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Abstract. We propose an analysis for detecting procedures and goals
that are deterministic (i.e., that produce at most one solution at most
once), or predicates whose clause tests are mutually exclusive (which
implies that at most one of their clauses will succeed) even if they are
not deterministic. The analysis takes advantage of the pruning opera-
tor in order to improve the detection of mutual exclusion and determi-
nacy. It also supports arithmetic equations and disequations, as well as
equations and disequations on terms, for which we give a complete sat-
isfiability testing algorithm, w.r.t. available type information. We have
implemented the analysis and integrated it in the CiaoPP system, which
also infers automatically the mode and type information that our analy-
sis takes as input. Experiments performed on this implementation show
that the analysis is fairly accurate and efficient.
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1 Introduction

Knowing that certain predicates are deterministic for a given class of calls has
a number of interesting applications such as detecting programming errors, per-
forming certain high-level program transformations for improving search effi-
ciency, optimizing low level code generation and parallel execution, and esti-
mating tighter upper bounds on the computational costs of goals and data sizes,
which can be used for program debugging, resource consumption and granularity
control, abstraction carrying code, etc.

By a predicate being deterministic we mean that it produces at most one
solution at most once. It is also interesting to detect predicates whose clauses
are mutually exclusive (which implies that at most one of them will succeed) even
if they are not deterministic because they call other predicates that can produce
more than one solution (i.e., that are not deterministic). In this paper we propose
a method whereby we can detect procedures and goals that are deterministic, or
predicates whose clauses are mutually exclusive. Moreover, we show that, given



(upper approximations of) mode and type information, it is feasible to fully
automatize our approach, yielding an effective automatic determinacy analysis.

The rest of this section discusses applications of determinacy information
and previous proposals in determinacy detection. The rest of the paper is as
follows: Section 2 provides some preliminary definitions which describe the class
of types which are handled in our approach and other basic concepts such as
tests, and mutual exclusion, Section 3 then explains our algorithm for detecting
predicates and goals that are deterministic, Section 4 describes our approach
to checking mutual exclusion, Section 5 reports on a prototype implementation
which performs the proposed analysis in an automatic way and evaluates the
effectiveness and efficiency of our approach showing experimental results, and
finally, Section 6 summarizes our conclusions.

1.1 Applications

Perhaps the most important application of compile-time determinacy informa-
tion is in the context of program development. If we assume that the program-
mer has indicated that certain predicates should be deterministic for certain
calling patterns (using suitable assertions as those used in Ciao [14, 3]. Mer-
cury [31], or HAL [8]) and a predicate is determined to be non-deterministic in
one of those cases then, clearly, a compile-time error has been detected and can
be reported [14, 12]. This is quite useful since certain classes of programming
errors often result in turning predicates intended to be deterministic into non-
deterministic ones. Also, in addition to detecting programming errors at compile
time, determinacy inference can obviously be used to verify (i.e., prove correct)
such determinacy assertions [14].

Determinacy information can also be used for performing low-level opti-
mizations [32, 25, 31] as well higher-level program transformations for improving
search efficiency. In particular, literals can be reordered so that deterministic
goals are executed ahead of possibly non-deterministic goals where possible, im-
proving the efficiency of parallel search [30]. Determinacy information is also
very useful during program specialization. In addition, the implementation of
(and-)parallelism is greatly simplified in presence of determinacy information:
knowing that a goal is deterministic allows one to eliminate significant run-time
overhead (due to markers) [15, 11, 27] and, in addition, performing data para-
llelism transformations [13].

Finally, determinacy (and mutual exclusion) information can be used to es-
timate much tighter upper bounds on the computational costs of goals [6]. Since
it is generally not known in advance how many of the solutions generated by a
predicate will be demanded, a conservative upper bound on the computational
cost of a predicate can be obtained by assuming that all solutions are needed,
and that all clauses are executed (thus the cost of the predicate is assumed
to be the sum of the costs of all of its clauses). It is straightforward to take
mutual exclusion into account to obtain a more precise estimate of the cost of
a predicate, using the maximum of the costs of mutually exclusive groups of
clauses. Moreover, knowing that all literals in a clause will produce at most one
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solution allows one to assume that an upper bound on the cost of the clauses
is the sum of the cost of all literals in it, which simplifies the cost estimation
(as explained in [6]). These upper bounds can be used for improved granularity
control of parallel tasks [22] and for better performance/complexity debugging
and verification of programs [14, 3].

1.2 Related Work

There has been much interest on determinacy detection in the literature
(see [18, 16] and its references), using several different forms of determinism.
Arguably, one of the first practical determinacy analyses was the one proposed
by Sahlin [29], in the context of the Mixtus partial evaluator. This analysis was
later reconstructed and semantically justified, using a denotational semantics of
Prolog programs with cut, by Mogensen [24]. The motivation behind this deter-
minacy analysis was, indeed, to be able to unfold predicates with cuts in their
clauses. Therefore, the analysis concentrated on the cut and the control flow of
the program: interestingly, the proposal in [29] does not take into account predi-
cate arguments. The analysis estimates number of solutions of predicates from a
small database of number of possible solutions of built-ins and an analysis of the
control structure of the program. The accuracy of this approach has limitations
and this is one of the reasons why we explore instead an approach based on the
handling of built-ins as tests.

The line of work closest to ours starts with [7], in which functional compu-
tations are detected and exploited. However, the notion of mutual exclusion in
this work is not based on constraint satisfaction as in our proposal [21] (of which
this paper is an extended version). This concept is also used in the analysis pre-
sented in [5], where, nonetheless, no algorithms are provided for the detection of
mutual exclusion and also the cut is not taken into account. In [10] a combined
analysis of modes, types, and determinacy is presented, as well as in the more
accurate [2]. As we will show, our analysis improves on these proposals.

A notion of constraint satisfaction is also present in the approach of [23, 18],
which might be considered complementary to ours. Their analyses differ from
ours in that they are not goal-oriented and in the mutual exclusion conditions.
In particular, the first work [23] does not handle the cut, and cannot exploit
certain program tests that select clauses on execution (e.g., arithmetic tests)
which our proposal handles. The second work [18] remedies these deficiencies.
Still, it concentrates on inferring determinacy conditions, not on checking them.
The conditions of [18] are richer than ours, since they use success pattern anal-
ysis to infer them, based on size relationships between arguments and depth-k
abstractions, together with backward analysis. Determinacy conditions are then
synthesised in the form of rigidity formulas. For checking them a rigidity analysis
is required, to test whether the (propositional) formula holds or not. Instead,
we focus on the checking and not on building the conditions. For conditions,
we use tests on the instantiation state of arguments which are simply collected
from the program text. For the checking, classical mode and type analyses are
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instrumental. Indeed, our main contribution is a procedure to check satisfiability
of the tests which is complete, disregarding how conditions are synthesised.

Several programming systems also make use of determinacy, e.g., Mer-
cury [31, 12] and HAL [8]. The Mercury and HAL systems allow the programmer
to declare that a predicate will produce at most one solution, and attempt to
verify this with respect to the Herbrand terms with unification tests. As far as
we know, both systems use the same analysis [12], which does not handle dis-
unification tests on the Herbrand domain. This approach also does not handle
arithmetic tests, except in the context of the if-then-else construct. As such, it is
considerably weaker than the approach described here. Also, our approach does
not require any annotations from programmers, since the types and modes on
which it is based are inferred. In other words, in addition to proposing concrete
algorithms, we also show in this paper that our determinacy analysis can be per-
formed automatically, and is feasible, accurate, and efficient. We do this by inte-
grating it into the Ciao programming system, in particular, into its preprocessor,
CiaoPP [14], which performs analysis, debugging, verification and optimization
tasks, and thus connecting the determinacy analysis with state-of-the-art type
and mode analyses.

2 Preliminaries

A goal, a class of goals, or a predicate (i.e., all goals for it) are deterministic
when they produce at most one solution at most once. When reasoning about
determinacy, it is a necessary condition (but not sufficient) that clauses of the
predicate be pairwise mutually exclusive, i.e., that only one clause will produce
solutions. Additionally, it has to produce only one solution. For reasoning about
mutual exclusion one needs to gather success patterns for each predicate clause,
i.e., constraints that the solutions produced by the clause satisfy. Then the basic
condition for mutual exclusion is that such success patterns cannot be satisfied
simultaneously. This is checked for against available information on the goals
being analyzed for determinacy.

We will be using as success patterns tests, which will be unification equations
and disequations on terms, and linear equations and disequations on integers or
reals. For the checking, we will assume that type information is available, gen-
erally as the result of a previous analysis. For concreteness, the determinacy
analysis we describe is based on regular types [4], which are specified by regu-
lar term grammars, as explained below, although the concepts should be easily
adaptable to other type systems.

2.1 Regular Types

A type is a set of (Herbrand) terms, and can be defined by using a number of
different representations, such as type terms and regular term grammars as in [4],
or type graphs as in [17]), or simply predicates as in the Ciao system [3]. We will
use the formalism of [4], and summarize below the relevant concepts.
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A type symbol is an abstraction of a set of Herbrand terms (i.e., of a type). We
use the Greek letter α for referring to type symbols in general (with subscripts
if necessary). The γ function maps each type symbol to the set of Herbrand
terms that it represents. Given a type symbol α, the set of terms (i.e., the type)
represented by it is denoted as γ(α). To enhance readability, we abuse notation
and use α instead of γ(α) when no ambiguity is possible.

We assume the existence of an infinite set of type symbols, which is disjoint
with the sets of constant symbols, function symbols, and variables. There are two
special type symbols: µ, that represents the type of the entire Herbrand universe;
and φ, that represents the empty type (i.e., γ(φ) = ∅). There is a distinguished
non-empty finite subset of the set of type symbols called the set of base type
symbols, which represent base types. We assume that there are effective tests for
membership of a given Herbrand term in each base type.

Example 1. Examples of base type symbols that we use in our determinacy anal-
ysis are: int, such that the base type γ(int) is the set of all constant symbols
that represent integer numbers; and atm, such that the base type γ(atm) is the
set of all constant symbols that do not represent numbers.

A type term is either a constant symbol, a variable, a type symbol, or a term
f(ω1, . . . , ωn), where f is an n-ary function symbol, and each ωi is a type term.
Note that all type symbols are type terms, however, the converse is not true. A
pure type term is one which does not contain variables. A Herbrand term is a
type term which does not contain type symbols (it can contain variables).

A type rule is an expression of the form α→ Υ , where α is a type symbol, and
Υ is a set of pure type terms. We denote sets of type rules, that is, regular term
grammars, by the letter T (as in [4]). A (non-base) type symbol α is defined in,
or by, a set of type rules T if there exists a type rule (α→ Υ ) ∈ T . A pure type
term ω is defined by a set of type rules T if each type symbol in ω is either µ, φ, a
base type symbol, or a (non-base) type symbol defined in T . We assume that, for
each type rule (α→ Υ ) ∈ T , each element (i.e., pure type term) of Υ is defined in
T , and that each type symbol defined in T has exactly one defining type rule in
T . Moreover, we will also assume that every type rule is deterministic, i.e., that
for every pair of pure type terms ω1, ω2 ∈ Υ , ω1 6= ω2, ω1 and ω2 have different
main functors. The class of types that can be described by deterministic type
rules is the same as the class of tuple-distributive regular types [4]. Additional
background on type-related issues may be found in [4, 17].

