CoLogNetWS: the CoLogNet Web-site

Development of a Web Site using Persistent Predicates, PiLLoW and CGI
Development of a database multinode distributed update

J.A. Navas and D. Cabeza and M. Hermenegildo

clip@dia.fi.upm.es
http://www.clip.dia.fi.upm.es/

The CLIP Group

Facultad de Informatica
Universidad Politécnica de Madrid

Copyright (©) 2002-2003 The Clip Group.

This document may be freely read, stored, reproduced, disseminated, translated or quoted by
any means and on any medium provided the following conditions are met:

1.

Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

Translations, comments and other additions or modifications must be dated and their au-
thor(s) must be identifiable (possibly via an alias).

This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re-
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con-
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

Table of Contents

N R0 0010 =Y 1
1 Introduction.............. ..., 3
1.1 Structure of the Web-site 3

1.2 Data Storage.oouiii 4

1.3 Internal interface.............l 5

1.3.1 Userinterface........... 7

1.3.2 Manager interface......... ..., 8

1.4 External interfacel 10
PART I - Application Core...................... 13
2 Public access to entity interface 15
2.1 Usage and interface (public_entity)........................ 15

2.2 Documentation on internals (public_entity) 15
main/0 (pred)........ ... 15

2.3 Version/Change Log (public_entity) 15

3 Private access to entity interface.............. 17
3.1 Usage and interface (private_entity)....................... 17

3.2 Documentation on internals (private_entity) 17
main/0 (pred)........ ..o 17

3.3 Version/Change Log (private_entity)...................... 17

4 QOutput from entity interface 19
4.1 Usage and interface (entity)............coviiiiiiiai., 19

4.2 Documentation on exports (entity) 19
entity/2 (pred)..........c. 19

4.3 Version/Change Log (entity)......................oo.... 19

5 Entity processing................ 21
5.1 Usage and interface (process_entity)....................... 21

5.2 Documentation on exports (process_entity) 21
main/1 (pred)........ .o 21

process_entity/4 (pred) L. 21

process_entity /5 (pred) 24

op-type/1 (regtype)oovrini i 25

entity /1 (Tegtype) - . vvvve 25

response_op/1 (regtype)........ccoviiiiiiiiii ... 25

5.3 Version/Change Log (process_entity)...................... 26

PART II - I/O Interface.................covun... 27

ii CoLogNetWS: the CoLogNet Web-site

6 HTML code generation 29
6.1 Usage and interface (code_html) 29
6.2 Documentation on exports (code_html)...................... 29

keys_.HTMLItems/3 (pred) 29
to_select_default/3 (pred) 29
predicate_listref/2 (pred).............. 30
predicate_ref/3 (pred)............ 30
6.3 Documentation on multifiles (code_html) 30
$is_persistent/2 (pred) il 30
6.4 Documentation on internals (code_html)..................... 30
id_html/1 (regtype).... ..o 30
item_html/1 (regtype) ..., 30
radio_html/1 (regtype)..... ..o, 31
ref_html/1 (regtype)o 31
6.5 Version/Change Log (code_html)............................ 31

T Security.........oiiiiiiiiiiiiiiiiiinnnnnnnn. 33
7.1 Security requirements. i 33
7.2 CoLogNet Web security structure............................ 33
7.3 Security methods........... ... 33
7.4 Usage and interface (authentication)....................... 34
7.5 Documentation on exports (authentication) 34

insert_scope/2 (pred) 34
check_scope/2 (pred) ... 34
delete_scope/1 (pred) ... 34
init_scope/0 (pred) i 35
insert_authentication/2 (pred)...................... 35
check_authentication/1 (pred) 35
delete_authentication/1 (pred)...................... 35
init_authentication/0 (pred)........................ 35
id_session/1 (regtype)........ooviiiiieiiiaiia.. 35
scope/1l (regtype)vveen 35
response_authentication/1 (regtype) 35
7.6 Documentation on multifiles (authentication)............... 36
$is_persistent /2 (pred) i 36
7.7 Documentation on internals (authentication)............... 36
scope_def/2 (pred).......... 36
authentication/2 (pred)............................ 36
7.8 Version/Change Log (authentication)...................... 36

