
Universidad
{Complutense, Politécnica, Autónoma}

de Madrid

Facultad de Informática,
Escuela Técnica Superior de Ingenieros

Informáticos,
Escuela Politécnica Superior

Máster Interuniversitario en Métodos Formales
en Ingeniería Informática

ABSTRACT DOMAIN FOR FLOATING-POINT PROGRAMS

Autor: Daniel Jurjo Rivas

Director: Manuel Hermenegildo Salinas

Co-director: Jose F. Morales Caballero

Madrid, 8 Julio 2021

ABSTRACT DOMAIN FOR FLOATING-POINT PROGRAMS

Autor: Daniel Jurjo Rivas
Director: Manuel Hermenegildo Salinas
Co-director: Jose F. Morales Caballero

Acknowledgments

In Spain we say “Es de bien nacidos ser agradecidos” 1 and, since I like to think that I
am a “bien nacido,” I would like to express my gratitude to my father and my mother, -
and why not? - to my brothers. Also I would like to thanks to my partner Laura for all
the effort she has done putting up with me, all her support whenever I felt down, and all
the good times we have had and we will have. I have the great luck of having a lot of
people around me and I would like to also mention Jose, Adri, Aura, Gonza, Marcos and,
of course, my “cousin” Raúl; you know what is said.

Last, but not least, I would like to thank my supervisors: Manuel and Jose whom have
put trust in me, have devoted time and effort in the development of this work, and have
kindly shared with me their deep knowledge. I also would like to thank Isabel García the
help that she has offered during this thesis, concretely whith the development of the base
domain we used to implement our abstract interpretation.

1In English the equivalent saying is “Gratitude is the sign of noble souls” or “Manners make the person”
but they do not sound as good as in Spanish.

Abstract Domain for Floating-Point programs C

Resumen

Resumen — Los números en coma flotante aparecen en prácticamente todos los
programas actuales, sin embargo verificarlos cuando se usa esta aritmética no es en
absoluto trivial. Esto se debe a la naturaleza de la aritmética en coma flotante y a la
pérdida de precisión provocada al tratar de representar números reales en un ordenador.
Por otro lado, la interpretación abstracta ha demostrado ser una técnica efectiva a la
hora de capturar diversos comportamientos del código. Se han propuesto numerosas
aproximaciones a este problema usando las técnicas de interpretación abstracta y entre
todas ellas hemos decidido estudiar e implementar dentro del Sistema Ciao un dominio
no relacional basado en intervalos, el cual captura restricciones de la forma x = y · z.
Hemos extendido este análisis para diferentes representaciones de los números reales
utilizadas en la actualidad, con la esperanza de ayudar a los desarrolladores a escoger
el tipo de dato numérico más apropiado a la hora de programar. Esto permitiría reducir
el consumo de memoria mientras se mantiene bajo control la perdida de precisión, la cual
desgraciadamente siempre va a existir. Con este dominio hemos sido capaces de analizar
fragmentos de código industrial obteniendo resultados que nos animan a continuar por
alguna de las múltiples líneas que puedan aparecer como extensión de este trabajo.

Palabras clave — Aritmética en Coma Flotante, Interpretación Abstracta,
Programación Lógica, Análisis numérico.

Abstract Domain for Floating-Point programs i

Abstract

Abstract — Floating point numbers are widely used nowadays in programs but the
verification of programs using this type of arithmetic is not trivial at all. This is due to
the nature of floating-point arithmetic and the loss of precision when trying to represent
real numbers in a computer. On the other hand, abstract interpretation has demonstrated
to be effective in capturing different code behaviors and a number of different approaches
have been proposed for analyzing floating point, numerical programs. Among these
approaches, we decided to implement within the Ciao abstract interpretation framework
and study a non-relational interval analysis capturing the behavior of constraints of type
x = y · z. We extended this analysis to different representations of real numbers with
the hope of providing a tool for the developer in order to choose the most suitable type
when coding. The objective is to be able to minimize the consumption of memory while
controlling the loss of precision, which unfortunately is unavoidable in this computations.
With this domain we have been able to run some experiments with industrial code
obtaining some encouraging results. We also propose a number of research lines stemming
from several possible extensions this work.

Key words — Floating Point Arithmetic, Abstract Interpretation, Constraint Logic
Programming, Numerical Analysis.

Abstract Domain for Floating-Point programs iii

Contents

1 Introduction 1
1.1 Objectives . 3
1.2 Structure of the document . 4

2 Background 5
2.1 Floating Point Representations . 5

2.1.1 Floating Point Numbers . 5
2.1.2 Fixed point arithmetic . 7

2.2 Abstract Interpretation . 8
2.2.1 Abstract Interpretation Basics . 8
2.2.2 Abstract domains . 10

2.3 State of the Art . 11
2.3.1 Interval Domain . 11
2.3.2 Affine Domain . 13
2.3.3 Polyhedra Domain . 14
2.3.4 Other Domains . 15

3 The Ciao System 17
3.1 The CiaoPP Program Processor . 18

3.1.1 Supporting multiple languages . 19
3.1.2 Assertions . 20

3.2 Abstract Interpretation with Ciao . 23

4 Floating Point Interval Domain 27
4.1 Rounding modes . 27
4.2 Managing expressions . 29
4.3 Algorithms for Arithmetic Constraints . 30

4.3.1 Addition . 30
4.3.2 Product . 32
4.3.3 Division . 35

4.4 Widening . 38
4.5 Adding the domain to CiaoPP . 38

5 Experimental results 43
5.1 Missile Failure . 43

Abstract Domain for Floating-Point programs v

CONTENTS

5.2 ESA trigonometric functions . 44

6 Conclusions 49
6.1 Future work . 50

Bibliography 53

vi Abstract Domain for Floating-Point programs

List of Figures

2.1 Hasse diagram of the Parity Domain lattice. 10
2.2 An abstract domain using program variables X and Y , and the even lattice. 11

3.1 A high-level view of the Ciao system [29]. 18
3.2 Architecture of the CiaoPP verification framework. 19
3.3 Some successive and trees. Figure adapted from [52]. 24

Abstract Domain for Floating-Point programs vii

List of Tables

4.1 Direct lower projection for addition. 31
4.2 Direct upper projection for addition. 32
4.3 Direct lower projection for multiplication. 34
4.4 Direct upper projection for multiplication. 34
4.5 Direct lower projection for division. 36
4.6 Direct upper projection for division. 37

5.1 Result of apply Floats to ESA arcos function 48
5.2 Result of apply 24 bits fixed-point to ESA arcos function 48

Abstract Domain for Floating-Point programs ix

1
Introduction

Since the beginning of time mankind has tried to answer three questions: Where do we
come from? What are we? Where are we going? Since we were -and are- unable to answer
any of them, we started doing mathematics, which can be seen as a terrible idea. More
recently we have added Computer Science to the picture, which is probably an even worse
idea. This master’s thesis tries to answer a slightly easier question: Can we have some
guarantees when we use floating point numbers?
Floating point computations are present in almost every program nowadays. From the
calculus of a salary raise to the position of a satellite, computers perform thousands
of floating point calculations. Due to the nature of floating point numbers and their
arithmetic, floating point computations usually lead to small errors. Consider the
following C program:

1 int main(void)
2 {
3 float x = 1.0/10;
4 printf("The value of x is: %.20f \n", x);
5 return 0;
6 }
7

We will obtain that the value of x is 0.10000000149011611938 wich is not exactly the
0.1 we were expecting. These errors can lead to big problems as they grow during the
computations. For example in 1991 a Patriot missile failed its objetive of intercepting an
enemy Iraqi Scud missile that crashed on an American building and caused 28 deaths.
The error was caused by the representation of 0.1 as floating point. Repeated increments
by 0.1 resulted, after running for 100 hours, in an accummulated error of 500m and the

Abstract Domain for Floating-Point programs 1

CHAPTER 1. INTRODUCTION

death of 28 people.1
This example shows the importance of being able to analyze programs containing floating
point computations. Sadly, programs using floating point numbers are difficult to reason
about. Some of the factors that complicate this task are [1]:

1. compilers may transform the code not preserving the semantics of floating-point
computations,

2. floating-point formats are implementation-defined in most of programming lan-
guages,

3. there are different implementations of the operations that are incompatible,

4. mathematical libraries often come with little or no guarantee about what is being
computed and developers usually do not read this documentation,

5. predicting and avoiding phenomena caused by the limited range and precision of
floating point numbers cost a lot of time and effort to developers. Modern devices
support infinities, signed zeroes, non numerical objects ..., that help in some cases
but also bring in new issues,

6. rounding is a source of confusion, since there exist different rounding modes and
they can also change any time.

These difficulties are a root of evil and as a result verification of floating-point programs
in industry tends to rely on informal methods, mainly testing and numerical evaluation of
the numerical accuracy. The application of formal methods to verify this kind of programs
requires also a solution to the previously enumerated problems. Let us review some of
the progress that has been made in each point until now:

1. Currently some compilers provide options to keep the floating-point as is in code.
When this option is not available or cannot be used the only possibility is to verify
the generated code or the intermediate code which semantic is preserved.

2. The wide adoption of the IEEE 754 standard has helped avoid most of the problems
related to floating-point implementations. However, some other implementations,
such as the fixed point, do not have a widely adopted implementation. Also, some
older software still uses old implementations.

3. Again, thanks to the IEEE 754 standard, some basic operations can be computed
with some strong guarantees (e.g., that they are correctly rounded). However,
no guarantees are provided for some other operations, such as the trigonometric
functions.

4. An effective and formal approach to reasoning on mathematical functions has been
proposed in [2]. These proposals exploit the fact that the implementation preserves
the piecewise monotonicity nature of the approximated functions over R.

1http://www-users.math.umn.edu/~arnold/disasters/patriot.html

2 Abstract Domain for Floating-Point programs

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

CHAPTER 1. INTRODUCTION

5. The definition and formal proof of the correctness of direct and inverse algorithms
for IEEE 754 arithmetic constraints allows developers to use formal methods in a
wide range of programs. These techniques can be used to prove that a wide number
of unwanted phenomena do not happen and also allows generating test suites to
reduce these issues.

6. Being able to handle floating point rounding modes and being able to handle the
uncertainty about the rounding modes that are being used gives more precision
to the analysis. Even if the round-to-nearest rounding mode is the most used, a
number of issues have to be taken into account when designing an analysis:

• The IEEE754 standard granted the possibility of programmatically changing
the rounding mode and is offered in most of its implementations,

• this possibility is exploited by interval libraries and by numerical calculus
algorithms [3, 4],

• changing the rounding mode to something different to round-to-nearest can
be done by third-parties causing unexpected behavior [5]. Also this can be
exploited in an malicious way. There are also known examples of printer drivers
and sound libraries that change the rounding mode and may fail to set it back.

1.1 Objectives

In this work we implement a floating-point based interval analysis using the Ciao
Preprocessor. This work must be seen as a work-in-progress since we aim to evolve it
into a more complex tool to use in real-world problems. Our approach is built over the
Ciao System as a bundle and allows applying multiple analyses to the same program. We
aim to:

1. Implement a fast analyzer which allows developers to reduce errors related with
floating-point computations,

2. prove the correctness of the algorithms that are being used,

3. make it possible to analyze a program with different floating-point types and
numerical representations allowing to save memory without an undesired loss of
precision,

4. handle the uncertainty related with rounding modes, not only the IEEE 754 ones
but also for user-defined rounding,

5. extend the CiaoPP numerical analyzers,

6. develop different abstract domains within CiaoPP.

Abstract Domain for Floating-Point programs 3

CHAPTER 1. INTRODUCTION

1.2 Structure of the document

The rest of the thesis is organized as follows: in Chapter 2 we introduce the basic notions
and notation needed to develop this work, together with the current work in this field.
In Chapter 3 we introduce the Ciao system and in particular its preprocessor, in which
we implemented the artifacts of this work. Chapter 4 contains the definition of direct
projections used in the implemented abstract domain. Chapter 5 shows some early results
applying the developed domain. Finally Chapter 6 discuses the current limitations of the
tool and the future lines of work that can be taken.

4 Abstract Domain for Floating-Point programs

2
Background

2.1 Floating Point Representations

In this chapter we are going to define two of the most used representations of floating
point numbers which we have used in this work [6].

2.1.1 Floating Point Numbers

Definition 1 (IEEE 754 binary floating-point numbers). The set of binary floating-points
numbers F(p, emax) is defined by:

• The numbers of the form (−1)s2em, where s ∈ {0, 1}, e ∈ [1− emax, emax] ∩ Z, and
the mantissa

m = (d0.d1...dp−1)2 =

p−1∑
i=1

di2
−i

where p ∈ N is the precision.

• The non-numerical values +∞, −∞, qNan and sNan.

For convenience, we will denote emin = 1−emax. The smallest positive normal floating-
point number is fnormin = 2emin and the largest is fmax = 2emax(2 − 21−p). The smallest
sub-normal magnitude is fmin = 2emin+1−p. We will write even(x) to signify that dp−1 = 0
and sign(x) to obtain the value of (−1)s. Moreover we define F− = {x ∈ F|sign(x) = −1}
and F+ = {x ∈ F|sign(x) = 1} for a given F = F(p, emax).

Abstract Domain for Floating-Point programs 5

CHAPTER 2. BACKGROUND

Observation 1. The set of floating-point numbers is a subset of Q.

Definition 2. Given F a set of floating-point numbers, we define the relation �⊆ F× F
as:

x � y ⇔ x, y /∈ {qNan, sNan} ∧



x = −∞ y 6= −∞
x 6= +∞ y =∞
x = −0 y ∈ F+ ∪ {+0}
x ∈ F− ∪ {−0} y = +0

x, y ∈ R ∩ F x < y.

(2.1)

Some properties arise from this definition.

Proposition 1. �⊆ F× F defines a partial order.

Proposition 2. (F,�) is a lattice

Now we have to handle the operations, the big difference between real arithmetic and
floating-point arithmetic is due to the rounding. The basic rounding is round-to-nearest
but it is not the only one.

The following are the rounding modes defined by IEEE 754 [6, 1].

Definition 3. Let x ∈ R then:

[x]↑ =


+∞ if x > fmax

min{z ∈ F(p, emax)|z ≥ x} if x ≤ −fmin ∨ 0 < x ≤ fmax

−0 if fmin < x < 0

(2.2)

[x]↓ =


max{z ∈ F(p, emax)|z ≤ x} if − fmax ≤ x < 0 ∨ fmin ≤ x

+0 if 0 < x < fmin

−∞ if x < −fmax
(2.3)

[x]0 =

{
[x]↓ if x > 0

[x]↑ if x < 0
(2.4)

[x]n =



[x]↓ if− fmax ≤ x ≤ fmax∧
|[x]↓ − x| < |[x]↑ − x|∨
|[x]↓ − x| = |[x]↑ − x| ∧ even([x]↓)

[x]↓ iffmax < x < 2emax(2− 2−p) ∨ x ≤ −2emax(2− 2−p)

[x]↑ otherwise

(2.5)

6 Abstract Domain for Floating-Point programs

CHAPTER 2. BACKGROUND

Proposition 3. Let x ∈ R\{0} then

[x]↓ ≤ x ≤ [x]↑

[x]↓ ≤ [x]0 ≤ [x]↑

[x]↓ ≤ [x]n ≤ [x]↑

[x]↓ ≤ −[−x]↑

2.1.2 Fixed point arithmetic

Another possible representation of floating point numbers is the representation of floating
point numbers as fixed-point number [7, 8]. This representation is useful to represent
fractional values in base 2 or 10. Most modern languages do not explicitly support
fixed-point representation; however, it is present in others such as COBOL or ADA. In
any case, in 2008 the International Standards Organization proposed extending C with
fixed-point data types for the benefit of programs running on embedded processors. This
representation has been widely used in graphics engines such as the Sony’s PlayStation,
Game Boy Advance, Nintendo DS (2D and 3D), and in the Gamecube [9]. Doom 1 was
the last first-person shooter title by id Software to use a 16.16 fixed point representation
for all of its non-integer computations. It is also present in all relational databases,
moreover the SQL notation supports fixed-point decimal arithmetic and storage of
numbers. PostgreSQL has a special numeric type for exact storage of numbers with
up to 1000 digits[10]. In quantum computing fixed point arithmetic is being used in the
Q# programming language. It contains a numeric library for fixed point arithmetic on
registers of qubits.