Example 2. The type rule list→ {[ ], [µ|list]} defines the type symbol list, that
denotes the set of all lists. The type rule intlist→ {[ ], [int|intlist]} defines the
type symbol intlist, that denotes the set of all lists of integer numbers.

It is also possible to provide for polymorphism in our setting. Since we use
types for describing instantiation patterns, a polymorphic type such as, e.g.,
list(α)→ {[ ], [α|list(α)]} is useful only in the description of the list structure,
but not of the elements. Thus, the instance type list(µ) (i.e., list) serves the
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same purposes. Instances of polymorphic types are thus “computed away” (so
that, e.g., list(int) yields intlist) and our approach handles them in this way.

Given a predicate q in a program P , type[q] denotes a tuple of pure type
terms representing the types of the arguments of predicate q. In the interest of
simplicity, we abuse terminology and say that type[q] is the type of predicate q.
In this paper, we are concerned exclusively with calling types for predicates —in
other words, when we say “a predicate q in a program P has type type[q]”, we
mean that in any execution of the program P starting from some class of queries
of interest, whenever there is a call q(t̄) to the predicate q, the argument tuple
t̄ in the call will be an element of the set denoted by type[q].

Definition 1 (type assignment). Given a (finite) tuple of variables x̄ =
(x1, . . . , xn), a type assignment ρ over x̄ maps each variable xi for 1 ≤ i ≤ n to
a (nonempty) type term ωi, i.e., ρ(xi) = ωi. We write the type assignment ρ as
x̄ : ω̄, where ω̄ is the tuple of type terms (ω1, . . . , ωn).

2.2 Tests (and Modes)

We define a test to be either a primitive test, or a conjunction τ1 ∧ τ2, or a
disjunction τ1∨ τ2, or a negation ¬τ1, where τ1 and τ2 are tests. A primitive test
is a positive literal whose predicate symbol is a built-in such as the unification
or some arithmetic built-in predicate (<,>,≤,≥, 6=, etc.). Primitive tests which
are true of the successes of a given clause are gathered together to form the test
of that clause. For concreteness, in our experiments (Section 5) we will gather
for each clause the primitive tests occurring in the program text of that clause.
One could use more sophisticated approaches, such as backwards analysis with
a depth-k abstraction [16]. Our approach remains valid regardless of the means
used to build the tests. For example, if term structure information is available
it will be used in the algorithms below as if it appeared in the program text.

In principle, all primitive tests of a given clause can be used in the test of
that clause. However, it turns out that, in practice, because of limitations of
state-of-the-art technology in type analysis, primitive tests have to be carefully
selected. Actual, working type analyses infer types which denote sets of terms
that are closed under substitution. On the contrary, our algorithms will be based
on types which denote sets of ground terms. The gap between these two classes
of types is covered with the use of modes.

In practice, the difference amounts to the interpretation of the universal
type symbol µ. In the ground interpretation, µ denotes the set of all ground
terms. Otherwise, µ (i.e., the classical top in type analyses) also denotes terms
which may contain variables. This issue is important in deciding whether certain
(unification) literals can act as tests or not and, therefore, whether they can be
used in mutual exclusion conditions or not. For example, consider two tests X=[a]
and X=[b] for different clauses. Assume we are analyzing goals which satisfy the
type assignment (X) : (α) with type rule α→ {[µ]}. In the ground interpretation
the two tests are mutually exclusive, but they are not in the other interpretation
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(since the head of the list constructor in X might be a free variable). Mode
information is then essential in distinguishing such cases.

In our experiments, we will use groundness and freeness information obtained
from a sharing analysis to establish the modes. This information is used to
classify primitive tests, and only those regarded as input tests will be considered
when building tests for clauses. Input tests perform a comparison of (numerical)
values or a matching of terms, rather than a proper unification. Given mode and
type information on the program, it is straightforward to identify them.

Example 3. Consider the literal X is Y+1 appearing in the body of a clause. If
the available mode and type information asserts that, just before calling this lit-
eral, variables X and Y are bound to integer numbers, then the literal is considered
a primitive (arithmetic) input test. However, if the mode and type information
asserts that X is an unbound variable and Y is bound to an integer, then the
literal acts as an assignment and thus is not considered a test. If there is a body
literal of the form X = Y and the information asserts that variables X and Y will
be bound to ground terms upon call, then the literal is considered to be a prim-
itive (unification) input test. If the information asserts that any of the variables
X or Y are free, then the literal is not considered a test.

Where necessary to emphasize the input test in a clause we will write the
clause in “guarded” form. As an example, consider a predicate that is called as
abs(X, Y), where X is bound to an integer and Y is a free variable, to obtain the
absolute value of X. Its definition will be written as:

abs(X, Y) :− X ≥ 0 [] Y = X.
abs(X, Y) :− X < 0 [] Y is − X.

Obviously, for any particular call in the class above, only one of the tests X ≥ 0
or X < 0 will succeed (i.e., the tests are mutually exclusive).

Note that the distinction between tests and input tests is due only to limi-
tations in the technology used in our experiments. In fact, we will be using the
word test throughout the rest of the paper when talking about mutual exclusion
conditions. The following definition characterizes tests and will be instrumental
in the formal results:

Definition 2 (solutions of a test). Given a test τ(x̄), Sols(τ(x̄)) is the set of
all tuples of ground terms ē which are instances of x̄ such that x̄ = ē ∧ τ(x̄) is
satisfiable (i.e., test τ(ē) succeeds).

2.3 Mutual Exclusion

Fundamental to our approach to detecting determinacy is the notion of tests
being “exclusive” w.r.t. a type assignment:

Definition 3. Two tests τ1(x̄) and τ2(x̄) are exclusive w.r.t. a type assignment
x̄ : ω̄, if for every t̄ ∈ γ(ω̄), x̄ = t̄ ∧ τ1(x̄) ∧ τ2(x̄) is unsatisfiable.
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Definition 4 (mutual exclusion). Let C1, . . . , Cn, n > 0, be a sequence of
clauses, with input tests τ1(x̄), . . . , τn(x̄) respectively. Let ρ be a type assignment.
We say that C1, . . . , Cn is mutually exclusive w.r.t. ρ if either, n = 1, or, for
every pair of clauses Ci and Cj, 1 ≤ i, j ≤ n, i 6= j, τi(x̄) and τj(x̄) are exclusive
w.r.t. ρ.

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively. Let predicate p have type type[p]: in the interest
of simplicity, we sometimes say that predicate p is mutually exclusive w.r.t. the
type type[p] (or simply that predicate p is mutually exclusive) if the sequence
of clauses C1, . . . , Cn defining p is mutually exclusive w.r.t. the type assignment
x̄ : type[p]. Given a call c to predicate p in the body of a clause, we also say that
c is mutually exclusive if p is. Note that if the predicate p is mutually exclusive,
then at most one of its clauses will succeed for any call p(t̄), with t̄ ∈ γ(type[p]).

3 Determinacy Analysis

In this section we explain our algorithm for detecting predicates and calls that
are deterministic. Before introducing our algorithm, we give some instrumental
definitions. We define the “calls” relation between predicates in a program as
follows: p calls q, written p ; q, if and only if a literal with predicate symbol q
appears in the body of a clause defining p. Let ;? denote the reflexive transitive
closure of ;. The following result shows the importance of mutual exclusion
information for detecting determinacy.

Theorem 1. A predicate p in the program is deterministic if, for each predicate
q such that p ;? q, q is mutually exclusive.

Proof. Assume that p is not deterministic, i.e., there is a goal p(t̄), with
t̄ ∈ type[p], which is not deterministic. It is a straightforward induction on the
number of resolution steps to show that there is a q such that p ;? q and q is
not mutually exclusive.

Our algorithm for detecting determinacy consists of first determining which
predicates are mutually exclusive (which is in fact the convoluted part, and
is explained in detail in Section 4). Then, inferring determinacy is straightfor-
ward: from Theorem 1, analysis of determinacy reduces to the determination of
reachability in the call graph of the program. In other words, a predicate p is
deterministic if there is no path in the call graph of the program from p to any
predicate q that is not mutually exclusive. It is straightforward to propagate
this reachability information in a single traversal of the call graph in reverse
topological order. The idea is illustrated by the following example.

Example 4. Consider the classical quicksort program with a main calling mode
in which the first argument is ground and the second one is free. Figure 1 shows
the guarded version of the program for this mode. Assume calling type (intlist,
-) for qs/2. The calling types for part/4 and app/3 are (intlist, int, -, -)
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qs(L,SL) :− L = [] [] SL = [].

qs(L,SL) :− L = [H|T] [] part(H,T,Littles,Bigs),

qs(Littles,SLs), qs(Bigs,SBs), app(SLs,[H|SBs],SL).

part(L, C,Left,Right) :− L = [] [] Left = [], Right = [].

part(L,C,Left,Right) :− L = [E|R], E < C [] Left = [E|Left1],

part(R,C,Left1,Right).

part(L,C,Left,Right) :− L = [E|R], E >= C [] Right = [E|Right1],

part(R,C,Left,Right1).

app(L1,L2,L3) :− L1 = [] [] L2 = L3

app(L1,L2,L3) :− L1 = [X|Xs] [] L3 = [X|Zs], app(Xs,L2,Zs).

Fig. 1. A quicksort program.

and (intlist, intlist, -) respectively. Since determinacy analysis traverses the
call graph in reverse topological order, it considers first predicates part/4 and
app/3.

The input tests for the clauses of part(L,C,Left,Right) are τpart1 (L, C) ≡
L = [ ], τpart2 (L, C) ≡ L = [E|R] ∧ E < C and τpart3 (L, C) ≡ L = [E|R] ∧ E >= C.
According to the calling type, the analysis uses the type assignment ρpart ≡
(L, C) : (intlist, int), and infers that τparti (L, C), i = 1, 2, 3 are mutually exclu-
sive w.r.t. ρpart (we will explain the details in Section 4). It means that at most
one of these tests will succeed. Thus, clauses of part/4 are mutually exclusive.
It follows that calls to part/4 which satisfy the calling types are deterministic.

Similarly, the input tests for the sequence of clauses of app(L1,L2,L3) are
τapp1 (L1, L2) ≡ L1 = [ ] and τapp2 (L1, L2) ≡ L1 = [X|Xs]. The type assignment ρapp

corresponding to the calling types for app/3 is (L1, L2) : (intlist, intlist).
The analysis infers that τapp1 (L1, L2) and τapp2 (L1, L2) are exclusive w.r.t. the
type assignment ρapp. Thus, it follows that calls to app/3 which satisfy the
calling types are also deterministic.

