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Abstract. In this paper we propose a complete scheme for automatic 
exploitation of independent and-parallelism in CLP programs. We first 
discuss the new problems involved because of the different properties of 
the independence notions applicable to CLP. We then show how inde­
pendence can be derived from a number of standard analysis domains 
for CLP. Finally, we perform a preliminary evaluation of the efficiency, 
accuracy, and effectiveness of the approach by implementing a parallehz­
ing compiler for CLP based on the proposed ideas and applying it on a 
number of CLP benchmarks. 

1 Introduct ion 

Independent-and parallelism refers to the parallel execution of "independent" 
goals in the body of a clause. Its purpose is to achieve increased speed while main-
taining correctness and efficiency w.r.t. sequential programs. Given the promising 
performance gains achieved using this type of parallelism in LP [11, 18, 2], it 
seems natural to explore the possibility of exploiting such parallelism in CLP 
programs. However, although both the and-parallel model and the notion of in­
dependence have already been extended to the CLP context [6], no practical 
parallehzing compilers have been reported so far. Even for concurrent constraint 
languages, designed for this purpose, to the best of our knowledge there have been 
no parallel implementations reported which perform real constraint solving.3 

In this paper we study the new issues which need to be addressed in order to 
develop a parallehzing compiler for CLP programs. We first redefine the clause 
parallelization process for CLP programs, which as we show requires some signif-
icant modifications w.r.t. the traditional parallelization process used in LP. We 
then show how independence can be derived from the information inferred by 
a number of s tandard analysis domains for CLP. Finally, we provide empirical 
results from a prototype implementation of a parallelizing compiler based on two 
different notions of independence. It is important to note tha t the technology 

3 Partial exceptions are Andorra-I [17] and AKL [14], but their constraint solving 
capabilities are comparatively limited, they are based on execution models which 
are quite different from the CLP scheme, and they rely to a large extent on run-time 
technology for detecting parallelism. 



necessary for parallel LP has taken almost a decade to mature to the point of 
producing significant speedups. Therefore, our empirical results cannot be ex-
pected to match such maturity level. More realistic benchmarks, faster run-time 
independence tests, and a more robust and versatile CLP parallel system are still 
needed. However, we feel we do provide a major step forward in that direction. 

2 The automatic parallelization process in LP 

The aim of the parallelization process is to detect the program parts that can 
always be run in parallel (are independent), those that must be run sequentially 
(are dependent), and, for those parts whose parallelism depends on unknown 
characteristics of the input data, to introduce the fewest run-time checks possible. 
Among the several different approaches proposed for LP, a particularly effective 
one seems to be that defined in [2, 1]. In this section we briefly summarize this 
approach. Its extensión to CLP will be discussed in the following sections. 

The parallelization process is performed as follows. Firstly, if required by 
the user, the program is analyzed using one or more global analyzers, aimed at 
inferring useful information for detecting independence. Then, an annotator per-
forms a source-to-source transformation of the program in which eligible clauses 
are annotated with parallel expressions. This source-to-source transformation 
is referred to as the annotation process. 

The annotation process is in turn divided into three subtasks. The first one is 
to identify the dependencies between each two literals in a clause and to genérate 
the conditions which ensure their independence (we will only consider paralleliza­
tion at the literal level). The left-to-right precedence relation for the literals in 
each clause h:-b\ • • • bn is represented using a conditional, directed, acyclic graph 
(CDG) in which each node i represents the literal 6¿, every two literals &¿, bj, 
i < j , are connected by an edge ey from i to j , and each edge ey is adorned 
with a set of tests Ty. The set TÍJ is defined as {def(Dij),ind(Ii,Ij)}, where 
Dij = vars(bi) fl vars(bj) and Ik = vars(bk) \ D{j,k £ [i,j]; the test de/(Dy) 
is true when Dy is definite, and the test ind(Ii,Ij) is true when i¿ and I¡ are 
independent for the particular independence notion considered. We will assume 
that the independence notion is symmetric. 

Example 1. 
The following figure provides the CDG associated 
to the clause: 
h ( x , y , w ) : - p ( x , y ) , q ( x , z ) , s ( z , w ) . 
For readability, in an abuse of notation, the sin-
gleton {x} is represented as the element x. • 

The run-time execution of the tests attached to the CDG edges can be ex-
pensive [2]. Therefore, the second task in the annotation process is to simplify 
the dependencies, reducing the sets of tests Ty by means of the information in-
ferred by the anayzers for the i-th program point. This improvement is based 
on identifying tests in T^ which are ensured to either fail or succeed w.r.t. such 

q(x,z) 
O 

p(x,yfJ md({x,y},{z,w}) w s ( z , w ) 



information: if a test is guaranteed to succeed, it can be reduced to t rae; if a 
test is guaranteed to fail, the entire set of tests can be reduced to false. 

As presented in [2], both the set of tests Ty and the compile-time information 
associated to each program point i in each clause C', can be translated into 
a domain of interpretation DI for definiteness and independence: a subset of 
the propositional4 logic theory, such tha t each element K OÍ DI defined over 
the variables in C is a set of formulae (interpreted as their conjunction) from 
a language suitable for expressing both the relevant information and the tests. 
The domain is augmented with axioms which hold for the notion of independence 
used, in such a way tha t the simplification task can be viewed as propositional 
theorem proving in this theory (although specific efficient algorithms can be 
used in practice). The accuracy and the size (the number of atomic formulae for 
simple facts) of each K € DI depend on the kind of analysis performed. 