8 Information exchange protocol 37
8.1 Introduction 37
8.2 CoLogNet Web structure.................oiiii ... 37
8.3 Protocol Definition 37

8.3.1 Information sending................. 37
8.3.2 FExample of HIT'TP request.......................... 38
8.3.3 Information reception 39

8.3.4 FExample of HIT'TP response 39

9 Receptionofdata............................ 41
9.1 Usage and interface (recv)......... ..., 41

9.2 Documentation on internals (recv) 41
main/1 (pred)....... ..o 41

askfile/1 (pred) ... 41

process_file/3 (pred) oL 42

9.3 Version/Change Log (recv)c.ooiiiiiiii ... 44

10 Sendingofdata................. ..., 45
10.1 Usage and interface (send)....................c.oiiii . 45

10.2 Documentation on exports (send) 45
main/0 (pred)...... ... 45

data_exchange/3 (pred) ..., 45

10.3 Documentation on internals (send) 46
directory_files_ mapped/2 (pred) 46

send files/1 (pred).............. 46

buffer/1 (regtype) ... 46

file_mapped/1 (regtype)........covvieniiii... 47

xml_message/1 (regtype) ..., 47

10.4 Version/Change Log (send), 47

11 XSD associated to the XML data............ 49
11.1 Imsertion XSD. ... 49

11.2 Modification XSD 56

11.3 Deletion XSD ... 64

11.4 Example of Insertion 66

11.5 Example of Modification............... 67

11.6 Example of Deletion............. i, 68

11.7 Version/Change Log (xsd) ..., 68

12 Parsing, validating and retrieving of XML files

... 69
12.1 Usage and interface (parser_xml)c.u... 69
12.2 Documentation on exports (parser_xml).................... 69
input_file_object_entity/4 (pred) 69
input_file_associated_entity /3 (pred)................. 70
process_file_entity/3 (pred) 70

opxml/1 (regtype)oueeiiiii 71

12.3 Version/Change Log (parser_xml) 71
13 XML code generation....................... 73
13.1 Usage and interface (code_xml) 73
13.2 Documentation on exports (code_xml)...................... 73
code_entities xml/5 (pred) 73
code_relations xml/3 (pred) 74

13.3 Documentation on multifiles (code_xml) 74
$is_persistent/2 (pred)l 74

13.4 Documentation on internals (code_xml)..................... 74
associated xml/1 (regtype) ..., 74

object xml/1 (regtype) ... 75

13.5 Version/Change Log (code_xml)............................ 75

iii

iv CoLogNetWS: the CoLogNet Web-site

14 XML error processingcovun.n.. 7
14.1 Usage and interface (error_xml)coooiuo..... 7
14.2 Documentation on exports (error_xml)..................... 7

check_empty/1 (pred)..................o ... 7
check_entity_integrity /2 (pred)...................... 77
check_reference_integrity /2 (pred)................... 7
check_error/1 (pred) 78
get_template_error/3 (pred) 78
notify_error xml/1 (pred) 78
14.3 Documentation on internals (error_xml).................... 78
result_xml/1 (regtype) ..., 78
title_html/1 (regtype) ...l 79
msg_html/1 (regtype) ..., 79
14.4 Version/Change Log (error_xml) 79

15 XML file processing auxiliary predicates..... 81
15.1 Usage and interface (xml_aux)oooiuen.... 81
15.2 Documentation on exports (xml_aux) 81

member_key/2 (pred) i 81
add _key/2 (pred) ... 81
delete_key/2 (pred) 82
deleteall key/1 (pred)......... 82
member _key_pair/3 (pred) 82
add key_pair/3 (pred) 82
delete_key_pair/3 (pred) 82
deleteall key_pair/1 (pred) 82
get_key_pair/3 (pred) 83
idxml/1 (regtype)oovvuriiiiii . 83
15.3 Documentation on internals (xml_aux)...................... 83
keyxml/2 (pred) 83
key_pair_xml/3 (pred) 83
15.4 Version/Change Log (xml_aux)....................ooo .. 83