Finally, the input tests for the sequence of clauses of qs(L,SL) are τ qs1 (L) ≡
L = [ ] and τ qs2 (L) ≡ L = [H|T]. The type assignment ρqs corresponding to the
calling types is (L) : (intlist). We have that τ qs1 (L) and τ qs2 (L) are exclusive
w.r.t. type assignment ρqs. Thus, clauses of qs/2 are mutually exclusive. More-
over, since the calls to the predicates part/4 and app/3 in the body of the clauses
defining qs/2 have been proved to be deterministic, it follows that calls to qs/2
with the first argument bound to a list of integers are deterministic.

3.1 Improving Determinacy Analysis using Cut

The presence of pruning operators in program clauses can be exploited to im-
prove the overall process of detecting deterministic predicates. Besides helping
the detection of mutual exclusion of clauses (as we will see below in Section 4.4),
it can also improve the propagation algorithm given above. Assume that we want
to infer whether a predicate p is deterministic. Consider any clause defining p
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in which one or more cuts appear, and any body literals that appear to the left
of the rightmost cut in that clause. Those literals are not required to be deter-
ministic. In other words, in Theorem 1, we can use a restricted definition (;r)
of the “call” relation (;) between predicates in a program, defined as follows:
p ;r q, if and only if a literal with predicate symbol q appears in the body of
a clause defining p, and there is no cut to the right of this literal in the clause.
Similarly, ;?

r denotes the reflexive transitive closure of ;r.

4 Checking Mutual Exclusion

Our approach to the problem of determining whether a set of tests τi(x̄) for
i = 1, . . . , n are mutually exclusive w.r.t. a type assignment x̄ : ω̄, consists of re-
ducing the problem to subproblems, each subproblem involving tests of the same
type, i.e., defining a particular constraint system. Each subproblem is solved by
applying an algorithm that is specific to the corresponding constraint system that
checks mutual exclusion. In this paper we consider two commonly encountered
constraint systems: Herbrand terms with unification and disunification tests,
on variables with tuple-distributive regular types [4] (see Section 2.1) and linear
arithmetic tests on integer variables.

Example 5. Consider the predicate part/4 taken from the quicksort program
shown in Figure 1. For the sequence of clauses of part(L,C,Left,Right) we
have three input tests τi(x̄), i = 1, 2, 3, where x̄ ≡ (L, C) in this case. As com-
mented in Example 4, the input tests are (omitting x̄ and the superscript part
for simplicity): τ1 ≡ L = [ ], τ2 ≡ L = [E|R] ∧ E < C and τ3 ≡ L = [E|R] ∧ E >= C.
We will separate Herbrand tests from arithmetic tests and write τ1 as τH1 ∧ τA1 ,
where τH1 ≡ L = [ ] and τA1 ≡ true. Similarly, τH2 ≡ L = [E|R] and τA2 ≡ E < C,
and τH3 ≡ L = [E|R] and τA3 ≡ E >= C.

We have to check that the tests τi(x̄), i = 1, 2, 3, are mutually exclusive
w.r.t. the type assignment ρ ≡ (L, C) : (intlist, int). This problem is reduced
to two subproblems: a) Checking that the tests L = [ ] and L = [E|R] are exclusive
w.r.t. ρ, and b) Checking that the tests E < C and E >= C are exclusive w.r.t. the
type assignment (C, E) : (int, int).

4.1 Checking Mutual Exclusion in the Herbrand Domain

We present a decision procedure for checking mutual exclusion of tests that
is inspired by a result, due to Kunen [19], that establishes that the emptiness
problem is decidable for Boolean combinations of (notations for) certain “basic”
subsets of the Herbrand Universe of a program. It also uses straightforward
adaptations of some operations described by Dart and Zobel [4]. The reason the
mutual exclusion checking algorithm for Herbrand is as convoluted as it is, is
that we want a complete algorithm for unification and disunification tests. It is
possible to make it more clear if we are interested in unification tests only.

Before describing the algorithm, we introduce some definitions and notation.
We denote the Herbrand Universe (i.e., the set of all ground terms) as H, and
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the set of n–tuples of elements of H as Hn. We use the notions (to be defined
in the following) of type-annotated term, and in general elementary set, as rep-
resentations which denote some subsets of Hn (for some n ≥ 1). These subsets
can be, for example, the set of n-tuples for which a test succeeds, or a calling
type for a predicate p (i.e., the set denoted by type[p]). Given a representation
S (elementary set or type-annotated term), the denotation of S, Den(S) refers
to the subset of Hn denoted by S.

Definition 5 (type-annotated term). A type-annotated term δ is a pair
(t̄δ, ρδ), where t̄δ is a tuple of terms, and ρδ is a type assignment.

We will represent type-annotated terms with the symbol δ possibly sub-
scripted. Given a type-annotated term δ = (t̄δ, ρδ), the denotation of δ, Den(δ)
is the set of all the ground terms t̄δθ, where θ is some substitution, such that
xθ ∈ γ(ρδ(x)) for each variable in t̄δ. In other words, Den(δ) is the set of all
the ground instances of t̄δ resulting from replacing the variables in t̄δ by a term
belonging to the type assigned to those variables by ρδ.

Example 6. We define some examples of type-annotated terms δ1, δ2, and δ3
as follows: δ1 = ((x, y), (x, y) : (α1, α2)), where α1 → {f(µ)} and α2 →
{g(µ), h(µ)}; δ2 is the type-annotated term (t̄2, ρ2) such that t̄2 ≡ (f(z), w)
and ρ2 ≡ (z, w) : (µ, α2) (note that δ1 and δ2 denote the same sub-
set of H2, i.e., Den(δ1) = Den(δ2)); δ3 is the type-annotated term (t̄3, ρ3)
with t̄3 ≡ (f(v1), g(v2), v3, v4, f(a), f(v5), v6) and ρ3 ≡ (v1, v2, v3, v4, v5, v6) :
(µ, list, α2, α3, α3, list), where α3 → {a, b} and list→ {[ ], [µ|list]}.

Given a type-annotated term (t̄, ρ), the tuple of terms t̄ can be regarded as
a Herbrand term (i.e., a type-symbol-free type term) and ρ can be considered
to be a type substitution,4 so that, if we apply this type substitution to t̄, we
get a pure type term (a variable-free type term). This is useful for defining the
“intersection” and “inclusion” operations over type-annotated terms (that we
define later), using the algorithms described by Dart and Zobel [4] for performing
these operations over pure type terms. When we have a type-annotated term
(t̄, ρ) such that ρ(x) = µ for each variable x in t̄, we omit the type assignment
ρ for brevity and use the tuple of terms t̄. Thus, a tuple of terms t̄ with no
associated type assignment can be regarded as a type-annotated term which
denotes the set of all ground instances of t̄.

Definition 6 (elementary set). An elementary set is defined as follows:

– Λ is an elementary set.
– A type-annotated term (t̄, ρ) is an elementary set.
– If A and B are elementary sets, then A ⊗ B, A ⊕ B and comp(A) are ele-

mentary sets.

4 A type substitution is similar to a substitution that maps variables to type terms.
A detailed definition of type substitutions is given in [4].
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Since we have already defined the denotation of type-annotated terms, we define
now the denotation of the rest of elementary sets.

– Den(Λ) = ∅ (the empty set).
– If A and B are elementary sets, then Den(A ⊗ B) = Den(A) ∩ Den(B),

Den(A⊕B) = Den(A) ∪Den(B) and Den(comp(A)) = Hn \Den(A).

We also define the following relations between elementary sets:

– A v B iff Den(A) ⊆ Den(B).
– A < B iff Den(A) ⊂ Den(B).
– A ' B iff Den(A) = Den(B).

We define below two particular classes of elementary sets, namely, cobasic sets
and minsets, which are suitable representations of tests for the algorithms that
we present in this paper. A test τ(x̄) that is a conjunction of unification and
disunification tests is represented as a minset that denotes the set of ground
instances of x̄ (i.e., subsets of Hn, assuming that x̄ is a n-tuple) for which the
test succeeds. A disunification test is represented by a cobasic set (which denotes
the complementary set of a subset of Hn).

Definition 7 (cobasic set). A cobasic set is an elementary set of the form
comp(t̄), where t̄ is a tuple of terms.

Definition 8 (minset). A minset is either Λ or an elementary set of the form
t̄0 ⊗ comp(t̄1)⊗ · · · ⊗ comp(t̄n), for some n ≥ 0, where:

– t̄0 is a tuple of terms,
– comp(t̄1), . . . , comp(t̄n) are cobasic sets,
– for all i, 1 ≤ i ≤ n, t̄i < t̄0 (which implies that t̄i = t̄0θi for some substitution
θi), and

– for all i, j such that 1 ≤ i, j ≤ n and i 6= j, it holds that t̄i 6v t̄j.

For brevity, we write a minset of the form t̄0 ⊗ comp(t̄1) ⊗ · · · ⊗ comp(t̄n) as
t̄0⊗C, where C = {comp(t̄1), . . . , comp(t̄n)}. The minset representation of a test
is given by the test2minset function defined below.

Definition 9 (exact representation of a test). A minset β is an exact repre-
sentation of a test τ(x̄) if Den(β) = Sols(τ(x̄)). That is, for any tuple of ground
terms ē it holds that ē ∈ Den(β) if and only if x̄ = ē ∧ τ(x̄) is satisfiable (i.e.,
the test τ(ē) succeeds).

Definition 10 (test2minset function). We define the test2minset(τ(x̄)) func-
tion which takes a test τ(x̄) and returns a minset β which is an exact represen-
tation of τ(x̄). We assume without lost of generality that τ(x̄) is a conjunction
of unification and disunification tests and is of the form E ∧D1∧· · ·∧Dn, where
E is the conjunction of all unification tests of τ(x̄) (i.e., a system of equations)
and each Di a disunification test (i.e., a disequation). The returned value β is
computed as follows:
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1. Let θ0 be the substitution associated with the solved form of E (this can be
computed by using the techniques of Lassez et al. [20]).

2. If θ0 does not exist, then make β = Λ.
3. Otherwise, let θi, for 1 ≤ i ≤ n, be the substitution associated with the solved

form of E ∧ Ni, where Ni is the negation of Di.
4. Let β′ = t̄0 ⊗ comp(t̄1) ⊗ · · · ⊗ comp(t̄n), where t̄i = x̄θi, if θi exists, for

0 ≤ i ≤ n (if θi does not exist, then comp(t̄i) does not appear in the definition
of β′).

5. If t̄0 v t̄i, for some cobasic set comp(t̄i), then make β = Λ.
6. Otherwise, perform a simplification step on β′ by removing all cobasic sets

comp(t̄i) for which there is a cobasic set comp(t̄j), 1 ≤ i, j ≤ n and i 6= j,
such that t̄i v t̄j. Make β be the resulting minset.

Theorem 2. Let τ(x̄) be a conjunction of unification and disunification tests,
and β = test2minset(τ(x̄)). Then β is an exact representation of τ(x̄).