Example 2. Consider the strict independence notion, in which terms b\ and 62 
are said to be strictly independent for substitution 9 iff vars(&i#) fl vars(&2#) = 0-
Let ind(Ii,Ij) be satisfied for substitution 9 iff i¿ and Ij are strictly independent 
for 9. Let def(D) be satisfied for substitution 9 iff vars(D8) = 0. It is easy to 
prove tha t , in strict independence, the sets {def(D),ind(Ii,Ij)} and {def(x)\x £ 
D} U {ind(x,y)\x € I{,y £ Ij} are equivalent. Le., the conditions defined over 
sets of variables can be "split" into conditions on single variables. Therefore, the 
domain DI can be based on a language containing only predicates of the form 
def(x) and ind(y,z), {x,y,z} C vars(C), with the following simple axioms: 

{def(x) —t ind(x,y)\{x,y} C vars(C)} U {ind(x,x) —>• def(x)\x € vars(C)}. 

Parallelization methods based on such "split" domains will be referred to as 
split methods. Consider the clause h ( x , y , w ) : - p ( x , y ) , q ( x , z ) , s ( z , w ) whose 
CDG was shown in the previous example. Assume tha t , according to the infor­
mation provided by some global analyzer, x is definite when h ( x , y , w ) is called. 
Then, for all program points previous to the execu-
tion of q ( x , z ) , the following information is avail- Ó 

able: {def ( x ) , - i d e f ( z ) , i n d ( y , z ) } . Thus, both / \ 
tests labeling the edge from p ( x , y ) to q ( x , z ) are t m / x ^ 6 

known to be t rue. Furthermore, at least one test / \ 
labeling the edge from q ( x , z ) to s ( z , w ) is known p(x ,yp^ md(y,w) "^s(z,w) 
to be false. Thus, the set can be simplified to false. 

Finally, test i n d ( { x , y } ,{z ,w}) labeling the edge from p ( x , y ) to s ( z , w ) is split 
into { i n d ( x , z ) , i nd (x ,w) , i n d ( y , z ) , i n d ( y ,w)} and simplified to i n d ( y ,w) . • 

As mentioned before, in the approach described, program parallelization is 
conceived as a source-to-source transformation into a suitable parallel language. 
The third and last task in the annotat ion process is concerned with expressing 
in such a language the conditional parallelism contained in the CDG. Consider a 

4 Although our syntax resembles first order formulae, clause variables can be regarded 
as constants, and a simple mapping into a propositional language can be done. 



language in which parenthesized expressions are built using a fork / join operator, 
which is normally represented by "&/2", in addition to the sequential connective 
"," (such expressions are said to be linear). Then, the aim of this last task is to 
apply a particular strategy to obtain a (quasi-)optimal linear parallel expression 
among all the possibilities represented by the simplified CDG, hopefully further 
optimizing the number of tests. Many different strategies for obtaining a linear 
parallel expression from a CDG can be defined [1]. A strategy is correct if the 
resulting linear parallel expression ensures that if the two linear subexpressions 
Ei and E^ are executed in parallel in store ir, then E\ and E-¿ are independent 
for TT, for the particular notion of independence considered. 

Example 3. Let lit(E) represent the set of literals in the linear expression E. 
When considering strict independence, linear expressions E\ and E^ are inde­
pendent w.r.t. 6 if Mbi £ lit(Ei) and \/bj € lit{E2), the tests associated to the 
edge connecting 6¿ and b¡ are true w.r.t. 6. This can easily be ensured at run-
time by, for example, using an if-then-else expression. Consider the simplified 
CDG shown in the previous example. It is possible to build different correct 
linear parallel expressions such as: 
h ( x , y , w ) : - (p(x,y) & q ( x , z ) ) , s(z,w) and 
h ( x , y , w ) : - i nd (y ,w) ->p(x ,y )&(q(x ,z ) , s ( z ,w) ) ;p (x ,y ) ,q (x , z ) , s ( z ,w) D 

3 Independence in CLP 
Independence refers to the conditions that the run-time behavior of the goals to 
be run in parallel must satisfy to guarantee correctness and efficiency w.r.t. the 
sequential execution. The above parallelization process has been proved correct, 
implemented, and evaluated for the particular case of strict independence in LP 
languages [2, 1]. However, correctness can in fact be proved for all independence 
notions which, as strict independence, are a-priori, Le., tests exist that can be 
executed prior to the goals, and grouping, Le., if goal g\ is independent of goals 
52 and g-¿ for store TT, then g\ is also independent of the goal (32,33) for TT. 

The most general a-priori notion in CLP is defined in [6] as follows. Let 
def-vars(c) denote the set of definite variables in the constraint c (Le., the set 
of variables uniquely defined by c). Let x denote a sequence of distinct variables. 
3-x<t> denotes the existential closure of the formula <f> except for the variables 
x. Goals gi(x) and 32(2/) are projection independent for constraint store TT iff 
(x fl y C def-vars(ir)) and (3_S7r A 3-yir —> 3_SUS7r). Intuitively, the notion 
states that all shared variables must be definite, and that any constraint c in TT 
defined over variables of both x and y is "irrelevant" .5 The same definition can 
also be applied to terms and constraints without any change. 

Example 4- The goals p(x) and q(z) are independent and can be executed in 
parallel if the state of the store just before their execution is n = {x > y, z > y} 
since 3{X}7T = 3{¿}7r = 3{xz}ir = true. However, they would be dependent for 
7r = {x > y,y > z} since 3|xj.7r = 3{¿}7r = true but 3{xzyir = {x > z}. • 

5 That is, it is entailed by the conjunction of the constraints over x and the constraints 
over y. Note that (3-xTT A 3-^7r <— 3_jux7r) is always satisfied. 