16 XML labels.......... ..., 85
16.1 Usage and interface (label_xml)ovvuueennn..... 85
16.2 Documentation on exports (label_xml)..................... 85

gen_label body/3 (pred) 85
gen_label init/2 (pred)................. 85
gen_label_end/2 (pred)............ 85
16.3 Version/Change Log (label_xml)ooveuuurnnn... 86

17 Output from data exchange status........... 87
17.1 Usage and interface (errors_1og)c.ccooiun .. 87
17.2 Documentation on internals (errors_log)................... 87

main/0 (pred)...... ... 87

17.3 Version/Change Log (errors_1og)cccovuueo.... 87

18 Structures related to input/output data...... 89

18.1 Usage and interface (structs) 89
18.2 Documentation on exports (structs)....................... 89
input_group_struct/1 (regtype) 89
input_person_struct/1 (regtype) 90
input_project_struct/1 (regtype) 91
input_software_struct/1 (regtype) 92
input_event_struct/1 (regtype)...................... 93
input_area_struct/1 (regtype)....................... 94
input_file_struct/1 (regtype) ..., 94

input_entity struct/1 (regtype) 95
output_group_struct/1 (regtype) 95
output_person_struct/1 (regtype) 96
output_project_struct/1 (regtype)................... 97
output_software_struct/1 (regtype).................. 98
output_event_struct/1 (regtype) 98
output_area_struct/1 (regtype) 99
output_entity_struct/1 (regtype) 100
relations_struct/1 (regtype) ... 100

error_struct/1 (regtype)...........cooviiiiii... 101

18.3 Version/Change Log (structs)............................ 101
PART III - Database...............ccovieeo.... 103
19 Database persistent predicates 105
19.1 Usage and interface (database)oouee.n... 105
19.2 Documentation on exports (database)..................... 105
group/1 (pred)......... ... 105

person/1 (pred) i 105

project/1 (pred)....... i 106

software/1 (pred)......... ... 106

event/1 (pred) 106

area/1 (pred) i 106

member_of/2 (pred) L 106

working/2 (pred) il 107
contact_person_group/2 (pred) 107
coordinating_group/2 (pred) 107
related_group/2 (pred)............. 107
contact_person_soft/2 (pred) 107

