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Abstract. We address the problem of developing mechanisms for eas-
ily implementing modular extensions to modular (logic) languages. By
(language) extensions we refer to different groups of syntactic definitions
and translation rules that extend a language. Our use of the concept of
modularity in this context is twofold. We would like these extensions to
be modular, in the sense above, i.e., we should be able to develop dif-
ferent extensions mostly separately. At the same time, the sources and
targets for the extensions are modular languages, i.e., such extensions
may take as input separate pieces of code and also produce separate
pieces of code. Dealing with this double requirement involves interesting
challenges to ensure that modularity is not broken: first, combinations
of extensions (as if they were a single extension) must be given a precise
meaning. Also, the separate translation of multiple sources (as if they
were a single source) must be feasible. We present a detailed descrip-
tion of a code expansion-based framework that proposes novel solutions
for these problems. We argue that the approach, while implemented for
Ciao, can be adapted for other Prolog-based systems and languages.
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1 Introduction

The choice of a good notation and adequate semantics when encoding a partic-
ular problem can dramatically affect the final outcome. Extreme examples are
programming pearls, whose beauty is often completely lost when translated to a
distant language. In practice, large projects are bigger than pearls and often no
single language fulfills all expectations (which can include many aspects, such
as development time or execution performance). The programmer is forced to
make a commitment to one language —and accept sub-optimal encoding— or
more than one language —at the expense of interoperability costs.

An alternative is to provide new features and idioms as syntactic and se-
mantic extensions of a language, thus achieving notational convenience while
avoiding inter-language communication costs. In the case of Prolog, language
extension through term-expansion systems (combined with operator definitions)
has traditionally offered a quick way to develop variants of logic languages and
semantics (e.g., experimental domain-specific languages, constraint systems, op-
timizations, debugging tools, etc.). Some systems, and in particular Ciao [10],



have placed special attention on these capabilities, extending them [1] and ex-
ploiting them as the base for many language extensions.

Once a good mechanism is available for writing extensions and a number of
them are available, it is natural to consider whether combining a number of them
following modular design principles is feasible. For example, consider embedding
a simple handy functional notation [3] (syntactic sugar to write goals, marked
with ~, in term positions), into a more complex extension, such as the Prolog-
based implementation of CHR [8]. In this new dialect, the CHR rule (see Sect.
6.2.1 in Frühwirth’s book [8]):

T eq and(T1, T2), T1 eq 1, T2 eq X <=> T eq X.

can be written more concisely as:
T eq and(~eq(1), ~eq(X)) <=> T eq X.

Intuitively, expansions are applied one after the other. This already points out
that at least a mechanism to determine application order is needed. This is al-
ready undesirable because it requires users to be aware of the valid orderings.
Furthermore, just ordering may not be enough. In our example, if functional syn-
tax is applied first, it must normalize the ~eq(_) terms before CHR translation
happens, but there is no simple way to indicate to the functional expansion that
the CHR constraints have to be treated syntactically as goals. If CHR transla-
tion is done first, it will not recognize that ~eq(_) corresponds to a constraint,
and incorrect code will be generated before the functional expansion takes place.
Thus, the second rule cannot be translated into the first one by simply composing
the two expansions, without tweaking the translation code, which is undesirable.

Moreover, current extension mechanisms have difficulties dealing with the
module system. An example is the Typed Prolog extension of [13], which ele-
gantly implements gradually typed Prolog in the style of Hindley-Milner, but
needs to treat programs as monolitic, non-modular, units. Even if extensions are
made module-aware, the dynamic features of traditional Prolog systems present
an additional hurdle: programs can change dynamically, and modules may be
loaded at runtime, with no clear distinction between program code and transla-
tion code, and with no limits on what data is available to the expansion (e.g.,
consulting the predicates compiled in other arbitrary modules). In the worst case,
this leads to a chaotic scenario, where reasoning about language translations is
an impossible task.

The previous examples illustrate the limitations of the current extension
mechanisms for Prolog and motivate the goals of this work:

– Predictable Combination of Fine-grained Extensions: The extension
mechanisms must be fine-grained enough to allow rich combinations, but
also provide a simple interface for users of extensions. Namely, programmers
should be able to write modules using several extensions (e.g., functional no-
tation, DCGs, and profiling), without being required to know the application
order of rules or the compatibility of extensions. Obviously, the result of the
combination of such extensions must be predictable. That indirectly leads
us to the necessity of describing a precise compilation model that includes
compilation and loading of the extension code.