Definition 4. The set of binary fixed-point numbers Fix(p, q),2 which is defined by the
N − bit binary word:

−1sbp−1bp−2bp−3...b0.b−1b−2...b−q
where 1 + p + q = N , s represents the sign, and bit bk has a weight of 2k. Note that q
represents the number of bits used to represent decimals. Also note that the representation
is an integer number in a range from −2p + 2−q to 2p − 2−q.

Observation 2. The decimal fixed point representation would be straightforward just
substituting 2 by 10.

It is clear that Fix(p, q) ⊂ Z for all p, q ∈ N. So we just have to consider the lattice
(Fix(p, q),≤) with ≤ the usual order between integers.

The following algorithms evaluates a mapping between the binary fixed-point numbers
and doubles.

1 long long int to_fixed(double x, int prec)
2 {

1In almost every computer science related blog there is someone talking about Doom so here we are.
2We choose this notation for clarity and because of its resemblance with fixed<n, q> which is used

when working with fixed point in C. Another, more standard notation is Q(p, q) or X(p, q) [8]

Abstract Domain for Floating-Point programs 7

CHAPTER 2. BACKGROUND

3 double aux = x * pow(2, prec);
4 long long int b = round(aux);
5 if (aux < 0)
6 {
7 b = llabs(b);
8 b = ~b;
9 b = b+1;

10 }
11 return b;
12 }

Example 1. Consider the floating point number 3.14 whose representation as floating-
point number is 3.14000000000000012434497875801753252744674682617188. If we
represent it as a fixed-point with precision 3, we obtain that it is 25, which is an integer
number which we can use without any rounding related problem.

1 double to_double(long long int fix, int prec)
2 {
3 long long int c = llabs(fix);
4 int sign = 1;
5 if (fix < 0){
6 c = c -1;
7 c = ~c;
8 sign = -1;
9 }

10 double f = (1.0 * c)/pow(2, prec);
11 f = f * sign;
12 return f;
13 }

2.2 Abstract Interpretation

Abstract interpretation [11] was developed by Radhia and Patrick Cousot in the late
1970s. This technique allows constructing sound program analysis tools which can extract
properties of a program by approximating its semantics. Since our work is based in this
technique let us give some basic insights.

2.2.1 Abstract Interpretation Basics

Sets and orders

Definition 5. Let S and T be two sets then:

• ℘(S) = {X ⊆ S} denotes the powerset of S,

• S \ T = {x ∈ S|x /∈ T} the set-difference,

8 Abstract Domain for Floating-Point programs

CHAPTER 2. BACKGROUND

• S = {x|x /∈ S} the set complementation,

• |S| denotes the cardinality of S,

• S ⊂ T denotes the strict inclusion and S ⊆ T the inclusion.

We say that a set S is finite if its cardinal is finite.

Definition 6. Let S a set, the binary relation R is an order relation if and only if:

• ∀x ∈ S, xRx

• ∀x, y ∈ S, xRy ∧ yRx⇒ x = y

• ∀x, y, z ∈ S, xRy ∧ yRz ⇒ xRz

Definition 7. A set L with ordering relation v is a poset, and it is usually denoted as
〈L,v〉.

Definition 8. A poset 〈L,v〉 is a lattice, denoted 〈L,v,t,u,>,⊥〉, if ∀x, y ∈ L we have
that the least upper bound (lub) xt y, the greatest lower bound (glb) xu y, the greatest
element (top) >, and the least element (bottom) ⊥ belong to L. It is complete when for
every X ⊆ L we have that

⊔
X,uX ∈ L. We use subscripts, like in ⊥L, >L, or

⊔
LX to

disambiguate the underlying lattice when it is not evident from the context.

Definition 9. We say that a lattice L is complete if ∀X ⊆ L both tX and uX exist.

Definition 10. A poset S with order < is said to satisfy the ascending chain
condition(ACC) if and only if does not exist any infinite strictly ascending sequence
x1 < x2 < x3 < ... with xi ∈ S∀i.

Functions.

Given f : S → T and g : T → Q we denote with g ◦ f : S → Q their composition, i.e.,
(g ◦ f)x = g(f(x)). We let idS : S → S be the identity function over S.

Definition 11. Let f : l → D a function and let L and D be two lattices. We say that f
is additive (resp. co-additive) if and only if:

∀X ⊆ L,X 6= ∅, f(tLX) = tDf(X)(resp.f(uLX) = uDf(X)). (2.6)

Continuity is kept when f preserves lubs of increasing (non-empty) chains. If
f : L→ D we overload the notation by writing f : ℘(L)→ ℘(D) for the additive extension
of f to sets of values (i.e., for any non-empty S ∈ ℘(L) we have f(S) = {f(v) | v ∈ S}).
For a continuous function f , the least fixed point lfp(f) = u{x | x = f(x)} = tn∈Nfn(⊥)
where f 0(⊥) = ⊥ and fn+1(⊥) = f(fn(⊥)). Note that additive functions are continuous.

Abstract Domain for Floating-Point programs 9

CHAPTER 2. BACKGROUND

>
even odd

⊥

Figure 2.1: Hasse diagram of the Parity Domain lattice.

2.2.2 Abstract domains

Definition 12. Let C (concrete) and A (abstract) be complete lattices. And let
α : C → A and γ : A → C two monotone functions. A pair (α, γ) forms a Galois
connection between C and A if for any c ∈ C and a ∈ A we have α(c) vA a⇔ c vC γ(a).
The function α (resp. γ) is the left-adjoint (resp. right-adjoint) to γ (resp. α) and it is
additive (resp. co-additive). A Galois connection such that α ◦ γ = idA is called a Galois
insertion.

Given a Galois connection, we call A = 〈A,v,t, α, γ〉 an abstract domain, with join
operator t. An abstract domain satisfies the ascending chain condition (ACC) if it has
no infinite ascending chain. In such cases the fixpoint of any monotone function can be
effectively computed in a finite number of steps, or by the use of a widening operator
∇ [11].

Definition 13. A binary operator � : A× A→ A is a widening operator in an abstract
domain (A,v) if

1. computes upper bounds: ∀x, y ∈ A, x v x � y ∧ y v x � y

2. ∀(xi)i∈N, (yi)i∈N ∈ A,∃k ≥ 0s.t.xk+1 = xk where x is computed as x0 = y0,
xi+1 = xi � yi+1

Example 2 (Trivial widening). The most trivial widening satisfying the definition is:

x � y =

{
x if y v x
> otherwise (2.7)

Example 3 (Abstracting parity). Let the concrete domain of integers be DInt = 〈℘(Z),⊆
,∪,∩, ∅,Z〉, let Ceven = {⊥, even, odd,>}, and γ : Ceven → ℘(Z) and α : ℘(Z)→ Ceven be
defined as

γ(x) =


∅ if x = ⊥
{1} if x = odd
{0} if x = even
Z otherwise

α(x) =


⊥ if x = ∅
odd if ∀y ∈ x,∃n ∈ Ny = 2n− 1
even if ∀y ∈ x,∃n ∈ Ny = 2n
> otherwise

Let veven⊆ (Ceven × Ceven) be defined as x veven y if and only if γ(x) ⊆ γ(y). The
Hasse diagram of the lattice induced by veven is shown in 2.1. The lattice 〈Ceven,veven〉,

10 Abstract Domain for Floating-Point programs

CHAPTER 2. BACKGROUND

>

(X/even, Y/>) (X/odd, Y/>)(X/>, Y/even) (X/>, Y/odd)

(X/even, Y/even)(X/odd, Y/even) (X/even, Y/odd) (X/odd, Y/odd)

⊥

Figure 2.2: An abstract domain using program variables X and Y , and the even lattice.

together with γ can be used to capture the property “the program returns an even or odd
value”. For instance, assuming that a program can return any natural number, the output
of the abstract interpretation process would be a value in Ceven corresponding to an over
approximation to the set of actual values of the execution.

Usually being able to only represent input/output values of a program is very limiting
since abstract values are usually related to variables in the program. This is typically
represented using sets of Var/AbstractVal pairs.

Example 4 (Abstracting parity). A domain to infer whether the variables in a program
take values that are even or odd. DEven , is built using the lattice 〈Ceven,veven〉. Given a
program P , the set of values in the abstract domain is AP = {X/v | X ∈ vars(P), v ∈
Ceven}. That is, the Cartesian product of the program variables and the values in Ceven.
The ordering vDBits

is built extending vBits to the pairwise (i.e., variable per variable)
comparison of the values assigned to each of the variables in dom(λ), λ ∈ AP . 2.2 shows
a lattice for an abstract domain for a program with two variables X, Y using Ceven.

Note that, in general, in the Var/AbstractVal pairs, abstract values can actually be
any term, including variables, thus allowing the represention of relational properties, i.e.,
properties that represent relations between variables, e.g., “x > y”. Also note that since
the number of variables in the program is known (and finite), if we have a finite lattice,
one can always build a finite lattice of Var/AbstractVal pairs. Of course this is only
computable if the terms used as abstract values are finite.

2.3 State of the Art

2.3.1 Interval Domain

The interval domain is one of the best-known abstract domains and is one of the first
domains to consider when working with these problems.
ECLAIR 2 is one of the most recent tools to analyse numerical programs. The numerical

2https://www.bugseng.com/eclair

Abstract Domain for Floating-Point programs 11

https://www.bugseng.com/eclair

CHAPTER 2. BACKGROUND

analysis is based on the use of intervals to work with floating point arithmetic [1]. This
system is able to detect a large number of faults and to categorize possible underflows.

Interval domains normally consider the following concrete and abstraction functions
over the lattice of intervals of a given numerical space, let’s say N :

γ(x) =


∅ if x = ⊥
y if x = [y, y]

{y ∈ N |y ∈ [l, u]} if x = [l, u]
N otherwise

α(x) =


⊥ if x = ∅

[min(N),max(N)] if x ⊂ N
> otherwise

Example 5. The operations defined for the general interval domain are quite straight-
forward, and can be induced just considering the possibilities of a given operation. For
brevity let’s consider just addition and multiplication:

int1 + int2 = ⊥ if inti = ⊥ for some i ∈ {1, 2}
[l1, u1] + [l2, u2] = [l1 + l2, u1 + u2]otherwise

int1 ∗ int2 = ⊥ if inti = ⊥ for some i ∈ {1, 2}
[l1, u1] ∗ [l2, u2] = [min({li ∗ uj|i, j ∈ {1, 2}}),max({li ∗ uj|i, j ∈ {1, 2}})]otherwise

Consider the following piece of code:

1 int main(void)
2 {
3 uint x;
4 int y;
5 int z;
6 int t;
7 if (x <= 2) {
8 y = x + x;
9 z = x*y;

10 w = x - x;
11 t = z - 2*x-y;
12 }
13 }

In this case we have the following propagation:

12 Abstract Domain for Floating-Point programs

CHAPTER 2. BACKGROUND

x = [0, 2] y = [0, 4]
z = [0, 8] w = [-2, 2]
t = [-4, 12]

Notice that the result of x − x in line 10 is not the interval [0, 0]. This is due to the
nature of interval analysis and it is also the cause of some loss of precision.

2.3.2 Affine Domain

An abstract numerical domain based on affine arithmetic [12] is presented in [13]. This
solution is an extension of Interval Arithmetic that takes linear correlations into account
making this domain relational. In this domain values are represented in affine form as
follows:

x = x0 +
n∑
i=0

xiεi (2.8)

Where each xi ∈ R and εi ∈ [−1, 1]. The εi are denoted as noise symbols and help the
analysis to know which variables are implicitly dependent.

The Galois connection for this domain over a numerical domain N is given by:

γ(x) =


∅ if x = ⊥

[x0, x0] if x = x0
[x0 −

∑n
i=1 xi, x0 +

∑n
i=1 xi] if x = x0 +

∑n
i=0 xiεi

N otherwise

α(x) =


⊥Aff if x = ⊥
x = l+u

2
+ εn if x = [l, u]

> otherwise

Notice that in this case we didn’t define in detail the case x = [l, u]. This is because
the abstraction on this domain is complex and it is not the main objective of this work.
Anyway a brief explanation is that α is not applied during the analysis, the abstraction
is done directly over the numerical domain N so αaff = α(αInt(x)) for x ∈ N .

The operations defined for the affine domain are more complex, specially the product
and the division. Addition of affine numbers is computed component-wise and does not
add new noise. Consider x = x0 +

∑n
i=1 xiεi, y = y0 +

∑n
i=1 yiεi

x+ y = (x0 + y0) +
n∑
i=1

(xi + yi)εi (2.10)

The product is quite more complex and there is more than one definition [13, 14]. This

Abstract Domain for Floating-Point programs 13

CHAPTER 2. BACKGROUND

is because a new noise term is added. Consider the following definition:

x ∗ y = (x0y0 +
1

2

n∑
i=1

|xiyi|) +
n∑
i=1

(xiy0 + x0yi)εi + (
1

2

n∑
i=1

|xiyi|+
∑
i 6=j

|xiyj|)εn+1 (2.11)

Which is, as said, more complex but also captures better the operations providing more
narrow intervals. This approach is implemented in FLUCTUAT3 Considering the previous
example we get the propagation and its interval equivalence:

x = 1 + ε1 = [0, 2] y = 2 + ε1 + ε2 = [0, 4]
z = 5

2
+ 3ε1 + ε2 +

3
2
ε3 = [−3, 8] w = 0 = [0, 0]

t = −3
2
+ 3

2
ε3 = [−3, 0]

This domain offers more tight intervals and better control of error and where it appears.
Anyway it requires a larger effort and the complexity of some basic operations grows
faster.

2.3.3 Polyhedra Domain

Another well-known domain is the Polyhedra Domain [15]. In this case the values are
presented as linear inequalities. This domain has been widely used, some implementations
are the Parma Polyhedra Library [16] and a ELINA which includes a fast polyhedra
domain [17] together with others as zones or octagons.

Again from the example presented in 5 we can infer the following linear inequalities.

0 ≤ x ≤ 2 0 ≤ y − x ≤ 2
0 ≤ z ≤ 8 −2 ≤ w ≤ 4
−8 ≤ t ≤ 8

The polyhedra domain has been studied for quite some time and there exist some
variations that are able to obtain good approximations of the polyhedra in less time.
Some of them are:

• Octagon domain. This domain, presented by A.Miné [18], introduces a relational,
numerical abstract domain well-suited for use in static analysis by abstract
interpretation. It allows representing conjunctions of constraints of the form

3https://www.lix.polytechnique.fr/Labo/Sylvie.Putot/fluctuat.html

14 Abstract Domain for Floating-Point programs

https://www.lix.polytechnique.fr/Labo/Sylvie.Putot/fluctuat.html

CHAPTER 2. BACKGROUND

±X±Y ≤ c where X and Y are program variables and c is a constant in Z,Q, or R
automatically inferred. It achieves quadratic memory cost per abstract element and
a cubic worst-case time cost per abstract operation, with respect to the number of
program variables.

• Zone domain. The Zone abstract domain [19] is able to represent and manipulate
invariants of the form X − Y ≤ c and ±X ≤ c with a time-cost similar to the
Octagon domain.

2.3.4 Other Domains

There are many other domains that have been proposed to solve the problems related
with floating point numbers using abstract interpretation. It is worth mentioning the
work implemented by A. Miné [20], where the precision of floating point is improves
symbolically on-the-fly. The main idea is to simplify numerical expressions before they
are fed to abstract transfer functions. This method was implemented within the ASTRÉE
static analyzer that has been used in embedded critical avionics software. There are
also applications of abstract domains in order to analyze model-based tools such as
Matlab/Simulink [21].

