Towards Independent And-Parallelism in CLP

Maria Garcia de la Banda!, Francisco Bueno? and Manuel Hermenegildo?

! Monash University, Clayton 3168 VIC, Australia
% Universidad Politécnica de Madrid, 28660-Boadilla del Monte, Spain

Abstract. In this paper we propose a complete scheme for automatic
exploitation of independent and-parallelism in CLP programs. We first
discuss the new problems involved because of the different properties of
the independence notions applicable to CLP. We then show how inde-
pendence can be derived from a number of standard analysis domains
for CLP. Finally, we perform a preliminary evaluation of the efficiency,
accuracy, and effectiveness of the approach by implementing a paralleliz-
ing compiler for CLP based on the proposed ideas and applying it on a
number of CLP benchmarks.

1 Introduction

Independent-and parallelism refers to the parallel execution of “independent”
goals in the body of a clause. Its purpose is to achieve increased speed while main-
taining correctness and efficiency w.r.t. sequential programs. Given the promising
performance gains achieved using this type of parallelism in LP [11, 18, 2], it
seems natural to explore the possibility of exploiting such parallelism in CLP
programs. However, although both the and-parallel model and the notion of in-
dependence have already been extended to the CLP context [6], no practical
parallelizing compilers have been reported so far. Even for concurrent constraint
languages, designed for this purpose, to the best of our knowledge there have been
no parallel implementations reported which perform real constraint solving.?
In this paper we study the new issues which need to be addressed in order to
develop a parallelizing compiler for CLP programs. We first redefine the clause
parallelization process for CLP programs, which as we show requires some signif-
icant modifications w.r.t. the traditional parallelization process used in LP. We
then show how independence can be derived from the information inferred by
a number of standard analysis domains for CLP. Finally, we provide empirical
results from a prototype implementation of a parallelizing compiler based on two
different notions of independence. It is important to note that the technology

? Partial exceptions are Andorra-I [17] and AKL [14], but their constraint solving
capabilities are comparatively limited, they are based on execution models which
are quite different from the CLP scheme, and they rely to a large extent on run-time
technology for detecting parallelism.

necessary for parallel LP has taken almost a decade to mature to the point of
producing significant speedups. Therefore, our empirical results cannot be ex-
pected to match such maturity level. More realistic benchmarks, faster run-time
independence tests, and a more robust and versatile CLP parallel system are still
needed. However, we feel we do provide a major step forward in that direction.

2 The automatic parallelization process in LP

The aim of the parallelization process is to detect the program parts that can
always be run in parallel (are independent), those that must be run sequentially
(are dependent), and, for those parts whose parallelism depends on unknown
characteristics of the input data, to introduce the fewest run-time checks possible.
Among the several different approaches proposed for LP, a particularly effective
one seems to be that defined in [2, 1]. In this section we briefly summarize this
approach. Its extension to CLP will be discussed in the following sections.

The parallelization process is performed as follows. Firstly, if required by
the user, the program is analyzed using one or more global analyzers, aimed at
inferring useful information for detecting independence. Then, an annotator per-
forms a source-to-source transformation of the program in which eligible clauses
are annotated with parallel expressions. This source-to—source transformation
is referred to as the annotation process.

The annotation process is in turn divided into three subtasks. The first one is
to identify the dependencies between each two literals in a clause and to generate
the conditions which ensure their independence (we will only consider paralleliza-
tion at the literal level). The left-to-right precedence relation for the literals in
each clause h:-b; - - - b, is represented using a conditional, directed, acyclic graph
(CDG) in which each node i represents the literal b;, every two literals b;, b;,
¢ < j, are connected by an edge e;; from ¢ to 7, and each edge e;; is adorned
with a set of tests Tj;. The set T;; is defined as {def(D;;),ind(l;, I;)}, where
D;; = vars(b;) Nvars(b;) and Iy = vars(by) \ Dyj,k € [i,7]; the test def(D;;)
is true when D;; is definite, and the test ind(I;, I;) is true when I; and I; are
independent for the particular independence notion considered. We will assume
that the independence notion is symmetric.

Ezample 1. q(é,z)
The following figure provides the CDG associated
to the clause:

hix,y,w):-p(x,y),9(x,2) ,s(z,w).

For readability, in an abuse of notation, the sin-
gleton {z} is represented as the element z. O

def(z)
ind(zy) ind(x,w)

O

p(xy)— ndlixyhizwh) “s(z,w)

The run-time execution of the tests attached to the CDG edges can be ex-
pensive [2]. Therefore, the second task in the annotation process is to simplify
the dependencies, reducing the sets of tests T;; by means of the information in-
ferred by the anayzers for the i-th program point. This improvement is based
on identifying tests in 73; which are ensured to either fail or succeed w.r.t. such

information: if a test is guaranteed to succeed, it can be reduced to true; if a
test is guaranteed to fail, the entire set of tests can be reduced to false.

As presented in [2], both the set of tests T;; and the compile-time information
associated to each program point ¢ in each clause C, can be translated into
a domain of interpretation DI for definiteness and independence: a subset of
the propositional* logic theory, such that each element k of DI defined over
the variables in C' is a set of formulae (interpreted as their conjunction) from
a language suitable for expressing both the relevant information and the tests.
The domain is augmented with axioms which hold for the notion of independence
used, in such a way that the simplification task can be viewed as propositional
theorem proving in this theory (although specific efficient algorithms can be
used in practice). The accuracy and the size (the number of atomic formulae for
simple facts) of each ¥ € DI depend on the kind of analysis performed.

