
1. Debugging of Constraint Programs:

The DiSCiPl Methodology and Tools

P. Deransart1, M. Hermenegildo2, and J. Maluszynski3

1 INRIA-Rocquencourt, Projet LOCO, BP 105, F-78153 Le Chesnay Cedex, France.
Pierre.Deransart@inria.fr

2 Facultad de Informática, Universidad Politécnica de Madrid, 28660-Boadilla del
Monte, Madrid, Spain. herme@fi.upm.es

3 Linköping University, Department of Computer and Information Science, S 581
83 Linköping, Sweden. janma@ida.liu.se

This introduction gives a general perspective of the debugging methodol-
ogy and the tools developed in the ESPRIT IV project DiSCiPl Debugging

Systems for Constraint Programming. It has been prepared by the editors of
this volume by substantial rewriting of the DiSCiPl deliverable CP Debugging

Tools [1.1].
This introduction is organised as follows. Section 1 outlines the DiSCiPl

view of debugging, its associated debugging methodology, and motivates the
kinds of tools proposed: the assertion based tools, the declarative diagnoser
and the visualisation tools. Sections 2 through 4 provide a short presenta-
tion of the tools of each kind. Finally, Section 5 presents a summary of the
tools developed in the project. This introduction gives only a general view
of the DiSCiPl debugging methodology and tools. For details and for specific
bibliographic references the reader is referred to the subsequent chapters.

1 The DiSCiPl View of Debugging

The work performed in the project has addressed two main categories of CP
debugging:

– correctness debugging, and
– performance debugging.

Correctness debugging aims at locating program constructs that cause
that the computed answers are different from those expected. In particular
this concerns syntax errors, wrong answers, missing answers, mode violations,
non termination, and several kinds of unexpected behaviour. Detection of
inconsistencies in input data is another topic of correctness debugging.
Performance debugging aims at identification of the reasons for poor ef-

ficiency of computations, such as inadequate labelling strategy or poor con-
straint propagation. The overall goal of performance debugging is to shorten
the time for finding feasible and/or optimal solutions.
The subsequent sections summarise the approaches pursued in DiSCiPl

for addressing correctness debugging and performance debugging.

2 P. Deransart et al.

1.1 Correctness debugging in DiSCiPl

DiSCiPl pursued two different approaches to correctness debugging:

– static debugging,
– debugging based on run-time symptoms

Static Debugging. Static debugging aims at finding errors without execut-
ing the program. In DiSCiPl static debugging is based on static analysis of
the program and on automatic checking of assertions.
Automatic checking of assertions may be able to prove correctness of the

program with respect to formally specified requirements concerning certain
properties of the program that should hold in all computations. For example,
a formal requirement may specify call and success patterns of a predicate in
all computations of the program. If a program is not correct w.r.t. a given
specification, any attempt to prove it will fail.
Static analysis techniques make it possible to infer automatically certain

properties of the program. The inferred properties may or may not conform
to user expectations, or to a priori given specification describing the ex-
pectations. In the latter case the discrepancy between the inferred and the
expected/specified properties is called an abstract symptom. Thus, abstract
symptoms may be found manually, by inspection of the results of static anal-
ysis, or automatically, by comparison of the assertions describing expected
properties with those generated by static analysis. Existence of an abstract
symptom shows that the program is not correct w.r.t. the specification of the
expected properties.
The process of locating a construct causing the abstract symptom will

be called static diagnosis. This construct will also cause a failure in any
attempt to prove correctness of the program with respect to the specification
of expected properties, and can be located in such an attempt.
A crucial issue in static debugging is how to design a language for ex-

pressing specifications and results of static analysis. The language should on
one hand allow expressing complex properties such as those inferred by static
analysis and on the other hand should be easy to understand by the user.
The statements of the language will be called assertions. Thus, assertions
should provide a basis for two-way communication between the user and the
static debugging tools.
It should be noticed that the use of assertions is not restricted to static

analysis and correctness proofs. In some DiSCiPl tools they are also used as
tests checked during the execution of the program or for selection of particular
data for inspection by the user during execution visualisation.

Debugging based on run-time symptoms. This approach concerns the
case when in some execution the program behaves in some way which is differ-
ent from that expected by the user. Such a discrepancy between the expected
and the actual behaviour of a program in a single computation is called a
run-time symptom. Debugging based on run-time symptoms aims at finding

Title Suppressed Due to Excessive Length 3

the cause of a run-time symptom that occurred in a single execution. In the
case of correctness debugging the symptom can usually be linked to an atom,
a predicate or a clause. This may be achieved by analysis of the computation
where the run-time symptom appears. A run-time symptom, such as a wrong
answer or a missing answer, can also be characterised in terms of declara-
tive semantics. Thus, at least for some run-time symptoms, debugging can
be based either on the declarative semantics or on the operational semantics.
Both possibilities have been pursued in DiSCiPl.
An approach to debugging based on declarative semantics known as

declarative diagnosis [1.12] makes it possible to locate errors responsible for
wrong and missing answers. The method has been further developed in DiS-
CiPl.
On the other hand, some of the DiSCiPl visualisation tools (designed pri-

marily for performance debugging) facilitate analysis of single computations,
hence debugging based on operational semantics.

