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In this work we present a general methodology for energy-efficient
scheduling in multicore environments, which can be adapted to
different features that the underlying environment exhibits, e.g.,
time and power consumption of different tasks, as well as to dif-
ferent requirements of the task scheduling, e.g., time or energy
budgets, priorities, etc. We demonstrate how each of the dif-
ferent features can be used to obtain better scheduling results in
terms of reducing the total execution time and power consump-
tion. Given that task scheduling is in general a NP-hard problem,
we rely on an Evolutionary Algorithm (EA) to provide an opti-
mal solution in an acceptable amount of time. If the EA is not
capable to provide a viable solution, in the sense that not all task
deadlines are met, we resort to a modified version of the well
known YDS algorithm. In this way, the methodology we pro-
pose always provides a viable solution to the scheduling prob-
lem. In the tested scenarios, our EA can save upto 55 − 90%
more energy on average than our modified YDS algorithm. We
also model task dependence using copula theory in the EA and
prove that better results can be obtained when the dependence is
modeled. The resulting stochastic scheduler can save upto 18%
more energy on average compared to the deterministic scheduler.
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1 INTRODUCTION

Energy efficient scheduling and allocation in multicore environments with
enabled Dynamic Voltage and Frequency Scaling (DVFS) is a well-known
NP -hard problem. Nevertheless approximated solutions can be efficiently
found by heuristic algorithms, such as Evolutionary Algorithms (EAs). An
example is our previous EA-based algorithm [8] and different extensions [4,
7, 5] to it.

In our setting, we want to solve the general scheduling problem where the
tasks have arbitrary release times and deadlines, and where preemption and
migration of tasks are allowed. It has been proven in [3] that the scheduling
problem still remains NP -hard for arbitrary release times and deadlines of
tasks that are not agreeable⋆ . In this work we propose a general methodol-
ogy for energy-efficient scheduling in multicore environments, which can be
adapted to different features that the underlying environment exhibits, such
as:

• Different ways of estimating time and power consumption, e.g., devel-
oped static analysis for a given device.

• The values of time and power estimated as either fixed values, or as
probability distribution functions.

• Different ways of modeling task dependency, e.g., by using copulas [27]
if they are estimated as probability distribution functions.

In addition, our methodology can be adapted to different requirements of the
tasks to be scheduled:

• Meeting time and energy budgets.

• Dealing with task priorities, which can also be used to model depen-
dencies between tasks, e.g., expressing that a given task cannot start
before another task on which it depends on is not finished.

We have performed a set of experiments which prove that these features,
either separately or combined where possible, can help improving the final
result, i.e., obtaining a task scheduling which will consume less energy.

The main algorithm we used in our methodology is a multiobjective evolu-
tionary algorithm (EA) with two objectives: the execution time and the total

⋆ Two tasks are agreeable if the task with later release time also has a later deadline.
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energy consumption, where both should be minimised. The objectives are
clearly in conflict, since the application of Dynamic Voltage and Frequency
Scaling (DVFS) reduces energy, but increases execution time. This justifies
the usage of a multiobjective algorithm. The EA is based on the Nondom-
inated Sorting Genetic Algorithm II (NSGA-II) [11]. NSGA-II is an effi-
cient multiobjective evolutionary algorithm for problems where more than
one objective functions needs to be optimized. It improves the adaptive fit
of a population of candidate solutions to a Pareto front constrained by a set
of objective functions. It has been proven in the literature to perform good
when the number of objectives is small [8], and in our case we have only two.
Since the output of the multiobjective algorithm is a set of solutions which
form the (approximated) Pareto front, we can choose the solution that meets
some given energy and/or time requirements. Usually we pick the solution
with the minimal energy consumption among those that meet the given time
bound (if applicable).

The first variant of our general scheduling algorithm in our proposed method-
ology (explained in Section 3) relies on the developed static analysis tech-
nique for estimating the energy consumption, which solves the time ineffi-
ciency problem. In addition, when this algorithm fails to produce a feasible
solution, our methodology resorts to our modified YDS † algorithm [32].
This way, we propose a combination of both the EA and the modified YDS
algorithms that produces an energy efficient scheduling in reasonable time,
and always finds a viable solution. The results presented in this section have
been obtained by using real-world benchmarks.

We also consider task dependencies while scheduling (as explained in Sec-
tion 4). Our results prove that representing input values (time and power/en-
ergy) as probability distribution functions, and modeling the dependency be-
tween them, can improve the results of the scheduling. The results are based
on synthetic data, since the probabilistic static analysis that is needed to pro-
vide the necessary input to the algorithm is part of ongoing and future work.

Our methodology has been adapted for its application to multicore XMOS
chips, but it could easily be adapted to any multicore environment, ranging
from small scale embedded systems up to large scale systems, such as data
centers.

The rest of the work is organised as follows. Section 2 presents the most
important related work. Section 3 details the implementation and results of
our general algorithm which relies on the developed static analysis technique

† The name is created using the first letter of the authors’ last names.
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for estimating the energy consumption, as well as using our modified YDS
algorithm coupled with our developed EA. Section 4 presents the stochastic
variant of our scheduling algorithm, that models the dependence among input
values (time and power/energy) as probability distribution functions, includ-
ing our experimental study. Finally, Section 5 draws the main conclusions
and give some directions for future work.

2 RELATED WORK

Energy efficient scheduling has gained a lot of interest in the recent past. A
great number of publications [14] try to present it as a mixed integer linear
optimisation problem, which can be solved using mixed integer linear pro-
gramming, or using a heuristic approach. However, these algorithms become
impractical or fail to deliver a solution as the problem size grows.

Since DVFS can provide significant energy savings, its optimal usage has
been extensively studied. Some examples divide scheduling and allocation
in two separate steps, such as the one given in [28], where in the first step
the allocation problem is solved using Linear Programming, while in the sec-
ond one the scheduling problem is solved for separate processors using Bin
Packing. Another approach [9] solves the scheduling problem using a GA
that integrates DVFS in the fitness function. However, such a division of the
problem reduces the search space, since it becomes limited by the optimal
solution of the first part of the problem, which does not always correspond
to the global optimum. For this reason, we believe that better solutions can
be achieved by solving the scheduling and allocation problem at the same
time, while also accounting for the DVFS. There is one example of GA-based
scheduling [18] that combines scheduling, allocation and power management
in one process. However, it only deals with voltage scaling.