FEzample 2. Consider the strict independence notion, in which terms b; and b
are said to be strictly independent for substitution 6 iff vars(b,6) N vars(b28) = 0.
Let ind(I;, I;) be satisfied for substitution 8 iff I; and I; are strictly independent
for 8. Let def(D) be satisfied for substitution 8 iff vars(D@) = 0. It is easy to
prove that, in strict independence, the sets {def(D),ind(I;, I;)} and {def(x)|x €
D} U {ind(z,y)|z € I,y € I;} are equivalent. Le., the conditions defined over
sets of variables can be “split” into conditions on single variables. Therefore, the
domain DI can be based on a language containing only predicates of the form
def(z) and ind(y, z), {z,y, 2} C vars(C), with the following simple axioms:

{def(z) = ind(z,y)|{z,y} Cvars(C)} U {ind(z,z) — def(x)|x € vars(C)}.

Parallelization methods based on such “split” domains will be referred to as
split methods. Consider the clause h(x,y,w) :- p(x,y),q(x,2),s(z,w) whose
CDG was shown in the previous example. Assume that, according to the infor-
mation provided by some global analyzer, x is definite when h(x,y,w) is called.
Then, for all program points previous to the execu-
tion of q(x,z), the following information is avail-
able: {def(x), —def(z), ind(y,z)}. Thus, both
tests labeling the edge from p(x,y) to q(x,z) are
known to be true. Furthermore, at least one test
labeling the edge from q(x,z) to s(z,w) is known pxy) ind(y.w) Os(z,w)
to be false. Thus, the set can be simplified to false.

Finally, test ind ({x,y},{z,w}) labeling the edge from p(x,y) to s(z,w) is split
into {ind(x,2),ind(x,w),ind(y,2z),ind(y,w) } and simplified to ind (y,w). O

q(x,2)
O

true false

As mentioned before, in the approach described, program parallelization is
conceived as a source-to-source transformation into a suitable parallel language.
The third and last task in the annotation process is concerned with expressing
in such a language the conditional parallelism contained in the CDG. Consider a

* Although our syntax resembles first order formulae, clause variables can be regarded
as constants, and a simple mapping into a propositional language can be done.

language in which parenthesized expressions are built using a fork / join operator,
which is normally represented by “&/2”, in addition to the sequential connective
“,” (such expressions are said to be linear). Then, the aim of this last task is to
apply a particular strategy to obtain a (quasi-)optimal linear parallel expression
among all the possibilities represented by the simplified CDG, hopefully further
optimizing the number of tests. Many different strategies for obtaining a linear
parallel expression from a CDG can be defined [1]. A strategy is correct if the
resulting linear parallel expression ensures that if the two linear subexpressions
FE; and FEs are executed in parallel in store 7, then F; and F», are independent
for 7, for the particular notion of independence considered.

Ezxample 3. Let lit(E) represent the set of literals in the linear expression E.
When considering strict independence, linear expressions F; and E» are inde-
pendent w.r.t. 6 if Vb; € lit(Eq) and Vb; € lit(E»), the tests associated to the
edge connecting b; and b; are true w.r.t. #. This can easily be ensured at run—
time by, for example, using an if-then—else expression. Consider the simplified
CDG shown in the previous example. It is possible to build different correct
linear parallel expressions such as:

hix,y,w):- (p(x,y) & q(x,2)), s(z,w) and

hix,y,w):- ind(y,w)->p(x,y)&(q(x,2z),s(z,w)) ;p(x,y),q9(x,2),s(z,w) O

3 Independence in CLP

Independence refers to the conditions that the run-time behavior of the goals to
be run in parallel must satisfy to guarantee correctness and efficiency w.r.t. the
sequential execution. The above parallelization process has been proved correct,
implemented, and evaluated for the particular case of strict independence in LP
languages [2, 1]. However, correctness can in fact be proved for all independence
notions which, as strict independence, are a-priori, i.e., tests exist that can be
executed prior to the goals, and grouping, i.e., if goal g; is independent of goals
g2 and g3 for store 7, then g; is also independent of the goal (g2, g3) for .

The most general a-priori notion in CLP is defined in [6] as follows. Let
def_vars(c) denote the set of definite variables in the constraint ¢ (i.e., the set
of variables uniquely defined by ¢). Let Z denote a sequence of distinct variables.
J_z¢ denotes the existential closure of the formula ¢ except for the variables
Z. Goals g1(Z) and ¢2(y) are projection independent for constraint store = iff
(ZNy Cdefwars(m)) and (3_z7m AI_gm — F_zuzm). Intuitively, the notion
states that all shared variables must be definite, and that any constraint ¢ in 7
defined over variables of both Z and § is “irrelevant”.? The same definition can
also be applied to terms and constraints without any change.

Ezxample 4. The goals p(z) and ¢(z) are independent and can be executed in
parallel if the state of the store just before their execution is # = {z > y, 2 > y}
since 3,7 = 337 = Jy, .37 = true. However, they would be dependent for
7 ={x >y,y >z} since I,y7 = a7 =true but I, 47 ={z >z}. 0

% That is, it is entailed by the conjunction of the constraints over # and the constraints
over §. Note that (3_z7m A I_gm « T_yuzm) is always satisfied.