1.2 Performance debugging

Poor performance is often caused by modelling of the problem in an inad-
equate way or by adopting an inadequate search strategy. Often, such an
error cannot be identified just at the level of a single predicate or constraint.
Unfortunately, there are no general methods for finding reasons for poor
performance. Therefore, it is necessary to provide tools which help the user
to understand (very) complex computations. Such tools should be able to
present a complex computation at various levels of abstraction in a form
easy to understand by the user. Three aspects of particular importance are:

– presentation of the control of the execution,
– presentation of the constraint store at different points in the execution
– presentation of global constraints.

Tools must also allow to re-do or modify computations at some point with
the purpose of exploring different strategies.
The DiSCiPl approach to performance debugging was based on the guide-

lines listed above. Several visualisation techniques proposed and implemented
in the project will be surveyed below and will be discussed in more detail in
separate chapters. It should be noted that these are general tools which help
the user to understand the execution of the program, and thus, in addition
to performance debugging, they may also be of interest for correctness de-
bugging.

1.3 The DiSCiPl Debugging Methodology and Tools

We now present a general view of the proposed DiSCiPl debugging method-
ology and show how it is supported by the tools developed in the project.

4 P. Deransart et al.

The proposed debugging methodology consists of (possibly interleaved) suc-
cessive steps of correctness debugging and performance debugging. Location
of an error results in modification of the program. The new version may still
be subject to debugging.
The proposed methodology is illustrated in Figure 1. At each stage of

the program development process we have an actual version of the program,
(possibly) some input data and a (possibly empty) specification expressed in
the assertion language.

Static
Diagnosis

Diagnosis

Declarative

Processing
Assertion Static

Symptom based

Run-time checks

other symptom

(wrong/missing)

(behaviour)

one execution
correctness debugging

Execution

Data
Debugging

Debugging

Search-space
Visualization

Variables
and Constraints

Display
Constraints

Analysis

Debugging

Program

Observed

SymptomSpecification

Performance

Symptom
Abstract

Fig. 1. The DiSCiPl Debugging Methodology

The underlying debugging methodology is as follows. The first objective
is, understandably, program correctness. Correctness is dealt with at a first
stage at compile-time. We distinguish here the assertion processing phase and
the static diagnosis phase.
Two different approaches to the assertion processing phase have been

used in DiSCiPl. The first one is an extension of the classical verification
techniques to the case of constraint logic programs. In this approach, a com-
plete specification of the program is required and verification aims at actually
proving that the program satisfies such specification. Failure in proving the
specification may locate program constructs which are responsible for bugs.
The second approach is based on first inferring properties of the program by
means of static analysis and then comparing such properties with the exist-
ing specification. If the inferred properties are incompatible with some part

Title Suppressed Due to Excessive Length 5

of the specification then an abstract symptom is found. The advantage of
this second alternative is that a complete specification of the program is not
required, though the more complete such specification is, the more bugs can
be automatically detected.
In case abstract symptoms are discovered in the assertion processing

phase, they should be corrected before executing the program. The cyclic
arrow in the assertion processing box indicates that this is an iterative pro-
cess. After correcting the program, assertion processing must be performed
again in order to check whether abstract symptoms still remain in the cor-
rected version of the program. Though the assertion processing tools often
identify the cause of an abstract symptom, it is also convenient to have auto-
matic tools for static diagnosis, as indicated in the figure. The intention is to
detect bugs as early as possible, i.e., during compilation or even editing. This
can only be achieved by (semi-) automatic analysis of the (not necessarily
completely developed) program in the presence of some (approximate) spec-
ifications. An example of such techniques is type checking, which has long
been proved to be useful for this purpose. Our approach introduces a frame-
work for working with properties that will be more general than classical type
systems.
The fact that no more abstract symptoms are detected does not imply

that no bugs are left in the program. At this point, program testing in the
classical sense has to be performed. However, the methodology also aids the
programmer in this respect. During the assertion processing phase, programs
may optionally be automatically annotated with run-time checks for those
requirements which turned out to be impossible to prove in the assertion
processing phase. This will allow detecting further violations of the specifica-
tions during program execution on sample input data. The result is detection
of run-time symptoms. These have to be diagnosed and the detected errors
have to be corrected. Since run-time tests introduce substantial overhead in
program execution, the annotation with run-time checks is performed only
upon user’s request and possibly temporarily, i.e., only until the behaviour
of the program can be assumed to be correct.
Once correctness is sufficiently established, it is time for performance

debugging. The visualisation tools developed in the project make it possible
to present abstract views of a single computation. In particular, they will be
used to examine those computations that are inefficient in finding expected
solutions.
Figure 1 gives a general idea about the tools needed to support the pro-

posed methodology. They include tools like assertion processors, static diag-
nosers, declarative diagnosers, and various kinds of visualisers. Several tools
of this kind have been implemented in the project on various platforms. They
are surveyed in the forthcoming sections and discussed in more detail in the
remaining chapters of the book.

6 P. Deransart et al.

2 The assertion-based tools

The static debugging tools developed in DiSCiPl are based on assertions. We
first briefly discuss the language of assertions and then the static debugging
tools based on it.