There is also a significant group of publications on using EAs for the prob-
lem of optimal scheduling and allocation in multiprocessor systems that allow
DVFS. For example, the approach presented in [25] aims to minimize both
energy and makespan as a bi-objective problem. The same problem is solved
in another work [26], but using the island model of parallel GA populations.
Another approach [19] treats the problem from two opposite points of view:
in the first one, it optimizes the energy given the scheduler length, while in the
other one it optimizes the scheduling length given the energy bound. How-
ever, none of the solutions include the possibility of two levels of parallelism
as in our work, where each processor can have a number of different threads
executing in parallel. Moreover, as far as we know, none of the existing ap-
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proaches introduce the possibility of task migration. Furthermore, they do
not deal with the issue that the EAs cannot always find a viable solution,
while we introduce an additional stage implemented as a modified YDS algo-
rithm, which can always find a viable solution. Finally, using static analysis
for estimating energy consumption to guide the EA is a relevant novelty of
our methodology, which, as our experimental results show, achieves a signifi-
cant speed-up and provides evidence about the practical applicability of such
methodology.

On the other hand, stochastic scheduling has gained lots of interest over the
years, since many different cases include uncertainty. In general, approaches
to optimisation under uncertainty include various modeling philosophies, the
most important being the following ones:

• Expectation minimisation.

• Minimisation of deviations from goals.

• Minimisation of maximum costs.

• Optimisation over soft constraints.

Our algorithm clearly belongs to the first group. The solution presented
in [15] is in the same group, however, it solves the stochastic scheduling
problem by reducing it to the deterministic case. The benefit of this approach
is the lower execution time, yet at the cost of decreased accuracy.

Copulas have been used in different versions of scheduling-related prob-
lems. For example, in [2] they are used in power supply system scheduling to
model the presence of uncertain renewables, such as wind and solar energy.
Another work given in [12] assesses the reliability of airport schedules using
copulas. One more example is given in [31], where the authors use copulas
to assess the schedule risk of a software development project. However, all
of them use Gaussian or Student-t copulas, which can be applied only if the
marginal distributions are either normal or Student-t, while in our work there
is no restriction on the kind of marginal distributions. As far as we know,
there have not been any attempts to use copulas in the way presented in this
work.

3 ENERGY EFFICIENT SCHEDULING

The first practical implementation of our algorithm relied on an existing an-
alytical model for calculating the energy consumption for programs running
on multicore XMOS chips [17].
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The energy model is limited to the cases when all the cores belong to the
same chip, thus they must run at the same voltage and frequency level at each
moment. For this reason, in this work we solve the problem of the so-called
global DVFS, when all the cores always have the same voltage and frequency.

Hence in our first EA implementation, each individual in each generation
is evaluated by using the above mentioned program energy model, which
requires the execution traces of the programs. Given that the traces can be
huge, even for small programs, such evaluation introduces a huge amount of
overhead. In order to overcome this issue, we use an existing static analysis
which, at compile time, without the need of executing the programs, and in
a few seconds, gives a safe estimation of the energy consumed by programs.
As energy consumption often depends on (the size of) input data, which is not
known at compile time, the static analysis provides the energy as a function
of the input data sizes which are calculated once the input values are known
at runtime. The energy consumption estimated by using the static analysis
for a given scheduling is computed as the sum of the energies of the tasks
running on different cores. This gives an approximated upper bound on the
total energy consumption, although it may be less precise than the estimations
computed with the program energy model mentioned previously. This may
reduce possible energy savings, nevertheless, the information it provides is
still good enough to decide which scheduling is better, and the gain in speed
of the algorithm is huge: the simulation time is reduced from a few hours to
a few minutes.

The EAs can have trouble in finding a viable solution, in the sense that
not all task deadlines are met, if the task deadlines are too tight. In order to
overcome this problem, we have used a modified YDS ‡ scheduling algorithm
that we have adapted for multicore environments in [4]. As we will see later,
our experimental results show that if the EA finds a viable solution, it is better
than the one obtained by the YDS algorithm in terms of energy savings.

Hence our proposed methodology algorithm consists of the following steps:

1. Perform the static analysis of the input tasks to estimate the energy
consumed by each of them.

2. Execute the EA using such estimations.

• If the EA provides a viable solution, i.e., all the task deadlines are
met, this is the final solution.

• Otherwise, execute our modified YDS algorithm and take its out-
put as the final solution.

‡ The name is created using the first letter of the authors’ last names.
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In summary, when the EA fails to find a viable solution, the algorithm re-
sorts to our modified YDS algorithm. In addition, the use of static analysis for
energy estimation at compile time to guide the EA process implies a signifi-
cant speed-up in solving the scheduling problem. Altogether, such techniques
result in the practicability of our methodology, while still providing a solution
with significant energy savings.

3.1 Energy Static Analysis as Input

In order to estimate the energy consumed by programs without actually run-
ning them we use an existing static analysis. It is a specialisation of the
generic resource analysis presented in [29] for programs written in a high-
level C-based programming language, XC [30], running on the XMOS XS1-
L architecture, that uses the instruction-level energy cost models described
in [21]. Nevertheless, the analysis is general enough to be applied to other
programming languages and architectures (see [21, 20] for details). It is based
on setting up a system of recurrence equations over a program that capture its
cost (energy consumption) as a function of the sizes of its input arguments.
Consider for example the following program written in XC (left hand side)
and its compiled assembly representation (right hand side):

int fact(int N)
{

if (N <= 0)
return 1;

return N * fact(N - 1);
}

<fact>:
01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08>

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1
12: bl <fact>
13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x21

The transformation based analysis framework of [21, 20] would transform
the assembly (or LLVM IR) representation of the program into an intermedi-
ate semantic program representation (HC IR), that the analysis operates on,
which is a series of connected code blocks, represented as Horn Clauses. The
analyser deals with this HC IR always in the same way, independent of where
it originates from, setting up cost equations for all code blocks in terms of
their input data sizes.
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facte(Ns) = fact ife(Ns) + centsp + cldw + cldc + clss + cbf

fact ife(Ns) =


cmkmsk + cretsp if Ns ≤ 0

facte(Ns − 1) + cbu + 2 cldw + if Ns > 0

+ csub + cbl + cmul + cretsp

The cost of the function fact is captured by the equation facte(Ns) where
Ns represents the size of the input argument to the function fact. facte(Ns)

in turn depends on the equation fact ife(Ns), that captures the cost of the
two code blocks representing the two branches of the if statement, and a
sequence of low-level instructions. The cost of low-level instructions, which
constitute an energy cost model, is represented by ci where i ∈ { entsp, stw,
ldw, ...} is an assembly instruction. Such costs are supplied by means of
assertions that associate basic cost functions with elementary operations.