Unfortunately, projection is an expensive operation. A pragmatic solution,
proposed in [6], is to simplify the run-time tests by checking if the variables
involved are “linked” through the constraints in the store, thus sacrificing ac-
curacy in favor of simplicity. Let II denote the sequence of constraints in the
store, linkp(z,y) holds if 3¢ € IT s.t. {z,y} C (vars(c) \ def_vars(Il)). The
relation linksp(x,y) is the transitive closure of linky(z,y). Finally, links is
lifted to set of variables by defining Linksy(Z,y) iff 3z € Z,y € § such that
links(x,y) holds. We then have that g1(Z) and g2(¥) are link independent, for
IT if = Links(Z,7). Note that it is possible to further simplify linkp(z,y) by
not taking knowledge of definite variables into account. This is simpler to detect
for solvers which do not propagate definiteness. Run-time tests based on both
this simpler version (link independence) and the original projection indepen-
dence will be evaluated in our experiments. Note that while link independence
is a grouping notion for any CLP language, projection independence is not.

Example 5. Consider goals p(x), q(y), and s(z), and equation £ = y + z. While
ind(z,y) and ind(z, z) hold for projection independence, ind(z, {y, z}) does not.
Thus, p(x) is independent of q(y) and of s(z), but not of q(y) ,s(z). O

4 The annotation process for non-grouping notions

Non-grouping independence notions considerably affect the annotation process.
While the first subtask of the annotation process (identifying dependencies) is
not affected, the other two subtasks become somewhat more complex.

The first problem appears during simplification of dependencies: the sets
{ind(I;,I;)} and {ind(z,y)|x € I;,y € I;} are no longer equivalent. This hap-
pened in the previous example, where {ind(z, [y, z])} was shown to be different
from {ind(x,y),ind(x, z)} since, for example, the latter succeeds but the former
fails for the linear equation x = ¢+ 2. As a consequence, the domain DI becomes
more involved: it is now based on the language containing predicates of the form
def(z) and ind(Iy,I2), {z} U, U I, Cwvars(C), with the following axioms:

1. {def(z) = ind(z,vars(C)) | x € vars(C)}

2. {ind(I,Iz) — def(I) | I € subseteq € (I} N 1), 1 U Iy Cuvars(C)}
3. {ind([l,fg) — ind([ll,lgl)lfn g 11,121 g 12,11 U IQ g U(M“S(C)}

4, {an([,]l U IQ),iﬂd(Il,IQ) — an(IU 11,12) | Ty 11 U IQ g U(M“S(C)}

The first and second axioms correspond to those defined for strict inde-
pendence. The third states the independence of subsets of variables of an al-
ready proved independence test. The last one allows us to prove an indepen-
dence test from the conjunction of other independence tests which are known
to hold. In combination with the third axiom it can also be used as a heuristic:
if ind(I,I; U I5) holds then ind(I U I, L) < ind(l1,I5), and we can replace
ind(I'U I, I5) by ind(I1, I). Definite and unconstrained variables can be elimi-
nated using this heuristic. Parallelization methods based on this complex domain
will be referred to as non-split methods. The parallel program obtained using a
non-split method can always be executed using a grouping independence notion.

The non-grouping characteristics of the independence notion also affect the
creation of the independence tests appearing in a linear parallel expression.

Example 6. Consider the clause h(x,y,2z) :- p(x),q(y),s(z) whose associated
CDG is shown in the following figure. In strict independence, the three literals
can be run in parallel in store 7 if all tests labeling the associated edges are
satisfied in 7. The following linear expression ensures this condition:
(ind(x,y),ind(x,2),ind(y,2)) > p(x)& q(y)& s(=2) ; p(x),q(y),s(=2)
Unfortunately, the above expression is not correct for non- qy)
grouping independence notions. Consider projection in-

dependence and the constraint store 7 = {z = y + z}. ind(y,2)
Though all three tests are satisfied for 7, p(x) is not in-

dependent of q(y)&s(z) for m, as we saw in the previous . @)
example. Thus, they cannot be executed in parallel. O P P sz

As illustrated above, for a non-grouping notion, the conjunction of the tests
labeling the edges involved is not enough for ensuring correctness. The solution is
to directly apply the correctness condition: a linear parallel expression is correct
if for any subexpression of the form E; & F», the test {def(D),ind(I1, 1)},
where D = vars(Ey) Nvars(Fy) and Iy, = vars(Ey) \ D,k € [1,2], is ensured to
be satisfied immediately before their parallel execution.

Since the simplified tests are not used during the construction of the linear
parallel expression, it is natural to question the usefulness of the simplification
of dependencies subtask. Indeed, when considering non-grouping notions, the
only aim of the second subtask is to detect edges whose label can be reduced
to false. If so, the literals connected are known to be dependent and cannot be
run in parallel. It is in the third subtask, after the parallel expression has been
built, that the (full) simplification of dependencies should be performed.

FEzample 7. For the CDG in the above example, the independence test required
to obtain a correct linear expression is {ind (x,{y,z}), ind(y,z)}. If the store
7 = {x = y+ 2} occurs in the program, and the compile-time analysis is able to
infer that —ind(x,{y,z}) holds, then the condition is reduced to false and no
attempt is made to construct a parallel expression with all three goals. Otherwise
the tests will have to be executed at run-time to determine independence. O

5 Global Analysis-Based Test Simplification

Compile-time information is usually obtained via global analysis, generally based
on the abstract interpretation technique [4, 13]. In this section we study how def-
initeness and independence can be inferred by some analysis domains proposed
for CLP programs: the Def® [5], Free [7], and FD domains [5].