2.1 The language of assertions

Assertions are used for describing selected aspects of the intended or/and
the actual behaviour of the program. Thus, they specify some requirements
about all answers or computations, or they describe some properties that are
satisfied by all answers (or by all computations) of the program.
There is a trade-off in the design of an assertion language: the more ex-

pressive the language of assertions is, the more subtle properties of programs
can be described. However, this also causes increased difficulties in verifica-
tion and/or inference of such subtle properties. Also, a complex assertion
language could be difficult to understand by the user.
The choice of a suitable assertion language was an important design de-

cision that provided a common basis for development of various tools on
different platforms. An extensible assertion language has been designed and
is in use in several tools developed in the project. The language is described in
more detail in Chapter 1. Here, we outline only some principles of its design
and we give a few examples of assertions.
There are two main kinds of assertions, those which relate to predicates,

called predicate assertions and those which relate to program points (program-

point assertions). Predicate assertions can be classified into three categories:
(1) assertions describing success states of a predicate, sometimes called post-

conditions, (2) assertions describing call states of a predicate, sometimes
called preconditions, (3) assertions describing properties of the whole compu-
tation of a predicate (a sequence of states).
Predicate assertions link with a predicate some properties which should

hold, respectively, in all call states, all success states or in all computations.
For example, the assertions:

:- calls p(X,Y) : ground(X).

:- success p(X,Y) => list(Y).

:- comp p(X,Y): (ground(X), var(Y)) + not_fail.

state, respectively, that in all calls to p, the first argument must be ground
(i.e., a term without variables), in all success states for p the second argument
must be a list, and that every call to p with the first argument ground and
the second a variable should not fail.
The language of assertions is extensible in the sense that its definition

does not restrict a priori the properties to be referred to by the assertions.
Properties can be predefined predicates of the language (like ground and
var above) but can also be defined by the user. Chapter 1 discusses general

Title Suppressed Due to Excessive Length 7

aspects of using the DiSCiPl assertion language for program validation and
debugging.

2.2 The Tools

We now discuss briefly the DiSCiPl tools supporting static debugging. They
include: the Generic Preprocessor for CLP Debugging and its two instances
CiaoPP (for the Ciao Prolog system) and CHIPRE (for CHIP), described in
Chapter 2, the Prolog IV assertion tool (Chapter 3), and the static type-
based diagnoser of CHIP discussed in Chapter 4 which has been also ported
to Calypso.
We assume that a program is given together with a (possibly empty) set

of assertions describing some required properties of the program (to be called
check assertions).
Ideally, we would like the assertions to be automatically checked. That

is, we would like to have a tool that receives a program and a set of check
assertions as input and returns, for each of the assertions, one of the following
three values:

– proved: the requirement holds in every computation. This is the most
favourable situation. It indicates that the requirement is verified.

– disproved: the requirement is proved not to hold in some computations.
This means that something is wrong in the program and we should locate
the program construct responsible for that.

– unknown: the tool is unable to prove or disprove the requirement. If this
may happen the tool is called incomplete.

Such automatic checking of assertions is one of the basis for static debug-
ging in DiSCiPl. Though the tools used are incomplete, in many cases they
are able to prove or to disprove the check assertions provided by the user.
For a disproved set of check assertions, the constructs responsible for incor-
rectness of the program are identified in the static diagnosis process. Even in
“don’t know” cases it is often possible to locate fragments of the programs
where violation of the check assertions is not excluded. This is often a useful
warning.
It is often the case that no check assertions are provided, or the verifica-

tion of the provided ones gives a “don’t know” answer. The DiSCiPl static
debugging tools address this problem in different ways.
The principle of the preprocessors (CiaoPP, CHIPRE) is fully automatic

operation that for a given program and (possibly empty) set of check as-
sertions finds as many abstract symptoms and locates as many errors as
possible. The preprocessor uses abstract interpretation [1.5] to infer actual
properties of a given program which are then written in terms of assertions.
Automatic inspection of such inferred assertions allows detecting irregulari-
ties, like empty types of predicates, which are often good indicators of bugs

8 P. Deransart et al.

in the program. The tool also compares the inferred assertions with the ex-
isting check assertions and with the assertions describing relevant properties
of the library predicates and reports the discovered abstract symptoms. This
sometimes may be sufficient to locate errors and generate warnings. For an
assertion which cannot be proved or disproved run-time tests may be included
in the program. It is important to mention that the preprocessor may detect
a good number of bugs without any user-provided check assertions.
In the Prolog IV assertion tool the focus is on verification of check asser-

tions. In order to use it, one has to augment the program with check assertions
describing expected call states and success states of all program predicates.
The assertions are to be constructed from a small set of basic properties in-
cluding atomic constraints of Prolog IV and a few other properties. The tool
attempts to verify the assertions and reports on the errors located during the
verification and also on missing and inconsistent assertions. Run-time tests
are inserted for assertions which were neither proved nor disproved during the
verification. In contrast to the preprocessors this tool is not able to handle
programs without check assertions.
The type-based diagnoser is an interactive tool for locating causes of ab-

stract symptoms. The diagnosis is done by searching for verification failures,
thus using a principle similar to the above discussed tool. An important dif-
ference is that the check assertions needed are not assumed to be given a
priori but are interactively requested “by need”. The process is started and
controlled by a discovered abstract symptom. The session is preceded by
static analysis of the program. The analyser infers types of all predicates.
They may be inspected by the user and the session starts when one of them
is identified as an abstract symptom. (Alternatively a symptom can be ob-
tained by comparison of the inferred types with check assertions, if the latter
are given). The requests of the diagnoser concern expected types of program
predicates. They may be answered by referring to the types inferred or by
providing different ones.