If we assume (for simplicity of exposition) that each instruction has unitary
cost in terms of energy consumption, i.e., ci = 1 for all i, solving the above
system of recurrence equation we obtain the energy consumed by fact as a
closed-form function of its input data size (N ): facte(N) = 13 N + 8.

The cost functions inferred by the static analysis are arithmetic functions
of a wide range of types (polynomial, exponential, logarithmic, etc.), which
depend on input data sizes (natural numbers), and we use them in our schedul-
ing and allocation algorithm to estimate the energy consumed by the different
tasks involved. Such estimation can be computed very efficiently once the in-
put data sizes of the tasks are known, since all the basic arithmetic functions
involved can be evaluated in little bounded time.

3.2 Our EA using Static Analysis
The problem that we are solving is the optimal allocation and scheduling of
a set of tasks (in terms of energy or time, possibly under some requirements
involving them), where each task is defined by its:

• Unique ID.

• Release time, i.e., the moment when the task becomes available.

• Deadline, i.e., the latest moment when the task has to finish.

• Number of clock cycles, as a good approximation of the execution time.
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Individual Representation
The solution to the problem specified above has to contain the following

information:

• The core(s) where each task will be executed. Since we allow task
migration, a task can be allocated to more than one core.

• The current voltage and clock frequency (V, f) state to exploit DVFS.

• The time periods when the tasks are executed.

• The number of clock cycles each task will execute in the different peri-
ods marked by the preemption and migration of that task. This allows to
express the number of cycles a task will execute before it is preempted,
as well as the number of cycles it will execute after it is resumed in the
same or in a different core, etc.

Having in mind these requirements, we have designed the solution repre-
sentation as shown in Figure 1, which does not introduce significant overhead
when executing the EA. Any given task has a positive (unique) number as its
ID. Each gene representing a task ID is followed by a gene representing the
number of cycles of the task that will be executed without any preemption.
The order of task IDs represents the order of their temporal execution. We
also use negative two digit numbers to encode the spatial allocation of the
tasks. The first digit represents the core where the tasks are being executed
and the second one an encoding of the (V, f) state of that core. As it will be
explained in Section 3.4, Table 1, the number of different cores and states is
finite, as well as the number of their combinations. The tasks following the
allocation code are executed on that coded location. For instance, on Figure 1
we read: on core 1 in state 2, 48 cycles of task 1 will be executed, and 77
cycles of task 5, in this exact order, etc.

Our methodology allows a random order of allocation codes, in order to
solve the most general problem. However, if two consecutive allocation codes
have different (V, f) states, this means that the tasks allocated to the cores
they represent will not be executed in parallel, since all of the cores have
to run at the same (V, f) at any moment, and thus the (V, f) state has to
be changed before the second group of tasks is executed. For example, in
Figure 1 the allocation code following −12 is −24, which means that the
chip will be first in the (V, f) state 2 and all tasks allocated to core 1 will
be executed sequentially on that core. After they finish their execution, the
core will change its (V, f) state from 2 to 4, and the tasks allocated to core

9



FIGURE 1
An example of (part of) a solution (i.e., individual) representation.

2 will be executed sequentially on core 2. If the second allocation code were
−22 instead of −24, then the (V, f) state would not change, and the tasks
allocated on cores 1 and 2 would be executed in parallel.
Population Initialisation Individuals in the initial population are created by
randomly assigning tasks to random cores in random (V, f) settings with
equal probability. However, in order to provide a load balanced solution (as
much as possible), the probability of choosing a core decreases as its load
increases, which is given by the following formula:

Prob =
1

NumberOfCores
− CurrentCoreLoad

TotalLoad
(1)

where CurrentCoreLoad stands for the current load of the core expressed as
the number of cycles, while TotalLoad stands for the total number of cycles
of all the tasks on all cores. According to that formula, at the beginning of
the initialisation process, all cores have the same probability of being chosen,
while this probability decreases as the core becomes loaded, and it is close to
0 when the load reaches the state where it is equally distributed in all cores.
If during the initialisation process a newly calculated probability value of a
core is below 0, the value is rounded to 0, and no new load will be assigned
to that core. These random solutions do not always have to provide a viable
solution, i.e., some of the tasks might miss their deadlines. For this reason, the
mutation operator and the objectives are designed to deal with this problem.
Solution Perturbations Given the unique nature of the individual represen-
tation, we have designed new crossover and mutation operators. The indi-
viduals that participate in the crossover are selected by using the standard
tournament selection process.
The Crossover Operator Since our solution allows task migration, a given
task ID can appear more than once in an individual, so we cannot apply any of
the existing permutation-based crossover operators. Thus, we have designed
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FIGURE 2
An example of a crossover operation.

our own operator, where each child preserves the order of genes representing
the task allocation and scheduling from one parent, and only the genes repre-
senting the number of cycles can be taken from the other parent. In this way,
the produced offspring is a combination of both parents, and is at the same
time a viable solution to the problem.

Example 3.1. Consider Figure 2, which depicts a crossover operation for the
most simple case of 2 cores, 2 tasks and 2 states, with one possible output.
We can observe that the first child, C1 takes the scheduling and allocation
from the first parent, P1, and the cycle distribution from the second parent,
P2, while the second child, C2, takes the scheduling and allocation from P2

and the cycle distribution from P1.