Proof.
– Since we use the techniques of Lassez et al. [20]) for computing solved forms

of systems of equations over Herbrand terms, it follows that if θ0 does not
exist (step 2), then E is unsatisfiable and hence τ(x̄) also is, thus β = Λ is
an exact representation of τ(x̄).

– For the same reason, if θ0 exists (step 3), then it is a most general unifier,
and thus t̄0 is an exact representation of E . We can prove it because for
any tuple of ground terms ē it holds that if ē ∈ Den(t̄0) then ē = t̄0θe for
some ground substitution θe. Since t̄0 = x̄θ0, we have that ē = x̄θ0θe. Let
θ′e = θe ◦ θ0, i.e., ē = x̄θ′e. By definition, θ0 is more general than θ′e, and thus
x̄ = ē∧E is satisfiable. Conversely, if x̄ = ē∧E is satisfiable then ē = x̄θ′e for
some ground substitution θ′e which is more specific than θ0, i.e., θ′e = θe ◦ θ0,
thus ē ∈ Den(t̄0).

– In step 4 we have that Den(β′) = Den(t̄0 ⊗ comp(t̄1) ⊗ · · · ⊗ comp(t̄n)) =
Den((t̄0 ⊗ comp(t̄1)) ⊗ · · · ⊗ (t̄0 ⊗ comp(t̄n))) = Den(t̄0 ⊗ comp(t̄1)) ∩ · · · ∩
Den(t̄0 ⊗ comp(t̄n)) = Sols(E ∧ D1) ∩ · · · ∩ Sols(E ∧ Dn)) = Sols(E ∧ D1 ∧
· · · ∧ Dn) = Sols(τ(x̄)).

– In step 5 we have that if t̄0 v t̄i, for some cobasic set comp(t̄i), then
Den(t̄0) ⊆ Den(t̄i) and Den(t̄0 ⊗ comp(t̄i)) = Den(t̄0) ∩ Den(comp(t̄i)) =
∅ = Sols(E ∧ Di). Thus Den(β) = ∅ = Sols(τ(x̄)).

– In step 6, if t̄i v t̄j , then Den(comp(t̄i)) ⊆ Den(comp(t̄j)) and Den(t̄0 ⊗
comp(t̄i)) ∩ Den(t̄0 ⊗ comp(t̄j)) = Den(t̄0 ⊗ comp(t̄j)), thus Den(β) =
Den(β′).

Example 7. In order to illustrate the construction of minsets we have created
the program below, instead of using the previous quicksort program or a real
application. This program exhibits features that can appear in different real
cases, and thus allows us to illustrate almost all cases of the algorithm using a
single example.

p(X1,X2,X3) :− X1 = f(Y1, Y2), Y1 6= r(Z1), Y2 6= s(Z2) [] X3 = a.
p(X1,X2,X3) :− X1 = f(Y1, Y2), Y1 = s(Z1), Y2 6= r(Z2) [] X3 = b.

13



The guarded program assumes a mode in which the first two arguments of p/3
are ground and the third one is free. Let the calling type be (α1, α1, -), where
the type symbols α1 and α2 are defined as follows:

α1 → {f(α2, α2), g(α2, α2)} α2 → {r(µ), s(µ)}

Let us take τ(x̄) in test2minset(τ(x̄)) to be the test of the first clause of p/3.
That is, x̄ = (X1,X2) and τ(x̄) = τ(X1,X2) ≡ X1 = f(Y1,Y2) ∧ Y1 6= r(Z1)
∧ Y2 6= s(Z2). We have that τ(X1,X2) is written as E ∧D1∧D2, where E ≡ X1
= f(Y1,Y2), D1 ≡ Y1 6= r(Z1) and D2 ≡ Y2 6= s(Z2). The minset β which
represents τ(X1, X2) is computed as follows:

1. θ0 = {X1 = f(Y1,Y2)}
2. θ1 = {X1 = f(r(Z1),Y2), Y1 = r(Z1)} is the substitution associated with

the solved form of X1 = f(Y1,Y2) ∧ Y1 = r(Z1), i.e., the system of equa-
tions E ∧ N1, where N1 is the negation of Y1 6= r(Z1).

3. θ2 = {X1 = f(Y1,s(Z2)), Y2 = s(Z2)} is the substitution associated with
the solved form of X1 = f(Y1,Y2) ∧ Y2 = s(Z2).

4. Applying θ0 to (X1,X2) we obtain t̄0, i.e., (f(Y1,Y2), X2). Also, x̄θ1 =
t̄1 = (f(r(Z1),Y2), X2) and x̄θ2 = t̄2 = (f(Y1,s(Z2)), X2). Thus β′ =
(f(Y1,Y2), X2) ⊗ comp((f(r(Z1),Y2), X2) ) ⊗ comp((f(Y1,s(Z2)),
X2)).

5. Finally, the simplification steps does not remove any cobasic set from β′,
thus β = β′.

If we apply the algorithm to the second clause, we obtain the minset:
(f(s(Z1),Y2), X2) ⊗ comp( (f(s(Z1),r(Z2)), X2) ).

Definition 11 (type-annotated term instance). Let δ1 = (t̄1, ρ1) and δ2 =
(t̄2, ρ2) be two type-annotated terms. We say that δ1 is an instance of δ2 if δ1 v δ2
and there is a substitution θ such that t̄1 = t̄2θ.

Reduction of the Checking Exclusion Problem
Let τ1(x̄) and τ2(x̄) be tests which are conjunctions of unification and disunifi-
cation tests, and ρ a type assignment. Let δ be a type-annotated term represent-
ing the type assignment ρ. Let βi be a minset representing τi, for i = 1, 2, i.e.,
βi = test2minset(τi) (where the test2minset function is given in Definition 10).
We have that τ1(x̄) and τ2(x̄) are exclusive w.r.t. ρ if and only if δ⊗β1⊗β2 ' Λ.
Let β be the minset resulting of computing β1 ⊗ β2 (this intersection can be
trivially defined in terms of most general unifiers of the tuples of terms com-
posing the minsets β1 and β2). Then, the fundamental problem is to devise an
algorithm to test whether δ ⊗ β ' Λ, where δ is a type-annotated term and β a
minset.

Example 8. Consider the mutual exclusion problem for the input tests and call-
ing type given in Example 7 for predicate p/3. Such calling type is written as
the type assignment ((X1, X2) : (α1, α1)), which is represented as the type-
annotated term δ, where δ = ((X1, X2), (X1 : α1, X2 : α1)). The tests and
minsets representing them respectively are:
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τ1(x̄) = τ1(X1,X2) ≡ X1 = f(Y1,Y2) ∧ Y1 6= r(Z1) ∧ Y2 6= s(Z2),
τ2(x̄) = τ2(X1,X2) ≡ X1 = f(Y1,Y2) ∧ Y1 = s(Z1) ∧ Y2 6= r(Z2),
β1 = (f(Y1,Y2), X2) ⊗ comp((f(r(Z1),Y2), X2)) ⊗ comp(
(f(Y1,s(Z2)), X2) ), and
β2 = (f(s(Z1),Y2), X2) ⊗ comp( (f(s(Z1), r(Z2)), X2) ).
Thus, β ' β1⊗β2 ≡ (f(s(X3), X4), X5) ⊗ comp(f(s(X6), s(X7)), X8) ⊗
comp(f(s(X9), r(X10)), X11).

A High Level Description of the Algorithm
We first provide a high level description of the algorithm that we propose, whose
detailed description for its implementation is given by the boolean function
empty(δ, β) in Definitions 16, 17 and 18:5 Assume that β = t̄0 ⊗ C and that
β 6' Λ.

– First, perform the intersection of the type-annotated term δ and the tuple
of terms t̄0 of the minset β (i.e., obtain a type-annotated term δ′ such that
δ′ = δ⊗t̄0). This operation is implemented by the intersec function described
in Definition 14.

– If δ′ is empty (i.e., δ′ ' Λ) then it can be reported that δ⊗β ' Λ. Otherwise,
if t̄0 is included in δ′ (i.e., t̄0 v δ′) then it can be reported that δ ⊗ β 6' Λ
(note that it always holds that β v t̄0). Our inclusion operation will be the
included function.

– Otherwise, the problem is reduced to checking whether δ′ ⊗ C ' Λ (this is
done by the auxiliary function empty1 , described in detail in Definition 17).
Note that δ′ ⊗ C can be seen as a system of one equation (corresponding to
δ′) and zero or more disequations (each of them corresponding to a cobasic
set in C). Thus the problem can be seen as determining whether such system
has no solutions.

– Thus, if δ′ is included in the tuple of terms of some cobasic set in C, then it
can be reported that δ′ ⊗ C ' Λ.

– Otherwise, it means that δ′ is “too big”, and thus, it is “expanded” to a
set of “smaller” type-annotated terms with the hope that each of them will
be included in the tuple of terms of some cobasic set in C. This way, the
initial problem is reduced to a finite number of subproblems, one subproblem
for each element in the set of type-annotated terms to which δ′ has been
“expanded”.

Example 9. Consider for example δ and β given in Example 8. In this case, t̄0 de-
notes the tuple of terms (f(s(X3), X4), X5) and C denotes the set of cobasic sets
{comp(f(s(X6), s(X7)), X8), comp(f(s(X9), r(X10)), X11)}. Thus, the intersec-
tion of δ and t̄0 is the type-annotated term δ′ = ((f(s(X12), X13), X14), (X12 :
µ,X13 : α2, X14 : α1).

5 We use the type representation of [4], and assume that there is a common set of
rules where type symbols are described. For brevity, we omit such set of type rules
in the description of the algorithms.
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Now, neither this term δ′ is empty nor does it include t̄0. It is then con-
sidered “too big” and therefore “expanded” to a set of two “smaller” type-
annotated terms {δ′1, δ′2} (expanding variable X13) where δ′1 denotes the term
((f(s(X15), r(X16)), X17), (X15 : µ, X16 : µ, X17 : α1)) and δ′2 denotes the term
((f(s(X18), s(X19)), X20), (X18 : µ, X19 : µ, X20 : α1)). Then, two subproblems
arise:

– Checking whether δ′1⊗comp(f(s(X6), r(X7)), X8) ' Λ, which holds because
δ′1 is included in (f(s(X6), r(X7)), X8), the tuple of terms of the cobasic set
comp(f(s(X6), r(X7)), X8); and

– Checking whether δ′2 ⊗ comp(f(s(X9), r(X10)), X11) ' Λ is empty, which
also holds because δ′2 is included in (f(s(X9), r(X10)), X11).

Thus, it can be concluded that δ′ ⊗ C ' Λ and hence δ ⊗ β ' Λ.

A Detailed Description of the Algorithm
The function empty(δ, β) is based essentially on detecting “useless” cobasic sets,
which cannot include the types of δ that are being analyzed. The formal defini-
tion of “useless” is given below, together with a definition of function included
and those for the intersec and expansion functions, as well as the instrumental
function aliased .