3 The declarative diagnoser

Declarative diagnosis is a technique for locating errors in a program on the
basis of run-time symptoms that appear in a single terminating computation.
The diagnosis session may be started if the outcome of a terminated compu-
tation is a symptom. The key idea is that the analysis of the computation is
partly automated. The system queries the oracle, which is normally the user,
about intermediate results of the analysed computation. The oracle has to
decide whether the results shown at each step of the diagnosis are symptoms
or not. In addition, it has to tell the system what would be the expected re-
sult if the one shown is a symptom. Oracle answers are used by the diagnosis
algorithm to control the search for the error.

Title Suppressed Due to Excessive Length 9

It should now be clear why the diagnosis is called declarative: the queries
concern only the results, that is, they refer to the declarative semantics of
the program, while the operational aspects of the analysed computation are
hidden from the oracle. This allows to locate errors in the program with-
out having to deal with control aspects, which are hidden in the diagnosis
algorithm.
The symptoms dealt with by a declarative diagnosis divide naturally in

two categories:

– an incorrectness symptom is a wrong answer. More precisely, the computed
answer for a given goal g is a constraint c. It is an incorrectness symptom
if c has some solutions not expected by the user.

– an incompleteness symptom is observed if some specific solution expected
by the user is not given by any of the computed answers.

Declarative diagnosis of each kind of the symptom is done by different algo-
rithms.
The declarative diagnoser developed in DiSCiPl is described in Chap-

ter 5. The main difficulty with the declarative diagnosis technique is that
the intermediate results may be difficult to understand by the human oracle.
The visualisation and abstraction techniques developed in the project may
be helpful in this respect.

4 Visualisation Tools

Sometimes the tools discussed so far cannot detect the source of an incor-
rect or missing answer in a program, or the program shows an unsatisfactory
performance whose source cannot be detected by static analysis-based tools.
The latter behaviour is usually intimately related with the operational se-
mantics of the language, and cannot be uncovered by tools based on declara-
tive semantics. In the former case, sometimes an extensive exploration of the
runtime behaviour of the program (possibly with the aid of some intuitive,
high-level representation of such behaviour) is of great help, allowing the pro-
grammer to grasp the problems present in the execution. In this section we
will present tools intended to be used when programs produce wrong results
for a given test data or, in general, when their performance falls below ac-
ceptable limits. They are based on the operational semantics of the language,
and highlight different aspects of the computation in order to help the user
to understand the reasons for the undesired behaviour.
Most visualisation and runtime debugging tools are based on represen-

tations of the execution profile of constraint programs using a Prolog-like
selection rule, and thus depict an LD tree. However, classical debuggers (i.e.,
those customarily used for imperative languages, and even for Prolog) fall
altogether short when it comes to CLP, and new approaches are needed: the
implicit selection rule, the use of backtracking, the constraint propagation,

10 P. Deransart et al.

and the (encapsulated) labelling strategies of CLP have to be taken into ac-
count and somehow reflected in the representation of the execution, for in
many cases the culprit of an unexpected behaviour can be traced back to a
wrong selection affecting one or more of these features.
Additionally, classical debuggers for imperative languages show values of

variables in a straightforward way, since they are perceived as boxes hold-
ing their values, with no explicit relationship whatsoever with each other.
However, values of variables in CLP are not simple items, but logical vari-
ables, and they can hold not only definite values, but ranges of values (either
finite or infinite, depending on the domain of the language), and the basic
elements in the domain can be integers, reals, boolean values, strings, etc.,
again depending on the domain. The actual range of a variable is updated as
execution proceeds, being usually narrowed as the system advances towards
a final solution, or being widened, when the system backtracks to search us-
ing an alternative path. These changes in the ranges of the variables are of
utmost importance to understand an execution and the sources of a possible
low performance.
Variables in CLP are also related among them by setting up constraints.

From the viewpoint of the user, this is performed just by stating the equations
in the source language. But internally, the representation and management
of the constraints is very involved, and equivalent constraints differently ex-
pressed (for example, over-constraining some variables) can greatly affect the
execution time. The possibility of visualising the constraint store and its evo-
lution allows the programmer to perceive the relationship among the source
code and the behaviour of the constraints.
Additional facilities which would be of great help are the possibility of pro-

jecting the constraint store at a given point on some variables (for example,
on the variables of a clause). Moreover, current CLP systems have evolved
to tackle large, real world problems, which has forced the introduction of
complex, specialised constraints, such as the cumulative constraints [1.2], for
which ad hoc representations are better suited. Visualisation of an instance
of the cumulative constraint should show its evolving profile at runtime.
In any of the above cases, large executions pose a general problem: the

amount of information to be treated or displayed cannot be dealt with using
standard techniques, and special means of abstraction have to be applied. The
aim is to allow the user to focus on interesting properties of the program,
and to abstract automatically from irrelevant details.
In the next sections we will show how the above mentioned needs are

addressed by the tools developed in the project. Some of the tools are spe-
cialised for a particular CLP system, while others exemplify more general
techniques amenable to be adapted to a variety of systems.