Abstract Domain for Floating-Point programs 15

3
The Ciao System

Ciao [22] is a modern, multiparadigm programming language built up from a logic-
based kernel supporting constraint logic programming, different levels of modularity, an
assertion system, multiparadigm programming, and interfacing with foreign code. The
main motivation behind the system is to develop a combination of programming language
and development tools that together help programmers produce better code in less time
and with less effort. To do this there are two main approaches: verification and testing.
The first one uses formal methods to prove some specifications of the code while the
testing consists in executing concrete inputs and checking that the program input-output
relations are the expected.

The Ciao language introduced a development workflow [23, 24, 25] that integrates the
two approaches above. In this model, program assertions (see 3.1.2) are fully integrated
in the language, and serve both as specifications for static analysis and as run-time check
generators, unifying run-time verification and unit testing with static verification and
static debugging. Assertions are optional and the model admits from the start that some
parts of assertions may not be checkable at compile-time and will then generate run-time
tests for them when possible. This model represents an alternative approach for writing
safe programs without relying on full static typing, which is specially useful for dynamic
languages like Prolog. The intention is to combine the best elements from static and
dynamic language approaches [26] and is an antecedent to the now popular gradual- and
hybrid-typing approaches [27, 28]

A high-level view of the Ciao System is shown in 3.1. Blue-colored boxes represent
user-written code; green boxes represent different tools within the system: the compiler,
LPdoc and the CiaoPP Program Processor; and the red box represents the execution
environment of the system, i.e., its run-time abstract machine and libraries. In this
thesis, only some of them are detailed, as not all of them are used.

Abstract Domain for Floating-Point programs 17

CHAPTER 3. THE CIAO SYSTEM

Compiler

Development Environment
Emacs based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages
(multi-paradigm)

fsyntax

hiord

clpr

...

Modules
(w./wo. assertions)

mod1

mod2

...
modn

user interaction

Front-end Compiler
(implements module system)

Expanded Code
(Kernel Language)

Annotated/
Transformed Code

CiaoPP

Analysis (types,
modes, resources, . . .)

Verification (static
checking of assertions)

Optimization (parallelism,
specialization, . . .)

Back-end Compiler
(optimized from annotations)

Executable Code
(bytecode, native code)

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, . . .

Compile-time Messages
Errors/warnings
Static Violations

Run-time Messages
Debugging

Dynamic Violations

Figure 3.1: A high-level view of the Ciao system [29].

Most of the work in this work is based on the Ciao Program Preprocessor which
allowed us to develop static analyses via abstract interpretation.

3.1 The CiaoPP Program Processor

CiaoPP1 (see the right part of 3.1, and 3.2) is the abstract interpretation-based
preprocessor of the Ciao multi-paradigm program development environment.CiaoPP can
perform a number of program debugging, analysis, and source-to-source transformation
tasks on (Ciao) Prolog programs. The tasks performed by CiaoPP include:

• Inference of properties at the level of predicates and literals of the program, including
types, modes and other variable instantiation properties, non-failure, determinacy,
bounds on computational cost, bounds on sizes of terms in the program, etc.

1https://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html

18 Abstract Domain for Floating-Point programs

https://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html

CHAPTER 3. THE CIAO SYSTEM

src Source DB

Transform

Clause DB

Libraries DB

Assertion DB

Static
Analyzer Analysis DB

Static
Checker

:- true
:- check

:- false

:- checked

Dynamic
Annotator

Error

Warning

Verified

RT
safe
src

CiaoPP

Front-end

Figure 3.2: Architecture of the CiaoPP verification framework.

• Static debugging and verification. This includes checking how programs call system
library predicates and also checking the assertions present in the program or in other
modules used by the program.

• Source to source program transformations such as program specialization, slicing,
partial evaluation, and program parallelization (with granularity control). It
also produces run-time test annotations for assertions which cannot be checked
completely at compile-time, so that the program can be run safely by dynamically
checking properties.

• Producing abstract models of programs that act as certificates of the correctness of
the code. The system is used to certify that code is safe with respect to the given
policy (i.e., an abstraction-carrying code approach to mobile code safety [30]).

All the aforementioned features rely on the statically inferred properties based on
fixpoint computation. Figure 3.2 provides an overview of the components in CiaoPP.
CiaoPP has a Front-end that transforms programs (possibly written in a different
language) to extract clauses and assertions (specification of the program). The Static
Analyzer component has several fixpoint computation algorithms that are used to produce
analysis graphs (stored in the Analysis DB). The information in the Analysis DB (true
assertions) is used to statically check the assertions in the Static Checker. For each
assertion originally with status check, the result of this process can be: that it is verified
(the new status is checked), that a violation is detected (the new status is false), or
that it is not possible to decide either way, in which case the assertion status remains as
check, as detailed in 3.1.2. In such cases, optionally, a warning may be displayed and/or
a run-time test generated by the Dynamic Annotator component for the (the part of) the
assertion that could not be discharged at compile-time, test cases generated, etc.

3.1.1 Supporting multiple languages

A basic technique used by the CiaoPP framework, in order to support different input
languages, is to translate input programs, possibly containing assertions, to a language-

Abstract Domain for Floating-Point programs 19

CHAPTER 3. THE CIAO SYSTEM

independent intermediate representation, which in this case is (constrained) Horn clause-
based [31] –an approach used nowadays in many analysis and verification tools [32, 33,
31, 34, 35, 36, 37, 38, 39].

As mentioned before, such translations are performed by the “Front-end” (Fig. 3.2).
Techniques such as partial evaluation and program specialization offer powerful methods
to obtain such translations with provable correctness. Using this approach, CiaoPP has
been applied to the analysis, verification, and optimization of a number of languages
(besides Ciao) ranging from very high-level ones to bytecode and machine code, such as
Java, XC (C like) [40], Java bytecode [41, 42], ISA [43], LLVM IR [44], Michelson [45],
. . .), and properties ranging from pointer aliasing and heap data structure shapes to
execution time, energy, or smart contract “gas” consumption [46, 47].

We refer to the Horn clause-based intermediate representation as the “HC-IR.” The
key point, that is directly relevant to our work, is that this HC-IR is handled uniformly
by the analyzers, independently of the input language . This means that we can develop
our analyses within this Horn clause-based framework, and they will then be applicable
to any input language for which a translation is written.

In our examples we will use both imperative and logic programs, sometimes providing
the logic program (i.e., the HC-IR) equivalent to the imperative program and others using
logic programs directly. More concretely, the examples will be written in Ciao’s [29] logic
programming subset, with Prolog-style syntax and operational semantics and using Ciao’s
assertion language, (introduced in the following section). The framework itself and the
abstract domains developed are also written in Ciao.

The main implication of this approach in our work is that we do not need to review
the different abstract interpretation techniques used for different languages, but rather it
suffices to understand and use the techniques developed for analysis of the HC-IR, i.e.,
for analysis of logic programs.

3.1.2 Assertions

Assertions are linguistic constructions that allow stating properties of a program, such
as, e.g., conditions on the state (current substitution or constraint) that hold or must
hold at certain points of program execution. During this work we use the Ciao assertion
language [24, 23, 48, 25], and since the results of our analysis are represented as assertions
it is useful to understand them. These assertions are instrumental for many purposes,
such as expressing the results of analysis, providing specifications, guiding the analysis,
and documenting. Such assertions can express a wide range of properties, including
functional (state) properties (e.g., shapes, modes, sharing, aliasing, . . .) as well as non-
functional (i.e., global, computational) properties such as resource usage (energy, time,
memory, . . .), determinacy, non-failure, or cardinality. The set of properties that can be
used in assertions is extensible and new abstract domains can be defined as “plug-ins” to
support them. Without loss of generality, we use for concreteness a subset of the syntax
of the pred assertions of [49, 24, 48], which allows describing sets of preconditions and

20 Abstract Domain for Floating-Point programs

CHAPTER 3. THE CIAO SYSTEM

conditional postconditions on the state for a given predicate as well as global properties.
A pred assertion is of the form:

:- [Status] pred Head [: Pre] [=> Post] [+ Comp].

where Head is a predicate descriptor (i.e., a normalized atom) that denotes the predicate
that the assertion applies to, and Pre and Post are conjunctions of property literals, i.e.,
literals corresponding to predicates meeting certain conditions which make them amenable
to checking [48]. Pre expresses properties that hold when Head is called, namely, at least
one Pre must hold for each call to Head. Post states properties that hold if Head is
called in a state compatible with Pre and the call succeeds. Compdescribes properties
of the whole computation such as resource usage, termination, determinism, non-failure,
etc., and they apply to calls to the predicate that meet Pre. Pre, Post, and Compcan
be empty conjunctions (meaning true), and in that case they can be omitted. Status is
a qualifier of the meaning of the assertion. The following statuses are intended to be
specified by the programmer:

• check: the assertion expresses properties that must hold at run-time, i.e., that the
analyzer should prove (or else generate run-time checks for). check is the default
status, and can be omitted.

• trust: the assertion represents an actual behavior of the predicate that the analyzer
assumes to be correct although it may not be able to infer it automatically.

The following statuses are intended to be used as communication between the different
components and providing information to the user, as part of the analysis/verification
process (corresponding to the ovals in 3.2):

• checked: the analyzer proved that the property holds in all executions.
• true: the analyzer inferred the assertion.
• false: the analyzer proved that the property does not hold in some execution.

As mentioned before, parts of assertions that cannot be discharged statically will
remain in check status and run-time tests will be generated for them if necessary.

Example 6. The following assertions describe different behaviors of the pow predicate
that computes P = XN: (1) is stating that if the exponent of a power is an even number,
the result (P) is non-negative, (2) states that if the base is a non-negative number and
the exponent is a natural number the result P also is non-negative:

�
1 :- pred pow(X,N,P) : (int(X), even(N)) => P ≥ 0. % (1)
2 :- pred pow(X,N,P) : (X ≥ 0, nat(N)) => P ≥ 0. % (2)
3 pow(_, 0, 1).
4 pow(X, N, P) :-
5 N > 0,
6 N1 is N - 1,
7 pow(X, N1, P0),
8 P is X * P0.
9

10 :- prop even/1.
11 even(N) :-
12 0 is N mod 2.� �

Abstract Domain for Floating-Point programs 21

CHAPTER 3. THE CIAO SYSTEM

Here, the even/1 property is defined by the user, while int/1 and nat/1 are assumed
to be understood by the abstract domain. The predicate defining the property is analyzed
using the abstract domain, thus inferring the abstract meaning of the user-defined property,
and that meaning is used. Different treatment is required when the assertion is used for
analysis or for verification.

In addition to pred assertions we also consider program-point assertions. They are
expressed as regular literals using as predicate name their Status , i.e., trust(Cond) and
check(Cond). They imply that whenever the execution reaches a state originated at
the program point in which the assertion appears, Cond (should) hold. Without loss of
generality we limit the discussion to pred assertions. Program-point assertions can be
translated to pred assertions,

Definition 14 (Meaning of a Set of Assertions for a Predicate). Given a predi-
cate represented by a normalized atom Head, and a corresponding set of assertions
{a1 . . . an}, with ai = “:- pred Head : Prei => Posti.′′ the set of assertion condi-
tions for Head is {C0, C1, . . . , Cn}, with:

Ci =

{
calls (Head,

∨n
j=1 Prej) i = 0

success(Head,Prei,Posti) i = 1 . . . n

where calls (Head,Pre)1 states conditions on all concrete calls to the predicate described
by Head, and success(Head,Prei,Posti) describes conditions on the success constraints
produced by calls to Head if Prei is satisfied. These allow representing behaviors for the
same predicate for different call substitutions (multivariance). If the assertions ai above,
i = 1, . . . , n, include a + Comp field, then the set of assertion conditions also include
conditions of the form comp(Head,Prei,Compi), for i = 1, . . . , n, that express properties
of the whole computation for calls to Head if Prei is satisfied.

Assertions also provide the user with information that it is not available to the analyzer
for different reasons. In our concrete case we are going to receive a file with multiple
assertions explaining the result of that analysis.

Example 7. Consider the following implementation of append

�
1 :- module(_, [app/3], [assertions]).
2

3 :- entry app(A,B,C) : (list(A), list(B)).
4 :- pred app(A,B,C) : (list(A), list(B)) => var(C).
5 app([],Y,Y).
6 app([X|Xs], Yss, [X|Zs]) :-
7 app(Xs,Ys,Zs).� �

Running the CiaoPP analyzer we obtain the following file:

1We denote the calling conditions with calls (plural) for historic reasons, and to avoid confusion with
the higher order predicate in Prolog call/2.

22 Abstract Domain for Floating-Point programs

CHAPTER 3. THE CIAO SYSTEM

�
1 :- module(_1,[app/3],[assertions ,nativeprops ,regtypes]).
2

3 :- entry app(A,B,C)
4 : (list(A), list(B)).
5

6 :- checked calls app(A,B,C)
7 : (list(A), list(B)).
8

9 :- false success app(A,B,C)
10 : (list(A), list(B))
11 => var(C).
12

13 :- true pred app(A,B,C)
14 : mshare([[A],[A,B],[A,B,C],[A,C],[B],[B,C],[C]])
15 => mshare([[A,B,C],[A,C],[B,C]]).
16

17 :- true pred app(A,B,C)
18 : (list(A), list(B), term(C))
19 => (list(A), list(B), list(C)).
20

21 app([],Y,Y).
22 app([X|Xs], Yss, [X|Zs]) :-
23 app(Xs,Ys,Zs).� �

Notice that in line 9 we have a false, that means (quite obvious) that the assertion is
wrong. The correct one is obtained changing var(C) to list(C).

3.2 Abstract Interpretation with Ciao

In order to explain how abstract interpretation is done in Ciao we need to briefly
explain how resolution works on a CLP program introducing the notion of and trees
and generalized and trees in which the abstract interpretation is based. We follow [50,
51] and [52] for the concrete semantics and [53, 54, 55, 56] for the analysis framework.

Definition 15 (substitution). A substitution is a set θ = {V1/t1, . . . , Vn/tn} with Vi
distinct variables and ti terms i ∈ {1 . . . n}.

We say that ti is the value of Vi in θ. The set {V1, . . . , Vn} is the domain of θ; the range
is the set of variables appearing in t1, . . . , tn. By vars(t) we denote the set of variables
occurring in t, by vars(θ) the union of the domain and the range of θ. The composition
of two substitutions η and θ is denoted by ηθ.

A resolvent is represented by ← (A1, . . . , An)ηi where ηi = θ1 . . . θi is the composition
of the substitutions applied so far. For the initial resolvent (the query) we have η0 = ε,
which denotes the empty substitution.

In order to perform a logical inference the computation rule select the leftmost literal
A1ηi. The search rule then selects a clause H ← (B1, . . . , Bm), renames it, and unifies
the head H with A1ηi. If the unification is successful with most general unifier θi+1, then
the resolvent ← (B1, . . . , Bm, A2, . . . , An)ηi+1 is derived with ηi+1 = ηiθi+1. Resolutions
are usually presented as proof trees usually, also referred to as and trees, where literals
in the resolvent are the leaves of the tree.

Abstract Domain for Floating-Point programs 23

CHAPTER 3. THE CIAO SYSTEM

Qθ0

← Qθ0

Qθ1
H0θ1

A1θ1

← (A1,

A2θ1

A2)θ1

Qθ2
H0θ2

A1θ2
H0θ2

B1θ2

← (B1,

B2θ2

B2,

A2θ2

A2)θ2

Qθ3
H0θ3

A1θ3
H1θ3

B1θ3
H2θ3

← (H2,

B2θ3

B2,

A2θ3

A2)θ3

Figure 3.3: Some successive and trees. Figure adapted from [52].

The set of all and trees which can originate from a given set of queries specifies
completely the procedural behavior of a program for that set of queries.Figure 3.3
illustrates this representation of proof states (i.e., resolvents) as and trees, and program
execution as a sequence of such states.