– Integration with Module Systems: It is thus necessary to make the ex-
tensions module-aware, while at the same time constraining them to respect
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the module system. For example, it must be possible to determine during ex-
pansion to what module a goal being expanded belongs, if that information
is available, or to export new declarations. It is well known that modularity,
if not designed carefully, can make static analysis impossible [2]. A flexi-
ble extension system that however allows breaking modularity renders any
efforts towards static transformations useless.

This paper presents a number of novel contributions aimed at addressing
these problems. We take as starting point the module and extension system
implemented in Ciao [1,10], which is more elaborate than the one offered by
traditional Prolog systems. We provide in this paper a refined formal description
of the compilation model, and use it to propose and justify the definition of a
number of distinct translation phases as well as the information that is available
at each one. Then, we propose a set of rule-based extension mechanisms that we
argue generalize previous approaches and allows us to provide better solutions
for a good number of the problems mentioned earlier.

The paper is structured as follows. Section 2 gives a detailed description
of the core translation process for extensions. Section 3 defines a compilation
model that integrates the extensions. Section 4 and Section 5 illustrate the rules
defined in the previous section by defining several (real-life) language features
and extensions. We close with a discussion of related and future work in Section 6,
and conclusions in Section 7.

2 Language Extensions as Translation Rules

By language extensions we refer to translations that manipulate a symbolic
representation of a given program. For simplicity we will use terms representing
abstract syntax trees, denoted by T , following the usual definition of ground
terms in first order logic. To simplify notation, we include sequences of terms
(Seq(T )) as part of T .3 We also assume some standard definitions and operations
on terms: termFn(x) denotes the (name, arity) of the term, args : T → Seq(T )
obtains the term arguments (i.e., the sequence of children), and setArgs : T ×
Seq(T )→ T replaces the arguments of a term.

We use a homogeneous term representation for the program, but terms may
represent a variety of language elements. The meaning of each term is often
given by its surrounding context. In order to reflect this, each input term is
labeled with a symbolic kind annotation. That annotation determines which
transformation to apply to each term.

We define the main transformation algorithm trJx : κK = x′ in Fig. 1. Given a
term x of kind κ, it obtains a term x′ by applying the available rules. Translation
ends for a term when the final kind is found. The transformation is driven by
rules (defined in compilation modules). Note that the rules may contain guards
in order to make them conditional on the term. Rule x : κ =⇒ x′ : κ′ denotes
that when a term x of kind κ is found, it is replaced by x′ of kind κ′. Rule

κ � κ′ is the same, but the term is unmodified. Finally, rules x : κx
decons
=⇒ ~a : ~κ

and (~a : ~κ, x)
recons
=⇒ κx : x′ allow the deconstruction (decons) of a term into

3 We will assume –for simplicity and contrary to common practice– that when com-
piling a program variables are read as special ground terms.
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trJx : finalK = x

trJx : κK = trJx : κ′K (if κ � κ′)

trJx : κK = trJx′ : κ′K (if x : κ =⇒ x′ : κ′)

trJx : κxK = trJx′ : κ′
xK (if x : κx

decons
=⇒ ~a : ~κ)

where

a′i = trJai : κiK ∀i.1 < i < |~a|

(x : κx, ~a′)
recons
=⇒ x′ : κ′

x

trJx : try(t, κ1, κ2)K =

{
trJx′ : κ1K if t(x, x′)
trJx : κ2K otherwise

trJx1 . . . xn : seq(κ)K = (trJx1 : κK . . . trJxn : κK)

Fig. 1. The Transformation Algorithm

smaller parts, which are translated and then put together by reconstruction of
the term (recons). Intuitively, this pair of rules allows performing a complex
expansion that reuses other rules (which may be defined elsewhere). We will
see examples of all these rules later. We divided expansions into finer-grained
translations because we want to be able to combine them and to allow them
to be interleaved with other rules in such combinations. Monolithic expansions
would render their combination infeasible in many cases.