Unfortunately, projection is an expensive operation. A pragmatic solution, 
proposed in [6], is to simplify the run-time tests by checking if the variables 
involved are "linked" through the constraints in the store, thus sacrificing ac-
curacy in favor of simplicity. Let 77 denote the sequence of constraints in the 
store, linkn{x,y) holds if 3c £ 77 s.t. {x,y} C (vars(c) \ def-vars(II)). The 
relation linksn(x,y) is the transitive closure of linkn{x,y). Finally, links is 
lifted to set of variables by defining Linksn(x,y) iff 3x € x,y £ y such that 
linksn(x,y) holds. We then have that g\(x) and 32(2/) are link independent for 
77 if -iLinksn(x,y). Note that it is possible to further simplify linkn{x,y) by 
not taking knowledge of definite variables into account. This is simpler to detect 
for solvers which do not propágate definiteness. Run-time tests based on both 
this simpler versión {link independence) and the original projection indepen-
dence will be evaluated in our experiments. Note that while link independence 
is a grouping notion for any CLP language, projection independence is not. 

Example 5. Consider goals p(x) , q(y), and s ( z ) , and equation x = y + z. While 
ind(x, y) and ind(x, z) hold for projection independence, ind(x, {y, z}) does not. 
Thus, p(x) is independent of q(y) and of s ( z ) , but not of q(y) , s ( z ) . D 

4 The annotat ion process for non-grouping notions 

Non-grouping independence notions considerably affect the annotation process. 
While the first subtask of the annotation process (identifying dependencies) is 
not affected, the other two subtasks become somewhat more complex. 

The first problem appears during simplification of dependencies: the sets 
{ind(Ii,Ij)} and {ind(x,y)\x £ Ii,y £ Ij} are no longer equivalent. This hap-
pened in the previous example, where {ind(x, [y,z])} was shown to be different 
from {ind(x, y),ind(x, z)} since, for example, the latter succeeds but the former 
fails for the linear equation x = y + z. As a consequence, the domain DI becomes 
more involved: it is now based on the language containing predicates of the form 
def(x) and ind(Ii,I2), {x} U I\ U 72 C vars(C), with the following axioms: 

1. {def(x) —t ind(x,vars(C)) | x £ vars(C)} 
2. {ind{h,I2) -> def(I) | 7 £ subseteq £ (h n h),h U 72 C vars(C)} 
3. {ind{h,h) ->¿nd( / i i , / 2 i ) | / i i Qh,hi C7 2 , 7 iU7 2 C vars(C)} 
4. {ind(I,I1Ul2),ind(I1,I2) -^ ind(I U h, I2) \ IU hU I2 Cvars(C)} 

The first and second axioms correspond to those defined for strict inde­
pendence. The third states the independence of subsets of variables of an al-
ready proved independence test. The last one allows us to prove an indepen­
dence test from the conjunction of other independence tests which are known 
to hold. In combination with the third axiom it can also be used as a heuristic: 
if ind(I,Ii U 72) holds then ind(I U h,I2) -O- ind(Ii,I2), and we can replace 
ind(I U 7i, 72) by ind(Ii, I2). Definite and unconstrained variables can be elimi-
nated using this heuristic. Parallelization methods based on this complex domain 
will be referred to as non-split methods. The parallel program obtained using a 
non-split method can always be executed using a grouping independence notion. 



The non-grouping characteristics of the independence notion also affect the 
creation of the independence tests appearing in a linear parallel expression. 

Example6. Consider the clause h ( x , y , z ) : - p(x) ,q(y) , s (z ) whose associated 
CDG is shown in the following figure. In strict independence, the three literals 
can be run in parallel in store n if all tests labeling the associated edges are 
satisfied in ir. The following linear expression ensures this condition: 
( i n d ( x , y ) , i n d ( x , z ) , i n d ( y , z ) ) -> p(x)& q(y)& s(z) ; p ( x ) , q ( y ) , s ( z ) 
Unfortunately, the above expression is not correct for non-
grouping independence notions. Consider projection in­
dependence and the constraint store ir = {x = y + z}. 
Though all three tests are satisfied for ir, p(x) is not in-
dependent of q(y)&s(z) for ir, as we saw in the previous w . 
example. Thus, they cannot be executed in parallel. • P(x) ' s(z) 

As illustrated above, for a non-grouping notion, the conjunction of the tests 
labeling the edges involved is not enough for ensuring correctness. The solution is 
to directly apply the correctness condition: a linear parallel expression is correct 
if for any subexpression of the form E\ & E2, the test {def(D),ind(Ii,l2)}, 
where D = vars(Ei) n vars(E2) and Iu = vars(E¡.) \D,k £ [1,2], is ensured to 
be satisfied immediately before their parallel execution. 

Since the simplified tests are not used during the construction of the linear 
parallel expression, it is natural to question the usefulness of the simplification 
of dependencies subtask. Indeed, when considering non-grouping notions, the 
only aim of the second subtask is to detect edges whose label can be reduced 
to false. If so, the literals connected are known to be dependent and cannot be 
run in parallel. It is in the third subtask, after the parallel expression has been 
built, that the (full) simplification of dependencies should be performed. 