Def approximates definiteness information. An abstract constraint AC is of
the form (D, R), where the set of variables D approximates the definite variables,

5 This domain is a variant of the Prop domain [3] for CLP, with efficient abstract
functions specific for the framework of the PLAT analyzer used in our experiments.

and each element (z,SS) € R approximates definite dependencies. In particular,
the variable z is known to be definite if all variables in a set S of §S are also
definite. Consider an abstract constraint AC; = (D, R) € Def for program point
i of a clause C'. The contents of the corresponding k; € DI are as follows:

— def(D)
— def(S) — def(zx) if (z,55) € R,S €SS
— ind(z,S) = def(x) if (x,55) € R,S €8S

The first rule states that all variables in D are known be definite. The second
rule represents the definiteness dependencies approximated by each (x, SS) € R.
The third rule states that the dependencies approximated by R are definite: x
and S can only be independent if z is definite. This rule can be used to (a)
execute def({x}) at run-time instead of ind({z}, S) (definiteness tests are faster
and, thanks to the above axiom, they are known to be equivalent) and (b)
with the aid of non-definiteness information, obtain —ind({z}, S), confirming a
dependency.

Ezample 8. Consider a clause C such that vars(C) = {z,y,z,v,w} and an ab-
stract constraint AC = ({z}, {(z, {{w,v}})}). The corresponding x will be:

{def(x), def({w,v}) = def(z),ind(z, {w,v}) = def(z)}. O

Free approximates freeness information. An abstract constraint AC is a set
of set of variables approximating possible dependencies. In particular, if z does
not appear in any element of AC, then z is known to be unconstrained; and if
{z} is not an element of AC, then x is possibly constrained but still free to take
any value within its particular constraint type (referred to as free variables).
Consider an abstract constraint AC; € Free for program point i of a clause C.
Let (AC;)* denote its closure under union. Then &; € DI contains:

— def(x) if x € vars(C), {z} & AC;
—and(ly, L) VI C I, I # 0V, C I, IL#0: (1] UL & (AC)*

The first rule states that unconstrained and free variables cannot be definite.
The second is an extension of Prop. 3.1 of [7] defining the conditions under
which I and I, ae independent w.r.t. AC;.” Note that unconstrained variables
are independent of any other set of variables.

Ezample 9. Consider a clause C such that vars(C) = {=z,y,z,v,w} and an ab-
stract constraint AC = {{z},{z},{v}, {z,w}}. The corresponding x will be:

The aim of the FD domain is to improve the efficiency of the Free analyzer
by explicitly separating the definite variables and specializing the abstract oper-
ations to make use of this particular information. The x € DI corresponding to
an abstract constraint in FD is obtained by conjoining the result of translating
its definiteness and freeness components.

" The closure is needed due to the solved form in Free which eliminates any set in AC
which can be obtained by the union of other sets in AC.

6 Experimental Results

Our experimental study evaluates (a) the efficiency and usefulness of the analyz-
ers when parallelizing CLP programs, (b) the trade-off between the complexity
and usefulness of the split and non-split methods (c) the efficiency and accuracy
of the projection and link independence notions, and (d) the amount of a-priori
and-parallelism detected by the method. To perform the evaluation we have im-
plemented a parallelizing compiler based on the proposed ideas and incorporated
it into the CIAO system [10]. The abstract machine includes native support for
attributed variables [12] (used for implementating the constraint solvers), as well
as for parallelism and concurrency (it is a derivation of the &-Prolog PWAM
[11]). The system also includes the PLAT analysis framework [16] and several al-
gorithms for obtaining the linear parallel expression associated to a given CDG.
In the experiments we will use the MEL algorithm (see [1]).

[Bench. [JAgV[MV]CI] Ls|[Ps[Rec|Gs]|{[Bench. [J[AgVIMV][CI] Ls[Ps[Rec|Gs]|
ackerman || 2.33[4| 9| 30| 1|100| 4(/|{matmull 2.50[5| 6 5| 3100 3
amp, amp2|| 4.62| 18|45 69[16] 37| 20||[[mg, megnd]|3.00] 6] 2| 3| 1]100] 2
amp3 5.03| 26|60|103(24| 37| 33||[|mg-extend || 3.90[8[10[16| 6 33| 9
bridge 3.72| 12(18| 33| 6] 66]17|[||mining 2.63| 18|43| 78|21| 52|27
circuit 3.39| 10(18| 25 8| 62| 10]||||[nombre 2.62| 11|64 91|10 0f15
dnf 2.34| 7|32| 40| 3|100]| 14||||ode2, ode3 || 3.67| 7| 6] 9| 5[20| 5
fib 1.33| 4] 3| 4] 1/100| 3||||ode4 4.17(9| 6 12| 5| 20 7
ladder 3.69| 10(13| 28| 9| 33| 13||||pic 5. 71 9| 7 23| 7 0] 9
laplacel 4.001 12 4| 4| 2|100[4||||power 3.14| 19(42| 75[18| 50[24
laplace3 4.75| 15| 4| 7| 2{100]| 3|[|[rkf45a 7.30[26|97(236|41| 24|63

Table 1. Benchmark Profile

6.1 Benchmarks

The set of benchmarks used includes programs in the set of examples of the
clp(R) distribution (fib, mg, dnf, and laplace), programs designed for ProloglIII
(nombre, mining, and power) which have been translated into clp(R), and others
designed for clp(R) and used, for example, in the evaluation of several optimiza-
tions performed for the clp(®) compiler. Table 1 provides information regarding
the (reachable code of the) benchmarks, useful for interpreting the analysis and
annotation performance results:® average (AgV) and maximum (MV) number of
variables in each clause; total number of clauses (Cl), of body literals (Ls), and
of predicates analyzed (Ps); percentage of predicates which are recursive (Rec),
and total number of different goals solved in analyzing the program (Gs), i.e.,
of syntactically different calls. The benchmarks have not been normalized.