The Mutation Operator The mutation operator can perform different actions
involving one or two tasks. Consider two tasks i and j. When choosing the
first one we give higher probability to the tasks which miss their deadlines, in
order to achieve a viable solution as soon as possible. In each generation we
perform either one of the following actions with the same probability:

• Swapping: tasks i and j, together with their corresponding number
of cycles, exchange their positions in the solution. In order to avoid
creating solutions which are not viable, tasks i and j must be assigned
to cores that are in the same (V, f) state.

• Moving: randomly move task i to another core and (V, f) state. For
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the same reason as before, the new (V, f) state must be the same as i’s
original state.

• Cycle redistribution: randomly change the distribution of the number
of cycles of task i between its appearances on the different cores.

FIGURE 3
Examples of mutation operations.

Example 3.2. Consider Figure 3, which depicts different actions of the mu-
tation operator:

• Swapping: tasks 1 and 2 are swapped between cores 1 and 2, and both
cores are in state 1 (so that tasks 1 and 2 are executed in parallel).

• Moving: the first part of task 1 (40 cycles), originally allocated to core
1, is moved to core 2, before task 2. Both cores are in state 1.

• Cycle redistribution: task 1 now executes 25 cycles on core 1 in state 1
and 45 cycles on core 2 in state 2.

Objective Functions
Execution Time One objective of our optimisation problem is to minimize
the total execution time of the schedule, which is the time spent since the first
task starts its execution until the last task finishes its execution. However,
since the initial population is randomly created, it is possible that some of
the tasks miss their deadlines, making the solution unviable. Assuming that
these solutions can provide some quality genetic material, we do not want to
discard them completely, but we penalize them by adding the amount of time
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the tasks have missed their deadlines to the objective function. Thus, the time
objective function for n cores and k different tasks is the following:

T̂ = T +
∑

1≤i≤n

(
∑

1≤j≤k

xi,j · yj · (si,j + τi,j − deadlinej)) (2)

where T is the total execution time, given by:

T = max
1≤i≤n
1≤j≤k

(xi,j · (si,j + τi,j))− min
1≤i≤n
1≤j≤k

(xi,j · si,j) (3)

where si,j ≥ 0 is the moment when task j is scheduled on core i (si,j = 0 if
the task j is not scheduled on core i), τi,j is the execution time of task j on
core i, xi,j is a binary value, that represents whether the task j is executed on
core i (xi,j = 1) or not (xi,j = 0). The second part of formula (2) represents
the penalisation, where yj is another binary value that expresses whether the
task j has missed its deadline, deadlinej , (yj = 1) or not (yj = 0).
Energy Consumption This objective represents the total energy consumption
of the given schedule. In the most general case it is given by the following
formula:

E =
∑

1≤i≤n

(Pst,i · T +
∑

1≤j≤k

(xi,j · pi,j · τi,j)) (4)

where Pst,i is the static power of core i, T is the same as in formula (3), pi,j
is the dynamic power of task j when executed on core i, and xi,j and τi,j
are the same as in formula (2). Static analysis is used to estimate the energy
consumption of single tasks, as explained in Section 3.1, while the energy is
the sum of the energies of all the tasks, as given in formula (4).

3.3 EA based Scheduling with the YDS Algorithm
The Modified YDS Algorithm

YDS [32] is a well known algorithm for energy-efficient scheduling for single
core DVFS-enabled environments. We have chosen it because it always finds
a viable (and optimal) solution that minimises the total energy consumption,
and it is simple and fast. However, it does not take into account the static
power, which nowadays forms an important part of the total power of com-
puting. YDS reduces the frequency and voltage in order to minimise the dy-
namic power in a way that the execution times of tasks are extended to their
deadlines. However, this also results in an increase of the static energy. Thus,
there is a critical point from which further reduction of voltage and frequency
actually starts increasing the energy consumption. For this reason we have
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TABLE 1
Viable (V, f) pairs for XMOS chips.

V oltage(V ) 0.95 0.87 0.8 0.8 0.75 0.7
frequency(MHz) 500 400 300 150 100 50

used our modified YDS algorithm reported in [4]. It is adapted for multicore
environments, and does not turn off the chip, but instead, finds the critical
(V, f) point below which further decrease is not beneficial.

3.4 Experimental Evaluation of EAs with Static Analysis and YDS

XMOS Chips In this work we target the XS1-L architecture of the XMOS
chips as a proof of concept. Although these chips are multicore and multi-
threaded, in this work we assume a single core architecture with 8 threads,
which is the architecture for which we have an available energy model. In
this case, in our experiments, we can use the algorithm and representation of
individuals described in Section 3.2 by considering that a thread is conceptu-
ally equivalent to a core executing tasks sequentially, as described previously.
We refer the reader to [8] for a description of a representation of individu-
als whose allocation codes include three digits, representing a core, a thread
running in parallel on that core, and a (V, f) state.

In the XS1-L architecture, the threads enter a 4-stage pipeline, meaning
that only one instruction from a different thread is executed at each pipeline
stage. If the pipeline is not full, the empty stages are filled with NOPs

(no operation). Effectively, this means that we can assume that the threads
are running in parallel, with frequency F/N , where F is the frequency of
the chip, and N = max(4, numberOfThreads). DVFS is implemented
at the chip level, which means that all the cores have the same voltage and
frequency at the same time. In order to apply DVFS, we need a list of Voltage-
Frequency (V, f) pairs or ranges that provide a correct chip functioning. We
have experimentally concluded that the XMOS chips can function properly
with the voltage and frequency levels given in Table 1.

Task Set In order to test our proposed methodology, we use two different
groups of task sets. The first group is made up of small tasks, where the
EA training with the program-level energy model takes around one day to
complete. This group is used to show the difference between the results ob-
tained with the EA trained with the program-level energy model and the EA
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trained with the energy estimations obtained by the static analysis. In this
group, we use four different arithmetic programs: fact(N), for calculating
the factorial of N, fibonacci(N) for calculating the Nth Fibonacci num-
ber, sqr(N) for computing N2 and power of two(N) for computing 2N .
In total, we have created a set of 22 tasks to be scheduled, corresponding to
the execution of the previous programs with different inputs N .