Example 7. For the CDG in the above example, the independence test required 
to obtain a correct linear expression is { ind(x ,{y ,z}) , i nd (y , z )} . If the store 
ir = {x = y + z} occurs in the program, and the compile-time analysis is able to 
infer that - i ind(x,{y,z}) holds, then the condition is reduced to false and no 
attempt is made to construct a parallel expression with all three goals. Otherwise 
the tests will have to be executed at run-time to determine independence. • 

5 Global Analysis-Based Test Simplification 

Compile-time information is usually obtained via global analysis, generally based 
on the abstract interpretation technique [4, 13]. In this section we study how def-
initeness and independence can be inferred by some analysis domains proposed 
for CLP programs: the Def6 [5], Free [7], and FD domains [5]. 

Def approximates deftniteness information. An abstract constraint AC is of 
the form (D, R), where the set of variables D approximates the definite variables, 

This domain is a variant of the Prop domain [3] for CLP, with efRcient abstract 
functions specific for the framework of the PLAI analyzer used in our experiments. 



and each element (x, SS) £ R approximates definite dependencies. In particular, 
the variable x is known to be definite if all variables in a set S of SS are also 
definite. Consider an abstract constraint ACi = (D, R) £ Def for program point 
i of a clause C. The contents of the corresponding K¿ £ DI are as follows: 

- def(D) 
- def(S) -»• def(x) if (x, SS) £R,S £ SS 
- ind(x, S) —>• def(x) if (x, SS) £ R,S £ 5 5 

The first rule states that all variables in D are known be definite. The second 
rule represents the definiteness dependencies approximated by each (x, SS) £ R. 
The third rule states that the dependencies approximated by R are definite: x 
and 5 can only be independent if x is definite. This rule can be used to (a) 
execute def({x}) at run-time instead oíind({x}, S) (definiteness tests are faster 
and, thanks to the above axiom, they are known to be equivalent) and (b) 
with the aid of non-definiteness information, obtain -iind({x}, 5), confirming a 
dependency. 

Example8. Consider a clause C such that vars(C) = {x,y,z,v,w} and an ab­
stract constraint AC = ({x}, {(z, {{w, «}})})• The corresponding K will be: 
{def(x), def({w, v}) —> def(z),ind(z, {w, v}) —>• def(z)}. • 

Free approximates freeness information. An abstract constraint AC is a set 
of set of variables approximating possible dependencies. In particular, if x does 
not appear in any element of AC, then x is known to be unconstrained; and if 
{x} is not an element of AC, then x is possibly constrained but still free to take 
any valué within its particular constraint type (referred to as free variables). 
Consider an abstract constraint ACi £ Free for program point i of a clause C. 
Let (ACi)* denote its closure under unión. Then K¿ £ DI contains: 

- -<def(x) if a; £ vars(C), {x} g" ACi 
- ind(h,I2) if Wí C h,I[ ± 0,V/¿ C h,I'2± 0 : (I[ U l!2) # (Ad)* 

The first rule states that unconstrained and free variables cannot be definite. 
The second is an extensión of Prop. 3.1 of [7] defining the conditions under 
which I\ and I2 ae independent w.r.t. ACi.7 Note that unconstrained variables 
are independent of any other set of variables. 

Example 9. Consider a clause C such that vars(C) = {x,y,z,v,w} and an ab­
stract constraint AC = {{x}, {z}, {«}, {z, w}}. The corresponding K will be: 
{-<def(y),-idef(w), ind(x,w),ind(v,w), ind(y,{x,z,v,w})}. • 

The aim of the FD domain is to improve the efficiency of the Free analyzer 
by explicitly separating the definite variables and specializing the abstract oper-
ations to make use of this particular information. The K £ DI corresponding to 
an abstract constraint in FD is obtained by conjoining the result of translating 
its definiteness and freeness components. 
7 The closure is needed due to the solved form in Free which eliminates any set in AC 

which can be obtained by the unión of other sets in AC. 



6 Experimental Results 

Our experimental study evaluates (a) the efficiency and usefulness of the analyz-
ers when parallelizing CLP programs, (b) the trade-off between the complexity 
and usefulness of the split and non-split methods (c) the efficiency and accuracy 
of the projection and link independence notions, and (d) the amount of a-priori 
and-parallelism detected by the method. To perform the evaluation we have im-
plemented a parallelizing compiler based on the proposed ideas and incorporated 
it into the CIAO system [10]. The abstract machine includes native support for 
attributed variables [12] (used for implementating the constraint solvers), as well 
as for parallelism and concurrency (it is a derivation of the &-Prolog PWAM 
[11]). The system also includes the PLAI analysis framework [16] and several al-
gorithms for obtaining the linear parallel expression associated to a given CDG. 
In the experiments we will use the MEL algorithm (see [1]). 

Bench. 

ackerman 
amp, amp2 
amp3 
bridge 
circuit 
dnf 
fib 
ladder 
laplacel 
laplace3 

AgV 

2.33 
4.62 
5.03 
3.72 
3.39 
2.34 
1.33 
3.69 
4.00 
4.75 

MV 

4 
18 
26 
12 
10 
7 
4 

10 
12 
15 

Cl 

9 
45 
60 
18 
18 
32 

3 
13 
4 
4 

Ls 

30 
69 

103 
33 
25 
40 

4 
28 
4 
7 

Ps 

1 
16 
24 

6 
8 
3 
1 
9 
2 
2 

Rec 

100 
37 
37 
66 
62 

100 
100 
33 

100 
100 

Gs 

4 
20 
33 
17 
10 
14 
3 

13 
4 
3 

Bench. 

matmull 
mg, mggnd 
mg-extend 
mining 
nombre 
ode2, ode3 
ode4 
pie 
power 
rkf45a 