Title Suppressed Due to Excessive Length 11

4.1 Showing Control Features

Although one of the basic and very interesting properties of constraint pro-
grams is that it can generally be understood declaratively, i.e., without look-
ing at control aspects, a concrete control strategy which drives the execution
flow (and, thus, the search) implicitly exists in the evaluation engine. Some-
times a lack of understanding of how this control operates makes a program
difficult to debug from the performance point of view. This control has two
important components: the search determined by the program and the search
in labelling. The control in the propagation of constraints, although permitted
by some systems, does not fall in the same category as the flow control. While
it is true that different propagation schemes affect the runtime constraints
and, therefore, may ultimately change the shape and performance of the ex-
ecution, the relationship between the settings of the constraint propagation
control and the shape of the search tree (or, more precisely, the labelling tree)
are too distant to be considered intimately related and explored in the same
way.

The Box Model and its Appropriateness for CLP. Classical Prolog
debuggers are generally based on the well-known “box model” [1.3]. This
is an execution model where a procedure invocation is seen as a box, with
unidirectional input- and output gates, named ports. These ports are associ-
ated with events happening to this call/box: entering the box for first time
(i.e., calling the predicate), exiting with success, reentering to try another
choice (i.e., redoing), and exiting with failure. Other ports can be defined—
and turn out to be necessary to represent the operational behaviour of CLP
systems. For example, suspended constraints waiting for instantiation, if they
are to be seen as regular goals, need a sort of suspend and awake port. This
complicates the representation of the execution, since the control and con-
straint solving parts of the system are mixed in a single execution flow. This
approach possibly complicates a text-based debugger too much, even if the
classical commands to break the execution at some point, and to skip or dive
into parts of the program are available. Further enhancements, such as com-
mands to display the state of the stacks or to locate the current execution
point in the overall picture are an important aid, but still the problem of
big executions and representation of variables (which is a relatively simple
projection in Prolog) and constraints remain to be solved.
It is possible to make use of graphics in order to represent the boxes more

intuitively; a first approach would be to literally display them, ones inside the
others, and provide a zoom in/out facility to navigate in them. However, the
depiction becomes very complicated when there are more levels of nesting,
and probably this representation is only of pedagogical interest.

Showing Control as a Tree Another well-known idea is to visualise the
resolution tree. This representation lends itself to a variety of further re-
finements and additions which makes it quite appealing, despite its initial
simplicity.

12 P. Deransart et al.

One of the strong points of a graphical depiction of control is that the
“big picture” of the execution is unveiled, so that the programmer can look
at the execution globally, both in the programmed search and in the la-
belling part of finite domain solvers. The programmed search, despite being
the core search technique in Prolog programs, is, in general, second to the la-
belling procedures in CLP. This labelling can, in fact, be seen as a specialised,
data-driven (often including non-trivial heuristics) search. Moreover, it is not
fixed, since several constraint logic programming systems (as CHIP or Prolog
IV), allow the programmer to provide parameters to the labelling predicate
which tailor its behaviour to the application at hand. If a visualisation of the
enumeration is available, the user can control at each node how the chosen
strategy behaves. This, combined with visualisation of the range of variables,
will provide the programmer with a good view of how the search space (as
determined by the domain of the variables at each execution point) is being
reduced.
Thus, it appears useful to develop tools which show globally how the

execution proceeded, both from the point of view of the program search
and of the labelling steps. Since it is interesting to show which variables are
involved in a given node (predicate call), it appears advantageous to interface
tools aimed at this representation with the control view. We will talk about
these tools in the next sections.
In view of the above, a feasible general strategy to implement control-

related depictions, and to interface them with other visualisation tools, is the
following:
A generic search tree visualiser should be able to show graphically the

nodes of both the programmed search and the labelling search trees.

– In the programmed search view, a node should be shown per predicate call,
including predicate names and, if possible, depiction of the source code and
of the runtime data (i.e., the values of the variables). For some domains,
as the Herbrand domain, this can be taken care of directly by the tree
visualiser, but as the complexity of the domains increases, it is probably
a better design choice to interface the raw tree visualiser with other tools
aimed at the visualisation of variables. Several control actions should be
possible while displaying this tree, namely: stopping the execution, stepping
forward and backward, and abstracting parts of the execution in order to
avoid overwhelming the programmer with too many details (see below).
In addition, it should be possible to obtain selectively (e.g. by clicking on
the nodes of the tree) a (possibly graphical) view of variables and of the
constraint store at the execution points corresponding to the nodes of the
tree.

– For the labelling search view, the nodes of the tree correspond to the choices
performed within the labelling procedure. This, combined with a variable
domain visualisation, which highlights how the current domain of the vari-
ables is being narrowed, provide the programmer with a good view of how

Title Suppressed Due to Excessive Length 13

the search space is reduced. Abstractions techniques can be applied, in a
similar way to the programmed search view.