The inclusion operation for two type-annotated terms δ1 and δ2 can be de-
fined by using a straightforward adaptation of the subsetT function described
in [4], that determines whether the type denoted by a pure type term is a subset
of the type denoted by another. The resulting function included(δ1, δ2) returns
true if and only if δ1 v δ2.

Definition 12 (useless cobasic set). Given a type-annotated term δ, a set of
cobasic sets C, and a cobasic set comp(t̄) ∈ C, we say that comp(t̄) is useless
for determining whether δ ⊗ C ' Λ, whenever if δ ⊗ (C − {comp(t̄)}) 6' Λ, then
δ ⊗ C 6' Λ (or, equivalently, if δ ⊗ C ' Λ, then δ ⊗ (C − {comp(t̄)}) ' Λ).

It is easy to prove that the reciprocal also holds. If δ ⊗ (C − {comp(t̄)}) '
Λ, then obviously δ ⊗ C ' Λ (note that (δ ⊗ C) v (δ ⊗ (C − {comp(t̄)}))).
Thus, if comp(t̄) ∈ C is an useless cobasic set, then δ ⊗ C ' Λ if and only if
δ ⊗ (C − {comp(t̄)}) ' Λ.

Definition 13 (aliased(δ, t̄) function). Let δ be the type-annotated term
(t̄δ, ρδ), δ 6' Λ, t̄ a tuple of terms, and θ = mgu(t̄δ, t̄). We define the aliased
function as follows:

aliased(δ, t̄) = { x ∈ vars(t̄δ) | xθ is a variable, and exists x′ ∈ vars(t̄δ),
x 6= x′, such that xθ = x′θ }.

Given a type-annotated term δ and a tuple of terms t̄, the intersec(δ, t̄)
function returns a type-annotated term whose meaning is the same as δ ⊗ t̄
(recall that a tuple of terms is also a type-annotated term). This function can
be defined as a straightforward adaptation of the unify(ω1, ω2, T,Θ) function
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described in [4], that performs a type unification, where ω1 and ω2 are the type
terms to be unified, Θ a type substitution for the variables in ω1 and ω2, and T
a set of type rules defining the type symbols appearing in ω1Θ, ω2Θ, and Θ. The
output of the function unify is a triple (ωf , Tf , Θf ), where ωf is a type term, Θf
a type substitution for the variables in ωf , and Tf a set of type rules defining the
type symbols appearing in the pure type term ωfΘf , such that T ⊆ Tf . Since
type terms can be trivially rewritten as type-annotated terms, we can define
function intersec(δ, t̄) as follows:

Definition 14 (intersec(δ, t̄) function).
Given a type-annotated term δ and a tuple of terms t̄, the process of function

intersec(δ, t̄) is:

– Let δ be the pair (t̄δ, ρδ), and (ωf , Tf , Θf ) = unify(t̄δ, t̄, T, Θ) (note that a
tuple of terms is a particular case of type term, and that t̄δ and t̄ are tuples
of terms), where Θ is a type substitution constructed as follows:

xΘ =
{
ω if x ∈ vars(δ) and ρδ(x) = ω
x otherwise.

and T a set of type rules defining the type symbols in t̄δΘ.
– Rewrite ωfΘf as a type-annotated term δ′ and return it. For simplicity, we

assume that the function returns only a type-annotated term δ′, but in fact
it returns a pair (δ′, Tf ), where Tf is a set of type rules defining the type
symbols appearing in δ′.

Theorem 3. Given a type-annotated term δ and a tuple of terms t̄, then: (i)
intersec(δ, t̄) terminates, (ii) intersec(δ, t̄) ' δ⊗ t̄, and (iii) intersec(δ, t̄) = Λ iff
δ ⊗ t̄ ' Λ.

Proof. It follows from Theorem 5.60 of [4], since the function intersec is an
adaptation of the function unify(ω1, ω2, T,Θ).

Definition 15 (expansion function). Let δ be a type-annotated term (t̄δ, ρδ),
δ 6' Λ, and comp(t̄) a cobasic set. We define function expansion as:

expansion(δ, comp(t̄)) = (δ′, ∆), where (δ′, ∆) is a “partition” of δ, i.e.:

– δ′ is a type-annotated term instance of δ, (t̄δ′ , ρδ′), δ′ 6' Λ. δ′ is obtained by
expanding δ to some “decision depth” that allows to detect if the cobasic set
comp(t̄) is useless (see Definition 12 of useless cobasic set);

– ∆ is a set of type-annotated terms;
– for all x ∈ vars(δ′), it holds that: ρδ′(x) = µ, or xθ is a variable, where θ is

the most general unifier of t̄δ′ and t̄ (note that the variables of δ whose type
is µ are not “expanded”);

– (∪δ′′∈∆Den(δ′′)) ∪Den(δ′) = Den(δ) (i.e., δ ' (
⊕

δ′′∈∆ δ
′′)⊕ δ′); and

– for all δ′′ ∈ ∆, δ′′ ⊗ t̄ ' Λ (this is ensured because type rules are determin-
istic).
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We do not describe the process of the expansion function because it is trivial.

Definition 16 (empty(δ, β) function). Given a type-annotated term δ and a
minset β such that β 6' Λ (β = t̄0 ⊗ C, where t̄0 is a tuple of terms, and C a set
of cobasic sets), we define:

empty(δ, β) =

 true if δ′ = Λ
false if included(t̄0, δ′)
empty1 (C, δ′, ∅) otherwise

δ′ = intersec(δ, t̄0)

Definition 17 (empty1 (C, δ, Γ ) function). Given a type-annotated term δ
(i.e., a pair (t̄δ, ρδ)) such that δ 6' Λ, a set of cobasic sets C, and a set Γ of
triples of the form (δ1,V, comp(t̄)) where:

– δ1 is a type-annotated term δ1 = (t̄1, ρ1), such that δ1 6' Λ,
– comp(t̄) is a cobasic set,
– vars(δ1) ∩ vars(comp(t̄)) = ∅,
– θ = mgu(t̄1, t̄),
– for all x ∈ vars(δ1), xθ is a variable, and
– v ∈ V iff v ∈ vars(δ1), ρδ1(v) 6= µ and ∃v′ ∈ vars(δ1), v 6= v′, such that
vθ = v′θ (i.e., V is the set of variables in vars(δ1) which are aliased with
some other variable in vars(δ1) by θ).

we define the empty1 function in Algorithm 1.

The empty1 (C, δ, Γ ) function performs a “first pass” over the cobasic sets in
C. This pass results in the removal of cobasic sets that are inferred to be useless.
Some useless cobasic sets are removed in step 1: if intersec(δ, t̄) = Λ, for some
comp(t̄) ∈ C, then comp(t̄) is useless for determining whether δ⊗C ' Λ, because
none of the instances of δ meet the equality constraint imposed by t̄, and hence
all the instances of δ meet the inequality constraint imposed by comp(t̄). Thus,
δ⊗C ' Λ if and only if the rest of cobasic sets, C−{comp(t̄)}, impose (inequality)
constraints that are not met by any instance of δ.

If included(δ, t̄) for some cobasic set comp(t̄) in C′ (as it is checked in step 6),
then all the instances of δ meet the equality constraint imposed by t̄, and hence,
none of the instances of δ meet the inequality constraint imposed by comp(t̄).
Thus, in this case, δ ⊗ C ' Λ.

The rationale behind steps 9 to 11 is that at this point (where not
included(δ, t̄) nor intersec(δ, t̄) = Λ) δ is “too big,” and thus it is “expanded”
to a set of “smaller” type-annotated terms {δ′} ∪∆ (using the expansion func-
tion given in definition 15), in the hope that each of them will be “included”
in the tuple of terms of some cobasic set in C′. In this expansion, δ′ is obtained
by expanding variables v ∈ vars(δ) to at most a depth given by vσ, where
σ = mgu(t̄δ, t̄). When inclusion is checked at step 12, if included(δ′, t̄), then nec-
essarily for all x ∈ vars(δ′) it holds that xθ′ is a variable, where θ′ = mgu(t̄δ′ , t̄)
(step 16). In this case, comp(t̄) is not considered in the recursive calls in step 13
since (according to definition 15) for all δ′′ ∈ ∆, δ′′ ⊗ t̄ ' Λ, and thus, comp(t̄)
is useless for all of these subproblems. If not included(δ′, t̄), then: a) t̄ imposes
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some equality constraints over some variables in δ (such variables are gathered
together in step 15, where the set V is created using the aliased function given in
Definition 13), or b) t̄ restricts the values of some variable(s) in δ′ whose type is
µ, unifying them to some term (which is not a variable). If the condition checked
at step 17 holds, then there is always an instance of δ′ which does not meet the
former constraints a) or b), and thus comp(t̄) is useless.

In step 20, cobasic sets which are not deemed useless at this point are stored in
Γ , which is an accumulation parameter. δ′ and V (besides comp(t̄)) are recorded
in this parameter, because aliased variables whose type is infinite (or which after
having been expanded get bounded to a term containing variables whose type
is infinite) allow us to detect useless cobasic sets, since it is always possible to
find an instance of δ′ which does not meet the equality constraints imposed by
t̄ (case a)). Useless cobasic sets are then subsequently removed in steps 3 and 4,
before empty2 (Γ ′, δ) is called in step 5. The first pass over the cobasic sets ends
in step 2 when condition C′ = ∅ holds. Note that when this condition holds,
step 4 checks that a type expression denotes a finite set of terms, and there are

Algorithm 1 empty1
Input: a type-annotated term δ, a set of cobasic sets C and a set Γ of triples of

the form (δ1,V, comp(t̄))
Output: a boolean

1: C′ ← {comp(t̄) ∈ C | intersec(δ, t̄) 6' Λ}
2: if C′ = ∅ then
3: Γ ′ ← {ξ ∈ Γ | ξ ≡ (δ1,V, comp(t̄)), intersec(δ, t̄) 6' Λ}
4: Γ ′′ ← {ξ ∈ Γ ′ | ξ ≡ (δ1,V, comp(t̄)), θ = mgu(t̄δ, t̄δ1), and for all x ∈ V,
y ∈ vars(xθ): ρδ(y) is finite }

5: return empty2 (Γ ′′, δ)
6: else if included(δ, t̄) for some cobasic set comp(t̄) in C′ then
7: return true
8: else
9: select a cobasic set comp(t̄) ∈ C′

10: C′′ ← C′ − {comp(t̄)}
11: (δ′,∆) ← expansion(δ, comp(t̄))
12: if included(δ′, t̄) then
13: return

∧
δ′′∈∆ empty1 (C′′, δ′′, Γ )

14: else
15: V ← aliased(δ′, t̄)
16: θ′ ← mgu(t̄δ′ , t̄)
17: if for some x ∈ vars(δ′) s.t. ρδ′(x) = µ: x ∈ V or xθ′ is not a var. then
18: return empty1 (C′′, δ, Γ )
19: else
20: Γ ′ ← Γ ∪ {(δ′,V, comp(t̄))}
21: return empty1 (C′′, δ′, Γ ′) ∧

∧
δ′′∈∆ empty1 (C′′, δ′′, Γ )

22: end if
23: end if
24: end if
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Algorithm 2 empty2
Input: a type-annotated term δ and a set Γ of triples of the form (δ′,V, comp(t̄))
Output: a boolean

1: if Γ = ∅ then
2: return false
3: else
4: select an item ξ ∈ Γ ; assume ξ ≡ (δ′,V, comp(t̄))
5: Γ ′ ← Γ − {ξ}
6: σ ← mgu(t̄δ′ , t̄δ)
7: if included(δ, t̄) then
8: return true
9: else

10: initialize a set ∆
11: for all variables x ∈ V do
12: for all variables y such that y ∈ vars(xσ) do
13: ∆ ← ∆ ∪ { δ[y/t] | t ∈ γ(ρδ(y)) }
14: end for
15: end for
16: ∆′ ← {δ′′ ∈ ∆ | intersec(δ′′, t̄) ' Λ}
17: if ∆′ = ∅ then
18: return true
19: else
20: return

∧
δ′′∈∆′ empty2 (Γ ′, δ′′)

21: end if
22: end if
23: end if

straightforward algorithms to test this. The empty2 function performs a second
pass over the remaining cobasic sets, checking whether the constraints described
previously in case a) hold.