AgV 

2.50 
3.00 
3.90 
2.63 
2.62 
3.67 
4.17 
5.71 
3.14 
7.30 

MV 

5 
6 
8 

18 
11 
7 
9 
9 

19 
26 

Cl 

6 
2 

10 
43 
64 

6 
6 
7 

42 
97 

Ls 

5 
3 

16 
78 
91 

9 
12 
23 
75 

236 

Ps 

3 
1 
6 

21 
10 
5 
5 
7 

18 
41 

Rec 

100 
100 
33 
52 

0 
20 
20 

0 
50 
24 

Gs 

3 
2 
9 

27 
15 
5 
7 
9 

24 
63 

Table 1. Benchmark Profile 

6.1 Benchmarks 

The set of benchmarks used includes programs in the set of examples of the 
clp(5t) distribution (fib, mg, dnf, and laplace), programs designed for ProloglII 
(nombre, mining, and power) which have been translated into clp(3f), and others 
designed for clp(5t) and used, for example, in the evaluation of several optimiza-
tions performed for the clp(5t) compiler. Table 1 provides information regarding 
the (reachable code of the) benchmarks, useful for interpreting the analysis and 
annotation performance results:8 average (AgV) and máximum (MV) number of 
variables in each clause; total number of clauses (Cl), of body literals (Ls), and 
of predicates analyzed (Ps); percentage of predicates which are recursive (Rec), 
and total number of different goals solved in analyzing the program (Gs), Le., 
of syntactically different calis. The benchmarks have not been normalized. 

8 Benchmarks in the same row refer to different queries with identical reachable code. 
Benchmarks with the same ñame in different rows refer to queries with different 
reachable code. 



Benchmark 

ackerman 
amp 
amp2 
amp3 
bridge 
circuit 
dnf 
fibl 
fib2 
fib3 
ladder 
laplacel 
laplace3 
mmatrix 
matmull 
mg-extend 
mg 
mggnd 
mining 
nombre 
ode2 
ode3 
ode4 
pie 
power 
rkf45a 

Average 1 
Average 2 

Analysis Times 

Def 

0.04 
0.66 
0.66 
0.94 
0.28 
0.27 
0.41 
0.02 
0.04 
0.03 
0.11 
0.03 
0.09 
0.02 
0.03 
0.98 
0.05 
0.01 
0.27 
0.62 
0.06 
0.09 
0.14 
0.04 
0.45 

335.14 

13.13 
0.25 

Free 

0.12 
4.87 
4.87 
6.33 
2.66 

10.75 
2.37 
0.05 
0.06 
0.04 
0.30 
0.00 
5.06 
0.07 
0.08 
0.31 
0.05 
0.05 
3.54 
5.85 
0.11 
0.07 
0.14 
0.12 
5.43 

61.00 

4.57 
2.22 

FD 

0.10 
5.62 
5.62 
6.86 
1.28 
1.73 
1.53 
0.05 
0.07 
0.06 
0.38 
0.05 
5.14 
0.05 
0.12 
1.77 
0.11 
0.03 
3.63 
4.17 
0.17 
0.21 
0.30 
0.11 
1.99 

482.69 

20.15 
1.65 

Annotation Times 
Split 

Lo 

0.03 
0.30 
0.30 
0.66 
0.10 
0.09 
0.14 
0.02 
0.03 
0.02 
0.14 
0.02 
0.06 
0.03 
0.03 
0.06 
0.02 
0.02 
0.28 
0.78 
0.04 
0.04 
0.06 
0.22 
0.39 
2.06 

0.23 
0.16 

Def 

0.05 
0.35 
0.35 
1.05 
0.14 
0.12 
0.19 
0.03 
0.03 
0.03 
0.20 
0.02 
0.09 
0.03 
0.03 
0.09 
0.03 
0.02 
0.42 
1.04 
0.05 
0.05 
0.09 
0.16 
0.62 

27.81 

1.27 
0.21 

Free 

0.05 
0.57 
0.57 
1.55 
0.19 
0.12 
0.23 
0.03 
0.03 
0.03 
0.21 
0.00 
0.11 
0.04 
0.03 
0.11 
0.03 
0.03 
0.64 
1.31 
0.05 
0.05 
0.09 
0.23 
0.83 
3.45 

0.42 
0.30 

FD 

0.05 
0.54 
0.54 
1.64 
0.18 
0.13 
0.23 
0.03 
0.04 
0.03 
0.25 
0.03 
0.14 
0.03 
0.03 
0.10 
0.03 
0.02 
0.73 
1.30 
0.06 
0.06 
0.12 
0.18 
0.94 

22.15 

1.14 
0.30 

Non-Split 
Lo 

0.04 
0.24 
0.24 
0.47 
0.10 
0.08 
0.13 
0.02 
0.02 
0.02 
0.14 
0.02 
0.03 
0.03 
0.03 
0.06 
0.02 
0.02 
0.26 
0.64 
0.04 
0.04 
0.06 
0.17 
0.29 
1.20 

0.17 
0.13 

Def 

0.05 
0.30 
0.30 
0.71 
0.13 
0.11 
0.19 
0.03 
0.03 
0.03 
0.19 
0.02 
0.07 
0.03 
0.03 
0.08 
0.02 
0.02 
0.37 
0.92 
0.06 
0.05 
0.09 
0.16 
0.47 

15.19 

0.76 
0.18 

Free 

0.06 
0.33 
0.33 
0.66 
0.18 
0.10 
0.22 
0.03 
0.03 
0.03 
0.18 
0.00 
0.05 
0.03 
0.03 
0.10 
0.02 
0.02 
0.42 
1.01 
0.05 
0.04 
0.08 
0.17 
0.50 
1.52 