Generalized and trees. An and tree contains more information than needed for
analysis purposes; it shows the whole state of the computation (all variables). To
characterize the procedural behavior, it suffices to know the instance of procedure calls
immediately before their execution and immediately after their completion. This is
why [52] suggests representing a sequence of successive and trees using a generalized
and tree. These trees are built starting with an initial node, which is the query Q,
adorned on the left with a substitution θ, and with the domain of θ a subset of vars(Q).
θ is then called the call substitution of Q, and the rest of the tree is built by expanding
the leaf nodes in the following way:

• If L is a leaf adorned on the left with the call substitution θi, then:

– If C is a properly renamed clause, H ← B1, . . . , Bn, defining L, then the tree
is expanded by pairing L with H and adding the calls B1, . . . , Bn as children
of L. B1 is adorned on the left with the call substitution θi+1. The domain of
θi+1 is vars(H ← B1, . . . , Bn). If the clause C is a fact, θi+1 adorns an empty
body and is also the success substitution of the body.

– If L is a built-in, then the tree is expanded by adorning L on the right with a
substitution θi+1. The domain of θi+1 is vars(clause of L). θi+1 is the success

24 Abstract Domain for Floating-Point programs

CHAPTER 3. THE CIAO SYSTEM

substitution of L. With L the last call of its clause, θi+1 is also the success
substitution of the body; otherwise it is the call substitution of the next call.

• If a node (call) L is adorned on the left with a call substitution but not adorned with
a substitution on the right, such that L is the parent of a clause body with success
substitution θi. The tree is expanded by adorning L on the right with a substitution
θi+1. The domain of θi+1 is vars(clause of L). θi+1 is the success substitution of L.
With L the last call of its clause (the query), θi+1 is also the success substitution of
the body (the query); otherwise it is the call substitution of the next call.

To obtain the whole tree of a successful SLD derivation of a program the previous
steps must be repeated until the root node of the tree is adorned on the right with the
success substitution. Note that for a given query a number of trees may exist, considering
the different clauses that may be unifiable.

Generalized and trees are specially convenient for analysis. Accumulated substitutions
in a concrete domain, can result in having an unbounded number of variables. Also, it
becomes easy to compare substitutions adorning different instances of the same clause,
something which is essential for the treatment of recursive clauses. The only additional
requirement is that procedure exit must recover a different restriction of the same
accumulating substitution.

It is also often interesting to consider trees with also or nodes, i.e., and-or trees,
rather than considering sets of and trees. and-or trees capture the semantics in a useful
way for analyses such as determinacy [57, 58], cardinality [59] and non-failure [60], among
others.

Analysis Graphs. The abstract interpretation performed by Ciao is query-dependant
and its result is an abstraction of the generalized and tree semantics. The Ciao analyzer
is based on the PLAI algorithm [53, 54, 55, 56]. The purpose of this process is to obtain a
finite object (an analysis graph) that abstracts (safely approximates) the (possibly infinite)
set of (possibly infinite) generalized and trees in the execution of a CLP program. The
input to the abstract interpretation process is the program P , an abstract domain Dα ,
and a set of initial abstract queries Qα = {〈Ai, λci〉}, where each Ai is a normalized atom,
and λci ∈ Dα . Qα defines the (typically infinite) set of concrete queries Q such that the
analysis must be correct for, JP KQ = JP K

γ(Qα)
.

Abstract Domain for Floating-Point programs 25

4
Floating Point Interval Domain

Definition 16 (Floating point interval). Let F = F(p, emax). The set of floating-point
intervals over F is:

IF = {∅} ∪ {[l, u] | l, u ∈ F, l � u} (4.1)

Where [l, u] denotes the set {x ∈ F | l � x � u}.

Proposition 4. IF is a bounded meet-semmilatice with the set intersection.

Proof:. Since F is a partially ordered set by �, defined in Definition 2, and the
intersection of two sets always exists if ∅ is in the space, IF is a semmilatice. And
it is bounded by ∅ and [−∞,+∞].

Working with floating-point intervals allows us to capture numbers that are not in F.

4.1 Rounding modes

As we saw in 3 the IEEE 754 standard introduces different rounding operators and each
user can choose the preffered one at each moment. The rounding mode used affects the
results of computations and must be taken into account during the analysis. In this
section we are going to present the rounding mode selector used in our analysis. We also
prove that our selection of lower and upper round modes satisfies x ◦rl y � x ◦ y � x ◦ru y.

Definition 17. Let F(p, emax) = F any floating-point format and let S ⊆ {↑, ↓, n, 0} the
set of rounding modes. Let y, z ∈ F and ◦ ∈ {+,−, /, ·} such that ◦ 6= / or z 6= 0. Then

Abstract Domain for Floating-Point programs 27

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

we define the lower and upper rounding mode as:

rl(S, y, ◦, z) =


↓ if ↓∈ S
↓ if 0 ∈ S and y ◦ z > 0

n if n ∈ S
↑ otherwise

ru(S, y, ◦, z) =


↑ if ↑∈ S
↑ if 0 ∈ S and y ◦ z ≤ 0

n if n ∈ S
↓ otherwise

The lower rounding mode selector is implemented as follows in our domain.�
1 low_round(S, _, _, _, ’$down’) :- in_list(’$down’, S), !.
2 low_round(S, Y, OP, Z, ’$down’) :-
3 in_list(’$\$$zero’, S), op_calc(Y,OP,Z , X), X > 0, !.
4 low_round(S, _, _, _, ’$n’) :-
5 in_list(’$n’,S), !. low_round(_, _, _, _, ’$up’) :- !.� �
Theorem 1. Let F(p, emax) = F any floating-point format and let S ⊆ {↑, ↓, n, 0} the
set of rounding modes, y, z ∈ F and ◦ ∈ {+,−, /, ·} such that ◦ 6= / or z 6= 0. Let also
rl = rl(S, y, ◦, z) and ru = ru(S, y, ◦, z). Then for all r ∈ S:

y ◦rl z � y ◦ z � y ◦ru z

There also exist r′, r′′ ∈ S such that y ◦rl z = y ◦r′ z and y ◦ru z = y ◦r′′ z

Proof:. First notice that for each x, y, z ∈ F we have that [y ◦ z]n = [y ◦ z]↓ or we have
that [y ◦ z]n = [y ◦ z]↑ So let us prove that y ◦↓ z � y ◦n z � y ◦↑ z considering the possible
cases:

y ◦R z = ±∞ in this case y ◦↓ z = y ◦n z = y ◦↑ z and y ◦↓ z � y ◦n z � y ◦↑ z.

y ◦R z ≤ −fmin ∨ y ◦R z ≥ fmin in this case by Proposition 3 we have that
[y ◦R z]↓ ≤ [y ◦R z]n ≤ [y ◦R z]↑. And since y ◦r z 6= 0 and [y ◦R z]r = y ◦r z
for r ∈ S it holds that y ◦↓ z � y ◦n z � y ◦↑ z.

−fmin < y ◦R z < 0. In this case y ◦↓ z = −fmin and y ◦↓ z = −0 and
y ◦n z ∈ {−fmin,−0} so y ◦↓ z � y ◦n z � y ◦↑ z.

0 < y◦Rz < fmin. In this case y◦↓z = +0 and y◦↓z = fmin and y◦nz ∈ {−fmin,−0}
so y ◦↓ z � y ◦n z � y ◦↑ z.

y ◦R z = 0 In this case if ◦R ∈ {·R/R} we have that for all rounding modes the result
will be ±0. If ◦R ∈ {+R,−R} we have that y ◦↓ z 6= −0 and y ◦n z = y◦↑ = +0. So
for all cases we have that y ◦↓ z � y ◦n z � y ◦↑ z.

28 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Now let us consider what will happen with ◦0. By definition if y ◦R z > 0 we have that
y ◦0 z = y ◦↓ z. In that case we have: y ◦↓ z = y ◦0 z � y ◦n z � y ◦↑ z. And if y ◦R z < 0
we have that y ◦0 z = y ◦↑ z and we have y ◦↓ z � y ◦n z � y ◦0 z = y ◦↑ z. Moreover
if y ◦R z = 0 and ◦R ∈ {·R, /R} we have that y ◦↓ z = y ◦0 z = y ◦n z = y ◦↑ z and if
◦ ∈ {+R,−R} we have that y ◦↓ z � y ◦0 z = y ◦n z = y ◦↑ z So this first part of the theorem
is proved considering all the possible non empty sets S ⊂ {↑, ↓, 0, n}

Thanks to this definition we do not have to be concerned about the set of rounding
modes as we can always choose a pair of worst-case rounding modes.

4.2 Managing expressions

In this section we are going to show how to manage arithmetic expressions while working
with floating point arithmetic. Let F(p, emax), consider the domain of the arithmetical
expressions over F:

EF = x |x+ y |x · y |x− y |x/y where x, y ∈ F (4.2)

In order to correctly approximate these expressions we consider the following
evaluation functions:

Definition 18. Let J·K↓ : EF → F and J·K↑ : EF → F two partial functions that for each
x ∈ F that evaluates on R to a nonzero value:

JxK↓ � [x]↓

JxK↑ � [x]↑

These functions provide an abstraction of evaluation algorithms such that:

• the indicated approximation direction is respected;

• it is precise and practical. This is not trivial: real arithmetic is the most precise but
the least practical.

Now our task is, given x = y ◦ z where ◦ ∈ {+, ·,−, /} such that x ∈ X y ∈ Y and
z ∈ Z, with X, Y, Z ∈ IF. Notice that given Y, Z we always know that X = > is a valid
interval and our implementation always considers this case. Our aim is to infer an interval
X ′ = [xl, xu] narrower than X. If the values of x are restricted, we intersect the obtained
interval with the constraints x ≥ xl and x ≤ xu.

Definition 19 (Direct propagation correctness).

∀r ∈ S, y ∈ Y, z ∈ Z : x = y ◦r z ⇒ x ∈ X ′ (4.3)

Abstract Domain for Floating-Point programs 29

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Notice that this means that X ′ ⊆ X, which in our case is trivial since X = >. We
also want to achieve optimality of the direct propagation, that means that:

∀X ′′ ⊂ X ′ : ∃r ∈ S, y ∈ Y, z ∈ Z s.t. y ◦ z /∈ X ′′ (4.4)

On the other hand we can also define the equivalent properties for the inverse
propagation. We aim to develop the presented tool further including this kind of
propagation in order to be able to, given the constraint x = y ◦ z, infer a narrower
interval for y or z. This property is formalized as follows:

∀r ∈ S, x ∈ X, z ∈ Z : x = y ◦r z ⇒ y ∈ Y ′ (4.5)

In this case we can hope to determine some smallest interval, achieving some similar
optimality property:

∀Y ′′ ⊂ Y : ∃r ∈ S, y ∈ Y ′ Y ′′, z ∈ Z s.t. y ◦r z /∈ X (4.6)

4.3 Algorithms for Arithmetic Constraints

In this section we are going to present algorithms that are able to obtain and optimal
direct projection. This algorithms are based in the work of [1]. The direct projection
has been developed within CiaoPP and has been used to analyze some programs. These
algorithms are able to deal with any set of rounding modes. As we stated before, we are
going to only consider the addition, the product, and the division for simplicity.

4.3.1 Addition

In this case our target is to find a narrower interval X = [xl, xu] such that ∀y ∈ Y, z ∈
Z, x = y+ z ⇒ x ∈ X. Where Y = [yl, yu], Z = [zl, zu]. The algorithm is straightforward,
we select both the lower rounding mode and the upper rounding mode and we compute
the addition rounding up and the addition rounding down. This is done using the predi-
cates dal and dau which are obtained by inspection of 4.1 and 4.2. Most of the values of
this table can be derived from the definition of the addition operation in [6].
The following algorithm implements the direct projection addition.

�
1 In this case the implementation is straightforward:
2 add_float_intervals_(S, i(Yl,Yu), i(Zl, Zu), Res) :-
3 low_round(S,Yl,’$+’,Zl,Rl),
4 up_round(S,Yu,’$+’,Zu,Ru),
5 dal(Yl, Zl, Rl, Xl_),
6 dau(Yu, Zu, Ru, Xu_),
7 norm_interval(i(Xl_, Xu_), Res).� �
Theorem 2. The Direct projection Algorithm 3 is correct and optimal.

30 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Algorithm 1 Direct projection for addition
Require: x = y + z, y ∈ [yl, yu], z ∈ [zl, zu]
Ensure: X ′ = [xl, xu] s.t x = y + z ⇒ x ∈ X ′
Ensure: ∀X ′′ ⊂ X ′ : ∃r ∈ S, y ∈ Y, z ∈ Z s.t. y +r z /∈ X ′
rl := rl(S, yl,+, zl); ru := ru(S, yu,+, zu)
x′l := dal(yl, zl, rl);x

′
u := dau(yu, zu, ru)

X ′ := [x′l, x
′
u]

dal(yl, zl, rl) −∞ R− −0 +0 R+ +∞
−∞ −∞ −∞ −∞ −∞ −∞ +∞
R− −∞ yl +rl zl yl yl yl +rl zl +∞
−0 −∞ zl −0 adal zl +∞
+0 −∞ zl adal +0 zl +∞
R+ −∞ yl +rl zl yl yl yl +rl zl +∞
+∞ +∞ +∞ +∞ +∞ +∞ +∞

Table 4.1: Direct lower projection for addition.
Where

adal =

{
−0 if rl =↓
+0 otherwise (4.7)

Proof:. Given the constraint x = y + z we know that ∀y ∈ Y, z ∈ Z and r ∈ S
y +rl z ≤ y +r z ≤ y +ru z. Since the addition is a monotonic application we have
that:

yl +rl zl ≤ y +rl z ≤ y +r z ≤ y +ru z ≤ yu +ru zu

From tables 4.1 and 4.2 we can obtain a lower bound for yl +rl zl and an upper bound for
yu +ru zu that correspond with dau and dal.
Now we have to prove that the addition is optimal, this is ∀X ′′ ⊂ X ′,∃r ∈ S, y ∈ Y, z ∈
Zs.t.y +r z /∈ X ′′ .
Let us consider the lower bound x′l, we aim to prove that ∃r ∈ S such that x′l = yl +r zl.
Consider following cases:

yl /∈ R− ∩ R+ or zl /∈ R− ∩ R+ In this case can be verify (by brute force) that
dal(yl, zl, rl) = yl +r zl.

When yl ∈ R− ∩ R+ and zl ∈ R− ∩ R+ we have by definition of dal(yl, zl, rl) that
x′l = yl +rl zl

Since yl ∈ Y and zl ∈ Z we can conclude that ∀X ′′ ⊂ X ′, x′l /∈ X ′′ implies that yl+r zl for
some r ∈ S. The same reasoning can be done for xu concluding this proof.

Abstract Domain for Floating-Point programs 31

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

dau(yu, zu, ru) −∞ R− −0 +0 R+ +∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞
R− −∞ yu +ru zu yu yu yu +ru zu +∞
−0 −∞ zu −0 adau zu +∞
+0 −∞ zu adau +0 zu +∞
R+ −∞ yu +ru zu yu yu yu +ru zu +∞
+∞ −∞ +∞ +∞ +∞ +∞ +∞

Table 4.2: Direct upper projection for addition.
Where

adau =

{
−0 if ru =↓
+0 otherwise (4.8)

4.3.2 Product

Here we want to find a narrower interval X = [xl, xu] such that ∀y ∈ Y, z ∈ Z, x = y · z ⇒
x ∈ X. Where Y = [yl, yu], Z = [zl, zu]. In this case deriving an optimal and correct
algorithm is not straightforward as in the case of the addition. First when the sign of yl
is not equal to the sign of yu and neither the sign of zl is equal to the sign zu there is
not a unique choice for the extrema, that we will denote by (yL, yU , zL, zU), so we have to
calculate all the options and select among them. In the rest of the cases the selection of
the extrema can be done using the σ function that it is defined as follows:

σ(yl, yu, wl, wu) =



(yl, yu, wl, wu) if sgn(wl) = sgn(yl) = 1

(yu, yl, wl, wu) if sgn(yl) = −1 ∧ sgn(wu) = 1

(yu, yu, wl, wu) if sgn(yl) = sgn(wu) = 1 ∧ sgn(wl) = −1
(yu, yl, wu, wl) if sgn(yu) = sgn(wu) = −1
(yl, yu, wu, wl) if sgn(yu) = −1 ∧ sgn(wl) = 1

(yl, yl, wu, wl) if sgn(yu) = sgn(wl) = −1 ∧ sgn(wu) = 1

assuming that sgn(yl) = sgn(yu)

Theorem 3. The Direct projection Algorithm 4.3.2 is correct and optimal.