In the second group we use real world programs, where the EA training
based on the program-level energy model is not practical: fir(N), i.e.,
Finite Impulse Response (FIR) filter, which in essence computes the inner-
product of two vectors of dimension N, a vector of input samples, and a vector
of coefficients, and biquad(N), which is a part of an equaliser implementa-
tion, based on a cascade of Biquad filters, whose energy consumption depends
on the number of banks N. We have used four different FIR implementations,
with different number of coefficients: 85, 97, 109 and 121. Furthermore,
we have used four implementations of the biquad benchmark, with different
number of banks: 5, 7, 10 and 14. We have tested our methodology in scenar-
ios of 16 and 32 tasks, each one corresponding to such implementations. The
tasks corresponding to the same implementation have different release times
and deadlines.

The energy consumed by the programs is inferred at compile time by the
static analysis described in Section 3.1. Such energy is expressed as functions
of a parameter N , the size of the input, which is only known at runtime. Such
functions are given in Table 2 for 3 of the 6 different voltage and frequency
levels used in this work (for conciseness, since the functions for each program
have the same complexity order, but different coefficients). The static analysis
assumes that a single program (task) is running on one thread on the XMOS
chip, while all other threads are inactive. In this implementation, the EA
algorithm approximates the total energy of a schedule by adding the energies
of all the tasks. Although in this way we loose precision, the estimation still
provides precise enough information for the EA to decide which schedule is
better.

Testing Scenarios In our current implementation, we assume no dependency
between the tasks since it is not supported by the available energy models.
The release times and deadlines of the different tasks are set in different sce-
narios in order to experimentally show the benefits of DVFS and optimal
scheduling, where all the tasks have different release times and deadlines,
with tighter deadlines. It is also important to take into account the static
power, especially in the case of loose deadlines.
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TABLE 2
Energy functions inferred by static analysis for 3 different pairs of voltage
(V)/frequency (MHz).

V = 0.70 V = 0.75 V = 0.80
F = 50 F = 100 F = 150

fact(N) 60.5 N + 46 35 N + 26.7 27 N + 20.5

87.19× 1.62N+ 50.32× 1.62N+ 38.68× 1.62N+

fib(N) 26.7× (−0.62)N 15.44× (−0.62)N 11.85× (−0.62)N

−74.7 −43 −33.2

sqr(N) 21.3 N2 + 121 N 12.3 N2 + 69.8 N 9.48 N2 + 53.7 N

+39.1 +22.5 +17.3

pow2(N) 55.1× 2N − 39 63.7× 2N − 39 24.49× 2N − 30

fir(N) 74.93 N + 124.5 43.36 N + 71.9 33.41 N + 55.2

biquad(N) 386 N + 128 223.6 N + 74.2 172.5 N + 57.2

Scenario 1: Tasks with Loose Deadlines In this scenario the release time of
a task k, denoted T k

rel is a random moment between 0 and the total execution
time at the maximal frequency of all the tasks executed sequentially on a
single core. Also, the deadline of a task is a random moment between T k

rel +

10×T k
maxf and T k

rel+20×T k
maxf , where T k

maxf denotes the execution time
of the task at maximum frequency. This way we achieve a scenario with loose
deadlines even at a smaller frequency.

Scenario 2: Tasks with Tight Deadlines Here, the release time is the same as
in Scenario 1. However, the deadline of a task is a random moment between
T k
rel + 5× T k

maxf and T k
rel + 7× T k

maxf . This way we get tighter deadlines,
but also provide a set of tasks which are schedulable on the given platform.
Note that the deadlines become even tighter as the frequency decreases.

Results: EA vs. Modified YDS Both EA and YDS are implemented in C++.
EA extends the MOGAlib library [13] for multiobjective genetic algorithms.
In our EA, the population of 200 individuals is evolved for 150 generations.
The probability of both crossover and mutation is 0.9. The mutation oper-
ation is assigned higher probability than usual due to its important role for
reaching a viable solution. Since the result of the optimisation process is a
set of possible solutions which form the approximated Pareto front, we take
the solution with minimal energy consumption such that all task deadlines are
met.
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Table 3 presents results comparing the EA trained with the energy estima-
tions provided by static analysis (EAs) and with the program-level energy
model (EAm), versus the modified YDS algorithm presented in Section 3.3.
The energy of the final solution calculated by using the energy estimations
provided by static analysis is given in the first column (EAs). The sec-
ond column gives the energy of the final scheduling obtained by the modi-
fied YDS algorithm (referred to as Y DSm) using the program-level energy
model, while the third column gives the energy saving of the EA trained with
static analysis compared to YDS. Finally, the last column shows the energy
saving obtained with the EA trained with the program-level energy model
(EAm) [6], which is only applicable in the scenarios with a small number of
numeric tasks. Each row shows statistics for each scenario taken from 10-20
runs of the algorithm for the same scenario, where CI0.01 and CI0.05 rep-
resent 99% and 95% confidence intervals respectively, meaning that we can
claim with 99(95)% certainty that the final result will fall in these intervals.

In order to perform the comparison between the EA (for both EAs and
EAm) and Y DSm, in the case of EA and tight deadlines, we present the
results when the EA can find a viable solution. However, the EA does not al-
ways provide a viable solution in all the scenarios with tight deadlines created
as explained previously. As we can see in Table 3, if the EA finds a viable
solution, it always performs better than the Y DSm. We can also observe that
the EA trained with the program-level energy model (EAm) achieves better
results compared to the EA trained with the energy estimations by static anal-
ysis (EAs). However, the EAs gains are in training times that lasts around
10 minutes, compared to around 24 hours of training the EAm, which makes
it much more practical.

4 MODELING TASK DEPENDENCES: ENERGY-AWARE STOCHAS-
TIC SCHEDULING

In this section we prove that modeling existing dependency between differ-
ent variables can help obtain better scheduling results. Since probabilistic
static analysis for estimating time and energy consumption as probability dis-
tribution functions has not been developed yet (it is planned as part of the
continuation of this work), in this section we base our results on synthetic
data.