0.25 
0.20 

FD 

0.06 
0.37 
0.37 
0.90 
0.17 
0.13 
0.24 
0.03 
0.04 
0.04 
0.21 
0.02 
0.08 
0.04 
0.03 
0.10 
0.03 
0.02 
0.51 
1.16 
0.06 
0.06 
0.11 
0.17 
0.69 

17.76 

0.90 
0.23 

Table 2. Compilation Efficiency Results 

6.2 Efficiency 

Table 2 presents the analysis and annotation times (for both the split and non-
split methods) in seconds (SparcStation 10, one processor, SICStus 2.1 #5 , na-
tive code). The times are the average out of ten executions. The last two rows 
show the average time for each analyzer and annotator with and without con-
sidering the results for rkf45a, respectively. The column Lo provides the results 
for the parallelization with information provided by a simple local analysis. 

The analysis times are quite reasonable: 4-10 seconds for the bigger bench-
marks. There are two exceptions: laplacel and rkf45a. The analysis of rkf45a 
takes between 1 and 8 minutes, depending on the analyzer. In part, this is due 
to the high number of different calling patterns analyzed: 5 predicates have 10-15 
different calling patterns, and one has 25. Even then, most analysis time is spent 



analyzing a single clause containing 12 atoms and 27 variables related by many 
definite and possible dependencies. In particular, the Def abstractions for this 
clause keep track of up to 593 sets of variables and 3166 variables, per abstrac-
tion. The other exception is the behavior of the Free analyzer for laplacel, which 
did not finish after one hour due to the high number of different calling patterns 
generated by the analysis. This is solved in laplace3 by performing a simple 
normalization which reduces the number of variables in the literal and thus the 
number of calling patterns. Thus, to be practical, the analyses should include a 
widening step (perhaps switching selectively to a special, compact definition of 
"top") and a tighter control of the number of calling patterns allowed. 

Regarding the annotators, we observe that both methods are quite fast, the 
non-split method behaving almost consistently better, specially for the complex 
cases. This could seem surprising since, in the non-split method, further simpli-
fications have to be performed for the final CGEs. However, the high number 
of tests obtained after splitting decreases the efficiency of the split method. We 
can conclude that, although conceptually more complex, the non-split method 
is usually faster. 

6.3 Efíectiveness: static tests 
One way to measure the accuracy and effectiveness of the analysis information 
is to count the number of parallel expressions (or CGEs) annotated, the number 
of these which are unconditional (Le., do not require run-time tests), and the 
number of definiteness and independence tests in the remaining CGEs. These 
numbers give an idea of the overhead introduced in the program. The results 
for the non-split method are shown in the upper part of Table 3. Then, the 
benchmarks for which the results obtained with the split method are different 
to those obtained with the non-split method are shown in the lower part of 
Table 3. For clarity, we only show those numbers which differ from the column 
corresponding to the annotation performed with the information provided by the 
FD analyzer, the rest appearing blank. Benchmarks that all analyzers determine 
to be sequential (mg, mggnd, ode2, ode3, and ode4) do not appear in the table. 

In general, a lower number of CGEs and a higher number of unconditional 
CGEs indicate a better parallelization. It usually means that CGEs whose tests 
are going to fail have been detected and eliminated. This reasoning is valid for all 
benchmarks but ladder. In ladder the better information inferred by FD allows 
the annotator to change its strategy, obtaining better (because unconditional) 
parallel expressions. We can conclude that the higher information contení pro­
vided by FD produces the best results, showing advantage in almost half of the 
benchmarks. Furthermore, many benchmarks present unconditional parallelism: 
the non-split method with the information provided by FD accurately detects 
that all a-priori and-parallelism in bridge, fibl, mmatrix, matmull, laplacel, 
and mg-extend, is unconditional. Also, all analyzers successfully detect that mg, 
mgnd, ode2, ode3, and ode4 do not have any a-priori parallelism, FD being also 
capable of adding nombre to this list. Finally, though conceptually different, 
the non-split and split methods provide the same results for all but six bench­
marks. In nombre the split method for Free is able to simplify 29 independence 



Benchmark 

ackerman 
amp 
amp2 
amp3 
bridge 
circuit 
dnf 
fibl 
fib2 
fib3 
ladder 
laplacel 
laplace3 
mmatrix 
matmull 
mg-extend 
mining 
nombre 
pie 
power 
rkf45a 