Proof:. Given x = y · z with y ∈ [yl, yu] and z ∈ [zl, zu].

First note that the function σ4.3.2 choose correctly the extrema (yL, yU , zL, zU) when
invoked. In the first case since sgn(yl) = sgn(yu) the precondition of the function holds. In
the second case sgn(zl) = sgn(zu) and the extrema is obtained changing the role of y and
z. When sgn(yl) 6= sgn(yu) and sgn(zl) 6= sgn(zu) we have that sgn(yl) = sgn(zl) = −1
and sgn(yu) = sgn(zu) = 1. In this case to consider the left side of the interval X’ we
have to take into account that sgn(x′l) = −1 so in order to keep it correct we need to
choose the smallest one between the product of yL and zl and zu. We must have same
consideration when computing x′u.

32 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Algorithm 2 Direct projection for multiplication
Require: x = y · z, y ∈ [yl, yu], z ∈ [zl, zu]
Ensure: X ′ = [x′l, x

′
u] ∧ x = y · z ⇒ x ∈ X ′

Ensure: ∀X ′′ ⊂ X ′∃r ∈ S s.t. y ·r z /∈ X ′′
if sgn(yl) 6= sgn(yu) ∧ sgn(zl) 6= sgn(zu) then
(yL, yU , zL, zU) := (yl, yl, zu, zl)
rl := rl(S, yL, ·, yL) : ru := ru(S, yU , ·, zU)
vl := dml(yL, zL, rl); vu := dmu(yU , zU , rU)
(yL, yU , zL, zU) := (yu, yu, zl, zu)
wl := dml(yL, zL, rl);wu := dmu(yU , zU , rU)
x′l := min{vl, wl};x′u := min{vu, wu}

else
if sgn(yl) = sgn(yu) then
(yL, yU , zL, zU) := σ(yl, yu, zl, zu)

else
(yL, yU , zL, zU) := σ(zl, zu, yl, yu)

end if
rl := rl(S, yL, ·, yL) : ru := ru(S, yU , ·, zU)
x′l := dml(yL, zL, rl);x

′
u := dau(yU , zU , ru)

end if
X ′ := [x′l, x

′
u]

By 1 and as we made in the proof of 2 we have to find a lower bound for yL ·rl zL and
an upper one for yU ·rU zU . As in the previous proofs this bounds are given by the tables
4.3 and 4.4. Let us analyze some of the cases in the table. Consider the case yL = −∞
and zL = 0. From a first Calculus course it is known that ∞ · 0 is an indeterminate
form, moreover the IEEE754 standard considers this product as an invalid operation. But
we can not return NaN since that would not be a proper interval and we cannot return
⊥ since that could not allow us to perform a proper analysis. First note that by 4.3.2
yL = −∞⇒ yl = −∞. Since yl = −∞ we have two cases concerning yu:

1. yu ≥ −fmax, in which case we have that z · 0 = −0 ∀z ∈ F− and would be 0 in the
positive case.

2. yu = −∞, in this case by 4.3.2 zL = zu and ∀z < 0, z · −∞ =∞.

So we have that −0 is a correct lower bound.

Let us prove that the obtained interval X is optimal (∀X ′′ ⊂ X ′,∃r ∈ S, y ∈
Y, z ∈ Zs.t.y ·r z /∈ X ′′). Consider the lower bound xl, let us proof that there exists
r ∈ S, y ∈ Y, z ∈ Z such that x′l = y ·r z. By 4.3.2 we know that dml(yL, zL, rl) = x′l
for some yL, zL, rl whose existence is verified by the algorithm. Since yL ∈ Y, zL ∈ Z if
x′l /∈ X ′′ we know by 1 that ∃r′ ∈ S, s.t.y ·r z = y ·r′ z so we can conclude that ∃r ∈ S such
that yl ·r zl /∈ X ′′. The same can be proven in the case of x′u concluding the proof.

Abstract Domain for Floating-Point programs 33

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

dml(yl, zl, rl) −∞ R− −0 +0 R+ +∞
−∞ +∞ +∞ +∞ −0 −∞ −∞
R− +∞ yl ·rl zl +0 −0 yl ·rl zl −∞
−0 +∞ +0 +0 −0 −0 −0
+0 −0 −0 −0 +0 +0 +∞
R+ −∞ yl ·rl zl −0 +0 yl ·rl zl +∞
+∞ −∞ −∞ −0 +∞ +∞ +∞

Table 4.3: Direct lower projection for multiplication.

dmu(yu, zu, ru) −∞ R− −0 +0 R+ +∞
−∞ +∞ +∞ +0 −∞ −∞ −∞
R− +∞ yu ·ru zu +0 −0 yu ·ru zu −∞
−0 +0 +0 +0 −0 −0 −∞
+0 −∞ −0 −0 +0 +0 +0
R+ −∞ yu ·ru zu −0 +0 yu ·ru zu +∞
+∞ −∞ −∞ −∞ +0 +∞ +∞

Table 4.4: Direct upper projection for multiplication.

The product of floating point intervals is implemented as follows:�
1 product_floats_intervals(S, i(Yl_, Yu_), i(Zl_, Zu_), i(Xl, Xu)) :-
2 sgn(Yl_) \= sgn(Yu_), sgn(Zl_) \= Zu_, !,
3 Yl = Yl_,
4 Yu = Yl_,
5 Zl = Zu_,
6 Zu = Zl_,
7 low_round(S,Yl,’$*’,Zl,Rl),
8 up_round(S,Yu,’$*’,Zu,Ru),
9 dml(Yl, Zl, Rl, Vl),

10 dmu(Yu, Zu, Ru, Vu),
11 Yl__ = Yu_,
12 Yu__ = Yu_,
13 Zl__ = Zl_,
14 Zu__ = Zu_,
15 dml(Yl__, Zl__, Rl, Wl),
16 dmu(Yu__, Zu__, Ru, Wu),
17 minf(Vl, Wl, Xl),
18 maxf(Vu, Wu, Xu).
19 product_floats_intervals(S, i(Yl, Yu), i(Zl, Zu), i(Xl, Xu)) :-
20 sgn(Yl) == sgn(Yu), !,
21 sigma(Yl, Yu, Zl, Zu, Yl_, Yu_, Zl_, Zu_),
22 low_round(S,Yu_,’$*’,Zu_,Rl),
23 up_round(S,Yl_,’$*’,Zl_,Ru),
24 dml(Yl_, Zl_, Ru, Xl),
25 dmu(Yu_, Zu_, Rl, Xu).
26 product_floats_intervals(S, i(Yl, Yu), i(Zl, Zu), i(Xl, Xu)) :-
27 sgn(Zl) == sgn(Zu), !,
28 sigma(Zl, Zu, Yl, Yu, Zl_, Zu_, Yl_, Yu_),
29 low_round(S,Yl_,’$*’,Zl_,Rl),
30 up_round(S,Yu_,’$*’,Zu_,Ru),
31 dml(Yl_, Zl_, Rl, Xl),
32 dmu(Yu_, Zu_, Ru, Xu).� �

34 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Example 8. Consider the intervals Y = [−0.0, 2.0], Z = [+0.0, 1.0] and the rounding
set {↑, ↓}. Let us consider x = y · z In this case sgn(−0.0) 6= sgn(2.0) ∧ sgn(+0.0) =
sgn(−0.0)) so we are in the third case and σ(+0.0, 1.0,−0.0, 2.0) = (1.0, 1.0,−0.0, 2.0)
In this case we have rl =↓, ru =↑ and the direct projections are dml(1.0,−0.0, ↓) =
−0.0, dmu(1.0, 2.0, ↑) = 2.0. If we consider our implementation we get:

�
1 ciaopp ?- product_floats_intervals([’up’, ’down’], i(-0.0, 2.0), i(0.0, 1.0), X).
2

3 X = i(-0.0,2.0) ?
4

5 yes� �
4.3.3 Division

Here we want to find a narrower interval X = [xl, xu] such that ∀y ∈ Y, z ∈ Z, x = y/z ⇒
x ∈ X. Where Y = [yl, yu], Z = [zl, zu]. In this case the algorithm is much more complex
than before. In this case we need to consider the positive and the negative part of the
intervals. Also it is important to consider if it is possible to have zeros in the intervals.
Once the division is considered for each positive and negative part the resulting interval
is the convex union of both intervals. In this case the selection of the extrema can be
done using the τ function that it is defined as follows:

τ(yl, yu, wl, wu) =



(yu, yl, wl, wu) if sgn(wu) = sgn(yu) = −1
(yu, yl, wu, wl) if sgn(wu) = −1 ∧ sgn(yl) = 1

(yu, yl, wu, wu) if sgn(wu) = sgn(yl) = −1 ∧ sgn(yu) = 1

(yl, yu, wl, wu) if sgn(yu) = −1 ∧ sgn(wl) = 1

(yl, yu, wu, wl) if sgn(wl) = sgn(yl) = 1

(yl, yu, wl, wl) if sgn(yu) = sgn(wl) = 1 ∧ sgn(yl) = −1

assuming that sgn(wl) = sgn(wu))

Theorem 4. The Direct projection Algorithm 4.3.3 is correct and optimal.

Proof:. As was done in 3 it can be proved that yL, yU and wL, wU computed via τ 4.3.3 are
correct bounds for the intervals Y and W . Notice that ∀w1, w2 ∈ W, sgn(w1) = sgn(w2)
by its definition in 4.3.3. Again by 1 and as we have done in previous proofs we can focus
on finding a lower bound for yL/rlwLand an upper one for yU/ruzU . These bounds are
computed by ddl 4.5 and ddu 4.6 respectively.
As we have done in 3 with dml let us comment some of the indeterminate forms that
can happen. Consider yL = wL = −∞. Again is well known that −∞/ − ∞ it is an
indeterminate form which, once again, it is not allowed by the IEEE 754 standard. In
this case by τ 4.3.3 we have that yL = yu = −∞ and wL = wL. By the IEEE 754 standard
dividing −∞/−∞ it is not allowed but dividing −∞ by any negative (and finite) number
leads to ∞ so we can conclude that xl =∞ is a correct lower bound.
Now let us prove the optimality of our algorithm. Let us consider the lower bound
computed for the positive part, x+l . In a similar way than before we aim to prove that

Abstract Domain for Floating-Point programs 35

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

Algorithm 3 Direct projection for division
Require: x = y/z, y ∈ [yl, yu], z ∈ [zl, zu]
Ensure: X ′ = [x′l, x

′
u] ∧ x = y/z ⇒ x ∈ X ′

Ensure: ∀X ′′ ⊂ X ′∃r ∈ S s.t. y/rz /∈ X ′′
Z− = [z−l , z

+
u] := Z ∩ [−∞,−0]

if Z− 6= ∅ then
W := Z−
(yL, yU , wL, wU) := τ(yl, yu, wl, wu)
rl := rl(S, yL, /, wL), ru := ru(S, yU , /, wU)
x−l := ddl(yL, wL, rl);x

−
u := ddu(yU , wU , ru)

else
X− = [x−l , x

−
u] := ∅

end if
Z+ = [z+l , z

+
u] := Z ∩ [+0,∞]

if Z+ 6= ∅ then
W := Z+

(yL, yU , wL, wU) := τ(yl, yu, wl, wu)
rl := rl(S, yL, /, wL), ru := ru(S, yU , /, wU)
x+l := ddl(yL, wL, rl);x

+
u := ddu(yU , wU , ru)

else
X+ = [x+l , x

+
u] := ∅

end if
X ′ := X+]X−

ddl(yl, zl, rl) −∞ R− −0 +0 R+ +∞
−∞ +∞ +∞ +∞ −∞ −∞ −0
R− +0 yl/rlzl +∞ −∞ yl/rlzl −0
−0 +0 +0 +∞ −0 −0 −0
+0 −0 −0 −0 +∞ +0 +0
R+ −0 yl/rlzl −∞ +∞ yl/rlzl +0
+∞ −0 −∞ −∞ +∞ +∞ +0

Table 4.5: Direct lower projection for division.

if [x+l , x
+
u] 6= ∅ then there exists some r ∈ S, y ∈ Y, z ∈ Z such that y/rz = x+l . By

4.3.3 we know that there exist yL, wL = zL and rl such that ddl(yL, wL, rl) = x+l and their
existence is guaranteed by the algorithm and by Theorem 1 we know that ∃r ∈ S such that
yL/rlwL = yL/rwL.With this we can conclude that x+l /∈ X ′′ ⇒ yL/rwL /∈ X ′′. The same
result holds for x+u , x

−
l and x−u so we can conclude that the algorithm is optimal.

Example 9. Consider the intervals Y = [−0.0, 3.0], Z = [−1.0, 1.0] and any set of
rounding modes. First we have to consider both intervals Z− = [−1.0,−0.0] and

36 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

ddu(yu, zu, ru) −∞ R− −0 +0 R+ +∞
−∞ +0 +∞ +∞ −∞ −∞ −0
R− +0 yu/ruzu +∞ −∞0 yu/ruzu −0
−0 +0 +0 +∞ −0 −0 −0
+0 −0 −0 −0 +∞ +0 +0
R+ −0 yu/ruzu −∞ +∞ yu/ruzu +0
+∞ −∞ −∞ −∞ +∞ +∞ +0

Table 4.6: Direct upper projection for division.

Z+ = [+0.0, 1.0]. In the case of the negative part we have that τ(−0.0, 3.0,−1.0,−0.0) =
(3.0,−0.0,−0.0,−0.0) in which case ddl(3.0,−0.0,_) = −∞ and ddl(−0.0,−0.0,_) =
+0.0. For the positive part we have τ(−0.0, 3.0,+0.0, 1.0) = (−0.0, 3.0,+0.0,+0.0) the
projections yield to ddl(−0.0,+0.0,_) = −0.0, ddu(3.0,+0.0,_) = +∞. So the result of
this division is [−∞,+∞], which is expected since both −0.0,+0.0 ∈ Z. Our algorithm
returns:�

1 ciaopp ?- division_float_intervals_([’$zero’], i(-0.0, 3.0), i(-1.0, 1.0), X).
2 X = i(-0.Inf,0.Inf) ?� �

The algorithm of the direct projection for the division is implemented as follows:�
1 division_float_intervals_(S, i(Yl, Yu), i(Zl, Zu), Res) :-
2 div_neg_part(S, i(Yl, Yu), i(Zl, Zu), Bot),
3 div_pos_part(S, i(Yl, Yu), i(Zl, Zu), Bot), nonrel_fintervals_bot(Bot), !,
4 Res = Bot.
5 division_float_intervals_(S, i(Yl, Yu), i(Zl, Zu), Res) :-
6 div_neg_part(S, i(Yl, Yu), i(Zl, Zu), i(Zlm, Zum)),
7 div_pos_part(S, i(Yl, Yu), i(Zl, Zu), Bot), nonrel_fintervals_bot(Bot), !,
8 norm_interval(i(Zlm, Zum), Res).
9 division_float_intervals_(S, i(Yl, Yu), i(Zl, Zu), Res) :-

10 div_neg_part(S, i(Yl, Yu), i(Zl, Zu), Bot), nonrel_fintervals_bot(Bot),
11 div_pos_part(S, i(Yl, Yu), i(Zl, Zu),i(Zlp, Zup)) , !,
12 norm_interval(i(Zlp,Zup), Res).
13 division_float_intervals_(S, i(Yl, Yu), i(Zl, Zu), Res) :-
14 div_neg_part(S, i(Yl, Yu), i(Zl, Zu), i(Zlm, Zum)),
15 div_pos_part(S, i(Yl, Yu), i(Zl, Zu),i(Zlp, Zup)) , !,
16 minf(Zlm, Zlp, Xl),
17 maxf(Zum, Zup, Xu),
18 norm_interval(i(Xl, Xu), Res).� �

where:�
1 div_pos_part(_, _, i(Zl, Zu), Res) :-
2 nonrel_finf(Inf),
3 finterval_intersection(i(Zl, Zu), i(0.0, Inf), Bot), nonrel_fintervals_bot(Bot), !,
4 Res = Bot.
5 div_pos_part(S, i(Yl, Yu), i(Zl, Zu), Res) :-
6 nonrel_finf(Inf),
7 finterval_intersection(i(Zl, Zu), i(0.0, Inf), i(Wl, Wu)), !,
8 tau(Yl,Yu,Wl,Wu,Yl_,Yu_,Zl_,Zu_),
9 low_round(S,Yl_,’$/’,Zl_,Rl),

10 up_round(S,Yu_,’$/’,Zu_,Ru),
11 ddl(Yl_, Zl_, Rl, Xlp),
12 ddu(Yu_, Zu_, Ru, Xup),
13 norm_interval(i(Xlp, Xup), Res).� �

The predicate div_neg_part is implemented as div_pos_part.