The most common approach when dealing with a system which depends
on a set of random variables is to assume that the variables are independent,
mainly because the mathematical apparatus becomes too complex, or simply
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TABLE 3
EA vs. modified YDS in different scenarios.

EAs(µJ) Y DSm(µJ) (Y DSm−EAs)
Y DSm

(%) (Y DSm−EAm)
Y DSm

(%)

A scenario with 22 small numeric tasks and loose deadlines
Mean 14.3 33.1 56.8 76.57

CI 0.01 11.6 - 17 NA 48.64 - 64.95 67.87-85.27
CI 0.05 12.2 - 16.4 NA 50.45 - 63.14 70.05- 83.09

A scenario with 22 small numeric tasks and tight deadlines
Mean 14.6 34.8 60.92 69.83

CI 0.01 11.5-17.7 NA 49.14 - 66.95 57.18-57.18
CI 0.05 12.2 - 17 NA 51.15 - 64.94 60.34-60.34
A scenario with 16 tasks made of Biquad and FIR filters and loose deadlines
Mean 4.38 35.3 87.59 NA

CI 0.01 3.4 - 5.3 NA 85 - 90.37 NA
CI 0.05 3.7 - 5.1 NA 85.55 - 89.52 NA

A scenario with 16 tasks made of Biquad and FIR and tight deadlines
Mean 14.5 35.4 59.04 NA

CI 0.01 9.4- 19.6 NA 44.63 - 73.45 NA
CI 0.05 10.6 - 18.4 NA 48.02 - 70.06 NA
A scenario with 32 tasks made of Biquad and FIR filters and loose deadlines
Mean 17.85 68.16 73.81 NA

CI 0.01 10.8 - 25 NA 63.32 - 84.15 NA
CI 0.05 12.5 - 23.3 NA 65.82 - 81.66 NA
A scenario with 32 tasks made of Biquad and FIR filters and tight deadlines
Mean 29.43 68.16 56.82 NA

CI 0.01 0.72 - 51.6 NA 24.3 - 89.44 NA
CI 0.05 12.5 - 46.3 NA 32.07 - 81.66 NA
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because it is not possible to mathematically describe the underlying depen-
dence. However, this simplification often results in assuming an initial sce-
nario which is very different from reality, which limits the usefulness of the
final result. An example of this approach is stochastic scheduling, where the
relevant characteristics of the tasks are represented as random variables with
the corresponding probability distribution functions, and, as far as we know,
in the majority of existing works, the variables describing different tasks are
considered to be independent, or modeled with normal distributions [12],
which is often not realistic.

Our implementation is part of a bigger tool for scheduling based on EAs [8],
to which we want to add the possibility of modeling dependence between the
tasks. For this reason, we experiment with modeling dependence between the
execution time and power of different tasks using copulas [27], in particular
Archimedean copulas [24]. However, if we wanted a stand-alone implemen-
tation on copula-supported scheduling, a promising approach would be to
use Estimation of Distribution Algorithms [16]. The main advantage of cop-
ulas when modeling dependence is the fact that they do not depend on the
marginal distributions. In our implementation we have decided to study the
applicability of Archimedean copulas for two important reasons: they have
been extensively studied and the mathematical apparatus for their manipula-
tion is quite mature, and they are known to properly model the existing tail
dependency between two variables, i.e., the possibility of achieving extreme
values at the same time, which can be expected in our case. In particular, in
this work we experiment with Gumbel copulas [24] due to their proper mod-
eling of positive right-tail dependence, e.g., if one task takes more time due
to a prolonged memory access, it will lead to longer execution time of all the
tasks that are related to it, as well as energy consumption, which is important
when dealing with a time and/or energy budget. However, it does not model
negative dependence, i.e., achieving small values at the same time, which is
not important in our case since it does not affect the budgets mentioned above.

In the following we first give a short overview of the copula theory, nec-
essary for understanding and reproducing the results of our work and later
we detail our proposed methodology using copulas for modeling task depen-
dence.
4.1 Copulas for Modeling Task Dependency
In this section we give a short survey on copulas [27]. In essence, the cop-
ula theory gives us a mathematical framework for describing dependence be-
tween the variables irrespectively of their underlying probability distribution
functions.
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Sklar’s Theorem (1959) Let H be a continuous two-dimensional distribution
function with marginal distribution functions F and G. Then there exists a
copula C such that

H(x, y) = C(F (x), G(y)) =⇒ C(x, y) = H(F−1(x), G−1(y)) (5)

Thus, for any two distribution functions F and G and copula C, the function
H is a two-dimensional distribution function with marginals F and G.
Archimedean Copulas. An important group of copulas are the Archimedean
copulas, where the dependence level depends on one parameter. They are de-
fined in the following way: let ϕ be a continuous strictly decreasing function
from I to [0,∞] such that ϕ(1) = 0, and let ϕ[−1] denote the “pseudo-inverse”
of ϕ:

ϕ[−1](t) = ϕ−1(t) for t ∈ [0, ϕ(0)] and ϕ[−1](t) = 0 for t ≥ ϕ(0) (6)

Then, if ϕ is convex, the function

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (7)

is an Archimedean copula and ϕ is called its generator function. In the
case of the Gumbel copula used in this work the generator function is the
following:

ϕ(t) = (− ln t)θ where θ ∈ [1,∞). (8)

Monte Carlo for Copula-based Models. Since in our work we use Monte
Carlo simulation to calculate the expected value of random variables, in the
following we show how it is integrated in the copula model [23].

If we want to find the expected value of a function g : Rd → R applied
to a random vector (X1, X2, ..., Xd) whose cumulative distribution function
(cdf) is H , the expected values we need are calculated in the following way:

E[g(X1, X2, ..., Xd)] =

∫
Rd

g(x1, x2, ..., xd)dH(x1, x2, ..., xd) (9)

If H is given by its copula model expressed with formula 5, formula 9 can
be written as follows:

E[g(X1, X2, ..., Xd)] =

∫
[0,1]d

g(F−1
1 (u1), ..., F

−1
d (ud))dC(u1, ..., ud)

(10)
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If copula C and marginals F1, .., Fd are known or estimated, the expected
value can be approximated using the following Monte Carlo algorithm:

1. Draw a sample (Uk
1 , U

k
2 , ..., U

k
d ) ∼ C, k = (1, 2, .., n) of size n from

copula C.