Definition 18 (empty2 (Γ, δ) function). Given a type-annotated term δ, such
that δ 6' Λ, and a set Γ of triples of the form (δ′,V, comp(t̄)) where:

– δ′ is a type-annotated term, such that δ′ 6' Λ, and comp(t̄) a cobasic set,
– vars(δ′) ∩ vars(comp(t̄)) = ∅,
– for all x ∈ vars(δ′), xθ is a variable, where θ = mgu(t̄δ′ , t̄) (ρδ′(x) can be

any type, including µ),
– v ∈ V iff v ∈ vars(δ′), ρδ′(v) 6= µ and exists v′ ∈ vars(δ′), v 6= v′, such that
vθ = v′θ (i.e., V is the set of variables in vars(δ′) which are aliased with
some other variable in vars(δ′) by θ), and

– for all x ∈ V, ρδ′(x) is finite (note that for all v ∈ vars(δ′) such that v 6∈ V,
ρδ′(v) can be any type, including µ),

we define the function empty2 in Algorithm 2, where δ[y/t] denotes an instance
of type annotated term δ obtained by substituting variable y by term t.
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The function empty2 (Γ, δ) selects a cobasic set comp(t̄) in Γ , and, if δ is
not included in t̄, then δ is expanded (in step 13) to a set of type-annotated
terms ∆ by substituting only “decision variables.” Such expansion ensures that
every δ′′ ∈ ∆ is either “included” in t̄ or “disjoint” with it. It also ensures that
δ is not infinitely expanded: the type of such variables is finite. Note that, at
step 13, necessarily y ∈ vars(δ), and ρδ(y) is finite. Note also that, at step 16,
necessarily, for all δ′′ ∈ ∆ and δ′′ /∈ ∆′, it holds that δ′′ v t̄. For this reason,
comp(t̄) is removed from the recursive call at step 20.

Soundness and Completeness Results
The function empty(δ, S) is sound and complete for tuple-distributive regular
types. While sound, the function is not complete for regular types in general.
However, our experience (as we will see in Section 5) is that it is fairly accurate
in practice. Note that our applications do not require analysis algorithms to
be complete (impossible in general) but rather always safe and as accurate as
possible [14].

We now give some instrumental lemmas for proving the termination and
correctness of the presented algorithm.

Lemma 1. Let δ be a type-annotated term, C a set of cobasic sets, and
comp(t̄) ∈ C an useless cobasic set for determining whether δ⊗C ' Λ. δ⊗C ' Λ
if and only if δ ⊗ (C − {comp(t̄)}) ' Λ.

Proof. By definition of useless cobasic set we have that if δ ⊗ C ' Λ, then
δ ⊗ (C − {comp(t̄)}) ' Λ. Also, if δ ⊗ (C − {comp(t̄)}) ' Λ, then obviously
δ ⊗ C ' Λ (note that (δ ⊗ C) v (δ ⊗ (C − {comp(t̄)}))).

Lemma 2. Let δ be a type-annotated term, C a set of cobasic sets, and
comp(t̄) ∈ C a cobasic set. If intersec(δ, t̄) = Λ, then comp(t̄) is useless for
determining whether δ ⊗ C ' Λ.

Note that the opposite is not true in general: there can be useless cobasic sets
in C whose tuples of terms are not disjoint with δ.

Proof. If intersec(δ, t̄) = Λ, then δ⊗comp(t̄) ' δ (sinceDen(δ)∩Den(comp(t̄)) =
Den(δ)), and hence δ ⊗ C ' δ ⊗ (C − {comp(t̄)}).

Lemma 3. Let δ and C be a type-annotated term and a set of cobasic sets re-
spectively. δ⊗C 6' Λ iff there is a type-annotated term instance δ′ of δ such that
δ′ ⊗ t̄ ' Λ for all cobasic sets comp(t̄) ∈ C.

Proof. Trivial.

Theorem 4. Let δ be a type-annotated term, C a set of cobasic sets, and
comp(t̄) ∈ C a cobasic set. Let (δ′, ∆) = expansion(δ, comp(t̄)) and V =
aliased(δ′, t̄). Assume that δ′ 6v t̄ and for all comp(t̄1) ∈ C it holds that δ 6v t̄1
and δ ⊗ t̄1 6' Λ. Then, if for some x ∈ vars(δ′), it holds that:

– ρδ′(x) is an infinite function symbol type, and,
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– x ∈ V or xθ is not a variable, where θ = mgu(t̄δ′ , t̄),

then comp(t̄) is useless for determining whether δ ⊗ C ' Λ.

Proof. We are going to prove that: if δ⊗ (C−{comp(t̄)}) 6' Λ, then δ⊗C 6' Λ. If
δ⊗ (C − {comp(t̄)}) 6' Λ, then according to Lemma 3, there is a type-annotated
term instance δ2 of δ such that δ2 ⊗ t̄2 ' Λ for all cobasic sets comp(t̄2) ∈
(C − {comp(t̄)}). We are going to show how to use δ2 to construct an instance
δ3 of δ such that δ3 ⊗ t̄3 ' Λ for all cobasic sets comp(t̄3) ∈ C, and thus (by
Lemma 3) δ ⊗ C 6' Λ.

By definition of the function expansion we have that δ ' (
⊕

δ′′∈∆ δ
′′) ⊕ δ′.

Then, we have two cases:

1. δ2 is a type-annotated term instance of some δ′′ ∈ ∆, in which case we take
δ3 = δ2. Clearly, since δ′′ ⊗ t̄ ' Λ (by definition of the function expansion),
we have that δ2 ⊗ t̄ ' Λ. We also have (by hypothesis and because δ2 is
a type-annotated term instance of δ) that δ2 ⊗ t̄2 ' Λ for all cobasic sets
comp(t̄2) ∈ (C−{comp(t̄)}). Thus δ3⊗ t̄3 ' Λ for all cobasic sets comp(t̄3) ∈
C.

2. δ2 is a type-annotated term instance of δ′.
Note that the condition “x ∈ V or xθ is not a variable” (recall that θ =
mgu(t̄δ′ , t̄)), represents equality constraints which any instance of both, δ′

and t̄ must meet. More concretely, “x ∈ V” means that there is at least one
equality constraint between x and some other variable in V; and “xθ is not
a variable,” means that the subterm to which x is bound in any instance of
both, δ′ and t̄, must unify with xθ (we mean “type unification,” which takes
into account the type of the variables in such subterm, if any). Since ρδ′(x)
is an infinite function symbol type, it is always possible to construct and
instance δ3 of δ′ by binding x to a term s which does not meet the former
constraints, and thus, δ3 ⊗ t̄ ' Λ (and also δ3 ⊗ t̄3 ' Λ for all cobasic sets
comp(t̄3) ∈ C).
Let us see in detail a possible way to construct δ3:
– Let s be a ground term whose main function symbol is new, 6 i.e., it

does not appear in δ2 nor in C (this is always possible since ρδ′(x) is an
infinite function symbol type);

– Since δ2 is an instance of δ′, we have that t̄δ2 = t̄δ′θ2 for some substitution
θ2,

– Let θ3 = (θ2 − {x← xθ2})∪ {x← s} (i.e. we obtain θ3 by replacing the
binding for x in θ2 by another one which binds x to s);

– Let t̄δ3 = t̄δ′θ3.
– Let ρδ3 be the type assignment that assigns to each variable in t̄δ3 the

type that such variable has in ρδ2 (i.e., ρδ3(v) = ρδ2(v) for any v ∈
vars(t̄δ3)). Note that since t̄δ2 = t̄δ′θ2, t̄δ3 = t̄δ′θ3 and vars(vθ3) ⊆
vars(vθ2) for any variable in the domain of θ2 and θ3 (both substitutions
have the same domain), we have that vars(t̄δ3) ⊆ vars(t̄δ2).

6 Constant symbols are considered to be function symbols of arity zero.
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Since the main function symbol of s does not appear in δ2 nor in C, the
equality constraints which are not met by δ2 and that imply that δ2⊗ t̄2 ' Λ for
all cobasic sets comp(t̄2) ∈ (C −{comp(t̄)}), are not met by δ3 neither. Thus, we
also have that δ3⊗ t̄3 ' Λ for all cobasic sets comp(t̄3) ∈ (C − {comp(t̄)}). Since
δ3 ⊗ t̄ ' Λ, we conclude that δ3 ⊗ t̄3 ' Λ for all cobasic sets comp(t̄3) ∈ C.

Lemma 4. Let δ and C be a type-annotated term and a set of cobasic sets re-
spectively. If there is a cobasic set comp(t̄) ∈ C such that δ v t̄, then δ ⊗ C ' Λ.

Proof. Trivial.

Lemma 5. In any call of the form empty2 (Γ, δ) and for any triple
(δi,Vi, comp(t̄i)) ∈ Γ , where 1 ≤ i ≤ n, it holds that δ is a type-annotated
term instance of δi, i.e., δ v δi and there is a substitution θi such that t̄δ = t̄δi

θi
(note that θi = mgu(t̄δ, t̄δi

)).

Proof. Trivial. By observing the way in which the items (δi,Vi, comp(t̄i)) ∈
Γ , for 1 ≤ i ≤ n, are created in function empty1 , we have that: (δ1, ∆1) =
expansion(δ′, t̄), for some δ′ and t̄, (δ2, ∆2) = expansion(δ1, t̄1), . . ., (δn, ∆n) =
expansion(δn−1, t̄n−1).

Lemma 6. Let δ and C be a type-annotated term and a set of cobasic sets re-
spectively. Let δ1, . . . , δn be a set of type-annotated terms which constitute a
partition of δ (to which δ has been expanded by using the function expansion),
i.e., δ ' δ1 ⊕ · · · ⊕ δn. Then, δ ⊗ C ' Λ if and only if for all i, 1 ≤ i ≤ n,
δi ⊗ C ' Λ.