Additionally, there are some rules for special kinds, which are provided here
for programmer convenience, even if they can be defined in terms of the previous
rules. Their meaning is the following: the try(t, κ1, κ2) kind tries to transform
the input with the relation t. If it is possible, the resulting term is transformed
with kind κ1. Otherwise, the untransformed input is retried with kind κ2. This
is useful to compose translations. The seq(κ) kind indicates that the input term
is a sequence of elements of kind κ.4

Composition of Transformations Note that the transformation algorithm
does not make any assumption regarding the order in which rules are defined in
the program, given that the rules define a fixed order relation between kinds. We
will see in Section 5 how to give an unambiguous meaning to conflicting rules
targeting the same kind.

Example 1 (Combining Transformations). Consider the example about merging
CHR and functional syntax presented in the introduction. It can be solved in
our framework by introducing rules such as:

(a \ b <=> c) : chrclause1
decons
=⇒ (a b c) : (goal1 goal1 goal1)

( : chrclause1, (a b c))
recons
=⇒ (a \ b <=> c) : chrclause2

Those rules expose the internal structure of some constructs to allow the coop-
eration between translations. That is, those rules mean that in the middle of

4 In the Prolog implementation sequences are replaced by lists.
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the translation from the kinds chrclause1 and chrclause2 we allow treatment of a
kind goal1, which could be treated, e.g., by the functional syntax package. Note
that neither the CHR nor the functional package are required to know about the
existence of each other.

3 Integration in the Compilation Model

In our compilation model programs are separated into modules. Modules can im-
port and use code from other modules. Additionally, modules may load language
extensions through special compilation modules. For the sake of simplicity, we
will show here the compilation passes required for a simplified language with ex-
ported symbols (e.g., predicates) and imported modules. Extending it to support
more features is straightforward.

We assume that compilation is performed on a single module at a time,
in two phases.5 Let us also assume that each phase reads and writes a series
of initial (sources), temporal, and final compilation results (linkable/executable
binaries). We will call those elements nodes, since clearly there is a dependency
relation between them. In practice, nodes are read and written from a (persistent)
memory, that we will abstract here as a mapping V . We denote as V (n) the value
of a node. We denote as V (n) ← v the destructive assignment of v to n in V ,
and V (n) the value of n in V .

Given a module i, the first phase (strPass) performs the source code (de-
noted for conciseness as src[i]) parsing and additional processing to obtain the
abstract syntax tree (ast[i]) and module interface (itf[i]). In order to extend the
compilation, we introduce a call to strTr. This will be defined herein in terms of
the translation algorithm trJ · : τK (Fig. 1), working on the program definitions.
We will see actual example definitions for them in Section 5. We call this the
structural pass, since we can change arbitrarily the structure of the syntax tree,
but we are not yet able to fully provide a semantics for the program, which may
depend on external definitions from imported modules.6 Indeed, the informa-
tion about local definitions (e.g., defined predicates) and the module interface
(defined below) is available only at the end of this pass. Note that we load com-
pilation modules dynamically during compilation. We will show later how this
is done.

Once the first phase finishes, the module interfaces are available. In the sec-
ond phase (semPass), the interface of the imported modules are collected and
processed alongside with the module abstract syntax tree (ast[i]) and interface
(itf[i]). The output of this phase (denoted as bin[i]), can be either in an exe-
cutable form (e.g., bytecode), or in a suitable kernel language treatable by other
tools (e.g., like program analysis). As in the previous phase, we introduce an
extensible translation pass called semTr, similar to strTr. However, this time it
can access the interface of imported modules. We name this the semantic pass.

5 This is common in many languages, since at least two passes are required to allow
identifiers in arbitrary order in the program text.

6 It is important not to confuse importing a module with including a file. The latter
is purely syntactic and can be performed during program reading. For the sake of
clarity, we omit dependencies to included files in further sections.
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src[k]

ast[k]itf[k]

bin[k]

strPass(k)

semPass(k)

Module k

src[i]

ast[i]itf[i]

bin[i]

strPass(i)

semPass(i)

Module i

src[j]

ast[j]itf[j]

bin[j]

strPass(j)

semPass(j)

Module j

c d

linksetk = bin[k] + . . . linkseti = bin[i] + bin[j] + . . .

Fig. 2. Example of compilation dependencies for module i, which imports module j (d
arrow), and requires compilation module k (c arrow).