4.2 Showing Values of Variables

The values of variables drive the execution, and obtaining them is its ultimate
objective. Knowing them at runtime is a comparatively easy task in the case
of traditional languages, but in the realm of constraint languages the situation
becomes more involved: definite values are now transformed into constraints
which relate the values of the variables and which restrict the possible range
of values a variable can take.
In principle all the variables in the program could be visualised (i.e., the

store itself could be shown as a collection of variables), but it is clear that in
most cases this would overwhelm the programmer with an unwanted amount
of information. A possibility which reduces the number of variables to take
into account is to select those variables which are reachable from a given
program point; this can be done by hand (inspecting the program) or by
using special tools. Alternatively, some variables can be marked especially in
the source program with annotations which do not change the meaning of
the program, but which are understood by programs aimed at debugging.
Depicting the variables themselves needs a way of representing their do-

mains. While for some constraint domains no satisfactory solution has been
developed so far (e.g., for linear constraints), for other, such as finite domains,
reasonably easy to understand depictions can be used. Textual representa-
tion of the domains, or graphical depictions such as that developed by Micha
Meier [1.9] for the Eclipse system [1.7] will be used in the tools described in
the next chapters. In particular, the graphical representation in [1.9], based
on assigning a dot (c.f., square) to each possible value of a variable, which is
therefore shown as a collection of dots or squares, is at the same time com-
pact and amenable to be used to represent the relationships among variables
and its history in time.

4.3 Showing Constraints

Constraint debugging refers to the process of debugging programs by ex-
amining the constraint store, as opposed to examining the structure (and
the execution) of the program. A constraint-oriented view is helpful both in
correctness debugging, since by inspecting the store the programmer may
detect wrong or missing constraints, and in performance debugging, because
the structure of the constraints determines the propagation of updates in-
side the solver, hence the number of internal operations performed. A more
in-depth discussion of this issue can be found in several related chapters.
The variable visualisation tools mentioned above do not give any direct

insight into the relationships or mutual influence among variables. As the val-
ues of variables are updated by adding constraints (which restrict the domain

14 P. Deransart et al.

of the variables, or relate different variables), exploring which constraints are
active at a given point, and which constraints were used to perform propa-
gation at some point, is also very interesting. In general, it is useful to show
some or all the constraints in which a subset of variables are involved (thus
projecting the store over these variables). Obvious constraint representations
include text-based displays of (projections of) constraints using the source
language, but, as it happened with values of variables, this may not always be
appropriate if too many constraints or variables are involved. Additionally,
a source-based representation of constraints is usually very difficult to un-
derstand intuitively, especially when the number of constraints grows beyond
some threshold.
It is possible to develop graphical representations of the relationships

among variables: an appealing possibility is to allow the user to interactively
change values of variables, and see what are the effects of these changes on
the other variables. Interestingly, this approach is orthogonal to the way in
which variable values are depicted. This animated depiction gives an intuitive
understanding of the way the variables relate to each other, and, thus, of the
constraints placed on them. A static version of this representation can be
built, as a 2-D grid in which the points which belong to the domains of two
given variables are highlighted. This would show the combined effect of all
the constraints on the two selected variables.
A hindrance to constraint debugging is the non-hierarchical, plain compo-

sition of the constraint store. Unlike programs and data, which are structured
in many ways (procedures, predicates and rules, objects, tree structures, etc.),
it is generally admitted that the store is a mere flat and huge collection of
formulas with no structure whatsoever. Moreover, in modern constraint lan-
guages, cooperation of solvers generate even more complex, heterogeneous
and intricate store structures (e.g., in Prolog IV). However, the programmer
has usually in mind a structured vision of the program and the relationships
of the elements in it. Understanding how the store relates to this vision is a
very interesting task which we will look at more deeply below.

4.4 Abstracting

In executions of large programs, the debugging process has to cope with a
sizeable number of calls, and with a large number of variables, having each
many possible values, and related through many constraints. The program-
mer can be easily overwhelmed by the amount of information, so that no
conclusion can be drawn directly from it. Thus, it is highly desirable to have
methods which help to deal with these very important cases. Abstraction
methods, amenable to be applied to as many cases as possible, would give
the programmer a more friendly interface, by removing unneeded details.
In the case of control depiction as a search tree a clear possibility is to

abstract parts of the tree, maybe by collapsing them [1.11]. The user might

Title Suppressed Due to Excessive Length 15

select which parts of the tree can be collapsed (perhaps those which corre-
spond to parts of the program known to be correct), using either interactive
graphical interface or assertions added to the program. It is also important
not to loose important information when performing this abstraction: as an
example, abstracting a tree by collapsing parts of it may cause data regarding
the size of the tree not to be displayed. This data can alternatively be encoded
as a tag in the collapsed tree, as a number or as a colour code. In general,
many information items we want to retain, but which cannot be easily kept
when abstracting, can be added with tags to the abstracted picture.
A similar case appears when displaying variables. In the particular case of

finite domains, variables having large domains would need (if the aforemen-
tioned point-per-value representation is used) pictures with too many details
in them. This would clutter the display, so that it would be difficult to draw
any conclusion from the depiction. Also, quite often not all the values in
the domain are of interest: if we are looking at how fast variables have their
domains narrowed, it is usually of little interest which values are removed
at each step. On the other hand, when we are more interested in knowing
properties about the correctness of the domains of the variables, probably
some points outside the current domain are not of interest (because we know
they have been correctly removed), and some values currently in the domain
are of interest only if they are removed (because we foresee they should be
part of a final solution).
Some techniques, as domain compaction, which restricts which parts of

a domain are to be visualised, can be devised and applied either by hand or
sometimes in a semi-automatic fashion, maybe driven by annotations written
by the user in the program source, or by pragmas automatically generated
by analysers.
Too many variables to be visualised also call for abstraction of the display.