key_db_atm/1 (regtype)......... ... L. 108

key_db_int/1 (regtype)cooiiiii.. 108

19.3 Documentation on multifiles (database) 108
$is_persistent/2 (pred)l 108

19.4 Version/Change Log (database)........................... 108

CoLogNetWS: the CoLogNet Web-site

vi
20 Database queries 109
20.1 Usage and interface (queries_db)......................... 109
20.2 Documentation on exports (queries_db)................... 109
all_groups/1 (pred) ... 109
all_people/1 (pred) 109
all_projects/1 (pred)........... ... oL 109
all_software/1 (pred)................coiii... 110
all_areas/1 (pred) ..., 110
working/4 (pred) i 110
member_of/4 (pred) 110
coordinating_group/4 (pred) 111
contact_person_group/4 (pred) 111
related_group/4 (pred)............. 112
contact_person_soft/4 (pred) 112
20.3 Documentation on multifiles (queries_db)................. 113
$is_persistent/2 (pred) L 113
20.4 Version/Change Log (queries_db) 113
21 Database operations....................... 115
21.1 Usage and interface (add_relations)...................... 115
21.2 Documentation on exports (add_relations) 115
add_member_of/3 (pred), 115
add_contact_person_group/3 (pred) 116
add_coordinating_group/3 (pred) 116
add_related_group/3 (pred)........................ 116
add_contact_person_soft/3 (pred) 117
add_working/3 (pred).............., 117
21.3 Documentation on multifiles (add_relations).............. 118
$is_persistent/2 (pred)l 118
21.4 Version/Change Log (add_relations)..................... 118
22 Databasetypes.............iiiiiiiL.. 119
22.1 Usage and interface (types)...........ccovviiiiiiiiii .. 119
22.2 Documentation on exports (types) 119
group_struct/1 (regtype)covviii .. 119
person_struct/1 (regtype) ..., 120
project_struct/1 (regtype).........coovviiia.. 120
software_struct/1 (regtype)..........ccoviiieia.n. 121
event_struct/1 (regtype) ... 121
area_struct/1 (regtype) ..., 122
group_red/1 (regtype)ovveiii 122
person_red/1 (regtype).......ccovviiiiiiiii 122
project_red/1 (regtype)covvieiiii .. 122
software_red/1 (regtype)oovviiiini... 122
event_red/1 (regtype)........cooeiiiiiiiii... 123
area_red/1 (regtype).........ccoviiiiiiiii.. 123
22.3 Version/Change Log (types).........ccoouiiiiiiiiaa. .. 123

PART IV - Ciao Prolog extensions.............. 125

vii

23 The PiLLoW Web programming library

exXtensionciiiiiiiiiiiiiiin., 127
23.1 Usage and interface (pillow_ext)......................... 127
23.2 Documentation on exports (pillow_ext)................... 127
get_form_values/3 (pred) 127
form_value_empty/1 (pred) 127
form_value_default/2 (pred) 128

url_query/3 (pred).........l 128
output_html/2 (pred)............ 128

get xmlfile_input/2 (pred)......................... 128
get_xmlfile_value/3 (pred) 128

get_xmlfile node/3 (pred) 129

get_xmlfile nodes/3 (pred) 129

xml_html/1 (pred).............., 129

xml file/1 (regtype) ... i 129

html term/1 (regtype)cooeeiiii .. 129

xml_tree/1 (regtype).......ccoviiiiiiii 129
output_template/1 (regtype) 129

dic/1 (regtype) . ..o 130

url/1 (Tegtype) . ..o 130

23.3 Documentation on internals (pillow_ext).................. 130
html_attr/1 (regtype)ccooeeiiiii... 130

html val/1 (regtype) 130
html_template/1 (regtype) ..o, 130

xml_string/1 (regtype)o il 130

xml_type/1 (regtype) ... 130

xml_attr/1 (regtype).......coovuiiiii i 130

xmlinput/1 (regtype)ooveiiiiii 130

xml.node/1 (regtype).............iiiiLL. 131

xml_val/1 (regtype) ... 131

23.4 Version/Change Log (pillow_ext) 131
24 HTTP protocol basic predicates............ 133
24.1 Usage and interface (http_aux)c.oo... 133
24.2 Documentation on exports (http_aux)..................... 133
http_response/3 (pred)..........., 133

24.3 Documentation on internals (http_aux).................... 133
http_head/1 (regtype)cooviiiiiiii .. 133

24.4 Version/Change Log (http_aux)............covviuieinn... 133
25 List processing extension................... 135
25.1 Usage and interface (lists_ext) 135
25.2 Documentation on exports (lists_ext).................... 135
delete_repeated/2 (pred) 135

25.3 Version/Change Log (lists_ext)c.ooo.... 135
26 String processing extension 137
26.1 Usage and interface (strings_ext)........................ 137
26.2 Documentation on exports (strings_ext).................. 137
removed_delimitator/2 (pred) 137

