Towards a Rule-based Approach for Deriving Abstract Domains (Extended Abstract) *

Daniel Jurjo, Jose F. Morales, Pedro López-García, and Manuel V. Hermenegildo

Abstract interpretation [3] allows constructing sound program analysis tools which can extract properties of a program by safely approximating its semantics. Static analysis tools are a crucial component of the development environments for many programming languages. Abstract interpretation proved practical and effective in the context of (Constraint) Logic Programming ((C)LP) [15, 12, 14, 13, 1, 10, 9] which was one of its first application areas (see [6]), and the techniques developed in this context have also been applied to the analysis and verification of other programming paradigms by using semantic translation to Horn Clauses (see the recent survey [4]). Unfortunately, the implementation of (sound, precise, efficient) abstract domains usually requires coding from scratch a large number of domain-related operations. Moreover, due to undecidability, a loss of precision is inevitable, which makes the design (and implementation) of more domains, as well as their combinations, eventually necessary to successfully prove arbitrary program properties. In this paper we focus on the latter problem by proposing a rule-based methodology for the design and rapid prototyping of new domains for logic programs, as well as composing and combining existing ones. Our techniques are inspired by those used in logic-based languages for implementing constraint domains at different abstraction levels.

Proposal. The construction of analyses based on abstract interpretation requires the definition of some basic domain operations (and and, optionally, the widening \( \lor \) operator); the abstract semantics of the primitive constraints (representing the \textit{built-ins}, or basic operations of the source language) via \textit{transfer functions} \( f^A \); and possibly some other additional instrumental operations over abstract substitutions. In addition, the classical top-down analysis approach requires a number of additional definitions of derived operations used by the analysis framework to implement procedure call, return, recursion, etc. Detailed descriptions of all these operations can be found in [12, 11, 2, 7, 5]. We propose a rule language inspired in rewriting to derive, script, and combine abstract domains. The objective is to reduce the time and effort required to write new abstract domains, both from scratch and as combinations of other domains.

The proposed rule-based language. Given \( s+1 \) sets of constraints, \( \mathcal{L}, \mathcal{C}_1, \ldots, \mathcal{C}_s \), we define \( \text{AND}(\mathcal{L}, \mathcal{C}_1, \ldots, \mathcal{C}_s) \) as the set of rules of the form \( l_1, \ldots, l_n \mid g_1, \ldots, g_l \Rightarrow r_1, \ldots, r_m \# \text{label} \), where \( s, n, m, \) and \( l \) are arbitrary positive integers, and the rule meets the following condition:

\[
\forall i, j, k \text{ s.t. } i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\} \text{ and } k \in \{1, \ldots, l\} : (l_i, r_j \in \mathcal{L} \text{ and } \exists u \in \{1, \ldots, s\} \text{ s.t. } g_k \in \mathcal{C}_u)
\]

The elements \( l_1, \ldots, l_n \) constitute the left side of the rule; \( r_1, \ldots, r_m \) the right side; and \( g_1, \ldots, g_l \) the guards. Given \( t+s \) sets of constraints \( \mathcal{L}_1, \ldots, \mathcal{L}_t, \mathcal{C}_1, \ldots, \mathcal{C}_s \) such that \( \forall v \in \{1, \ldots, t\} : \mathcal{L}_v \subseteq \mathcal{L} \), we...
define OR($\mathcal{L}, C_1, \ldots, C_n$) as the set of rules of the form $l_1; \ldots; l_n \mid g_1, \ldots, g_l \Rightarrow r_1, \ldots, r_m$ # label, where $s, t, n, m,$ and $l$ are arbitrary positive integers, and the rule meets the following condition:

$$\forall i, j, k \quad \text{s.t. } i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\} \text{ and } k \in \{1, \ldots, l\} :$$

$$\exists v \in \{1, \ldots, s\} \exists u \in \{1, \ldots, t\} \text{ s.t. } (l_i \in \mathcal{L}_v, r_j \in \mathcal{L} \text{ and } g_k \in C_i)$$

Notice that while in AND-rules all the elements $l_i$ belong to the same set of constraints $\mathcal{L}$, in the OR-rules they belong to (possibly) different subsets of a set of constraints $\mathcal{L}$. The operational meaning of AND-rules is similar to that of rewriting rules. If the left side holds in the set where the rule is being applied to, and the guards also hold, then the left-side elements are replaced by the right-side elements. The operational meaning of OR-rules is similar, but instead of rewriting over the “same” set the right-side elements are written in a “new” set. When no more rules can be applied, different strategies can be followed. In general we can rewrite the pending elements to a given element or simply delete them.

In the context of abstract interpretation the sets of constraints that we have mentioned have to be seen as abstract domains being the rules applied then over abstract substitutions/constraints. AND-rules are intended to capture the behaviour of operations over one abstract substitution with the knowledge that can be inferred from other substitutions that meet the guards. This is useful for example when defining the greatest lower bound. Moreover, these rules are also useful for refining abstract substitutions, performing abstractions, combining different abstract domains, etc. On the other hand, OR-rules are intended to capture the behaviour of operations applied over multiple abstract substitutions of an abstract domain, such as the least upper bound or the widening.

**An example.** Fig. 1 shows a classic Prolog predicate for partitioning a list. A call $\text{partition}(L, X, L1, L2)$ is expected to satisfy some properties; for example, that $\forall v \in L2, X \leq v$, which we can express as $\text{inf}(L2, X)$. With the help of two auxiliary domains to deal with structures containing variables and with constraints (resp. $\text{depth} - k$ and polyhedra) we can derive an abstract domain for the $\text{inf}/2$ property. A subset of the rules can be seen in Fig. 2. These rules allow, when connected with the abstract domain operations, to exploit the information gathered from the previous domains and use it to infer $\text{inf}(L2, X)$. Similarly, we can also capture the equivalent $\text{sup}(L1, X)$, or multiset properties capturing that $L \subseteq L1 \cup L2$ and $L1 \cup L2 \subseteq L$. Moreover, we can infer the sortedness property for the classical quicksort implementation.

**Conclusions & future work.** We have presented a framework for simplifying the development of abstract domains for logic programs in the context of abstract interpretation frameworks, and concretely that of CiaoPP. While some domains are easier to specify with a rule-based language, keeping a constraint-based representation for abstract substitutions may not be efficient compared with specialized representations and operations. In this respect, we plan to explore the use of rules both as an input language for...
abstract domain compilation and as a specification language for debugging or verifying properties of hand-written domains. In our experience so far, the proposed approach seems promising for prototyping and experimenting with new domains, enhancing the precision for particular programs, and adding domain combination rules, without the need for understanding the analysis framework internals.

References