& Benchmarks in the same row refer to different queries with identical reachable code.
Benchmarks with the same name in different rows refer to queries with different
reachable code.

Benchmark|| Analysis Times Annotation Times

Split Non-Split

Def| Free] FD|| Lo| Def]Free[FD|| Lo] Def[Free] FD
ackerman 0.04| 0.12| 0.10]{0.03] 0.05[0.05| 0.05](0.04| 0.05|0.06| 0.06

amp 0.66] 4.87| 5.62|(0.30[0.35|0.57| 0.54|(0.24| 0.30]0.33[0.37
amp?2 0.66| 4.87| 5.62|(0.30[0.35|0.57| 0.54|(0.24| 0.30|0.33| 0.37
amp3 0.94| 6.33| 6.86|[0.66| 1.05|1.55| 1.64||0.47| 0.71{0.66| 0.90
bridge 0.28| 2.66| 1.28|(0.10[0.14|0.19(0.18](0.10[0.13|0.18[0.17
circuit 0.27|10.75| 1.73](0.09| 0.12|0.12| 0.13}{0.08| 0.11{0.10| 0.13
dnf 0.41| 2.37| 1.53|(0.14| 0.19]0.23| 0.23]|0.13| 0.19(0.22| 0.24
fibl 0.02| 0.05| 0.05][0.02| 0.03]0.03| 0.03]{0.02| 0.03({0.03| 0.03
fib2 0.04| 0.06] 0.07][0.03| 0.03|0.03| 0.04]|0.02| 0.03({0.03| 0.04
fib3 0.03| 0.04| 0.06](0.02 0.03|0.03| 0.03]|0.02| 0.03{0.03| 0.04
ladder 0.11] 0.30] 0.38](0.14| 0.20]0.21| 0.25]{0.14| 0.19(0.18| 0.21
laplacel 0.03| 0.00] 0.05][0.02| 0.02|0.00{ 0.03]{0.02| 0.02{0.00| 0.02
laplace3 0.09| 5.06| 5.14|(0.06] 0.09/0.11| 0.14}|0.03| 0.07({0.05| 0.08
mmatrix 0.02| 0.07| 0.05][0.03| 0.03|0.04(0.03]|0.03| 0.03{0.03| 0.04

matmull 0.03| 0.08| 0.12](0.03| 0.03|0.03| 0.03]{0.03| 0.03{0.03| 0.03
mg-extend 0.98| 0.31] 1.77][0.06] 0.09/0.11| 0.10{|0.06| 0.08{0.10| 0.10

mg 0.05| 0.05| 0.11]{0.02| 0.03|0.03| 0.03]{0.02| 0.02{0.02| 0.03
mggnd 0.01| 0.05| 0.03](0.02| 0.02|0.03| 0.02]{0.02| 0.02{0.02| 0.02
mining 0.27| 3.54| 3.63|[0.28| 0.42|0.64(0.73](0.26] 0.37(0.42| 0.51
nombre 0.62| 5.85| 4.17|[0.78| 1.04|1.31| 1.30{|0.64| 0.92({1.01] 1.16
ode2 0.06] 0.11] 0.17](0.04| 0.05/0.05(0.06]|0.04| 0.06{0.05| 0.06
ode3 0.09] 0.07| 0.21](0.04| 0.05/0.05(0.06]|0.04| 0.05({0.04| 0.06
ode4 0.14| 0.14| 0.30][0.06] 0.09|0.09(0.12]{0.06| 0.09(0.08| 0.11
pic 0.04| 0.12| 0.11]{0.22| 0.16/0.23| 0.18][0.17| 0.16/0.17[0.17
power 0.45| 5.43| 1.99](0.39] 0.62|0.83| 0.94||0.29| 0.47({0.50| 0.69
rkf4ba 335.14(61.00(482.69(|2.06|27.81|3.45|22.15(|1.20|15.19|1.52|17.76

Average 1 || 13.13| 4.57| 20.15(|0.23| 1.27[0.42| 1.14[|0.17| 0.76[0.25| 0.90
Average 2 0.25| 2.22| 1.65|(0.16] 0.21|0.30{ 0.30{|0.13| 0.18{0.20| 0.23

Table 2. Compilation Efficiency Results

6.2 Efficiency

Table 2 presents the analysis and annotation times (for both the split and non-
split methods) in seconds (SparcStation 10, one processor, SICStus 2.1 #5, na-
tive code). The times are the average out of ten executions. The last two rows
show the average time for each analyzer and annotator with and without con-
sidering the results for rkf4ba, respectively. The column Lo provides the results
for the parallelization with information provided by a simple local analysis.
The analysis times are quite reasonable: 4-10 seconds for the bigger bench-
marks. There are two exceptions: laplacel and rkf45a. The analysis of rkf45a
takes between 1 and 8 minutes, depending on the analyzer. In part, this is due
to the high number of different calling patterns analyzed: 5 predicates have 10-15
different calling patterns, and one has 25. Even then, most analysis time is spent

analyzing a single clause containing 12 atoms and 27 variables related by many
definite and possible dependencies. In particular, the Def abstractions for this
clause keep track of up to 593 sets of variables and 3166 variables, per abstrac-
tion. The other exception is the behavior of the Free analyzer for laplacel, which
did not finish after one hour due to the high number of different calling patterns
generated by the analysis. This is solved in laplace3 by performing a simple
normalization which reduces the number of variables in the literal and thus the
number of calling patterns. Thus, to be practical, the analyses should include a
widening step (perhaps switching selectively to a special, compact definition of
“top”) and a tighter control of the number of calling patterns allowed.