concat_line/2 (pred) 137
value_default/2 (pred) 137

26.3 Version/Change Log (strings_ext) 138

viii CoLogNetWS: the CoLogNet Web-site

27 Persistent counters processing.............. 139
27.1 Usage and interface (counters_ext)....................... 139

27.2 Documentation on exports (counters_ext) 139
egetcounter/2 (pred) ..., 139

egetcircularcounter/2 (pred)....................... 139

esetcounter/2 (pred)......... oL 140

27.3 Documentation on multifiles (counters_ext)............... 140
$is_persistent/2 (pred)l 140

27.4 Documentation on internals (counters_ext) 140
counter/2 (pred) ... 140

name/1 (regtype)ooouiiiii i 140

val/1 (regtype)oooii i 140

27.5 Version/Change Log (counters_ext) 140
PART V - Application libraries................. 141
28 Dateprocessingccivviiiennnn.. 143
28.1 Usage and interface (date)................................ 143

28.2 Documentation on exports (date) 143

date/1 (regtype)ovoii i 143

cod_month/2 (pred) 143

dec_month/4 (pred) 143

get_date/4 (pred)........ ... 144

set_date_f0/4 (pred) 144

set_datefl/4 (pred) 144

set_datef2/2 (pred) 144

28.3 Documentation on internals (date) 145

year/1l (Tegtype)vvvi 145

month/1 (regtype) 145

day/1 (regtype) ..o 145

month_textual/1 (regtype) 145

year-atm/1 (regtype) ..., 145

day_atm/1 (regtype)........cooviiiiiiii 145

datime_struct/1 (regtype)......................... 145

28.4 Version/Change Log (date) 145

29 Password processing............oiuueee... 147
29.1 Usage and interface (password) 147

29.2 Documentation on exports (password)..................... 147
get_password/1 (pred) 147

process_password/2 (pred) 147

29.3 Documentation on internals (password).................... 147
password/1 (regtype) ... 147

29.4 Version/Change Log (password)..............ccoveiuui... 148

30 Installing CoLogNetWS.................... 149
30.1 Installation steps........ ..o 149

30.2 USsage SUMMATY . . . oottt ettt e e e e 149

30.3 Customization 149
References i, 151

Predicate/Method Definition Index 153

Regular Type Definition Index

Concept Definition Index.......................

ib'e

Summary 1

Summary

CoLogNetWs is a Web-site on Computational Logic systems, environments, and implementa-
tion technology.

CoLogNetWsS provides at the same time:

e A simple WWW interface which allows the users to access/modify the data stored in its
database.

e An automatic data exchange between CoLogNetWS and the rest of Web-sites, in order to
keep their databases up-to-date.

This document constitutes an internals manual, providing information on how the different
internal parts of CoLogNetWS are connected.

CoLogNetWS: the CoLogNet Web-site

Chapter 1: Introduction 3

1 Introduction

CoLogNetWsS is a Web-site on computational logic systems, environments, and implementa-
tion technology, which belongs to CoLogNet!. CoLogNetWS provides a simple WWW interface
which allows users to access/modify data stored in its database. Besides, CoLogNetWS allows to
automatically data exchange between CoLogNetWS and the rest of Web-sites, in order to keep
their databases up-to-date.

As mentioned above, CoLogNetWS provides information about Computational Logic, specifi-
cally about researchers, research groups, research areas, research projects, systems and environ-
ments, as well as events related to this research topic.

CoLogNetWS is implemented in The Ciao Program Development System. The database is
built according to the definition of file-based persistent predicates, implemented in the library
persdb [GCHI8] of Ciao and is directly maintained by CoLogNetWS. Regardless to this the rest
of CoLogNet Web-sites are free to implement their databases according to other technologies.

As will be shown, the information can be accessed by two different ways. For each way is
defined an interface: internal interface and external interface.

Internal interface is a simple WWW interface based on HTML forms. This interface is
implemented by means of the library PiLLoW [CHO1] of Ciao. PiLLoW provides facilities for
accessing documents and code on the WWW; parsing, manipulating and generating HTML and
XML structured documents and data; producing HTML forms; writing forms handlers and
CGl-scripts, and processing HTML/ XML templates.