Proof. It can be easily proved by using the Den(S) function over elementary
sets (which gives sets of tuples of Herbrand terms) and some well known set
theory results, or based on the fact that ⊕, ⊗, and comp constitute a Boolean
algebra.

Lemma 7. empty2 (Γ, δ) terminates.

Proof. The number of type-annotated terms in which δ is expanded (in step 13
of Algorithm 2) is finite, since they are created by expanding a finite number of
variables whose type is finite, thus, the number of recursive calls empty2 (Γ ′, δ′′)
(in step 20 of Algorithm 2) is finite (i.e. ∆′ is a finite set), and, the number of
items in Γ ′ in each of them decreases.

Lemma 8. If empty2 (Γ, δ) return true, then δ ⊗ C ' Λ, where C = {comp(t̄) |
(δ′,V, comp(t̄)) ∈ Γ for some δ′ and V} (i.e., C is the set of cobasic sets in Γ ).

Proof. It is easy to prove by induction on the depth of recursion of empty2 upon
termination that δ can be expanded to a set of type-annotated terms δ1, . . . , δn,
which constitute a partition of it (i.e., δ ' δ1⊕· · ·⊕ δn), and for all i, 1 ≤ i ≤ n,
exists a cobasic set comp(t̄i) in C, such that δi v t̄i. Thus, using Lemmas 4 and 6
we conclude that δ ⊗ C ' Λ.
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Lemma 9. If empty2 (Γ, δ) returns false, then δ⊗C 6' Λ, where C = {comp(t̄) |
( , , comp(t̄)) ∈ Γ}.

Proof. It can be proved by induction on the depth of recursion of empty2 upon
termination that there is a type-annotated term instance of δ, δ1 such that:

1. for all x ∈ vars(t̄δ), if ρδ(x) is infinite, then xθ = x, where t̄δ1 = t̄δθ for some
substitution θ (i.e., δ1 is the result of expanding only variables of δ whose
type is finite), and

2. δ1 ⊗ t̄ ' Λ for all comp(t̄) ∈ C, and thus, by Lemma 3, δ ⊗ C 6' Λ.

Let us see it in more detail. In the base case (depth = 0), we have that
Γ = ∅, and the lemma holds trivially for δ1 = δ. In the recursive case, assume
that depth = K, K > 0, and the lemma holds for all recursive calls of depth less
than K. Then, by induction hypothesis (and the meaning of the conjunction),
in step 20 of Algorithm 2, exists an instance δ2 of some type-annotated term δ′′,
where δ′′ ∈ ∆′, such that δ2⊗ t̄2 ' Λ for all comp(t̄2) such that ( , , comp(t̄2)) ∈
Γ ′, where Γ ′ = Γ − {(δ′,V, comp(t̄))}. Since δ′′ ∈ ∆′, we have that δ′′ ⊗ t̄ ' Λ
(see step 16 in Algorithm 2), and thus δ2 ⊗ t̄ ' Λ (because δ2 is an instance
of δ′′). It is clear that condition 1 holds, since only variables of δ whose type
is finite are expanded (see step 13 of Algorithm 2). Thus, (and since δ2 is an
instance of δ′′, and δ′′ an instance of δ) we take δ1 = δ2.

Theorem 5. empty1 (C, δ, Γ ) terminates and, if all types in δ and Γ are tuple-
distributive regular types, then returns true iff δ ⊗ C1 ' Λ, where C1 = C ∪
{comp(t̄) | (δ1,V, comp(t̄)) ∈ Γ, for some δ1 and V}.

Proof. Termination can be proved based on:

– The initial problem is reduced to a finite number of subproblems. The num-
ber of subproblems is bound by the number of type-annotated terms to which
δ is expanded using the function expansion,

– the number of cobasic sets in C is finite,
– the number of cobasic sets in C′′ decreases in each recursive call of the form

empty1 (C′′, , ), and
– empty2 (Γ ′, δ) terminates (Lemma 7).

Correctness and completion can be proved by induction on the depth of
recursion of empty1 upon termination, based on:

– the correctness and completion of the function empty2 (Γ ′, δ) (Lemmas 8
and 9).

– The results returned by the function empty1 in the base cases are correct.
Namely, in step 1 of function empty1 , useless cobasic sets are removed (by
Lemma 2), thus, according to Lemma 1 the initial problem is correctly re-
duced to an equivalent problem. In step 6, the returned value is correct
according to Lemma 4. Finally, in step 2 of Algorithm 1 (before calling func-
tion empty2 ) useless cobasic sets are removed. Let us see in detail why these
cobasic sets can be correctly removed:
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• If empty2 (Γ ′, δ) returns false, it follows from Lemmas 9 and 3 that exists
a type-annotated term instance of δ, δ2, such that δ2 ⊗ t̄ ' Λ for all
( , , comp(t̄)) ∈ Γ ′. Also, for all v ∈ vars(δ), if ρδ(v) is an infinite type,
then vθ = v, where t̄δ2 = t̄δθ (i.e., δ2 has been created by expanding only
variables of δ whose type is finite, and thus ρδ(v) = ρδ2(v) and ρδ2(v) is
an infinite type). Let Γ1 = Γ − Γ ′ (i.e. Γ1 is the set of triples removed
in step 2 of Algorithm 1). It is clear that any cobasic set comp(t̄) such
that (δ1,V, comp(t̄)) ∈ Γ1 and intersec(δ, t̄) ' Λ, is useless (Lemma 2).
Let Γ2 = {(δ1,V, comp(t̄)) ∈ Γ1 | intersec(δ, t̄) 6' Λ}.
We can create a type-annotated term δ3 which is an instance of δ2 such
that for all ( , , comp(t̄3)) ∈ Γ , δ3 ⊗ t̄3 ' Λ, as follows:
∗ We have that for all ξi ∈ Γ2, where ξi = (δ′i,Vi, comp(t̄i)), there

is a variable xi, xi ∈ Vi and xi ∈ vars(δ′i), and there is another
variable yi, yi ∈ vars(δ), yi ∈ vars(δ2) and yi ∈ vars(xiσi), where
σi = mgu(t̄δ′

i
, t̄δ) and t̄δ = t̄δ′

i
σi (note that δ is a type-annotated

term instance of δ′i, according to Lemma 5), and ρδ(yi) is an infinite
type. Thus, the variable yi has not been expanded by empty2 (Γ ′, δ)
and it appears in δ2 (i.e., yiθ = yi, where θ = mgu(t̄δ, t̄δ2), and
ρδ2(yi) is an infinite type).

∗ Now, take δ2 and bind all the formerly mentioned variables yi ∈
vars(δ2) such that ξi ∈ Γ2, to ground Herbrand terms si according
with their types (i.e. si ∈ γ(ρδ2(yi))), obtaining the instance δ3 so
that the following condition is met (this is possible because the type
of yi, ρδ2(yi), is infinite): for all ξ1, ξ2, v such that ξ1, ξ2 ∈ Γ2, ξ1 =
(δ′1,V1, ), ξ2 = (δ′2,V2, ), v ∈ V1, and y1 = y2, then vθ1 6= x1θ1,
where θ1 = mgu(t̄δ′1 , t̄δ3) (i.e., tδ3 = t̄δ′1θ1).

– The decomposition (or reduction) of the initial problem into one or more
subproblems and the combination of the results of those subproblems in
order to obtain the result of the original problems is correct and complete.
In step 12 of function empty1 , the decomposition in subproblems is correct
and complete based on Lemmas 4 (because included(δ′, t̄)), and 6 (note that
function expansion(δ, comp(t̄)) returns a complete partition of δ). In step 17
of Algorithm 1 the cobasic set comp(t̄) is useless (according to Theorem 4)
and thus removed. Finally, in step 21 of Algorithm 1, the decomposition in
subproblems is correct and complete based on Lemma 6.

The mutual exclusion algorithm we present is complete for tuple-distributive
regular types:

Theorem 6. Let δ be a type-annotated term in which all types are tuple-
distributive regular types, and β a minset, β 6' Λ. Then empty(δ, β) terminates,
and returns true if and only if δ ⊗ β ' Λ.

Proof. Assume that β = t̄0 ⊗ C (where t̄0 is a tuple of terms, and C a set of
cobasic sets). The result follows from Theorem 5 and the following observation:
if included(t̄0, δ′) = true, then t̄0 v δ′. Since t̄0 v δ′ iff t̄0 v δ⊗ t̄0 iff t̄0 ' δ⊗ t̄0,
we have that (δ ⊗ β) ' (δ ⊗ t̄0 ⊗ C) ' (t̄0 ⊗ C) ' β 6' Λ.
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While sound, the algorithm is not complete for regular types in general
(though we believe it is fairly accurate in practice):

Theorem 7. Let δ be a type-annotated term where all types are regular types,
and S a minset. Then empty(δ, S) terminates, and if it returns true then δ⊗S '
Λ.

One reason for imprecision in the case of non tuple-distributive regular types
is that the function intersec(δ, A), computes a superset of the exact intersection
when we deal with general regular types (this result can be derived from the work
of [4]. Another reason comes from the use of the function expansion(δ, comp(t̄))
to partition the type-annotated term δ in the boolean function empty1 (C, δ, ∅).
Given a pair (δ′, ∆) where δ′ is a type-annotated term, and ∆ is a set of type-
annotated terms, we assume that all type-annotated terms in ∆ are disjoint with
the tuple of terms of the cobasic set comp(t̄), but this is not true for general
regular types, and, consequently, precision may be lost. A possible solution in
order to obtain a complete algorithm for general regular types would be to
rewrite the type annotated term which represents the input type of a predicate
as a union of type annotated terms containing only tuple-distributive types,
and then apply the above described mutual exclusion algorithm for each of the
elements of the union.

4.2 Checking Mutual Exclusion in Linear Arithmetic

In this section, we give an algorithm for checking whether two linear arithmetic
tests τi(x̄) and τj(x̄) are exclusive w.r.t. the type assignment of int to each
variable in x̄. This amounts to determining whether (∃x̄)(τi(x̄) ∧ τj(x̄)) is un-
satisfiable. The system τi(x̄)∧ τj(x̄) can be transformed into disjunctive normal
form as in equation (1) below, where each of the tests φkl(x̄) is of the form
φkl(x̄) ≡ a0 + a1x1 + · · ·+ apxp ©? 0, with ©? ∈ {=, <,≤, >,≥}. For this trans-
formation, note that a test a0 + a1x1 + · · · + apxp 6= 0 can be written in terms
of two tests involving only ‘>’ and ‘<’, as in equation (2).

