step nargs giunif gounif viunif vounif 537.5 (59) 2.07 727.9 (17) 4.636
step giunif gounif viunif vounif 404.5 (28) 658.3 (7)
step giunif gounif vounif 323.8 (5) 534.9 (14)
step 448.7 (38) 757.4 (21)
observed 308.2 615

append step nargs giunif gounif viunif vounif 50.29 (75) 1.932 68.72 (24) 4.441
step giunif gounif viunif vounif 38.69 (44) 62.65 (15)
step giunif gounif vounif 31.36 (22) 51.45 (5)
step 54.56 (85) 92.1 (56)
observed 25.16 53.92

Table 3. Experiments on programs considering builtins.

Platform Model Error (%)
intel step giunif gounif vounif 21.48

step giunif gounif viunif vounif 31.06
step nargs giunif gounif viunif vounif 53.17
step 58.45

ppc step giunif gounif viunif vounif 14.66
step nargs giunif gounif viunif vounif 18.72
step giunif gounif vounif 19.44
step 43.04

Table 4. Global comparative of the accuracy of cost models.

The observed execution times have been measured by running the programs
with input data of a fixed size. 10 input data sets of such fixed size have been
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generated randomly. 5 runs of the program have been performed for each of
such input data sets. The observed execution time for such input size has been
computed as the average of all runs.

Column Tca shows the total (static) cost analysis time (in seconds) needed to
perform the execution time estimation (and includes mode, type and cost anal-
ysis). The following columns show results corresponding to the “ppc” execution
platform, and have the same structure than the “intel” platform.

Table 4, compares the overall accuracy of the four cost models already shown
in Table 3, for the two considered platforms. The last column shows the global
error and it is an indicator of the amount of deviation of the execution times
estimated by each cost model with respect to the observed values. As global
error we take the square mean of the errors in each example being considered in
Table 3. By considering both platforms in combination we can conclude that the
more accurate cost model is the one consisting of steps, giunif, gounif, viunif,
and vounif. This cost model has an overall error of 14.66 % in platform “ppc”
and 31.06 % in “intel”. In “intel” (obviously a more challenging platform) the
model consisting of steps, giunif, gounif, and vounif appears to be the best.
This coincides with our intuition that taking into account a comparatively large
number of lower-level operations should improve accuracy. It is also interesting
to see that including nargs in the cost model does not further improve accuracy,
since nargs is not independent from the four components giunif, gounif, viunif,
vounif. In fact, including this component results in a less precise model in the
“ppc” platform, and in the case of “intel”. Also, the cost model step deserves
special mention, since it is the simplest one and at least for the given examples,
the error is smaller than we expected and better than more complex cost models
not shown in the tables.

Overall we believe that the results are very encouraging in the sense that
our combined framework predicts with an acceptable degree of accuracy the
execution times of programs and paves the way for even more accurate analyses
by including additional parameters.

7 Applications

The experimental results presented in Section 6 above show that the proposed
framework can be relevant in practice for estimating platform dependent cost
metrics such as execution time. We believe that execution time estimates can be
very useful in several contexts. As already mentioned, in certain mobile/pervasive
computation scenarios different platforms come into play, with each platform
having different capabilities. More concretely, the execution time estimates could
be useful for performing resource/granularity control in parallel/distributed com-
puting. This belief is based on previous experimental results, where it appeared,
from the sensitivity of the results observed in such experiments, that while it is
not essential to be absolutely precise in inferring the best time estimates for a
problem, the number of reductions by itself was a rough measure and the current
time estimation approach could presumably improve on previous results.

One of the good features of our approach is that we can translate platform-
independent cost functions (which are the result of the analyzer) into platform-
dependent cost functions (using the relationship in expression (9)). A possible
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application for taking advantage of this feature is mobile code safety and in
particular Proof-Carrying Code (PCC), a general approach in which the code
supplier augments the program with a certificate (or proof). Consider a scenario
where the producer sends a certificate with a platform-independent cost function
(i.e. where the cost is expressed in a platform-independent metric) together with
a calibration program. The calibration program includes a fixed set of calibration
benchmarks. Then, the consumer runs (only once) the calibration program and
computes the values for the constants appearing in the cost functions. Using
these constants, the consumer can obtain platform dependent cost functions.

Another application of the proposed approach is resource-oriented special-
ization. The proposed cost-models, which include low-level factors for CLP pro-
grams, are more refined cost-models than previously proposed ones and thus can
be used to better guide the specialization process. The inferred cost functions
can be used to develop automatic program transformation techniques which take
into account the size of the resulting program, its run time and memory usage,
and other low-level implementation factors. In particular, they can be used for
performing self-tuning specialization in order to compare different specialized
version according with their costs [2].

8 Conclusions

We have developed a framework which allows estimating execution times of
procedures of a program in a given execution platform. The method proposed
combines compile-time (static) cost analysis with a one-time profiling of the
platform in order to determine the values of certain constants. These constants
calibrate a cost model from which time cost functions for a given platform can
be computed statically. The approach has been implemented and integrated in
the CiaoPP system. To the best of our knowledge, this is the first combined
framework for estimating statically and accurately execution time bounds based
on static automatic inference of upper and lower bound complexity functions
plus experimental adjustment of constants. We have performed an experimen-
tal assessment of this implementation for a wide range of different candidate
cost models and two execution platforms. The results achieved show that the
combined framework predicts the execution times of programs with a reason-
able degree of accuracy. We believe this is an encouraging result, since using a
one-time profiling for estimating execution times of other, unrelated programs
is clearly a challenging goal.

Also, we argue that the work presented in this paper presents an interesting
trade-off between accuracy and simplicity of the approach. At the same time,
there is clearly room for improving precision by using more refined cost models
which take into account additional (lower level) factors. Of course, these models
would also be more difficult to handle since on one hand they would require
computing more constants and on the other hand they may require taking into
account factors which are not observable at source level. This is in any case the
subject of possibly interesting future work.
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