The internal interface is divided into two sub-interfaces: user interface and manager interface.
Through the first interface, users can carry out several operations such as View, Insert, Modify
or Delete an item corresponding to an entity. Some of them, such as View or Insert don’t require
authentication. However, other operations like Modify and Delete require authentication. The
manager interface allows a complete access to data, avoiding that authentication. Besides, offers
extra functionalities, depicted in this document.

The external interface allows communication between CoLogNetWS and the rest of Web-sites
enabling automatic database update. The communication protocol among the different Web-
sites is based on the HTTP protocol, and the information exchange is encoded in XML format.

1.1 Structure of the Web-site

CoLogNetWs is designed to be user-contributed, so that it can be gradually completed and
updated. The CoLogNetWS data is divided into: groups, people, projects, software, areas and
events.

e The Groups section stores information about research groups working in an area.

e The People section consists of the information about research groups/individuals working
in the area.

e The Projects section lists research projects related to this research topic.

e The Software section provides information about systems and environments for Computa-
tional Logic, as well as a database of application libraries.

e The Events section lists upcoming conferences, workshops and another events related to
this research topic.

e The Areas section lists the main areas Computational Logic and Logical Applications is
divided into.

! CoLogNet is the EU-funded Network of Excellence in Computational Logic. CoLogNet aims
to help unify and integrate the separate sub-communities in the area of Computational Logic
and Logical Application

4 CoLogNetWS: the CoLogNet Web-site

As we can see in the next figure, CoLogNetWS is composed by several views. Each view offers
the appropriate interface for a given service, some of them allowed to the manager administrator
only.

CoLogNetWs
External

Internal
Interface Interface
User Manager
Interface Interface :
(Restricted access) (Complete access) :
i L g
: Lo Remote :
: - I Transactions :
E ------- Viewdata |-------- A Status E
: ! :
RRELEEL Insertdata |~ .22 ;
S— Modify data |=-=-=-2 = e §
: ! :
EREREES Deletedata |~ - - -7 7%

1.2 Data Storage

CoLogNetWs data is local, but the design allows to easily modify it to be distributed. The data
storage is based on the concept of persistent predicates. The idea is that whatever changes might
have been done on one of these special kind of dynamic predicates survive across executions.
This way, no matter whether the system stops, or even crashes, we will always have a consistent
state of the predicate, which is quite an useful thing to implement a database. If the system is
halted and restarted, the predicate the new Prolog process sees is right in the state it was in the
very moment the old process was halted, provided that no changes to the external storage were
done in the meantime by other processes or the user himself.

So, all CoLogNetWS data storage related to the entities mentioned in the previous section is
based on persistent predicates. Persistent predicates are also used to manage some information
the system needs to maintain across CGI executions, such as security information.

Chapter 1: Introduction 5

The database design is based on the Relational model. The next figure shows the database
design according to Cheng notation.

N:M
N:M
Area worksin Group Person
N:M
N:M N:M
l
Project Software Event

1.3 Internal interface

As already mentioned, the internal interface is composed by two sub-interfaces: user interface
and manager interface.

Both user interface and manager interface can basically carry out four operations: View,
Insert, Modify and Delete an item corresponding to an entity, meaning by entity a group,
person, project, software, area or event.

e View an item shows all data about an item corresponding to an entity. This information
depends on each entity.
e Insert an item allows to store the new item data in the CoLogNetWS database.

e Modify an item allows to change the item data which is already stored in the CoLogNetWS
database.

e Delete an item allows to delete the item data.

Regarding the graphic interface, it is implemented using HTML templates. These templates
allow the layout of the output pages to be easily configurable and independent of the application
logic level.

Additionally, an important operation that users can carry out both through the user interface
and the manager interface, is the interaction with the system by means of XML files. An item
or a group of items corresponding to an entity or entities can be inserted, modified or deleted
using an XML file, instead of using an bothersome HTML forms. That is if you want to insert a
new group and another related data, such as memberships, projects, software and areas, across
an HTML form, you would have to fill multiple HTML forms, one for each item.