For loading compilation modules (or any other module) dynamically, we need
to compute the link-set (the reflexive transitive closure of the import relation
between modules), or the minimum set of modules required during execution of
a module.

Compilation Order In general, determining the order in which compilation must
occur, and which recompilations have to take place whenever some source changes
is not a straightforward task. For example, see Figure 2 which shows the depen-
dencies for the incremental compilation of a module i depending on module j
and compilation module k. We need an algorithm that automatically schedules
compilation of modules (both program and translation modules) and which is
incremental in order to reduce compilation times. Both of these requirements
are necessary in a scalable, useful, dynamic environment. I.e., when developing,
the user should not have to do anything special in order to ensure that all mod-
ules are compiled and up to date. However, since dependencies are dynamic we
cannot (and would not want to) rely on traditional tools like Makefiles.

3.1 Incremental Compilation

We solve the problems of determining the compilation order, and making the
algorithm incremental, with minor changes. The idea is to invoke the necessary
compilation passes before each V (n) is read, in order to access up-to-date values.
For that, we define the UpdateNode(n) in Algorithm 1.

The algorithm works with time-stamps. We extend the V mapping with an
(also persistent) mapping T between nodes and time-stamps, so that: T (x) = ⊥
if the node does not have any value, and for each V (n) ← v, T (n) is updated
with a recent time-stamp. We need another mapping S, that relates a node with
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data: mappings V , T , and S

1 def UpdateNode(n):
2 r = RulingNode(n) ; CheckNode(r)
3 if S(r) = invalid then
4 S(r)← working
5 if GenNode(r) then S(r)← valid(T (r)) else S(r)← error

6 def CheckNode(r):
7 if S(r) = ⊥ then
8 if UpToDate(T (r),NodeInputs(r)) then S(r)← valid(T (r))
9 else S(r)← invalid

10 def UpToDate(t, oldin):
11 if t = ⊥ ∨ oldin = ⊥ then return False
12 foreach nin ∈ oldin do
13 rin = RulingNode(nin) ; CheckNode(rin)
14 if ¬((S(rin) = valid(tin)) ∧ (tin ≤ t)) then return False

15 return True

Algorithm 1: UpdateNode

its status, and is non-persistent and monotonous during a compilation session
(during which compilation of a set of modules takes place, with no allowed
changes in source code). When a compilation session starts, we begin with the
empty status for all nodes. Finally, we assume that for passes that produce
more than one output node (e.g., the interface and the syntax tree), we can
choose a fixed one of them as the ruling node (e.g., the interface). We denote by
RulingNode(n) the ruling node of n.

UpdateNode works by obtaining the ruling node, invoking CheckNode to up-
date its status, and, depending on it, invoking GenNode to (re)generate the out-
puts if necessary. CheckNode (line 6) examines the node and updates its status.
If the node was visited before, the status will be different from ⊥, and it will
exit. If not, it will check that r is up to date (UpToDate(t, oldin), line 10) w.r.t.
all the dynamic input dependencies (oldin = NodeInputs(r)). In our case, for
strPass(i) the input nodes are src[i] and the link-set of all compilation modules
specified in the (old) itf[i]. For semPass(i) the input nodes are itf[i] and itf[j],
for each imported module j specified in itf[i], in addition to the nodes for com-
pilation modules. The input nodes are ⊥ if it was not possible to obtain them
(i.e., no itf[i] is found). If the node is up-to-date, its status is marked as valid(t),
indicating that it needs no recompilation. If not, it is marked as invalid. This
may mark the status of other dependent nodes, but no action is performed on
them.

For terminal nodes (e.g., source code src[i] for some module i), GenNode(r)
will simply check that the node r exists, and NodeInputs(r) is empty. CheckNode
will mark existing terminal nodes as valid. Non-existing nodes will be marked as
invalid, and later UpdateNode will try to generate them. Since they do not exist,
they will be marked as error. For computable nodes, GenNode(r) invokes the
compilation pass that generates the corresponding output ruling node (based on
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static output dependencies, i.e., strPass(i) generates itf[i], semPass(i) generates
bin[i]). If compilation was successful, the status is updated with valid(T (r)) (in-
dicating that it was successfully generated within this compilation session). On
error, error is used as mark. An additional working status is used to mark nodes
being computed and detect compilation loops (i.e., compilation modules depend-
ing on themselves). Note that for nodes whose value is assumed to be always up
to date (frozen nodes, e.g., precompiled system libraries or static modules that
cannot be updated) we make S(n) = valid(0) by definition (denoting the oldest
possible time-stamp).