fibl 
fib2 
fib3 
nombre 
power 
rkf45a 

CGEs: Tot/Unc 
Lo 

6/ 

/o 
3/ 

/o 
/o 

7/0 

/o 

/o 
2/0 

/o 
/o 
5/ 

4/0 

5/ 

1/ 
1/ 
1/ 
5/ 
5/ 
5/ 

Def 

6/ 

3 / 

/o 

7/1 

/o 
2/0 

/ l 
5/ 
4/ 

5/ 

1/ 
1/ 
1/ 
5/ 
5/ 
5/ 

Free 

/o 

/o 
/o 

7/1 

/o 
/o 
/o 
/o 
5/ 

/o 

1/ 
1/ 
1/ 
5/ 
5/ 

FD 

1/0 
3/0 
3/0 
5/0 
3/3 
2/0 

14/12 

1/1 
1/0 
1/0 
8/4 

1/1 
1/0 
2/2 

1/1 
1/1 
4/2 
0/0 
3/2 
5/1 
1/0 

0/0 
0/0 
0/0 
0/0 

3/1 
1/0 

Conds: def/indep 
Lo 

2/1 

2/ 
2/ 

5/21 

3 / 
1/13 
/30 

1/1 

/ l 
/34 
2/1 

2/8 
2/8 

/2 
5/8 
/ l l l 
7/12 
/46 

10/85 

1/1 
1/1 
1/1 

/ m 
3/46 
10/85 

Def 

2/ 
2/ 
5/ 

3 / 

/ l 

/ l 
5/8 

/2 
1/1 

/5 
12/11 

1/5 
/46 

17/22 

/ l 
1/1 
1/1 

12/11 
3/46 
17/34 

Free 

2/1 

2/21 

3 / 
0/9 
/30 

1/ 

/29 

2/2 

1/1 
/2 
5/5 
/65 
6/8 

1/ 
1/1 
1/ 

/47 
3/18 

FD 

1/0 

1/3 
1/3 
3/8 
0/0 

2/1 
0/2 
0/0 

1/1 
1/0 
3/9 
0/0 

2/1 
0/0 
0/0 
0/0 
2/4 
0/0 
0/2 

3/42 
2/2 

0/0 
0/0 
0/0 
0/0 
2/3 
2/2 

Table 3. Parallel Expressions / Conditional Checks 

tests more than the non-split method. In fibl, fib2, fib3, and power, CGEs are 
eliminated for FD due to independence tests which are known to fail for any 
grouping notion (split method), but might succeed for a non-grouping one (non-
split method). Finally, the results of the simplification function depend on the 
order in which the tests to be simplified are considered (the simplified set of tests 
is not always minimal). This only affeets the parallelization of rkf45a with Def. 

6.4 Link vs. Projection Independence 

In this section we study the overhead created by the definiteness and indepen­
dence tests, and compare the aecuracy of the link and projection independence 
versions. Thus, we only consider benchmarks whose parallelized versions have 
tests. Unfortunately, we have not been able to execute some of these benchmarks 
(rkf45a, mining and power) in our parallel system, due to precisión problems. 
For the rest, tables 4 and 5 show the results of the execution on one processor 



Benchmark 

ackerman 
amp 
amp2 
amp3 
circuit 
dnf 
fibl 
fib2 
fib3 
ladder 
laplace3 
mmatrix 
matmull 
nombre 
pie 

Definite 
S 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

F 

1187 
1 
1 
7 

14 
0 
0 

1503 
1503 

154 
3 
0 

25 
448 

3 

Link Independence 
S 

0 
10 
10 
48 

1 
115 

0 
0 
0 

50 
0 

182 
5 
0 
3 

F 

0 
3 
5 

98 
7 
0 

609 
0 
0 
0 
0 
0 
0 
0 
0 

AS 

0 
1 
1 
0 
0 
1 
0 
0 
0 
2 
0 
2 
1 
0 
1 

AF 

0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 

0.00 
0.62 
0.67 
0.17 
0.12 
0.33 
0.39 
0.00 
0.00 
0.00 
0.00 
0.47 
0.00 
0.00 
0.00 

Projection Independence 
S 

0 
10 
11 
48 

1 
115 
609 

0 
0 

50 
0 

182 
5 
0 
3 

F 

0 
3 
4 

98 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

AS 

0 
1 
1 
0 
0 
1 
1 
0 
0 
2 
0 
2 
1 
0 
1 

AF 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

o 
0.00 
4.77 
5.87 
0.63 
3.40 
3.00 
0.71 
0.00 
0.00 
0.00 
0.00 
3.53 
0.00 
0.00 
0.01 

Table 4. Dynamic Results for Def 

Benchmark 

ackerman 
amp 
amp2 
amp3 
circuit 
dnf 
fib2 
fib3 
ladder 
laplace3 
pie 

Definite 
S 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

F 

1187 
1 
1 
6 

13 
0 

1503 
1503 

153 
3 
0 

Link Independence 
S 

0 
10 
10 
48 

1 
115 

0 
0 
0 
0 
3 

F 

0 
3 
5 

98 
7 
0 
0 
0 
1 
0 
0 

AS 

0 
1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

AF 

0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

0 

0.00 
0.46 
0.40 
0.17 
0.10 
0.33 
0.00 
0.00 
0.04 
0.00 
0.00 

Projection Independence 
S 

0 
10 
11 
48 

1 
115 

0 
0 
0 
0 
3 

F 

0 
3 
4 

98 
7 
0 
0 
0 
1 
0 
0 

AS 

0 
1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

AF 

0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

O 

0.00 
4.77 
5.47 
0.63 
3.45 
3.00 
0.00 
0.00 
0.01 
0.00 
0.00 

Table 5. Dynamic Results for FD 

of the benchmarks parallelized with the non-split method, using the informa-
tion provided by the Def and FD analyzers, respectively. The last ten columns 
in each table show the number of times that the tests have succeeded (S) and 
failed (F), the number of tests which have always succeeded (AS) and always 
failed (AF), and the overhead w.r.t. the execution of the original sequential pro-
gram (TestTime/SeqTime), for the link and projection independence tests. For 
the definiteness tests only the number of successes and failures are shown, their 
overhead being negligible (it ranges from 0.0002 for ladder to 0.0028 for fib3). 

Several conclusions can be extracted from the tables. First, although there 
exist cases, like fibl, in which projection independence deteets parallelism which 
link independence fails to detect, this is not a common case. Second, as imple-



mented, the independence tests introduce too much overhead, specially when us-
ing projection independence. The implementation of the tests is still very naive. 
In particular, the projection independence test can be improved significantly by, 
for example, performing a link test while doing the projection, so that success 
can be detected in an amount of time similar to that of the link test. In any 
case, significant effort must be devoted to implementing these tests efficiently. 