Regarding the annotators, we observe that both methods are quite fast, the
non-split method behaving almost consistently better, specially for the complex
cases. This could seem surprising since, in the non-split method, further simpli-
fications have to be performed for the final CGEs. However, the high number
of tests obtained after splitting decreases the efficiency of the split method. We
can conclude that, although conceptually more complex, the non-split method
is usually faster.

6.3 Effectiveness: static tests
One way to measure the accuracy and effectiveness of the analysis information
is to count the number of parallel expressions (or CGEs) annotated, the number
of these which are unconditional (i.e., do not require run-time tests), and the
number of definiteness and independence tests in the remaining CGEs. These
numbers give an idea of the overhead introduced in the program. The results
for the non-split method are shown in the upper part of Table 3. Then, the
benchmarks for which the results obtained with the split method are different
to those obtained with the non-split method are shown in the lower part of
Table 3. For clarity, we only show those numbers which differ from the column
corresponding to the annotation performed with the information provided by the
FD analyzer, the rest appearing blank. Benchmarks that all analyzers determine
to be sequential (mg, mggnd, ode2, ode3, and ode4) do not appear in the table.
In general, a lower number of CGEs and a higher number of unconditional
CGEs indicate a better parallelization. It usually means that CGEs whose tests
are going to fail have been detected and eliminated. This reasoning is valid for all
benchmarks but ladder. In ladder the better information inferred by FD allows
the annotator to change its strategy, obtaining better (because unconditional)
parallel expressions. We can conclude that the higher information content pro-
vided by FD produces the best results, showing advantage in almost half of the
benchmarks. Furthermore, many benchmarks present unconditional parallelism:
the non-split method with the information provided by FD accurately detects
that all a-priori and-parallelism in bridge, fibl, mmatrix, matmull, laplacel,
and mg-extend, is unconditional. Also, all analyzers successfully detect that mg,
mgnd, ode2, ode3, and ode4 do not have any a-priori parallelism, FD being also
capable of adding nombre to this list. Finally, though conceptually different,
the non-split and split methods provide the same results for all but six bench-
marks. In nombre the split method for Free is able to simplify 29 independence

Benchmark| CGEs: Tot/Unc Conds: def/indep
Lo [Def[Free] FD Lo | Def [Free| FD

ackerman 170 || 2/1 2/1[1/0
amp 3/0 || 2/ | 2/ 1/3
amp?2 3/0 || 2/ | 2/ 1/3
amp3 676/ 5/0 |[5/21| 5/ |2/21]| 3/8
bridge 70 701 3/3 | 3/ 3/ [0/0
circuit 373/ 2/0 [1/13] 3/ |0/9]2/1
dnf 70 70 [14/12]] /30 730 0/2
fib1 Jo[/0] /0 [1/T |[1/1| /1 | 1/ |0/0
fib2 1/0 /1
fib3 10 /1| /1 1/0
Tadder 7/0[7/1[7/1] 8/4 || /34 | 5/8 | /29| 3/9
laplacel /0 1/1 || 2/1 0/0
laplace3 1/0 2/1

mmatrix || /0| /0] /0| 2/2 || 2/8 | /2 |2/2|0/0
matmull||2/0[2/0] /0 | 1/1 || 2/8 | 1/1 [1/1]0/0
mg-extend || /0] [/0| /1] /2 /2 [0/0
mining /Of/1] /0| 4/2 | 5/8 | /5 |5/5|2/4
nombre ||5/ |5/ 5/] 0/0 || /111 [12/11] /65 | 0/0

pic 2jo[4/] 70| 372 [[7/12] 1/5 |6/3]0/2
power 5/1 || /46 | /46 3/42
rkfdba 5715/ 1/0 ||[10/85|17/22 2/2
fibl 1/[1/[1/Jo/0 | 1/1| /1 | 1/ |0jo
fib2 1/7{1/]1/[0/0 || 1/ | 1/1 [1/1]0/0
fib3 1711/]1/[0/0 || 1/1 | 1/1 | 1/ |0/0
nombre || 5/ 5/ 5/ | 0/0 || /111 [12/11] /47| 0/0
power 5715715/ | 3/1 || 3/46 | 3/46 [3/13] 2/3
Tkfd5a 5715/ 1/0 |[10/85(17/34 22

Table 3. Parallel Expressions / Conditional Checks

tests more than the non-split method. In fibl, fib2, fib3, and power, CGEs are
eliminated for FD due to independence tests which are known to fail for any
grouping notion (split method), but might succeed for a non-grouping one (non-
split method). Finally, the results of the simplification function depend on the
order in which the tests to be simplified are considered (the simplified set of tests
is not always minimal). This only affects the parallelization of rkf45a with Def.

6.4 Link vs. Projection Independence

In this section we study the overhead created by the definiteness and indepen-
dence tests, and compare the accuracy of the link and projection independence
versions. Thus, we only consider benchmarks whose parallelized versions have
tests. Unfortunately, we have not been able to execute some of these benchmarks
(rkf45a, mining and power) in our parallel system, due to precision problems.
For the rest, tables 4 and 5 show the results of the execution on one processor