Correctness and Optimality of Time-stamp Approximation The algo-
rithm is based on, given a node, knowing if it needs to be recomputed. Based
on the fact that each compilation pass only depends on its inputs, we can deter-
mine this by checking if the contents of a node have changed w.r.t. the contents
used for the pass. For that, we could keep all the versions of each node, and
number them in increasing order. Instead of local version numbers, we can use
time-stamps, as a global version counter updated each time a node is written.
This has the property that for each generated node n, T (n) ≥ T (m) for each m
being an input dependency of n. If we can reason on time-stamps, then keeping
the contents of each node version is unnecessary.7 So if we find an input depen-
dency with a time-stamp greater than T (n), then it is possible that it may have
changed. We may have false positives (time changed but the value is the same),
which will result in more work than necessary, but not incorrect results. If the
time-stamp is less or equal then we can be assured that it has not changed since
n was generated. Unless time-stamps are artificially changed by hand, we will
not have false negatives (whenever a node needs to be computed, it will be).

We only need to keep for each node its dependencies (the name of the nodes,
not their value), or provide a way of inferring them from other stored values.8

Handling Compilation Module Loops When a compilation module depends
on modules that depend on it, a deadlock situation occurs. The compilation
module cannot be compiled because it requires some modules that cannot be
compiled yet. However, it is common to have languages that compile themselves.
We solve the issue by distinguishing between normal and static modules. Static
modules have been compiled previously and their bin[i] and itf[i] are kept for
following compilations (say bin[i]S and itf[i]S respectively). In that case, (itf[i] =
itf[i]S∧bin[i] = bin[i]S). The set of all static modules for the compiler constitutes
the bootstrap system. Note that self-compiling modules require caution, since
accidentally losing the bootstrap will make the source code useless (our source,
only understood by our compilation module, may be written in a language for
which there exists no working compiler).

7 When dealing with large dependencies, this seems inpractical, both in terms of time
and space. We want this operation to be as fast as possible and not consume much
additional space.

8 That is of course not necessary for static dependencies (e.g., that each ast[i] depends
on src[i]).
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sents � sents ~Es

sentsts � seq(sentts)

sent[t|ts] � try(t, sentsts, sentts)

sent[] � term

term � term ~Et

term[t|ts] � try(t, termts, termts)

term[] � rterm

x : rterm
decons
=⇒ args(x) : (term . . . term)

(x : rterm, ~a)
recons
=⇒ setArgs(x,~a) : final

clauses � seq(clause)

clause � clause ~Ec

clause[t|ts] � try(t, clausets, clausets)

clause[] � hb

(h:-b) : hb
decons
=⇒ (h b) : (head body)

( : hb, (h b))
recons
=⇒ (h:-b) : final

body � try(f, control, goal)

f(x, x) ≡ x ∈ {,/2, ;/2, . . .}

x : control
decons
=⇒ args(x) : (body . . . body)

(x : control, ~a)
recons
=⇒ setArgs(x,~a) : final

goal � goal ~Eg

goal[t|ts] � try(t, body, goalts)

goal[] � resolv

Fig. 3. Emulating Ciao translation rules

Module Invariants and Extensions Although the kernel language may pro-
vide low-level pathways if necessary (e.g., to implement debuggers, code inspec-
tion tools, or advanced transformation tools), it is important not to break the
module invariants. One invariant is the module interface (itf[j]), which once
computed cannot be changed without invalidating the compilation of any mod-
ule i that imports it j. For this reason, a semantic expansion cannot modify the
module interface.

4 Backward Compatibility

We now illustrate how the Ciao expansion primitives [1] can be easily emulated
within the proposed approach. Ciao extensions are defined in special libraries
called packages. They contain lexical and syntactic definitions (such as new op-
erators), and hooks for language extension, defined in compilation modules. The
available hooks can be seen as partial functional relations (or predicates that
given an input have at least one solution) that translate different program parts:
term, sentence, clause, and goal translations. For conciseness, we will denote
them as Et, Es, Ec, Eg ⊆ T × T , respectively. The transformations in a single

package will be the tuple E = (Et, Es, Ec, Eg). We will denote with ~E = (E1 . . . En)

all the transformation specifications that are local and used in module, and by ~Ek
the sequence of translations (E1k . . . Enk

), for a particular k ∈ {t, s, c, g}. Fig. 3
shows the emulation of these translations.