Finally, given the cost of the independence tests and the number of them 
which always succeed or fail, we can conclude that more accurate information is 
needed. The domain (LSign) recently defined for CLP [15] approximates infor­
mation about possible interaction between linear arithmetic constraints. A pre-
liminary implementation performed at Monash University shows very promising 
accuracy, and will hopefully help in further simplifing the number of tests. 

6.5 Effectiveness: speedup tests 

The ultimate way of evaluating the effectiveness of the annotators is by mea-
suring the speedup achieved, i.e., the ratio of the parallel execution time of the 
program to that of the sequential program. Since we are interested in the quality 
of the parallelization process, and not in the characteristics of a particular run-
time system, this should ideally be done in a controlled environment. To this end, 
we have performed a number of preliminary experiments using the simulation 
tool IDRA [8], which was already shown to match actual speedups in several LP 
systems. This tool takes as input a real execution trace file of a parallel program 
run on the CIAO system (i.e., an encoded description of the events that occurred 
during such execution) and the time for its sequential execution, and computes 
the achievable speedup for any number of processors. The results presented in 
the following table show the speed-ups obtained parallelizing the benchmarks 
with the non-split method, using the information provided by the FD analyzer, 
and running the programs with the link independence tests. Only benchmarks 
with at least a parallel expression in the parallelized versión have been consid-
ered. The column labeled "@2" provides the speedup on two processors and the 
column labeled "Max" the máximum possible speedup for the input data used. 

Bench. 

ackerman 
fib2 
fib3 
laplace3 

Max 

1.00 
0.99 
0.99 
1.00 

Q2 

1.00 
0.99 
0.99 
1.00 

Bench. 

bridge 
fibl 
laplacel 
mmatrix 
matmull 

Max 

1.02 
80.84 

1.97 
37.83 

3.53 

Q2 

1.02 
1.99 
1.97 
1.94 
1.71 

Bench. 

dnf 
ladder 
pie 

dnf 
ladder 
pie 

Max 

0.91 
0.97 
1.97 

0.94 
1.16 
1.92 

@2 

0.91 
0.97 
1.50 

0.94 
1.16 
1.50 

Bench. 

amp 
amp2 
amp3 
circuit 

amp 
amp2 
amp3 
circuit 

Max 

0.57 
0.57 
0.88 
0.92 

0.97 
0.97 
1.00 
1.00 

Q2 

0.57 
0.57 
0.88 
0.92 

0.97 
0.97 
1.00 
1.00 

The first four benchmarks are the only programs without a-priori parallelism 
whose parallelization actually contains conditional parallel expressions (mg, mg-
gnd, nombre, ode2, ode3, and ode4 where already detected as sequential during 



the parallelization process). Even then, since the tests introduced by the paral-
lelization are only definiteness tests, the overhead is negligible. In the next five 
benchmarks the compile-time information has been capable of determining for 
all tests whether they are going to succeed or fail, thus only obtaining uncondi-
tional parallelism. As a result, no slow-downs are obtained and most benchmarks 
get quite good speed-ups (which, as in many other benchmarks, depend on the 
size of the input data, which is generally small in the benchmarks used). 

The next three benchmarks contain one or two conditional parallel expres-
sions. The associated overhead in this case is higher (e.g., for dnf). This suggests 
perhaps eliminating those parallel expressions which contain tests. Since the 
overhead introduced by definiteness tests has proved negligible, only indepen-
dence tests would need to be removed. The next three rows in the table show 
the results of applying this idea to the three previous benchmarks: although the 
achievable speed-up in pie is reduced w.r.t. the previous versión it still has a 
speedup of 1.5, and the approach succeeds in eliminating the slow-down for the 
other two benchmarks. 

The final four benchmarks have several independence tests which sometimes 
succeed and sometimes fail. The result is a considerable slow-down. However, af-
ter eliminating all parallel expressions containing independence tests, the results 
are shown in the last 4 rows of the table: no slow-downs oceur, and since none 
of the benchmarks had very useful parallelism, the effect is quite satisfactory. 

7 Conclusions and Future Work 

We conclude from this preliminary evaluation that the parallelization process can 
be quite efficient (using widening) and relatively effective, specially considering 
the genericity of the domains used. Very often sequential programs and programs 
containing unconditional parallelism were statically identified as such. Surpris-
ingly, the conceptually more complex non-split annotation method is faster in 
practice due to the reduced number of tests in the simplification. Regarding link 
and projection independence, although the latter can detect parallelism more 
accurately, it seems that in practice this rarely happens. While definiteness tests 
are very efficient our independence tests for these notions introduce significant 
overhead, which reduces the effectiveness of the parallelization. Overall, it ap-
pears best to use the non-split method, the most aecurate domain, and, in order 
to avoid slow-downs while independence tests remain unoptimized, reduce such 
tests to false. Clearly, there is still quite a bit of room for improvement. The 
speedup results are significant when compared to standard compiler optimiza-
tions, but they are certainly not as good as those obtained for LP programs (e.g., 
[2]), and those obtained by or-parallelism for CLP programs which perform in-
tensive search [9]. Identified avenues for future research include considering more 
realistic CLP benchmarks solving larger problems and combining both LP and 
CLP, studying better suited domains such as perhaps LSign [15], applying spe-
cialization, improving run-time test performance, controlling granularity, allow-
ing the exploitation of a-posteriori parallelism, and parallelizing at finer grain 
levéis than the goal level. 
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