Abstract Domain for Floating-Point programs 37

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

4.4 Widening

For our implementation we decided to use the standard widening operator for Interval
Domains defined as follows:

X � Y


⊥ if X = Y = ⊥
X if X = ⊥ ∨X = >
Y if Y = ⊥ ∨ Y = >
[W0,W1] otherwise

(4.9)

where W0 = min{xl, yl, lubl},W1 = max{xu, yu, lubu} and [lubl, lubu] = lub(X, Y) is the
lower upper bound of X and Y

The implementation of the widening operator is presented in 4.5. Another
implementations of the widening operator can be considered and our aim is to develop
widening operators able to give better intervals for floating point computations.

4.5 Adding the domain to CiaoPP

In this section we are going to briefly explain how this domain is added to CiaoPP.

This domain is implemented as a “derived domain” of the the nonrel_base non-
relational abstract domain. Derived domains in CiaoPP are implemented through (Ciao
specific) syntactic language extensions that allow the composition of generic code, and
the specification of common domain interfaces.

The generic nonrel_base domain binds the general, more complex, domain interface
expected by the PLAI fixpoint (e.g., call_to_entry/10 and the other operations, whose
description are out of the scope of this text), with a reduced set of abstract domain
definitions. Namely, the predicates that define the value lattice (floating-point intervals
in our case) and the predicates that define the transfer functions for basic operations
relevant for this domain, such as unification, comparisons, and arithmetic operations.

The predicates that define the lattice and their operations are the following:

• Predicates top/1 and bot/1 are the representation of “top” and “bot” in the abstract
domain.

• var/1 refers to the abstraction of a free variable in the abstract domain. In this
case, we decided to consider these variables as top, so it is var(’$top’),

• less_or_equal_elem/3, this predicate refers to the order relation in the domain.
In this case, we consider the symbolic order relation between floating point numbers
(definition 2):�

1 less_or_equal_elem(_,Top) :- top(Top), !.
2 less_or_equal_elem(Bot,_) :- bot(Bot), !.

38 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

3 less_or_equal_elem(i(N0,N1),i(T0,T1)) :-
4 leqf(N0, T0),
5 leqf(N1, T1).
6

7 leqf(_, NInf) :- fneginf(NInf), !, fail.
8 leqf(NInf, _) :- fneginf(NInf), !.
9 leqf(Inf, _) :- finf(Inf), !, fail.

10 leqf(_, Inf) :- finf(Inf), !.
11 leqf(N1, N2) :-
12 compare(C,N1, N2),
13 (C = (<) ; C = (=)), !.� �
• compute_glb_elem/4 and compute_lub_elem/4, they compute the greatest lower
bound and the lowest upper bound respectively. The implementation is quite similar
in both cases,�

1 compute_glb_elem(X, Top, X) :- top(Top), !.
2 compute_glb_elem(Top, X, X) :- top(Top), !.
3 compute_glb_elem(i(N0,N1), i(T0,T1), X) :-
4 maxf(N0,T0,G0), minf(N1,T1,G1), leqf(G0, G1), !,
5 X=i(G0,G1).
6 compute_glb_elem(_, _, B) :-
7 bot(B).
8

9 compute_lub_elem(Top, _, Top) :- top(Top), !.
10 compute_lub_elem(_, Top, Top) :- top(Top), !.
11 compute_lub_elem(Bot, X, X) :- top(Bot), !.
12 compute_lub_elem(X, Bot, X) :- top(Bot), !.
13 compute_lub_elem(i(N0,N1), i(T0,T1), I) :-
14 minf(N0,T0,G0),
15 maxf(N1,T1,G1),
16 simplify_felem(i(G0,G1), I).� �
• widen_elem/4, this predicate implements the widening operator. Note that this

domain does not consider or use any narrowing operator, this is included as future
work as we would comment later. The widening is defined as follows following the
definition in 4.4:�

1 widen_elem(Bot, W, W) :- bot(Bot), !.
2 widen_elem(W, Bot, W) :- bot(Bot), !.
3 widen_elem(Top, _, Top) :- top(Top), !.
4 widen_elem(_, Top, Top) :- top(Top), !.
5 widen_elem(V1, V2, W) :-
6 finterval_num(V1), finterval_num(V2), !,
7 compute_lub_elem(V1,V2,W).
8 widen_elem(V1, V2, W) :-
9 compute_lub_elem(V1,V2,Lub),

10 finterval_avalue_get_min(Lub,MinLub),
11 finterval_avalue_get_max(Lub,MaxLub),
12 finterval_avalue_get_min(V1,MinV1),
13 finterval_avalue_get_max(V1,MaxV1),
14 finterval_avalue_get_min(V2,MinV2),
15 finterval_avalue_get_max(V2,MaxV2),
16 % if the lower bound lub is smaller than any of lower bounds, widen
17 ((\+ leqf(MinV1, MinLub) ; \+ leqf(MinV2, MinLub)) -> fneginf(W0)
18 ; W0 = MinLub
19),
20 % if the upper bound lub is bigger than any of the upper bounds, widen
21 ((\+ leqf(MaxLub, MaxV1) ; \+ leqf(MaxLub, MaxV2)) -> finf(W1)
22 ; W1 = MaxLub
23),
24 simplify_felem(i(W0, W1), W).� �

Abstract Domain for Floating-Point programs 39

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

where the predicate finterval_num/1 checks if the value is a proper value of the
numerical domain and simplify_felem/2 just sends the interval [−∞,∞] to > in
order to avoid errors.

The next set of predicates defines the abstract transfer functions. In this case these
operations work directly with the abstract substitutions required by the general PLAI
[61] domain interface, but relies on a few operations provided by nonrel_base (such as
get_value_asub/3 or replace_value_asub/4, etc.) abstract the actual representation.

Some of the built-in that are implemented are the following:

• amgu/5, amgu(+AbsInt,+Term1,+Term2,+ASub0,-NASub) computes NASub which
is the abstract unification of Term1 and Term2 with ASub0 an abstract substitution
representing the state of both terms. In this case, we implemented the predicate
amgu/4 which performs Robinson’s unification algorithm [62].�

1 amgu(T1,T2,ASub0,NASub) :- var(T1),var(T2), !,
2 get_value_asub(ASub0,T1,Value1),
3 get_value_asub(ASub0,T2,Value2),
4 compute_glb_elem(Value1,Value2,Glb),
5 replace_value_asub(ASub0,T1,Glb,ASub1),
6 replace_value_asub(ASub1,T2,Glb,NASub).
7 amgu(T1,T2,ASub0,NASub) :- var(T2), !,
8 amgu(T2,T1,ASub0,NASub).
9 amgu(T1,T2,ASub0,NASub) :- var(T1), !,

10 abstract_term(T2,ASub0,NVal),
11 replace_value_asub(ASub0,T1,NVal,NASub).
12 amgu(T1,T2,ASub0,NASub) :- functor(T1,F,A), functor(T2,F,A), !,
13 T1 =.. [F|Args1],
14 T2 =.. [F|Args2],
15 amgu_args(Args1,Args2,ASub0, NASub).
16 amgu(_T1,_T2,_ASub1,ASub2) :-
17 bot(ASub2).� �

Briefly explained, the algorithm checks if any of the term is a variable, in
this case it gives to that variable a value based in the abstract substitution
(get_value_asub/3) and computes the greatest lower bound with the predicate
compute_glb_elem/4. Once this is done the abstract unifier can be obtained. If
none of the terms is a variable the abstract unifier can be obtained with the help of
the predicate amgu_args/4:�

1 amgu_args([],[],ASub, ASub).
2 amgu_args([A1|As1],[A2|As2],ASub0, NASub) :-
3 amgu(A1,A2,ASub0,ASub1),
4 amgu_args(As1,As2,ASub1, NASub).� �
• abuiltin/3, which declare the abstract semantics of the rest of built-in predicates

for this domain. Some examples are the predicate =</2:�
1 abuiltin((X =< Y),Call,Succ):-
2 abstract_term(X,Call,ValX),
3 abstract_term(Y,Call,ValY),
4 compute_glb_elem(ValX,ValY,Glb),
5 (bot(Glb) -> % intervals are disjoint
6 (less_or_equal_elem(ValX, ValY) -> Succ = Call
7 ; Succ = Glb
8)

40 Abstract Domain for Floating-Point programs

CHAPTER 4. FLOATING POINT INTERVAL DOMAIN

9 ; finterval_avalue_get_max(ValX,MaxX),
10 finterval_avalue_get_max(ValY,MaxY),
11 finterval_avalue_get_min(ValX,MinX),
12 finterval_avalue_get_min(ValY,MinY),
13 minf(MaxX,MaxY,X1),
14 maxf(MinX, MinY, Y0),
15 NValX0 = i(MinX, X1),
16 NValY0 = i(Y0, MaxY),
17 simplify_felem(NValX0, NValX),
18 simplify_felem(NValY0, NValY),
19 replace_value_asub(Call,X,NValX,Succ0),
20 replace_value_asub(Succ0,Y,NValY,Succ)
21).� �

Another example is the is/2 predicate that performs arithmetic evaluation:�
1 abuiltin((X is Y),Call,Succ):-
2 (is_abs_operate(Y,Call,NVal0) ->
3 get_value_asub(Call,X,Val0),
4 compute_glb_elem(NVal0,Val0,NVal),
5 replace_value_asub(Call,X,NVal,Succ)
6 ; amgu(X,Y,Call,Succ)
7).� �
where is_abs_operate/3 is defined as:�

1 is_abs_operate(X, _Call, NVal) :- float(X), !
2 NVal = i(X,X).
3 is_abs_operate(X, Call, Val) :- var(X), !,
4 get_value_asub(Call, X, Val).
5 is_abs_operate(+(X,Y), Call, NVal) :-
6 is_abs_operate(X,Call,NXVal),
7 is_abs_operate(Y,Call,NYVal),
8 add_float_intervals(NXVal, NYVal, NVal_).
9 is_abs_operate(-(X,Y), Call, NVal) :-

10 is_abs_operate(X,Call,NXVal),
11 is_abs_operate(Y,Call,NYVal),
12 substract_float_intervals(NXVal, NYVal, NVal_).
13 is_abs_operate(*(X,Y), Call, NVal) :-
14 is_abs_operate(X,Call,NXVal),
15 is_abs_operate(Y,Call,NYVal),
16 product_float_intervals(NXVal, NYVal, NVal_).
17 is_abs_operate(/(X,Y), Call, NVal) :-
18 is_abs_operate(X,Call,NXVal),
19 is_abs_operate(Y,Call,NYVal),
20 division_float_intervals(NXVal, NYVal, NVal_).� �

Where division_float_interval/3 calls division_float_intervals_/4 4.3.3
giving it the set of rounding modes that are selected via the rounding_modes/1
predicate. It is implemented as follows:�

1 division_float_interval(Y, Z, X) :-
2 rounding_modes(S),
3 division_float_intervals_(S, Y, Z, X).� �
The rest of predicates related with addition, substraction and product are defined
in the same way.
Other typical predicates that need to be implemented as part of the domain
(not included in this description) are those required to interpret the properties
in the assertions (in CiaoPP’s terminology input interface), or represent abstract
substitutions as properties (in CiaoPP’s terminology native properties) suitable
for the interaction with other analyses or the output of the analysis as user-level
assertions.

Abstract Domain for Floating-Point programs 41

5
Experimental results

We applied our implementation in different contexts in which we believe it can provide
extra value by avoiding some errors relating floating point computations.

5.1 Missile Failure

The failure occurred during the Gulf War that opened this work 1 will also open this
chapter. The following is extracted from the GAO report. The Patriot battery at Dhahran
failed to track and intercept the Scud missile because of a software problem in the system’s
weapons control computer. This problem led to an inaccurate tracking calculation that
became worse the longer the system operated. At the time of the incident, the battery
had been operating continuously for over 100 hours. By then, the inaccuracy was serious
enough to cause the system to look in the wrong place for the incoming Scud.

The following code captures the behavior of the counter that led to the failure in the
Patriot. This is, running for 100 hours and updating a counter each 0.1 seconds.�
1 :- module(_, _, [assertions]).
2

3 counter(X) :-
4 Y is 1.0/10.0,
5 % Each 0.1 seconds add 1 integer => 100*60*60*100
6 Times is 100.0*60.0*60.0*10.0,
7 X is Y*Times.
8 � �

Running this experiment we obtained the interval: i(360000.0, 360000.03125). If we
take into account that a Scud missile travels at about 1,676 meters per second and the size

Abstract Domain for Floating-Point programs 43

CHAPTER 5. EXPERIMENTAL RESULTS

of the interval (which in this case is equivalent to the error) is 0.03125 we can approximate
that in that time a missile can travel up to 52, 375 meters which is a large distance when
dealing with this kind of software.

5.2 ESA trigonometric functions

One of the industries which use floating point computations most is the aerospace industry.
In this industry there are two critical points that must be taken into account. Since it is
almost sure that there will be floating point errors, it is desirable to minimize as much
as possible this error. One possible solution would be to use floating points with a huge
precision. Sadly this is not always possible since it would lead to a large use of memory
that would increase the prize of the components and the size. Our implementation allows
us to compare different floating point sizes in order to know which one is the smallest
floating point that generates the smaller error.