Benchmark|[Definite|| Link Independence ||Projection Independence

S] F[l S| F[ASJAF] O] S| FJAS[AF] @)
ackerman ||0] 1187|| 0| 0] 0] 0]0.00{ 0] 0 Of O 0.00
amp 0 1)l 10| 3| 1| o0]0.62| 10 3| 1] O 4.77
amp?2 0 1)| 10| 5| 1| o0]o.67|| 11 4 1] 0 5.87
amp3 0 7I[48| 98] 0] 1]|0.17| 48|98 0| 1 0.63
circuit 0 14| 1f 7| o ofo.12|| 1] 7] 0] O 3.40
dnf 0 of|115(of 1| 0[0.33][115| 0] 1] O 3.00
fibl 0 0| o[609| 0| 1[0.39][609] 0| 1| O 0.71
fib2 0 1503(of o0 0 ofo.00|| 0] 0] o] O 0.00
fib3 0 1503(of o0 0 ofo.00|| 0] 0] o] O 0.00
ladder 0| 154 50[0| 2| 0[0.00|| 50| 0] 2| O 0.00
laplace3 0 3[o| of of ofo.00|l 0] 0] 0o O 0.00
mmatrix [[0 0[|182[0 2| 0[0.47][182) 0] 2| O 3.53
matmull |0 25(5| 0] 1 ofo.00)[5[0] 1] 0 0.00
nombre 0| 448(o[0| 0 ofo.00|| 0] 0] 0] O 0.00
pic 0 3(3| of 1 ofo.00) 3]0 1] 0 0.01

Table 4. Dynamic Results for Def

Benchmark||Definite||Link Independence|[Projection Independence

S] F[| S] FJAS[AF] O] S| FJAS[AF] @)
ackerman ||0| 1187| 0| 0] 0| 0]{0.00)f 0f 0] 0] O 0.00
amp 0 1| 10| 3| 1 ofo.46]l 10| 3] 1] © 4.77
amp2 0 1| 10| 5| 1] 0]0.40]|] 11} 4 1] O 5.47
amp3 0 6| 48[98| 0| 1|0.17| 48|98 o 1 0.63
circuit 0 13| 1| 7] o] o0fo.10)f 1f 7 0] O 3.45
dnf 0 of|115(0| 1| 0]0.33[|115(of 1 O 3.00
fib2 0| 1503| o 0| 0] o0]o.00f o] 0f 0Of O 0.00
fib3 0| 1503(o 0| 0| o0]o.00f o] 0f Of O 0.00
ladder o 153[of 11 0] 1|0.04f o] 1| of 1 0.01
laplace3 0 3[of of 0] ojo.ooff o] of of 0O 0.00
pic 0 of 3| ol 1| ojo.oof 3| 0of 1f O 0.00

Table 5. Dynamic Results for FD

of the benchmarks parallelized with the non-split method, using the informa-
tion provided by the Def and FD analyzers, respectively. The last ten columns
in each table show the number of times that the tests have succeeded (S) and
failed (F), the number of tests which have always succeeded (AS) and always
failed (AF), and the overhead w.r.t. the execution of the original sequential pro-
gram (TestTime/SeqTime), for the link and projection independence tests. For
the definiteness tests only the number of successes and failures are shown, their
overhead being negligible (it ranges from 0.0002 for ladder to 0.0028 for fib3).
Several conclusions can be extracted from the tables. First, although there
exist cases, like fib1, in which projection independence detects parallelism which
link independence fails to detect, this is not a common case. Second, as imple-

mented, the independence tests introduce too much overhead, specially when us-
ing projection independence. The implementation of the tests is still very naive.
In particular, the projection independence test can be improved significantly by,
for example, performing a link test while doing the projection, so that success
can be detected in an amount of time similar to that of the link test. In any
case, significant effort must be devoted to implementing these tests efficiently.
Finally, given the cost of the independence tests and the number of them
which always succeed or fail, we can conclude that more accurate information is
needed. The domain (LSign) recently defined for CLP [15] approximates infor-
mation about possible interaction between linear arithmetic constraints. A pre-
liminary implementation performed at Monash University shows very promising
accuracy, and will hopefully help in further simplifing the number of tests.

6.5 Effectiveness: speedup tests

The ultimate way of evaluating the effectiveness of the annotators is by mea-
suring the speedup achieved, i.e., the ratio of the parallel execution time of the
program to that of the sequential program. Since we are interested in the quality
of the parallelization process, and not in the characteristics of a particular run-
time system, this should ideally be done in a controlled environment. To this end,
we have performed a number of preliminary experiments using the simulation
tool IDRA [8], which was already shown to match actual speedups in several LP
systems. This tool takes as input a real execution trace file of a parallel program
run on the CIAQ system (i.e., an encoded description of the events that occurred
during such execution) and the time for its sequential execution, and computes
the achievable speedup for any number of processors. The results presented in
the following table show the speed-ups obtained parallelizing the benchmarks
with the non-split method, using the information provided by the FD analyzer,
and running the programs with the link independence tests. Only benchmarks
with at least a parallel expression in the parallelized version have been consid-
ered. The column labeled “@Q2” provides the speedup on two processors and the
column labeled “Max” the maximum possible speedup for the input data used.