The translations made during the strTr phase start with trJ · : sentsK. A term
of kind sents represents a sequence of sentences, that is translated as a sents ~Es

.
Subscripts are used here to represent families of kinds. The kind sentsts repre-
sents a sequence of sentences that require the translation sentts. The third rule
indicates that a sentence of kind sent[t|ts] (we extract the first element of the
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list of transformations) will be transformed by t, yielding a term of kind sentsts
(i.e., a sequence of sentences) on success.9 In case of failure, the untransformed

term will be treated as a sentts. In this way, all transformations in ~Es (i.e., all
sentence trans) will be applied. Once ts is empty, the result is translated as
kind term, equivalent to term ~Et

. Similarly to the previous case, all transforma-

tions in ts (i.e., all term trans) are tried and removed from the list of pending
transformations. When ts is empty, the datum is treated as an rterm, which di-
vides the problem into the translation of arguments as kind term and reuniting
them as a final (non-suitable for further translations) result. Both transforma-
tions are applied in the same order as specified in Ciao.

The translations made during the semTr phase start with trJ · : clausesK.
Sequences of clauses are treated in a similar way as sentences, with the difference
that the translation of a clause always returns one clause (not a sequence). When

all translations in ~Ec (all clause trans) have been performed, the head and body
are treated. In this figure, we do not show any successor for the head kind, since
this will be done in the following examples (we could add head � final to mark
the end of the translation). For body, we apply the same body translation on
the arguments of control constructs (e.g. ,/2, ;/2, etc.). If we are not treating a

control structure, the translations in ~Eg are applied (all goal trans). Note that
the first kind in the try kind of goals is goal. In contrast with other translations,
when a goal translation is successfully applied, it is not removed from the list;
all translations are tried again until none is applicable.10 In such case, the term
is translated as a resolve kind (for the same reason as for head, we leave it open
for later translations).

Note the flexibility of the base framework: for instance, introducing changes
in the expansion rules at fundamental levels can be done, even modularly.

Priority-based Ordering of Transformations The rules presented in this
section establish a precise and fixed application order. However, when more
than one sentence, term, clause, or goal translation is used in the same module
the ordering among them also needs to be specified. The standard solution for
this problem in Ciao is to use the order in which the packages which contain
the expansion code are stated (e.g., in :- use package([dcg, fsyntax]) the
dcg transformations precede those of fsyntax. We propose an arguably bet-
ter solution for this problem: to introduce a priority in each hook, so that all

transformations in ~E can be ordered beforehand. With this solution (now imple-
mented in Ciao) directives such as :- use package([dcg, fsyntax]) and :-
use package([fsyntax, dcg]) are fully equivalent, and both would apply the
transformations in the right order. Of course, this moves the responsibility from
the user of the extension to the extension developer. However, in practice this
represents a huge advantage for users of packages.
9 We assume that concatenation of sequences is implicit. We can adapt all the discus-

sion to work with lists of sentences, but that would obscure the exposition.
10 This preserves the semantics of the original translation hooks, where termination is

up to the writter of translation rules. Detecting those problems is out of the scope
of this paper.
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5 Examples and Applications

We show the expressivity of the rules with fragments of two translations that
deal with the module system and meta-predicates. Each of them is presented
separately, but their combination results in a transformation equivalent to that
hardwired in the Ciao compiler (and which was not expressible in the old trans-
formation hooks). For the sake of clarity, we continue using the formal notation
in all the following sections. Writing the Prolog equivalent of both the rules
and the driver algorithm presented here is straightforward. As implemented in
the Ciao compiler, Prolog terms can be used to represent the abstract syntax
tree. The different stages of compilation can be kept in memory as facts in the
dynamic database, with extra arguments to identify the module.

We indicate the current module as cm. We will assume that we have access
to the information visible during the translation, such as parsed module code,
declarations, interfaces, etc.