When the domain visualisation tools are linked with tree visualisation tools,
a natural option is to display only the variables in the node being studied.
This is not always possible: the (very interesting) case of global constraints,
in which many variables are related by a complex relationship, usually needs
tailored visualisation, because it is not easy to reduce its solving process to
a CLP-type search without implicitly dealing with the details of the solving
algorithm (Chapter 12).

4.5 Controlling size and complexity of the store (S-boxes)

As mentioned above, no reasoning can be done on a flat representation of
the store. This can be addressed by allowing the programmer to structure

the store by modifying the constraint granularity. This would be achievable
by structuring the store as a hierarchy of sub-stores, organised themselves in
sub-stores etc. and giving the programmer the necessary tools to. Thus, the
store is to be organised as an hierarchy of sub-stores. The tools supporting
this idea should make it possible:

16 P. Deransart et al.

– to create and to modify the hierarchy,
– to focus on a local view of selected sub-stores,
– to navigate in two directions (search tree and propagation process) in these
sub-stores.

Taking advantage of properties of the constraint narrowing operators and of
the main algorithm computing the overall domain reductions, it is then pos-
sible to generate arbitrary levels of abstractions of the store by considering
subsets of the store as global constraints (in order to simplify the represen-
tation).
A tool for store inspection has been designed and is comprehensively de-

scribed in Chapter 11. It allows the user to add structure information to the
source code by marking selected goals in selected rule bodies. The set of “inter-
esting” constraints (e.g., finite domain and/or interval constraints) defined
by the corresponding predicates would then form a sub-store. Hierarchical
organisation of the store is then associated to the program structure.
The key idea of the tool is to consider a store as a closed box (referred

as S-box in the following) with no connection with the outside. By default,
the store at any node of the search tree is considered as one S-box including
all constraints of the store. This flat structure can be changed by using the
tools to obtain an hierarchy of S-boxes, each of which includes a subset of
the constraints involved. S-boxes can be created by highlighting some parts
of the CLP program. This has the following effect, depending on what is
highlighted:

– some constraints: they are all placed in one S-box;
– a goal: all constraints created when resolving the goal are included in one
S-box;

– the head of a clause: all constraints created while in the clause are included
in one S-box.

From the propagation view-point, a S-box acts as a big constraint which
is the conjunction of all constraints it embeds. Note that this implies a mod-
ification of the propagation process: all constraints pertaining to the same
S-box must be awaken in such a way that the whole propagation appears as
atomic from the outside.
The set of constraints of the active S-box is displayed as a graph whose

nodes are constraints and edges link constraints sharing variables. The graph
contains only user constraints, that is decomposed constraints are recon-
structed in order to be displayed. This requires modification in the core of
the host system.
The hierarchy of existing S-boxes is represented in a tree form allowing

the user to step backward and forward in the “zooming process”.
The S-box approach can be seen as extracting constraints from the main

CLP program, then gathering them in clauses to form a new structured Prolog
program. The added structure facilitates debugging. In particular, it may

Title Suppressed Due to Excessive Length 17

allow more precise location of errors by the declarative debugger described
in Chapter 5.

5 A unified view of the tools

This Section shows how the above mentioned tools relate to the proposed
methodology and to each other. Figure 2 preserves the structure of Figure 1

Diagnoser
assertion tool

Declarative
Diagnoser

Prolog IV

CHIPRE
Type-basedCiaoPP

Program +

other symptom

(wrong/missing)

(behaviour)

Observed

Symptom

one execution
correctness debugging

Prolog IV

Assertion

Language

Ciao
Calypso

Prolog IV

S-box tool

Visualizer
Global Constraint

VIFID
S-box tool

ChipV5

Processor
and Solver

APT
Search-T. Viewer
Chip Visualizer

Visualizer

run-time checks

Abstract
Symptom

Fig. 2. Tools developed in DiSCiPl

to illustrate how the proposed methodology is supported by the tools. Most
of the tools have been developed for selected individual platforms, as sum-
marised below. However they follow the common view adopted in DiSCiPl.
As indicated in Figure 2, the platforms which have been used in the

project are: Chip V5 [1.4], Prolog IV [1.10], Ciao [1.8], and clp(fd)/Calypso
[1.6].
While the tools are platform-specific, the ideas represented by each of

them are of general importance and can be integrated in any CLP platform.

18 P. Deransart et al.

In some cases porting of the tools does not require a big effort. This was
demonstrated by porting the type analyser used in the type diagnoser to
Ciao, integrating it in CHIPRE, and by porting the type analyser and type
diagnoser to Calypso. Also, the assertion language (see Chapter 1) has been
used for different tools and on different platforms.
The rectangles with thick edges in the figure indicate tools for correctness

debugging. They include the tools for static debugging:

– CHIPRE andCiaoPP (instances of theGeneric Preprocessor) (Chap-
ter 2) use abstract interpretation to infer assertions about the program at
hand. The inferred assertions are compared with the specification (check
assertions), which may or may not be provided by the user, and with sys-
tem assertions describing library predicates. If they do not conform the user
is warned. For the check assertions that cannot be proved nor disproved
run-time tests can be inserted in the program. Erroneous constructs are
located by means of disproved check assertions and are reported to the
user.

– The Prolog IV assertion tool (Chapter 3) verifies check assertions writ-
ten in a restricted language, which must be provided a priori, and reports
errors located by means of disproved assertions. Run-time tests can be
included for assertions that cannot be proved nor disproved by the tool.