[Bench [Max]| G2

||Bench.||Max|| @2” amp 0.5710.57
dnf 0.91](0.91}||||lamp2 |[0.57||0.57

|Bench. || Max” @2”

TBonch. [Max]] a2\

ackermanl L.OONL.00 ngge 8(1).2421 }'gg Tadder [[0.97][0.97]| [amp3 [[0.83][0.88

fib2 0.99([0.99 B4 LI s 11.97[1.50]||[circuit || 0.92][0.92
laplacel || 1.97|[1.97

fib3 0.99[[0.99 : dnf_ [[0.94][0.94]|[amp [[0.97][0.97

Taolaces TTooli00 mmatrix|[37.83(/1.94

D 0000 e T 5 sl 7 [dder [[T16][1.16] [famp2 [[0.97][0.97

pic 1.92(|11.50(|||lamp3 |[1.00{|1.00
circuit || 1.00{|1.00

The first four benchmarks are the only programs without a-priori parallelism
whose parallelization actually contains conditional parallel expressions (mg, mg-
gnd, nombre, ode2, ode3, and ode4 where already detected as sequential during

the parallelization process). Even then, since the tests introduced by the paral-
lelization are only definiteness tests, the overhead is negligible. In the next five
benchmarks the compile-time information has been capable of determining for
all tests whether they are going to succeed or fail, thus only obtaining uncondi-
tional parallelism. As a result, no slow-downs are obtained and most benchmarks
get quite good speed-ups (which, as in many other benchmarks, depend on the
size of the input data, which is generally small in the benchmarks used).

The next three benchmarks contain one or two conditional parallel expres-
sions. The associated overhead in this case is higher (e.g., for dnf). This suggests
perhaps eliminating those parallel expressions which contain tests. Since the
overhead introduced by definiteness tests has proved negligible, only indepen-
dence tests would need to be removed. The next three rows in the table show
the results of applying this idea to the three previous benchmarks: although the
achievable speed-up in pic is reduced w.r.t. the previous version it still has a
speedup of 1.5, and the approach succeeds in eliminating the slow-down for the
other two benchmarks.

The final four benchmarks have several independence tests which sometimes
succeed and sometimes fail. The result is a considerable slow-down. However, af-
ter eliminating all parallel expressions containing independence tests, the results
are shown in the last 4 rows of the table: no slow-downs occur, and since none
of the benchmarks had very useful parallelism, the effect is quite satisfactory.

7 Conclusions and Future Work

We conclude from this preliminary evaluation that the parallelization process can
be quite efficient (using widening) and relatively effective, specially considering
the genericity of the domains used. Very often sequential programs and programs
containing unconditional parallelism were statically identified as such. Surpris-
ingly, the conceptually more complex non-split annotation method is faster in
practice due to the reduced number of tests in the simplification. Regarding link
and projection independence, although the latter can detect parallelism more
accurately, it seems that in practice this rarely happens. While definiteness tests
are very efficient our independence tests for these notions introduce significant
overhead, which reduces the effectiveness of the parallelization. Overall, it ap-
pears best to use the non-split method, the most accurate domain, and, in order
to avoid slow-downs while independence tests remain unoptimized, reduce such
tests to false. Clearly, there is still quite a bit of room for improvement. The
speedup results are significant when compared to standard compiler optimiza-
tions, but they are certainly not as good as those obtained for LP programs (e.g.,
[2]), and those obtained by or-parallelism for CLP programs which perform in-
tensive search [9]. Identified avenues for future research include considering more
realistic CLP benchmarks solving larger problems and combining both LP and
CLP, studying better suited domains such as perhaps LSign [15], applying spe-
cialization, improving run-time test performance, controlling granularity, allow-
ing the exploitation of a-posteriori parallelism, and parallelizing at finer grain
levels than the goal level.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. A Comparative Study
of Methods for Automatic Compile-time Parallelization of Logic Programs. In
Parallel Symbolic Computation, pages 63-73. World Scientific Publishing, 1994.
F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global
Analysis in Strict Independence-Based Automatic Program Parallelization. In In-
ternational Logic Programming Symposium, pages 320-336. MIT Press, 1994.

A. Cortesi, G. File, and W. Winsborough. Prop Revisited: Propositional Formulas
as Abstract Domains for Groundness Analysis. In Sizth IEEE Symposium on Logic
in Computer Science, pages 222-327, 1991. IEEE Computer Society.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming Languages, pages 238-252, 1977.
M. Garcia de la Banda and M. Hermenegildo. A Practical Approach to the Global
Analysis of Constraint Logic Programs. In International Logic Programming Sym-
posium, pages 437-455. MIT Press, 1993.

M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. Independence in Con-
straint Logic Programs. In ILPS’93, pages 130-146. MIT Press, 1993.

V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness Analysis
in the Presence of Numerical Constraints. In Tenth International Conference on
Logic Programmang, pages 100-115. MIT Press, 1993.

M.J. Ferndndez, M. Carro, and M. Hermenegildo. Idra (ideal resource allocation):
Computing ideal speedups in parallel logic programming. In Proceedings of Eu-
roPar’96, LNCS. Springer-Verlag, 1996.

P. Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming. In
International Conference on Logic Programming, pages 165—180. MIT Press, 1989.
M. Hermenegildo, F. Bueno, M. Garcia de la Banda, and G. Puebla. The CIAO
Multi-Dialect Compiler and System. In Proc. of the ILPS’95 Workshop on Visions
for the Future of Logic Programming, 1995.

M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Extensible
Unification. In International Symposium on Programming Language Implementa-
tion and Logic Programming, pages 260-268. LNCS631, Springer Verlag, 1992.

J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 13/20:503-581, 1994.

S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Lan-
guage. In Int’l Logic Programming Symp., pages 167-183. MIT Press, 1991.

K. Marriott and P. Stuckey. Approximating Interaction Between Linear Arith-
metic Constraints. In Int’l Logic Prog. Symp., pages 571-585. MIT Press, 1994.
K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation. Journal of Logic Programming, 13(2 and
3):315-347, 1992.

V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog Sys-
tem that Transparently Exploits both And- and Or-parallelism. In ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming. ACM, 1990.
K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Depen-
dent And-Parallel Scheme. In Joint Int’l. Conference and Symposium on Logic
Programmang MIT Press, 1992.

