
Submitted to:

Towards a General Framework for Static Cost Analysis
of Parallel Logic Programs∗

M. Klemen
IMDEA Software Institute

ETSIINF, U. Politécnica de Madrid

maximiliano.klemen@imdea.org

P. Lopez-Garcia
IMDEA Software Institute

Consejo Sup. Inv. Cient. (CSIC)

pedro.lopez@imdea.org

J.P. Gallagher
IMDEA Software Institute

Roskilde University

john.gallagher@imdea.org

J.F. Morales
IMDEA Software Institute

josef.morales@imdea.org

M.V. Hermenegildo
IMDEA Software Institute

ETSIINF, U. Politécnica de Madrid

manuel.hermenegildo@imdea.org

Estimating in advance the resource usage of computations is useful for a number of applications.
Examples include granularity control in parallel/distributed systems, automatic program optimization,
verification of resource-related specifications, and detection of performance bugs, as well as helping
developers make resource-related design decisions. Besides time and energy, we assume a broad concept
of resources as numerical properties of the execution of a program, including the number of execution
steps, the number of calls to a procedure, the number of network accesses, the number of transactions in
a database, and other user-definable resources. The goal of automatic static analysis is to estimate such
properties (prior to running the program with concrete data) as a function of input data sizes and possibly
other (environmental) parameters.

Due to the heat generation barrier in traditional sequential architectures, parallel computing, with
(possibly heterogeneous) multi-core processors in particular, has become the dominant paradigm in cur-
rent computer architecture. Predicting resource usage on such platforms poses important challenges.
Most work on static resource analysis has focused on sequential programs, and comparatively less
progress has been made on the analysis of parallel programs, or on parallel logic programs in particular.
The significant body of work on static analysis of sequential logic programs has already been applied
to the analysis of other programming paradigms, including imperative programs. This is achieved via a
transformation into Horn clauses.

In this paper we concentrate on the analysis of parallel Horn clause programs, which could be the
result of such a translation from a parallel imperative program or be themselves the source program. Our
starting point is the standard general framework of CiaoPP for setting up parametric relations represent-
ing the resource usage (and size relations) of programs. This is based on the well-developed technique of
setting up recurrence relations representing resource usage functions parameterized by input data sizes,
which are then solved to obtain (exact or safely approximated) closed forms of such functions (i.e., func-
tions that provide upper or lower bounds on resource usage). The framework is doubly parametric: first,
the costs inferred are functions of input data sizes, and second, the framework itself is parametric with
respect to the type of approximation made (upper or lower bounds), and to the resource analyzed. We
build on this and propose a novel, general, and flexible framework for setting up cost equations/relations

∗This document is an extended abstract of Technical Report CLIP-1/2019.0 [1]. Research partially funded by MINECO
project TIN2015-67522-C3-1-R TRACES and Comunidad de Madrid project S2018/TCS-4339 BLOQUES-CM, co-funded by
EIE Funds of the European Union.



2 Towards a General Framework for Static Cost Analysis of Parallel Logic Programs

which can be instantiated for performing static resource usage analyses of parallel logic programs for a
wide range of resources, platforms, and execution models. Such analyses estimate both lower and upper
bounds on the resource usage of a parallel program as functions on input data sizes. We have instan-
tiated the framework for dealing with Independent And-Parallelism (IAP), which refers to the parallel
execution of conjuncts in a goal. However, the results can be applied to other languages and types of
parallelism, by performing suitable transformations into Horn clauses.

Independent And-Parallelism arises between two goals (or other parts of executions) when their
corresponding executions do not affect each other. For pure goals (i.e., without side effects) a sufficient
condition for the correctness of IAP is the absence of variable sharing at run time among such goals.
(Restricted) IAP has traditionally been expressed using the &/2 meta-predicate as the constructor to
represent the parallel execution of goals. In this way, the conjunction of goals (i.e., literals) p & q in the
body of a clause will trigger the execution of goals p and q in parallel, finishing when both executions
finish.

Automatically finding closed-form upper and lower bounds for recurrence relations is an uncom-
putable problem. For some special classes of recurrences, exact solutions are known, for example for
linear recurrences with one variable. For some other classes, it is possible to apply transformations to fit
a class of recurrences with known solutions, even if this transformation obtains an appropriate approxi-
mation rather than an equivalent expression.

Particularly for the case of analyzing independent and-parallel logic programs, nonlinear recurrences
involving the max operator are quite common. For example, if we are analyzing elapsed time of a parallel
logic program, a proper parallel aggregation operator is the maximum between the times elapsed for each
literal running in parallel. To the best of our knowledge, no general solution exists for recurrences of this
particular type. However, in this paper we identify some common cases of this type of recurrences, for
which we obtain closed forms that are proven to be correct.

We have implemented a prototype of our approach, leveraging the existing resource usage analysis
framework of CiaoPP. The implementation basically consists of the parameterization of the operators
used for sequential and parallel cost aggregation, i.e., for the aggregation of the costs corresponding to
the arguments of ,/2 and &/2, respectively. This allows the user to define resources in a general way,
taking into account the underlying execution model. We introduce a new general parameter that indicates
the execution model the analysis has to consider. For our current prototype, we have defined two different
execution models: standard sequential execution, represented by seq, and an abstract parallel execution
model, represented by par(n), where n ∈ N∪{∞}. The abstract execution model par(∞) is similar to
the work and depth model presented and used extensively in previous work. Basically, this model is
based on considering an unbounded number of available processors to infer bounds on the depth of the
computation tree. The work measure is the amount of work to be performed considering a sequential
execution. These two measures together give an idea on the impact of the parallelization of a particular
program. The abstract execution model par(n), where n ∈ N, assumes a finite number n of processors.

For the evaluation of our approach, we have analyzed a set of benchmarks that exhibit different com-
mon parallel patterns, together with the definition of a set of resources that help understand the overall
behavior of the parallelization.The results show that most of the benchmarks have different asymptotic
behavior in the sequential and parallel execution models. As mentioned before, this is an upper bound
for an ideal case, assuming an unbounded number of processors. Nevertheless, such upper-bound infor-
mation is useful for understanding how the cost behavior evolves in architectures with different levels of
parallelism. In addition, this dual cost measure can be combined together with a bound on the number
of processors in order to obtain a general asymptotic upper bound.



M. Klemen, P. Lopez-Garcia, J.P. Gallagher, J.F. Morales, M.V. Hermenegildo 3

References
[1] M. Klemen, P. Lopez-Garcia, J. Gallagher, J.F. Morales & M. V. Hermenegildo (2019): Towards a General

Framework for Static Cost Analysis of Parallel Logic Programs. Technical Report CLIP-1/2019.0, The CLIP
Lab, IMDEA Software Institute and T.U. Madrid. Available at http://arxiv.org/abs/1907.13272.

http://arxiv.org/abs/1907.13272