– The Type-based Diagnoser (for CHIP and for Calypso)(Chapter 4) uses
the static analyser for inferring types. Diagnosis can be requested when one
of the inferred types is different from that expected by the user (abstract
symptom). Check assertions necessary for locating the error are requested
interactively until an error message is obtained.

The rectangles with split Ted edges indicate tools for debugging based on
run-time symptoms.
The Declarative Diagnoser implemented for Calypso (Chapter 5) is

an interactive tool that locates errors causing symptoms of wrong or missing
answers.
A lot of effort has been devoted to performance analysis, since it is prob-

ably the most difficult aspect of constraint debugging. The tools for per-
formance analysis are visualisation tools which facilitate understanding of a
single execution of the debugged program. As discussed above, the problems
of particular interest are: visualisation of the search space, display of variable
bindings and constraints, and analysis of the behaviour of constraints.
As mentioned before, the whole search space during a single execution of a

CLP program can be represented by a tree structure. Several equivalent pre-
sentations of this structure are possible. In CLP programs over finite domains
the performance depends heavily on labelling. Therefore, it may be desirable
to have a separate visualisation tool only for labelling. These considerations
are behind the design decisions for the DiSCiPl visualisation tools for search
space. The following tools have been developed for this purpose:

Title Suppressed Due to Excessive Length 19

– Prolog IV Search-Tree Visualiser (Chapter 6) presents the search
space as a three-dimensional dynamic tree based on the trace box model.

– CHIP Labelling Visualiser(Chapter 7) presents the labelling part of
the search space of an execution of a finite domain CHIP program.

– INRIA Search-Tree Visualiser (Chapter 8) visualises the traversed
search space (including labelling) as an SLD tree and includes abstraction
functionalities. The visualiser has been developed for Calypso. A special
focus is on view abstraction, so that the same search space can be rep-
resented in different ways. Properties defined with assertions are used for
that purpose.

– The APT visualiser (Chapter 9) uses and/or trees for representing the
search space. It has been developed for Ciao and was also ported to Ca-
lypso.

In all the above mentioned tools the nodes of the search space visualised
give access to data stored in the corresponding state of the computation.
However, this may not be sufficient to understand the behaviour of constraints
during the computations. The latter problem is addressed by the following
tools:

– VIFID/TRIFID (Chapter 10) is a tool to visualise the data evolution of
CLP(FD) programs in Ciao. It depicts in an intuitive way the state of the
constraint store at selected points in the program. It gives the user several
facilities, including allowing to post/un-post arbitrary constraints during
the execution of the program. It also shows the evolution of (a subset of)
the variables in the program at different levels of abstraction.

– The S-Box tool (Chapter 11) for clp(fd) facilitates analysis of constraint
propagation by allowing the user to impose some temporary structure on
the constraint store. It may be used both for performance debugging and
for correctness debugging as a support tool for the declarative diagnoser.

– Global Constraint Visualiser (Chapter 12) for CHIP makes it possible
to visualise the global constraints cumulative, diffn, cycle and among.
This is of great practical importance since the global constraints are heavily
used in all industrial applications and due to their sophisticated nature it
may be very difficult to understand their behaviour.

Some of the tools discussed in the book have been already used in in-
dustrial applications. Chapter 13 discusses this experience and draws some
conclusions from it.

1

1.1 E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1982.

20 Subject Index

References

1.1 A. Aggoun, F. Benhamou, F. Bueno, M. Carro, P. Deransart,
W. Drabent, G. Ferrand, F. Goualard, M. Hermenegildo, C. Lai,
J. Lloyd, J. MaÃluszyński, G. Puebla and A. Tessier. CP Debugging
Tools. Public Deliverable D.WP1.1.M1.1, ESPRIT IV Project DiSCiPl,
http://discipl.inria.fr/deliverables1.html, 1997.

1.2 N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Jour-
nal of Mathematical and Computer Modelling, 20(12):97–123, 1993.

1.3 L. Byrd. Understanding the control flow of prolog programs. In S.-A.
Tärnlund, editor, Proc. of the Workshop on Logic Programming, Debrecen,
1980.

1.4 Cosytec SA. CHIP System Documentation, 1998.
1.5 P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Fourth ACM Symposium on Principles of Programming Languages, pages
238–252, 1977.

1.6 D. Diaz. GNU-Prolog user Manual. http://pauillac.inria.fr/ diaz/gnu-prolog/,
2000

1.7 European Computer Research Center. Eclipse User’s Guide, 1993.
1.8 M. Hermenegildo, F. Bueno, D. Cabeza, M. Garćıa de la Banda, P. López, and

G. Puebla. The CIAO Multi-Dialect Compiler and System: An Experimen-
tation Workbench for Future (C)LP Systems. In Parallelism and Implemen-
tation of Logic and Constraint Logic Programming. Nova Science, Commack,
NY, USA, April 1999.

1.9 M. Meier. Grace User Manual, 1996. Available at
http://www.ecrc.de/eclipse/html/grace/grace.html

1.10 PrologIA. Prolog IV Manual, 1996.
1.11 C. Schulte. Oz Explorer: A Visual Constraint Programming Tool. In Lee

naish, editor, ICLP’97. MIT Press, July 1997.
1.12 E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1982.