We have considered the implementation of the arccosin from the ESA implemented
with the following algorithm and the following use of constants:�

1 % __ieee754_acos(x)
2 % Method :
3 % acos(x) = pi/2 - asin(x)
4 % acos(-x) = pi/2 + asin(x)
5 % For |x|<=0.5
6 % acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
7 % For x>0.5
8 % acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
9 % = 2asin(sqrt((1-x)/2))

10 % = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
11 % = 2f + (2c + 2s*z*R(z))
12 % where f=hi part of s, and c = (z-f*f)/(s+f) is the correction

↪→ term
13 % for f so that f+c = sqrt(z).
14 % For x<-0.5
15 % acos(x) = pi - 2asin(sqrt((1-|x|)/2))
16 % = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
17 %
18 %
19 ...
20 ...
21 ...
22 one= 1.00000000000000000000e+00, // 0x3FF00000 , 0x00000000
23 pi = 3.14159265358979311600e+00, // 0x400921FB , 0x54442D18
24 pio2_hi = 1.57079632679489655800e+00, // 0x3FF921FB , 0x54442D18
25 pio2_lo = 6.12323399573676603587e-17, // 0x3C91A626 , 0x33145C07
26 pS0 = 1.66666666666666657415e-01, // 0x3FC55555 , 0x55555555
27 pS1 = -3.25565818622400915405e-01, // 0xBFD4D612 , 0x03EB6F7D
28 pS2 = 2.01212532134862925881e-01, // 0x3FC9C155 , 0x0E884455
29 pS3 = -4.00555345006794114027e-02, // 0xBFA48228 , 0xB5688F3B
30 pS4 = 7.91534994289814532176e-04, // 0x3F49EFE0 , 0x7501B288
31 pS5 = 3.47933107596021167570e-05, // 0x3F023DE1 , 0x0DFDF709

44 Abstract Domain for Floating-Point programs

CHAPTER 5. EXPERIMENTAL RESULTS

32 qS1 = -2.40339491173441421878e+00, // 0xC0033A27 , 0x1C8A2D4B
33 qS2 = 2.02094576023350569471e+00, // 0x40002AE5 , 0x9C598AC8
34 qS3 = -6.88283971605453293030e-01, // 0xBFE6066C , 0x1B8D0159
35 qS4 = 7.70381505559019352791e-02; // 0x3FB3B8C5 , 0xB12E9282
36� �

First of all notice that they consider just 20 decimals once they define the constants.
Moreover the given definition of pi is not exact since the 20 first decimals of pi are
.1415926535897932384 and they consider .14159265358979311600. This is an error of
0.0000000000000001224. In this analysis we are going to consider the different possible
branches in order to be able to analyze each case with more detail. We considered 32
and 64 bits floating points and a fixed point of 24 bits. We also tried different rounding
configurations available since this is a design decision and in a computation different
roundings can happen.

Since the code consider different partitions of the space let us consider the results
obtained with out analysis and compare them with the actual expected values. First of
all let us take into account that ∀x ∈ R, acos(x) ∈ [−π, π]

If x ∈ [−1,−0.5]. The fragment of code which implements the behavior of the acosin
in this case is:�

1 ...
2 else if (hx<0) { // x < -0.5
3 z = (one+x)*0.5;
4 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
5 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
6 s = __ieee754_sqrt(z);
7 r = p/q;
8 w = r*s-pio2_lo;
9 return pi - 2.0*(s+w);

10 }
11 ...
12� �

Which equivalent Ciao code is:

�
1 acos_operations_branch3(X1, Branch) :-
2 One = 1.00000000000000000000e+00, % 0x3FF00000 , 0x00000000
3 ...
4 QS4 = 7.70381505559019352791e-02, % 0x3FB3B8C5 , 0xB12E9282
5 X1 < -0.5, X1 > -1.0, !,
6 Z is (One + X1)*0.5,
7 P is Z*(PS0+Z*(PS1+Z*(PS2+Z*(PS3+Z*(PS4+Z*PS5))))),
8 Q is One+Z*(QS1+Z*(QS2+Z*(QS3+Z*QS4))),
9 %S is sqrt(Z),

10 S > 0.0, S < 0.5, %% Z in i(0.0, 0.25)
11 R is P/Q,
12 W is R*S-Pio2_lo,
13 Branch is Pi -2.0*(S+W).� �

Abstract Domain for Floating-Point programs 45

CHAPTER 5. EXPERIMENTAL RESULTS

In this case we expected the result to be in the interval [2π
3
, π]. Our analysis obtained:�

1 :- true pred ’esa_cos:acos_operations_branch3’(A,B)
2 : (A/’$top’, B/’$top’)
3 => (A/i(-1.0,-0.5), B/i(2.0372044444084167,3.141592653589793))
4 + (complete_id(5), domain(nonrel_fintervals),

↪→ callers([(’esa_cos:acos_operations_branch3/2’,0)])).� �
The interval that we have obtained is bigger than the interval [2π

3
, π], since 2π

3
≈

2.094395102....

If x ∈ [−0.5, 0.5] the result is expected to be in the interval [π
3
, 2π

3
]. In this case the

implementation corresponds to:�
1 if(ix<0x3fe00000) { // |x| < 0.5
2 z = x*x;
3 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
4 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
5 r = p/q;
6 return pio2_hi - (x - (pio2_lo-x*r));
7 }
8� �
That can be seen as Ciao code as:�

1 acos_operations_branch2(X1, Branch) :-
2 One = 1.00000000000000000000e+00, % 0x3FF00000 , 0x00000000
3 ...
4 QS4 = 7.70381505559019352791e-02, % 0x3FB3B8C5 , 0xB12E9282
5 X1 < 0.5, X1 > -0.5, !,% |X| < 0.5
6 Z is X1*X1,
7 P is Z*(PS0+Z*(PS1+Z*(PS2+Z*(PS3+Z*(PS4+Z*PS5))))),
8 Q is One+Z*(QS1+Z*(QS2+Z*(QS3+Z*QS4))),
9 R is P/Q,

10 Branch is Pio2_hi - (X1 - (Pio2_lo-X1*R)).� �
where we obtained:�

1 :- true pred ’esa_cos:acos_operations_branch2’(A,B)
2 : (A/’$top’, B/’$top’)
3 => (A/i(-0.5,0.5), B/i(0.9460467100143433,2.195545792579651))
4 + (complete_id(4), domain(nonrel_fintervals),

↪→ callers([(’esa_cos:acos_operations_branch2/2’,0)]))� �
Here we obtained another overaproximation since π

3
≈ 1.047197551... and 2π

3
≈

2.094395102....

If x ∈ [0.5, 1.0] the result is expected to be in the interval [0.0, pi
3
] And the

implemented code is:

46 Abstract Domain for Floating-Point programs

CHAPTER 5. EXPERIMENTAL RESULTS

�
1 else { // x > 0.5
2 z = (one-x)*0.5;
3 s = __ieee754_sqrt(z);
4 df = s;
5 SET_LOW_WORD(df,0);
6 c = (z-df*df)/(s+df);
7 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
8 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
9 r = p/q;

10 w = r*s+c;
11 return 2.0*(df+w);
12 }
13� �

Here the Ciao code is:�
1 acos_operations_branch4(X1, Branch) :-
2 One = 1.00000000000000000000e+00, % 0x3FF00000 , 0x00000000
3 ...
4 QS4 = 7.70381505559019352791e-02, % 0x3FB3B8C5 , 0xB12E9282
5 X1 > 0.5, X1 < 1.0, !,
6 Z is (One - X1)*0.5,
7 S > 0.0, S < 0.5, %% Z in i(0.0, 0.25)
8 Df is 0.0,
9 C is (Z - Df*Df)/(Df + S),

10 P is Z*(PS0+Z*(PS1+Z*(PS2+Z*(PS3+Z*(PS4+Z*PS5))))),
11 Q is One+Z*(QS1+Z*(QS2+Z*(QS3+Z*QS4))),
12 R is P/Q,
13 W is R*S+C,
14 Branch is 2.0*(Df+W).� �

Notice that in this transformation S corresponds to the square root of Z, in this case
and since we do not have a direct projection for square roots we used the information
that we have from Z to give an appropriate interval for S. Same happens with Df
which we set to zero because both extrema of the interval S are set to zero. In this
cases results are not as good as it would be desirable. We obtain an interval�

1 :- true pred ’esa_cos:acos_operations_branch4’(A,B)
2 : (A/’$top’, B/’$top’)
3 => (A/i(0.5,1.0), B/i(-0.0,0.Inf))
4 + (complete_id(6), domain(nonrel_fintervals),

↪→ callers([(’esa_cos:acos_operations_branch4/2’,0)])).� �
which is an interval containing the expected interval but much bigger. This is due
to the SET_LOW_WORD behavior which we were not able to capture.

In this case we have considered floating-point numbers of 64 bits and all the possible
rounding modes. This means that if the interval obtained for is i(xl, xu) for all input and
every sequence of rounding modes the result is in that interval.

We considered different configurations, since we need to measure somehow the distance
between the interval obtained and the “correct” interval we have defined the measure:

Abstract Domain for Floating-Point programs 47

CHAPTER 5. EXPERIMENTAL RESULTS

m(i(xl, xu), i(yl, yu))) = ||xu − xl| − |yu − yl|| where i(xl, xu) is the correct interval and
i(yu, yl) the obtained one.

Float 64 Float32
B1 B2 B3 B1 B2 B3

{n, 0, ↑, ↓} 0.20230214043057648 0.057190608337404 ∞ 0.2023023658337368 0.05719092422149 ∞
{n} 0.20230214043057603 0.057190608337400 ∞ 0.2023020678105129 0.05719044738433 ∞
{0} 0.20230214043057559 0.057190608337403 ∞ 0.2023020082058681 0.05719068580291 ∞
{↑} 0.20230214043058580 0.057190608337403 ∞ 0.2023023062290920 0.05719092422149 ∞
{↓} 0.20230214043057603 0.057190608337403 ∞ 0.2023020678105129 0.05719068580291 ∞

Table 5.1: Result of apply Floats to ESA arcos function

Fix(40, 24)
B1 B2 B3

{n, 0, ↑, ↓} 0.202301527606804 0.057190657 ∞
{0} 0.202301527606804 0.057190657 ∞
{n} 0.202301527606804 0.057190657 ∞
{↑} 0.202301527606804 0.057190657 ∞
{↓} 0.202301527606804 0.057190657 ∞

Table 5.2: Result of apply 24 bits fixed-point to ESA arcos function

In this case we can see that the error does not vary too much with different
configurations of floating point and different possible rounding modes. It is also surprising
that the most precise mode seems to be the fixpoint with 64 bits and 24 bits of precision.
This format also remains the same under changes of rounding modes.

48 Abstract Domain for Floating-Point programs

6
Conclusions

Motivated by the importance of floating-point arithmetic in software development we
aimed to provide a tool capable of analyzing different types of programs in order to help
ensure some error control and making developers able to take some architectural decisions
with some strong guarantees related to the type of numbers to be used. With this humble
objective we summoned the powerful theory of abstract interpretation and together with
the strong system that Ciao provides we developed a prototype of what we hope will be
eventually be a complete and effective bundle that solves some of the problems that we
enumerated in Chapter 1. Looking back from the beginning of this work we can enumerate
the following tasks that we have accomplished:

1. We implemented an analysis based on a refinement of the Interval Domain which
captures the ranges where values obtained by floating-point computations can be
found, allowing developers to estimate whether their programs can behave in an
unexpected way.

2. We proved that the basic operations implemented are correct and optimal.

3. We have been able to analyze the same programs with different configurations of
floating-point numbers (32 and 64 bits) and we also included all possible fixed-point
number configurations as they can be useful when working with legacy software.

4. We have been able to consider different rounding modes and handle the cases where
knowledge about the rounding mode being used is limited.

5. We implemented a new numerical analyzer within the current version of CiaoPP.

Abstract Domain for Floating-Point programs 49

CHAPTER 6. CONCLUSIONS

6.1 Future work

We would like to end this work with some lines that we hope to be able to explore in the
future:

Capturing the behavior of NaNs

In our implementation we (and most state-of-the-art analyzers) only consider the floating-
point numbers. [1] proposes considering an auxiliary boolean domain where > means
“can be Not a Number” and ⊥ means “cannot be a NaN”. We aim to include this domain
together with the implemented domain as a product domain [63].

Implement a correct backward analysis

Even though we currently have the theory background needed to develop a correct
backward analysis for this domain we did not have enough time to implement it on the
current analysis. One of the first things that we aim to do is to extend our domain with
backward analysis. This extension would allow the developer to ensure whether some
concrete and unexpected behavior can happen in a program. If we consider the following
code:�

1 double weird_sum(float x){ max_range = 100; double sum = 0; for int
2 i=0; i<100; i++ { sum = sum + i/x; } return sum; }� �
This code computes

∑100
i=0

i
x
. It would be desirable to know whether the value that

the function returns is or not NaN . A backward analysis would generate an interval
[−0.0,+0.0] pointing out that if some value is selected among that interval it could lead
to a NaN . This would also help to create test suites.

Develop better domains for numerical analysis

Interval analysis is a good option when trying a prototype and has some valuable
properties; among them simplicity is an important one. Anyway as we saw in 2.3.2
the Affine Domain which was proposed by Sylve Putot et al. obtains narrower intervals.
It would be desirable to develop an analysis where both Interval and Affine analysis were
executed together, using Interval Analysis where the relational power that the Affine
Domain offers is not needed.
It would also be interesting to try to find newer domains able to capture narrower intervals,
at least on some subsets of the language, that could be used together with currently
existing domains.

50 Abstract Domain for Floating-Point programs

CHAPTER 6. CONCLUSIONS

Test current work in Industrial Code

We have used our tool on fragments of industrial code as we have seen in Section 5.2. We
would like to try this approach in full industrial codes to help to develop test suites inside
the testing cycle and detect other undesirable behaviors that could hide from a testing
approach as underflows/overflows.

Abstract Domain for Floating-Point programs 51

Bibliography

[1] Roberto Bagnara et al. Correct Approximation of IEEE 754 Floating-Point
Arithmetic for Program Verification. 2019. arXiv: 1903.06119 [cs.PL].

[2] Roberto Bagnara et al. A Practical Approach to Interval Refinement for
math.h/cmath Functions. 2020. arXiv: 1610.07390 [cs.PL].

[3] Siegfried M. Rump. “Accurate solution of dense linear systems, Part II: Algorithms
using directed rounding”. In: Journal of Computational and Applied Mathematics
242 (2013), pp. 185–212. issn: 0377-0427.

[4] Siegfried M. Rump and Takeshi Ogita. “Super-fast validated solution of linear
systems”. In: Journal of Computational and Applied Mathematics 199.2 (2007).
Special Issue on Scientific Computing, Computer Arithmetic, and Validated
Numerics (SCAN 2004), pp. 199–206. issn: 0377-0427.

[5] G. Fiedler. Floting point determinism. url: https://gafferongames.com/post/
floating_point_determinism/.

[6] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008),
pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[7] H. So. Introduction to Fixed Point Number Representation. url: https://inst.
eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html.

[8] Randy Yates. Fixed-Point Arithmetic: An Introduction. 2007. url: https : / /
courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf.

[9] JMC47 neobrain MayImilae. Pixel Processing Problems: On the Road to Pixel
Perfection. 2019. url: https://es.dolphin-emu.org/blog/2014/03/15/pixel-
processing-problems/.

[10] PostgreSQL manual. Chap. 8.1. Numeric Types. url: https://www.postgresql.
org/docs/current/datatype-numeric.html.

[11] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. POPL ’77. Los Angeles, California:
Association for Computing Machinery, 1977, 238–252. isbn: 9781450373500. doi:
10.1145/512950.512973. url: https://doi.org/10.1145/512950.512973.

[12] Jorge Stolfi, L. FIGUEIREDO, and Estrada Dona. “An Introduction to Affine
Arithmetic”. In: TEMA. Tendências em Matemática Aplicada e Computacional 4
(Dec. 2003). doi: 10.5540/tema.2003.04.03.0297.

Abstract Domain for Floating-Point programs 53

https://arxiv.org/abs/1903.06119
https://arxiv.org/abs/1610.07390
https://gafferongames.com/post/floating_point_determinism/
https://gafferongames.com/post/floating_point_determinism/
https://doi.org/10.1109/IEEESTD.2008.4610935
https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
https://es.dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/
https://es.dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/
https://www.postgresql.org/docs/current/datatype-numeric.html
https://www.postgresql.org/docs/current/datatype-numeric.html
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.5540/tema.2003.04.03.0297

BIBLIOGRAPHY

[13] Eric Goubault and Sylvie Putot. “Static Analysis of Numerical Algorithms”.
In: Static Analysis. Ed. by Kwangkeun Yi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 18–34. isbn: 978-3-540-37758-0.