Example 2 (Predicate-based Module System). The following rules perform the
module resolution and symbol replacement in all the clause goals to implement
a predicate-based module system via a language extension. Instead of duplicating
the logic to locate goal positions, the translations are inserted in the right place
just after goal expansions are performed (Fig. 3).

We denote that a predicate symbol f is defined in the current module by
localdef(f) ≡ defined(f) ∈ ast[cm], and that f is exported by an imported module
m by importdef(f,m) ≡ (exported(f) ∈ itf[m] ∧ imported(m) ∈ ast[cm]). Let
modlocal(m, t) be a term operation that replaces the principal functor of term
t by another one that is private to module m (e.g., by a special representation,
not directly accessible from user code, that concatenates the name of the current
module cm with the symbol). The translation of head transforms the term using
that operation. The rule for resolv does the same, but uses the module obtained
from lookup (that indicates where the predicate is defined).11

x : head =⇒ modlocal(cm, x) : final

x : resolv =⇒ modlocal(m,x′) : meta (if lookup(x,m, x′))

x : resolv =⇒ error(”module error”) : final (if ¬lookup(x, , ))

lookup(a,m, a′) ≡

(¬qual(a, , ) ∧ a′ = a ∧ localdef(f) ∧m = cm) ∨
(¬qual(a, , ) ∧ a′ = a ∧ importdef(f,m) ∧m = cm) ∨
(qual(a,m, a′) ∧ m = cm ∧ localdef(f)) ∨
(qual(a,m, a′) ∧ m 6= cm ∧ importdef(f,m))

where f = termFn(a′)

The complete specification is lengthy, but not more complicated. E.g., it
would require more elaborate error handling, which checks for ambiguity on
import (e.g., m in lookup must be unique, etc.).

11 qual(mg,m, g) is true iff the term mg is the qualification of term g with term m
(e.g., lists:append([1],[2],[1,2])). We use it to avoid ambiguity with the colon
symbol used elsewhere in rules.
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Example 3 (Rules for Meta-predicates). Goals that call meta-predicates in Pro-
log require special handling of their arguments. We specify the translation of such
goals though a kind meta. The translation rule decomposes the term into meta-
arguments, each of kind marg(τ), where τ is the meta-type for the predicate,
e.g., goal). Note that we assume that ast[cm] includes a term metaPred(f, ~τ) for
each :- meta predicate declaration. That relates the module-local symbol f
of the predicate with each of the meta-types of the goal arguments. The trans-
lation of marg(τ) returns a pair of the transformed term and an optional goal.
Then, the composition rule rebuilds the goal by placing the transformed terms
as arguments, collecting the optional goals in front of it:

g : meta
decons
=⇒ ~x : ~κ where

~x = args(g)

metaPred(termFn(g), ~τ) ∈ ast[cm]

κi = marg(τi) ∀i.1 < i < |~τ |

(g : meta, ~a)
recons
=⇒ g′ : final where

ai = (xi, si) ∀i.1 < i < l, l = |~a|,
g′ = toConj((s1 s2 . . . sl setArgs(g, ~x)))

The toConj function transforms the input sequence into a conjunction of literals.
We list below the rules for arguments. In the cases where the arguments do not
need any treatment, we use ε as the second element in the pair, which denotes
the empty sequence. The case where the argument represents a goal, but is not
known at compile time (e.g., x is a variable, or x = qm : , where qm is not
an atom), is captured by needsRt(x). In such case the rule emits code that will
perform an expansion at run time (which however may share code with those
rules). Finally, if the argument represents a goal, we use a deconstruction rule
to expose an argument of kind body, which once translated is put back in a pair,
as required by marg( ).12

x : marg(τ) =⇒ (x, ε) : final (if τ 6= goal)

x : marg(τ) =⇒ (x′, (rtexp(x, τ, cm, x′))) : final (if τ = goal ∧ needsRt(x))

where x′ is a new variable

x : marg(τ)
decons
=⇒ x : body (if τ = goal ∧ ¬needsRt(x))

( : marg(τ), x)
recons
=⇒ (x, ε) : final

Example 4 (Combined Transformation). The previous transformations can be
combined to translate goals involving meta-predicate calls into plain module-
qualified goals. The rules defined in this section and in Section 4 can be used to
transform the input goal:

G = findall(X,member(X,[1,2,3]),Xs)

12 This allows applying rules treating bodies, such as symbol renaming for the module
system.
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as G′ by evaluating trJG : goalK so that:

G′ = ’aggregates:findall’(X,’lists:member’(X,[1,2,3]),Xs)

assuming that findall/3 is imported from the module aggregates, that member/2
is imported from lists, and that the meta-predicate declaration of findall/3
specifies that its second argument is a goal.