2. Calculate a sample of (X1, X2, ..., Xd) by applying the inverse cdf of
marginal functions:

(Xk
1 , X

k
2 , ..., X

k
d ) = (F−1

1 (Uk
1 ), F

−1
2 (Uk

2 ), ..., F
−1
d (Uk

d )) ∼ H(k = 1, ..., n)

3. Approximate E[g(X1, X2, ..., Xd)] with its empirical value:

E[g(X1, X2, ..., Xd)] ≈
1

n

n∑
k=1

g(Xk
1 , X

k
2 , ..., X

k
d )

Archimedean Copula Simulation. In order to draw a sample from Archimedean
copulas (step 1 of the previous Monte Carlo algorithm), we follow the algo-
rithm for Laplace transform Archimedean copulas, which are all the copulas
whose generator function ϕ is a Laplace transform of some function G. The
algorithm has been proven correct in [23] and consists on the following steps:

1. Generate a pseudorandom variable V whose cdf is G.

• For the Gumbel copula used in this work, V is a stable distri-
bution (class of probability distributions allowing skewness and
heavy tails), St(1/θ, 1, γ, 0), with γ = (cos(π/2/θ))θ and Ĝ =

exp(−t1/θ).

2. Generate independent and identically distributed random variables
(X1, X2, ..., Xd).

3. Return Ui = Ĝ(− lnXi

V ), i = 1, ..., d.

4.2 Our Proposed Methodology using Copulas for Dependency Model-
ing

In the following we present the main aspects of our EA implementation.
Individuals. An individual, as a representation of a solution to the problem,
has to contain information about temporal and spatial allocation of each task.
A solution to the scheduling, i.e., temporal aspect of the problem is a permu-
tation of the task identifiers (IDs), where their order also stands for the order

21



FIGURE 4
An example of (part of) a solution (i.e., individual) representation.

of their temporal execution, assuming that each task has a unique ID. In or-
der to solve the allocation problem, i.e., on which thread (and core) each task
is executed, we add delimiters to the permutation of the task IDs that define
where the tasks are being executed, i.e., core, thread and (V, f) setting (the
tasks between two delimiters are executed on the right-side one). In order
to be able to distinguish the delimiters from the tasks, delimiters are coded
as negative three-digit numbers, where the first digit stands for the core, the
second one for the thread on that core, and the third one for the core (V, f)

setting (assuming that there is a finite number of settings, which is realistic).
As an example, part of an individual is depicted in Fig. 4, where tasks with
IDs 1, 2, 5 and 7 are executed in that order on thread 4 of core 2, with the
(V, f) setting coded as 4. In the most general case, the order of delimiters is
random. However, if two consecutive delimiters that belong to the same core
have different (V, f) settings, this means that they are not being executed in
parallel, since the voltage and/or frequency have to be changed. Representing
individuals in the way described above has provided us with a relatively sim-
ple methodology, which does not introduce great overhead when executing
the EA.
Population Initialisation. Since our problem setting in this work is simple
(two cores with two thread each), individuals in the initial population are cre-
ated by randomly assigning tasks to random threads in random (V, f) settings.
However, in more complicated problem settings with more cores and threads
per core, with task deadlines etc., we have to consider adding a heuristic in
order to provide a viable solution in each run.
Solution Perturbations. Given that all the tasks and all the delimiters are dif-
ferent, different solutions are always permutations of the set of tasks and the
set of delimiters. This gives us the opportunity to use some of the permutation-
based crossover operators, and in this case we are using partial match crossover,
since it performed better in terms of the objective function than cycle crossover,
and slightly better than order crossover in terms of the objective function and
the execution time. Since the order of delimiters is not important in the most
general case, this operator provides at the same time variety in consecutive
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changes of (V, f) settings, and the capability of moving tasks from one thread
to another. Regarding mutation, it is implemented in a way that two random
threads exchange two random tasks with certain (low) probability.
Objective Functions. The objective of the scheduler is to minimize the total
energy consumption, as well as the execution time. As explained before, the
application of DVFS, which decreases energy, but increases time, makes these
two objectives in conflict and hence require multiobjective optimisation. In
general, these values are expressed with the following formulas for a given set
of n heterogeneous machines and a set of k tasks, for a particular machine-
task assignment χ:

E(χ) =
∑

1≤i≤n

(Pst,i · T (χ) +
∑

1≤j≤k

xi,j · pi,j · τi,j)

T (χ) = max
1≤i≤n

{
∑

1≤j≤k

xi,j · τi,j}
(11)

where Pst,i is the static power of the machine i, xi,j is a binary value, xi,j ∈
{0, 1}, that represents whether the task j is executed on the machine i (xi,j =

1) or not (xi,j = 0), pi,j is the (dynamic) power consumption of the task j on
the machine i, and τi,j is the execution time of the task j on the machine i.

The objective of the stochastic scheduler is to minimize the expected value
of the following formulas:

min
χ∈π

{E(χ)}

min
χ∈π

{T (χ)}
(12)

As in our previous work, these values are approximated using the Monte
Carlo method, but here we have to introduce the necessary changes to account
for the copula-based dependence:

• Total Energy: estimated in the Monte Carlo approximation presented
in Section 4.1, taking g(X1, .., Xd) =

∑d
i=0 Xi, where d is the total

number of tasks and Xi are random variables representing the energy
of each task.

• Execution Time: for each core approximated in the same way as the to-
tal energy, after that the maximum value between all the cores is taken.

In our implementation, we use the Mathematica system [1] to calculate the
inverse cumulative distribution function (step 2 of the Monte Carlo method
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presented in Section 4.1) due to its capability to deal with all the probabil-
ity distribution functions used in this work. For this purpose, C++ executes
Mathematica as an external program in MathLink mode [22].