(τi(x̄) ∧ τj(x̄)) =
∨n
k=1

∧m
l=1 φkl(x̄) (

∑p
i=0 aixi > 0) ∨ (

∑p
i=0 aixi < 0)

(1) Disjunctive normal form (2) Rewriting of disequalities

The resulting system, transformed to disjunctive normal form, defines a set
of integer programming problems: the answer to the original mutual exclusion
problem is “yes” if and only if none of these integer programming problems has
a solution. Since a test can give rise to at most finitely many integer program-
ming problems in this way, it follows that the mutual exclusion problem for
linear integer tests is decidable. Since determining whether an integer program-
ming problem is solvable is NP-complete [9], the following complexity result is
immediate:

Theorem 8. The mutual exclusion problem for linear arithmetic tests over the
integers is co-NP-hard.
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It should be noted, however, that the vast majority of arithmetic tests en-
countered in practice tend to be fairly simple: our experience has been that tests
involving more than two variables are rare. The solvability of integer programs
in the case where each inequality involves at most two variables, i.e., is of the
form ax+by ≤ c, can be decided efficiently in polynomial time by examining the
loops in a graph constructed from the inequalities [1]. The integer programming
problems that arise in practice, in the context of mutual exclusion analysis, are
therefore efficiently decidable.

The ideas explained in this section for linear arithmetic over integers extend
directly to linear tests over the reals, which turn out to be computationally
somewhat simpler.

4.3 Checking Mutual Exclusion: Putting it All Together

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively. Assume, without loss of generality, that each τk(x̄),
1 ≤ k ≤ n is a conjunction of primitive tests (note that it is always possible to
obtain an equivalent sequence of clauses where disjunctions have been removed).
Assume also that each τk(x̄), 1 ≤ k ≤ n, is written as τHk ∧ τAk , where τHk and
τAk are a conjunction of primitive unification and arithmetic tests respectively
(i.e., we write arithmetic tests after unification tests). Consider also each τHk
written as a minset βk (the function test2minset , given in Definition 10, returns
the minset representation of a test).

Assume that predicate p has type type[p]. In order to check whether p is
mutually exclusive (i.e., its clauses are mutually exclusive w.r.t. the type assign-
ment x̄ : type[p]) we need to solve the problem of determining whether any pair
of tests τi(x̄) and τj(x̄), 1 ≤ i, j ≤ n, i 6= j, is exclusive w.r.t. x̄ : type[p].

Before describing a sufficient condition for ensuring that these tests are ex-
clusive, we define some instrumental elements. Let βij be the minset intersection
of βi and βj . Let θi (resp. θj), be the most general unifier of the tuple of terms of
βij and βi (resp. βj). That is, if βi ≡ t̄i⊗Ci, βj ≡ t̄j⊗Cj , and βij ≡ t̄ij⊗Cij , then
θi = mgu(t̄i, t̄ij), t̄ij ≡ t̄iθi, θj = mgu(t̄j , t̄ij), t̄ij ≡ t̄jθj (note that there exists
a substitution µij , such that µij = mgu(t̄i, t̄j)). Let ρ be the type assignment
x̄ : type[p] but written as a type-annotated term δ. We have that the tests τi(x̄)
and τj(x̄), are exclusive w.r.t. ρ if:

1. δ ⊗ βi ⊗ βj ' Λ (which can be checked as explained in Section 4.1), or
2. δ ⊗ βi ⊗ βj 6' Λ and τAi θi ∧ τAj θj is unsatisfiable (which can be checked as

explained in Section 4.2).

Example 10. Reconsider Example 5 with predicate part/4 from the quicksort
program of Figure 1. We had reduced the mutual exclusion problem to two sub-
problems: a) checking that the tests L = [ ] and L = [E|R] are exclusive w.r.t. type
assignment ρ, and b) checking that the tests E < C and E >= C are exclusive
w.r.t. ρ. In this case, we have that δ is ((L, C), (L : intlist, C : int)). Also,
β1 ≡ ([ ], C), β2 ≡ ([E|R], C), and β3 ≡ ([E|R], C). We now have that part/4 is
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mutually exclusive because: δ ⊗ βi ⊗ βj ' Λ, for i = 1 and j ∈ {2, 3}, and
(although δ ⊗ β2 ⊗ β3 6' Λ) also E < C ∧ E ≥ C is unsatisfiable (note that
β2,3 ≡ ([E|R], C), and θ2 and θ3 are the identity).

4.4 Checking Mutual Exclusion: Dealing with the Cut

The presence of a pruning operator (cut) in program clauses can help the de-
tection of mutual exclusion. In order to take the cut into account, we simply
redefine the concept of mutually exclusive clauses in Definition 4 as:

Definition 19 (mutual exclusion in the presence of cut). Let C1, . . . , Cn,
n > 0, be a sequence of clauses, with input tests τ1, . . . , τn respectively. Let ρ
be a type assignment. We say that C1, . . . , Cn is mutually exclusive w.r.t. ρ if
either, n = 1, or, for every pair of clauses Ci and Cj, 1 ≤ i, j ≤ n, i 6= j: Ci
has a cut and i < j, or Cj has a cut and j < i, or τi(x̄) and τj(x̄) are exclusive
w.r.t. ρ.

We also have to take into account that the pruning operator introduces im-
plicit tests. Consider a predicate p defined by a sequence of n clauses C1, . . . , Cn,
with input tests τ1(x̄), . . . , τn(x̄) respectively. Let I be the set of indexes k of
clauses Ck which have a cut and are before the clause Ci (i.e., k < i). Let
τ bk be the test (conjunction of tests) that is before the cut in clause Ck (i.e.,
τk ≡ τ bk ∧ τak , where τak is the test that is after the cut in clause Ck). Now,
instead of considering the test τi, for 1 ≤ i ≤ n, in Definition 19, we take the
test τ ci defined as follows:

τ ci =
{
τi if I = ∅
(
∧
k∈I ¬τ bk) ∧ τi otherwise.

Example 11. Consider predicate abs/2 mentioned in page 7. Usually, this pred-
icate is defined with a cut in the first clause and no check in the second. In this
case, the test for the second clause will be ¬ X ≥ 0.

Note that the introduction of negation in the tests τ ci is not a problem, since
it is always possible to reduce the problem of determining whether a pair of
tests τ ci and τ cj are exclusive w.r.t. a given type assignment to one or more
exclusion subproblems where the pair of tests involved in each subproblem are
conjunctions of primitive tests (transforming tests to disjunctive normal form).

5 A Prototype Implementation

In order to evaluate the effectiveness and efficiency of our approach to deter-
minacy analysis we have constructed a prototype which performs such analysis
in an automatic way. The system takes Prolog programs as input,7 which in-
clude a module definition in the standard way. In addition, the types and modes
7 In fact, the input language currently supported includes also a number of extensions

—such as functions or feature terms— which are translated by the first (expansion)
passes of the Ciao compiler to clauses, possibly with cut.
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Table 1. Accuracy and efficiency of the determinacy analysis (times in mS).

Program N D (%) M (%) C TD TM TT

Hanoi 2 2 (100) 2 (100) N/A 48 55 103

Fib 1 1 (100) 1 (100) N/A 16 21 37

Mmatrix 3 3 (100) 3 (100) N/A 24 39 63

Tak 1 1 (100) 1 (100) N/A 24 23 47

Subs 1 1 (100) 1 (100) N/A 12 16 28

Reverse 2 2 (100) 2 (100) N/A 21 20 41

Qsort 3 3 (100) 3 (100) 3 (100) 40 34 74

Qsort2 5 5 (100) 5 (100) 5 (100) 64 43 107

Queens 6 3 (50) 5 (83) 2 (33) 65 36 101

Gabriel 20 6 (30) 11 (55) 4 (20) 308 241 549

Kalah 44 40 (91) 42 (95) 40 (91) 952 2432 3384

Plan 16 8 (50) 12 (75) 3 (19) 402 811 1213

Credit 25 18 (72) 21 (84) 16 (64) 1032 321 1353

Pg 10 6 (60) 9 (90) 6 (60) 372 177 549

Mean – 71% 85% 61% 24 (/p) 31 (/p) 55 (/p)

of the arguments of exported predicates are either given or obtained from other
modules during modular type and mode analysis (including the intervening type
definitions). The system uses the CiaoPP PLAI analyzer to derive mode infor-
mation, using, for the reported experiments, the Sharing+Freeness domain [26],
and the eterms domain to derive the types of predicates [33]. The resulting type-
and mode-annotated programs are then analyzed using the algorithms presented
for Herbrand and linear arithmetic tests.

Herbrand mutual exclusion is checked by a naive direct implementation of
the analyses presented. Testing of mutual exclusion for linear arithmetic tests is
implemented directly using the Omega test [28]. This test determines whether
there is an integer solution to an arbitrary set of linear equalities and inequalities,
referred to as a problem.

We have tested the prototype first on a number of simple standard bench-
marks, and then on more complex ones. The latter are taken from those used
in the cardinality analysis of Braem et al. [2], which, as mentioned in Section 1,
is the closest related previous work that we are aware of. In the case of Kalah,
we have inserted the missing cuts as is also done in [2], to make the comparison
meaningful. Some relevant results of these tests are presented in Table 1. Pro-
gram lists the program names, N the number of predicates in the program, D
the number of them detected by the analysis as deterministic, M the number
of predicates whose tests are mutually exclusive, C the number of deterministic
predicates detected in [2], TD the time required by the determinacy analysis
(Ciao/CiaoPP version 1.13, rev 10683, on an Intel Pentium M 1.86GHz, 1Gb of
RAM memory, running Ubuntu Linux 8.04, and averaging several runs, elimi-
nating the best and worst values), TM the time required to derive the modes and
types, and TT the total analysis time (all times are in milliseconds). Averages
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(per predicate in the case of analysis time) are also provided in the last row of
the table.

The results are quite encouraging, showing that the developed analysis is
fairly accurate. The analysis is more powerful in some cases than the cardinality
analysis [2], and at least as accurate in the others. It is pointed out in [2] that
determinacy information can be improved by using a more sophisticated type
domain. This is also applicable to our analysis, and the types inferred by our
system are similar to those used in [2]. The determinacy analysis times are also
encouraging, despite the currently relatively naive implementation of the system
(for example, the call to the omega test is done by calling an external process).
The overall analysis times are also reasonable, even when including the type
and mode analysis times, which are in any case very useful in other parts of the
compilation process.

6 Conclusion

We have proposed an analysis for detecting procedures and goals that are de-
terministic (i.e., that produce at most one solution at most once), or predicates
whose clause tests are mutually exclusive, even if they are not deterministic
(because they call other predicates which are nondeterministic). Our approach
has advantages w.r.t. previous approaches in that it provides an algorithm for
detecting mutual exclusion and it handles disunification tests on the Herbrand
domain and arithmetic tests.

We have implemented the proposed analysis and integrated it into the
CiaoPP system, which also infers automatically the mode and type informa-
tion that the proposed analysis takes as input. The results of the experiments
performed on this implementation show that the analysis is fairly accurate and
efficient, providing more accurate or similar results, regarding accuracy, than
previous proposals, while offering substantially higher automation, since typi-
cally no information is needed from the user.
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