6 Related Work

In addition to the classic examples for imperative languages, such as the C pre-
processor, or more semantic approaches like C++ templates and Java generics,
much work has been carried out in the field of extensible syntax and seman-
tics in the context of functional programming. Modern template systems such
as the one implemented in the Glasgow Haskell compiler [14] generally pro-
vide syntax extension mechanisms in addition to static metaprogramming. The
Objective Caml preprocessor, Camlp4 [4], provides similar features but focuses
more on the syntax extension aspects. Both systems allow the combination of
different syntax within the host language by using explicit mechanisms of quo-
tations/antiquotations.

Another elegant approach consists on defining language extensions based
on interpreters. In [11] a methodology for building domain-specific languages is
shown, which combines the use of modular monad interpreters with a partial
evaluation stage to reduce or eliminate the interpretation overhead. Although
this approach provides a clean semantics for the extension, it has the disad-
vantage of requiring the (not always automatable) partial evaluation phase for
efficiency, and its integration with the rest of the language and with the compi-
lation architecture is more complex.

Another solution explored has been to expose the abstract syntax tree, through
a reasonable interface, to the extensions. Racket (formerly PLT Scheme) [7] has
an open macro system providing a flexible mechanism for writing language ex-
tensions. It allowed the design of domain-specific languages (including syntax),
but also language features such as, e.g., the class and component systems, which
in Racket are written using this framework. To the extent of our knowledge,
there is no formal description of the framework nor whether and how multi-
ple language extensions interact when specified simultaneously. However, it is
interesting to note that despite growing independently, Ciao and Racket, both
dynamic languages, have developed similar ideas, like separation of compile-time
and run-time affairs and the necessity of expansions at different phases.

Finally, extensibility has also been achieved by making use of rewriting rules.
For instance, by mixing such features with compilation inlining, the Glasgow
Haskell compiler provides a powerful tool for purely functional code optimiza-
tion [12]. It seems however that the result of the application of such rules can
quickly become unpredictable [6]. In the context of constraint programming, a
successful language transformation tool is Cadmium [5], which compiles solver-
independent constraint models.
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7 Conclusions

We have described an extensible compilation framework for dynamic program-
ming languages that is amenable to performing separate, incremental compila-
tion. Extensibility is ensured by a language of rewrite rules, defined in pluggable
compilation modules. Although the work is mainly focused on Prolog-like lan-
guages, most of the presentation deals with common concepts (modules, inter-
faces, declarations, identifiers), and thus we believe that it can be adapted to
other paradigms with minor effort.

In general, the availability of a rich and expressive extension system is a large
asset for language design. One obvious advantage is that it helps accommodate
the programmer’s need for syntactic sugar, while keeping changes in the kernel
language at a minimum. It also offers benefits for portability, since it makes it
possible to keep a common front end (or a set of language features) and plug in
different kernel engines (e.g., Prolog systems) at the back end, as long as they
provide access to the same kernel language (or one that is rich enough) [15].

Beyond the obvious usefulness of the framework as a separation of concerns
during the design of extensions (the support for extension composition and sepa-
rate compilation, etc.), the translation rules can also be seen as a complementary
specification mechanism for the language features designed. If such rules are suc-
cinct and clear enough, which is not that hard in practice, they can actually be
exposed to programmers alongside standard documentation. We plan to modify
the lpdoc tool [9] to provide support for this.

We believe that the model proposed makes it easier to provide unambigu-
ous, composable specifications of language extensions, that should not only make
reasoning about correctness easier, but also avoid causing and propagating er-
roneous language design decisions (such as, e.g., unintended compilation depen-
dencies between modules that would ruin any parallel compilation or analysis
efforts) that are normally hard to detect and correct. We also hope that our con-
tribution will contribute, in the context of logic programming, towards setting a
basis for interoperability and portability of language extensions among different
systems.
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