[14] Bala Surendra Adusumilii and Boddeti Kalyan Kumar. “Backward/Forward Sweep
based Power Flow Analysis of Distribution Systems under Uncertainty using New
Affine Arithmetic Division”. In: 2020 IEEE Power Energy Society Innovative Smart
Grid Technologies Conference (ISGT). 2020, pp. 1–5. doi: 10.1109/ISGT45199.
2020.9087718.

[15] Liqian Chen, Antoine Miné, and Patrick Cousot. “A Sound Floating-Point
Polyhedra Abstract Domain”. In: Programming Languages and Systems. Ed. by G.
Ramalingam. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3–18. isbn:
978-3-540-89330-1.

[16] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems”. In: Science of Computer
Programming 72.1 (2008). Special Issue on Second issue of experimental software
and toolkits (EST), pp. 3–21. issn: 0167-6423. doi: https://doi.org/10.1016/
j.scico.2007.08.001. url: https://www.sciencedirect.com/science/
article/pii/S0167642308000415.

[17] Gagandeep Singh, Markus Püschel, and Martin Vechev. “Fast Polyhedra Abstract
Domain”. In: SIGPLAN Not. 52.1 (Jan. 2017), 46–59. issn: 0362-1340. doi: 10.
1145/3093333.3009885. url: https://doi.org/10.1145/3093333.3009885.

[18] Antoine Miné. “The Octagon Abstract Domain”. In: Higher-Order and Symbolic
Computation 19 (2006), pp. 31–100. url: https://hal.archives-ouvertes.fr/
hal-00136639.

[19] Antoine Miné. “Weakly Relational Numerical Abstract Domains”. PhD thesis. École
Normale Supérieure, 2004. url: https://www- apr.lip6.fr/~mine/these/
these-color.pdf.

[20] Antoine Miné. “Symbolic Methods to Enhance the Precision of Numerical Abstract
Domains”. In: LNCS 3855. Springer, Jan. 2006, pp. 348–363. url: https://hal.
archives-ouvertes.fr/hal-00136661.

[21] Alexandre Chapoutot. “Interval Slopes as a Numerical Abstract Domain for
Floating-Point Variables”. In: Lecture Notes in Computer Science (2010), 184–200.
issn: 1611-3349. doi: 10.1007/978-3-642-15769-1_12. url: http://dx.doi.
org/10.1007/978-3-642-15769-1_12.

[22] Manuel V. Hermenegildo et al. “An overview of Ciao and its design philosophy”. In:
Theory and practice of logic programming 12.1-2 (2012), pp. 219–252.

[23] G. Puebla, F. Bueno, and M. V. Hermenegildo. “Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs”. In: Logic-based Program
Synthesis and Transformation (LOPSTR’99). LNCS 1817. Springer-Verlag, 2000,
pp. 273–292. doi: 10.1007/10720327_16.

54 Abstract Domain for Floating-Point programs

https://doi.org/10.1109/ISGT45199.2020.9087718
https://doi.org/10.1109/ISGT45199.2020.9087718
https://doi.org/https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/https://doi.org/10.1016/j.scico.2007.08.001
https://www.sciencedirect.com/science/article/pii/S0167642308000415
https://www.sciencedirect.com/science/article/pii/S0167642308000415
https://doi.org/10.1145/3093333.3009885
https://doi.org/10.1145/3093333.3009885
https://doi.org/10.1145/3093333.3009885
https://hal.archives-ouvertes.fr/hal-00136639
https://hal.archives-ouvertes.fr/hal-00136639
https://www-apr.lip6.fr/~mine/these/these-color.pdf
https://www-apr.lip6.fr/~mine/these/these-color.pdf
https://hal.archives-ouvertes.fr/hal-00136661
https://hal.archives-ouvertes.fr/hal-00136661
https://doi.org/10.1007/978-3-642-15769-1_12
http://dx.doi.org/10.1007/978-3-642-15769-1_12
http://dx.doi.org/10.1007/978-3-642-15769-1_12
https://doi.org/10.1007/10720327_16

BIBLIOGRAPHY

[24] M. V. Hermenegildo, G. Puebla, and F. Bueno. “Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation and
Debugging”. In: The Logic Programming Paradigm: a 25–Year Perspective. Ed. by
K. R. Apt et al. Springer-Verlag, 1999, pp. 161–192.

[25] M. V. Hermenegildo et al. “Integrated Program Debugging, Verification, and
Optimization Using Abstract Interpretation (and The Ciao System Preprocessor)”.
In: Science of Computer Programming 58.1–2 (2005), pp. 115–140. issn: ISSN 0167-
6423. doi: 10.1016/j.scico.2005.02.006.

[26] M. V. Hermenegildo et al. “The Ciao Approach to the Dynamic vs. Static Language
Dilemma”. In: Proceedings for the International Workshop on Scripts to Programs
(STOP’11). Austin, Texas, USA: ACM, 2011.

[27] Cormac Flanagan. “Hybrid Type Checking”. In: Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, South Carolina, USA, January 11-13, 2006. Ed. by J. Gregory
Morrisett and Simon L. Peyton Jones. ACM, 2006, pp. 245–256. isbn: 1-59593-027-
2. doi: 10.1145/1111037.1111059. url: https://doi.org/10.1145/1111037.
1111059.

[28] Jeremy G. Siek. “Gradual typing for functional languages”. In: In Scheme and
Functional Programming Workshop. 2006, pp. 81–92.

[29] M. V. Hermenegildo et al. “An Overview of Ciao and its Design Philosophy”. In:
Theory and Practice of Logic Programming 12.1–2 (2012), pp. 219–252. issn: 1471-
0684. doi: 10.1017/S1471068411000457. url: http://arxiv.org/abs/1102.
5497.

[30] E. Albert, G. Puebla, and M. V. Hermenegildo. “Abstraction-Carrying Code”. In:
Proc. of LPAR’04. Vol. 3452. LNAI. Springer, 2005.

[31] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. “A Flexible (C)LP-Based
Approach to the Analysis of Object-Oriented Programs”. In: LOPSTR. Vol. 4915.
LNCS. Springer-Verlag, 2007, pp. 154–168. doi: 10.1007/978-3-540-78769-3_11.

[32] J.C. Peralta, J. Gallagher, and H. Saǧlam. “Analysis of Imperative Programs
through Analysis of Constraint Logic Programs”. In: Static Analysis. 5th Interna-
tional Symposium, SAS’98, Pisa. Ed. by G. Levi. Vol. 1503. LNCS. 1998, pp. 246–
261. doi: 10.1007/3-540-49727-7_15.

[33] Kim S. Henriksen and John P. Gallagher. “Abstract Interpretation of PIC Programs
through Logic Programming”. In: SCAM ’06. IEEE Computer Society, 2006,
pp. 184–196. isbn: 0-7695-2353-6. doi: 10.1109/SCAM.2006.1.

[34] M. Gómez-Zamalloa, E. Albert, and G. Puebla. “Decompilation of Java Bytecode
to Prolog by Partial Evaluation”. In: JIST 51 (10 2009), pp. 1409–1427. issn: 0950-
5849. doi: 10.1016/j.infsof.2009.04.010.

[35] Sergey Grebenshchikov et al. “Synthesizing software verifiers from proof rules”. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’12. Ed. by Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 405–
416. doi: 10.1145/2254064.2254112.

Abstract Domain for Floating-Point programs 55

https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1017/S1471068411000457
http://arxiv.org/abs/1102.5497
http://arxiv.org/abs/1102.5497
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/3-540-49727-7_15
https://doi.org/10.1109/SCAM.2006.1
https://doi.org/10.1016/j.infsof.2009.04.010
https://doi.org/10.1145/2254064.2254112

BIBLIOGRAPHY

[36] Arie Gurfinkel et al. “The SeaHorn Verification Framework”. In: International
Conference on Computer Aided Verification, CAV 2015. LNCS 9206. Springer, 2015,
pp. 343–361. doi: 10.1007/978-3-319-21690-4_20.

[37] Emanuele De Angelis et al. “Semantics-based generation of verification conditions
by program specialization”. In: 17th International Symposium on Principles and
Practice of Declarative Programming. ACM, 2015, pp. 91–102. doi: 10 . 1145 /
2790449.2790529.

[38] Temesghen Kahsai et al. “JayHorn: A Framework for Verifying Java Programs”. In:
Computer Aided Verification - 28th International Conference, CAV 2016. Ed. by
Swarat Chaudhuri and Azadeh Farzan. Vol. 9779. LNCS. Springer, 2016, pp. 352–
358. doi: 10.1007/978-3-319-41528-4_19.

[39] J. Gallagher et al. “From big-step to small-step semantics and back with interpreter
specialization (invited paper)”. In: International WS on Verification and Program
Transformation (VPT 2020). EPTCS. Open Publishing Association, 2020, pp. 50–
65. doi: 10.4204/EPTCS.320.4.

[40] P. Lopez-Garcia et al. “Interval-based Resource Usage Verification by Translation
into Horn Clauses and an Application to Energy Consumption”. In: Theory
and Practice of Logic Programming, Special Issue on Computational Logic for
Verification 18.2 (2018), pp. 167–223. doi: 10.1017/S1471068418000042. url:
https://arxiv.org/abs/1803.04451.

[41] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. “User-Definable Resource
Usage Bounds Analysis for Java Bytecode”. In: BYTECODE’09. Vol. 253. ENTCS
5. Elsevier, 2009, pp. 6–86. doi: 10.1016/j.entcs.2009.11.015. url: http:
//cliplab.org/papers/resources-bytecode09.pdf.

[42] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. “Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications”. In: The Sixth NASA Langley
Formal Methods Workshop (LFM 08). Extended Abstract. 2008, pp. 29–32.

[43] U. Liqat et al. “Energy Consumption Analysis of Programs based on XMOS ISA-
Level Models”. In: Proceedings of LOPSTR’13. Vol. 8901. LNCS. Springer, 2014,
pp. 72–90. doi: 10.1007/978-3-319-14125-1_5.

[44] U. Liqat et al. “Inferring Parametric Energy Consumption Functions at Different
Software Levels: ISA vs. LLVM IR”. In: Proc. of FOPARA. Vol. 9964. LNCS.
Springer, 2016, pp. 81–100. doi: 10.1007/978-3-319-46559-3_5.

[45] V. Perez-Carrasco et al. “Cost Analysis of Smart Contracts via Parametric Resource
Analysis”. In: Static Aanalysis Simposium (SAS’20). Vol. 12389. LNCS. Springer,
2020, pp. 7–31. doi: 10.1007/978-3-030-65474-0_2.

[46] E. Mera et al. “Towards Execution Time Estimation in Abstract Machine-Based
Languages”. In: PPDP’08. ACM Press, 2008, pp. 174–184. doi: 10.1145/1389449.
1389471.

[47] U. Liqat et al. “Inferring Energy Bounds via Static Program Analysis and
Evolutionary Modeling of Basic Blocks”. In: Logic-Based Program Synthesis and
Transformation - 27th International Symposium. Vol. 10855. LNCS. Springer, 2018.
doi: 10.1007/978-3-319-94460-9_4.

56 Abstract Domain for Floating-Point programs

https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/2790449.2790529
https://doi.org/10.1145/2790449.2790529
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.4204/EPTCS.320.4
https://doi.org/10.1017/S1471068418000042
https://arxiv.org/abs/1803.04451
https://doi.org/10.1016/j.entcs.2009.11.015
http://cliplab.org/papers/resources-bytecode09.pdf
http://cliplab.org/papers/resources-bytecode09.pdf
https://doi.org/10.1007/978-3-319-14125-1_5
https://doi.org/10.1007/978-3-319-46559-3_5
https://doi.org/10.1007/978-3-030-65474-0_2
https://doi.org/10.1145/1389449.1389471
https://doi.org/10.1145/1389449.1389471
https://doi.org/10.1007/978-3-319-94460-9_4

BIBLIOGRAPHY

[48] G. Puebla, F. Bueno, and M. V. Hermenegildo. “An Assertion Language for
Constraint Logic Programs”. In: Analysis and Visualization Tools for Constraint
Programming. Ed. by P. Deransart, M. V. Hermenegildo, and J. Maluszynski. LNCS
1870. Springer-Verlag, 2000, pp. 23–61. isbn: 978-3-540-40016-5.

[49] F. Bueno et al. “Global Analysis of Standard Prolog Programs”. In: European
Symposium on Programming. LNCS 1058. Sweden: Springer-Verlag, 1996, pp. 108–
124. isbn: ISBN 3-540-61055-3.

[50] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,
1987.

[51] K. R. Apt. “Introduction to Logic Programming”. In: Handbook of Theoretical
Computer Science. Ed. by J. van Leeuwen. Elsevier, 1990, pp. 493–576.

[52] M. Bruynooghe. “A Practical Framework for the Abstract Interpretation of Logic
Programs”. In: Journal of Logic Programming 10 (1991), pp. 91–124.

[53] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. Technical Report
ACA-ST-232-89. Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, 1989.

[54] K. Muthukumar and M. Hermenegildo. “Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation”. In: 1989 North
American Conference on Logic Programming. MIT Press, 1989, pp. 166–189.

[55] K. Muthukumar and M. Hermenegildo. “Compile-time Derivation of Variable
Dependency Using Abstract Interpretation”. In: Journal of Logic Programming
13.2/3 (1992). Ed. by S. Debray, pp. 315–347.

[56] M. V. Hermenegildo et al. “Incremental Analysis of Constraint Logic Programs”. In:
ACM TOPLAS 22.2 (2000), pp. 187–223. doi: 10.1145/349214.349216.

[57] P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. “Automatic Inference of
Determinacy and Mutual Exclusion for Logic Programs Using Mode and Type
Analyses”. In: New Generation Computing 28.2 (2010), pp. 117–206. issn: 0288-
3635.

[58] Andy King, Lunjin Lu, and Samir Genaim. “Detecting Determinacy in Prolog
Programs.” In: Logic Programming, 22nd International Conference, ICLP 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings. Ed. by Sandro Etalle and
Miroslaw Truszczynski. Vol. 4079. Lecture Notes in Computer Science. Springer,
2006, pp. 132–147. isbn: 3-540-36635-0.

[59] C. Braem et al. “Cardinality Analysis of Prolog”. In: Proc. International Symposium
on Logic Programming. Ithaca, NY: MIT Press, 1994, pp. 457–471.

[60] S.K. Debray, P. Lopez-Garcia, and M. V. Hermenegildo. “Non-Failure Analysis
for Logic Programs”. In: 1997 International Conference on Logic Programming.
Cambridge, MA: MIT Press, Cambridge, MA, 1997, pp. 48–62.

[61] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. 1991.

Abstract Domain for Floating-Point programs 57

https://doi.org/10.1145/349214.349216

BIBLIOGRAPHY

[62] J. A. Robinson. “A Machine Oriented Logic Based on the Resolution Principle”. In:
Journal of the ACM 12.23 (1965), pp. 23–41.

[63] Michael Codish et al. “Improving Abstract Interpretations by Combining Domains.”
In: ACM Trans. Program. Lang. Syst. 17 (Jan. 1995), pp. 28–44. doi: 10.1145/
154630.154650.

58 Abstract Domain for Floating-Point programs

https://doi.org/10.1145/154630.154650
https://doi.org/10.1145/154630.154650

	Introduction
	Objectives
	Structure of the document

	Background
	Floating Point Representations
	Floating Point Numbers
	Fixed point arithmetic

	Abstract Interpretation
	Abstract Interpretation Basics
	Abstract domains

	State of the Art
	Interval Domain
	Affine Domain
	Polyhedra Domain
	Other Domains

	The Ciao System
	The CiaoPP Program Processor
	Supporting multiple languages
	Assertions

	Abstract Interpretation with Ciao

	Floating Point Interval Domain
	Rounding modes
	Managing expressions
	Algorithms for Arithmetic Constraints
	Addition
	Product
	Division

	Widening
	Adding the domain to CiaoPP

	Experimental results
	Missile Failure
	ESA trigonometric functions

	Conclusions
	Future work

	Bibliography