4.3 Results and Discussion
Input Data The input data to our scheduling algorithm consists of a set of
tasks whose power consumption and execution time are given as random vari-
ables with a known probability density function. The following density func-
tions are available at the moment: Uniform, Constant, Exponential, Normal
Chi-squared, Gamma, Pareto, Poisson, Binomial, Negative Binomial, and any
combination of the previous ones expressed as a sum of products. A sam-
pling from all the above density functions can be obtained by using a package
implemented by Robert Davies [10]. In different (V, f) settings, the power
consumption is scaled with V 2 and f , and the corresponding execution time
is scaled with f . Finally, the energy of a task is a random variable obtained
as the product of their corresponding execution time and power random vari-
ables.
Obtained Results and Discussion In this work we experiment with con-
trolled dependency in synthetic data. Dependency is introduced in a way that
some of the random variables which describe execution time and power of the
tasks have the same fixed distribution. As we have previously mentioned, de-
pendence in Archimedean copulas is controlled with the θ parameter, which
in the case of the Gumbel copula belongs to the interval [1,∞), where θ = 1

stands for independence, while θ → ∞ stands for comonotonicity, i.e., maxi-
mal positive dependence. However, θ ≥ 10 is already considered a significant
level of dependence.

In order to check the possibility of improving the results of the stochastic
scheduling by introducing copulas for modeling dependence, we have created
an experiment where we fix the testing scenario, start with independence as-
sumption, i.e., θ = 1, and then increase the θ parameter in order to increase
the level of dependence. Since the main claim of our work is that the stochas-
tic scheduling may improve its deterministic counterpart, we check how the
results are being improved as the level of dependence increases. In particu-
lar, we repeat the simulation for three different levels of dependence: θ = 1,
which is equivalent to independence, θ = 5 and θ = 10, which assumes a
high level of dependence.

After performing the training and obtaining the Pareto front, in all the
cases we took the solution with minimal energy consumption from all the
solutions belonging to the Pareto front. The testing was performed on dif-
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TABLE 4
Summary of average improvements.

Test case Avg. % of improv. Avg. Avg. min. Avg. max.
(θ) test cases improv. (%) improv. (%) improv. (%)

1 (1) 50 2.46 −4.58 12.1
2 (5) 81.66 18 −3.51 31.96

3 (10) 68.75 8.42 −3.95 22.75

ferent sets of test cases, each having 10 test cases generated randomly. The
results are summarised in Table 4, where we can observe (from left to right)
the average percentage of test cases where the stochastic scheduler improves
the deterministic one, along with the average improvement, and the average
minimal and maximal improvement in all test cases. Figure 5 illustrates the
evolution of different test cases (1-6 are different test case sets, each having
10 different test cases), sorted by their improvement. Note that negative num-
bers actually mean that the stochastic scheduler worsened the performances.

In the current implementation we rely on Mathematica to calculate the
inverse cumulative distribution function, which significantly increases sim-
ulation time, since it takes 6–8 hours on a 2.5GHz Intel Core i5 with 4GB
DDR3.

From the table and the figures we can draw a few interesting conclusions:

• The stochastic scheduler improves a significant number of test cases,
even when assuming independence (θ = 1).

• The best obtained results correspond to θ = 5, which assumes certain
level of dependence, although less than maximal positive dependence,
which is close to θ = 10. This confirms our expectation, since in
our test cases some of the variables describing power and/or time are
correlated, but not all of them.

• The maximal observed energy improvement achieved in a particular
case is around 62%, while the maximal observed performance (in terms
of energy savings) decrease is 28%, both corresponding to the case
θ = 5 (Figure 5).

• The test cases that obtained better performances with the determinis-
tic scheduler, i.e., whose performances were decreased after applying
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(a) θ = 1

(b) θ = 5

(c) θ = 10

FIGURE 5
Evolution of Minimal, Average and Maximal Improvements (%) for θ = 1, 5, 10
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the stochastic scheduler (and which can be observed as “negative” im-
provement in both Table 4 and Figure 5), had values which were close
to the average values of the corresponding distributions, which were
used to design the deterministic scheduler. This behaviour was also ex-
pected, since the main idea of the stochastic scheduler is to improve the
scheduling when the real data deviate significantly from the expected
ones used to create the deterministic scheduler. However, from this
testing scenario we were not able to properly decide the threshold level
which would tell us when it is beneficial to start using the stochastic
scheduler.

5 CONCLUSIONS AND FUTURE WORK

In this work we have presented a general methodology for energy-efficient
scheduling in multicore environments, which can be adapted to different fea-
tures of the underlying environment and to requirements of the task schedul-
ing. We demonstrate how each of the different features can be used (often in
combination) to obtain better scheduling results in terms of reducing the total
execution time and power consumption. In particular, we have shown that
features such as the use of static analysis for estimating time and energy con-
sumption, and the capability of modeling task dependence can significantly
improve the results, since the final obtained scheduling which relies on these
features can further reduce its energy.

The use of static analysis improves significantly the speed of the EA train-
ing process from hours to minutes, thus allowing its real world applicability.
Furthermore, since in the case of very tight task deadlines the EA can fail in
providing a viable solution, we add one more stage based on a modified YDS
algorithm in order to always provide a scheduling solution. Our custom EA
saves 55-90% more energy compared to YDS.

We have also studied the possibility of introducing dependence of both
power consumption and execution time of the tasks which run on the same
platform in order to improve the results of optimal task scheduling. Power
consumption and execution time of the tasks are represented as random vari-
ables with known probability distribution functions, while their dependence
is modeled with Gumbel copulas, whose θ parameter is varied in order to sim-
ulate different levels of dependence. As far as we know, this is the first work
that uses copula-based dependence in the context of stochastic scheduling
where the important aspects of the tasks are modeled using random distri-
bution functions. If there is dependence present in the underlying data, our
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results show that the performance of the stochastic scheduler is significantly
improved after assuming certain level of dependence: on average 18% of en-
ergy consumption can be saved compared to the results of the deterministic
scheduler, along with 81% of improved test cases, versus 2.44% average sav-
ings when task independence is assumed, along with 50% of improved test
cases.

In the future, we plan to develop a probabilistic static analysis, which will
be able to estimate time and energy consumption as probability distribution
functions, as well as their dependencies. This will allow the implementation
of the unification of all the features in one single framework.
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