CoLogNetWS must to have two different views: normal user and administrator, due to the
administrator has more privileges than the normal user. In order to fulfill this requirement,
user interface and manager interface are offered by the application. The next figure shows the

6 CoLogNetWS: the CoLogNet Web-site

interaction between CoLogNetWS and an user, who can be either a normal user or a manager
user.

CoLogNet
Web site

qpsied

As seen in the figure, the services of CoLogNetWS are provided through the WWW. These
services basically consist of an interface to query and operate the database and, in the case

of the system administrator, manage the system. We describe the particular features of each
sub-interface.

Chapter 1: Introduction 7

1.3.1 User interface

This interface allows users to view, insert, modify or delete an entity. If the user is not an
authorized client, the operations allowed will only be view and insert. In the next figure, it can
be seen the interaction among the different processes belonging to the user internal interface:

Output
from
Events

10
e 1. Access to user internal interface.
e 2. View areas.
e 3. View groups.
e . View people
e 5. View software.
e (. View projects.
e 7. View events.
e 8. Insert “Entity” / Modify “Entity” / Delete “Entity” / View related “Entity”.
e 9. Response to insert “Entity” / Response to modify “Entity” / Response to delete “Entity”

/ Response to view related “Entity”.

8 CoLogNetWS: the CoLogNet Web-site

e 10. Ask password / Confirm Password / Insert Form / Modify Form / Insert / Modify.
e 11. XML file input.
e 12. XML file processing.

“Entity” can be: area, group, person, project, software or event.
The steps an user can take to access CoLogNetWS in user or public mode are:

First of all, the user accesses the system across WWW interface and the “Public access
to Entity” process is executed for the corresponding entity. This process includes security
operations, by granting the user restricted access to the system.

The next step is to show or view the content of all entities by means of a set of processes
(“Output from Areas”, “Output from Groups”, “Output from People”, “Output from Projects”,
“Output from Software”, “Output from Events”). Note there are interactions among these pro-
cesses. These are based on the fact that users can see the content of an entity and access others
entities from that one. For example, if we are seeing group data, we can directly access the peo-
ple belonging to it. The “Entity Processing” process allows executing operations such as insert,
modify and delete. Operations such as modify and delete need the user to get authenticated
previously by means of a password. This password has to be the same one that the user inserted
in the item registration or if the user didn’t insert a password, it will be the password assigned
by the system. Note for each item there is a associated password.

Finally, the user can carry out operations insert, modify and delete by means of XML files.
These files are processed by the “XML Input” process. This allows insert, modify or delete an
entity or entities encoding data in an XML format.

1.3.2 Manager interface

In order to enable the manager to correctly administrate the Web-site, this interface provides
several services such as view, insert, modify or delete an entity without previous authentication.
Only the manager or administrator can connect to Web-site in private mode through a different
URL whose access is based on NCSA http. In addition to these services, the manager interface
provides another service that allows the administrator to see all errors occurred during a data
exchange between CoLogNetWS and other Web-site.

Chapter 1: Introduction 9

In the next figure, it can be seen the interaction among the different processes accessible
through the manager internal interface:

Private
accessto

Entity 13

11

Output
from
Areas

Output
from

Output
from
Software

Output
from
Projects

Remote
transaction
status

12

e 1. Access to manager internal interface.

e 2. View areas.

e 3. View groups.

e 4. View people

e 5. View software.

e (. View projects.

e 7. View events.

e 8. Insert “Entity” / Modify “Entity” / Delete “Entity” / View related “Entity”.

e 9. Response to insert “Entity” / Response to modify “Entity” / Response to delete “Entity”
/ Response to view related “Entity”.

e 10. Ask password / Confirm Password / Insert Form / Modify Form / Insert / Modify.

e 11. XML file input.

e 12. XML file processing.

e 13. View errors produced during data sending/reception.

10 CoLogNetWS: the CoLogNet Web-site

“Entity” can be: area, grou erson, project, software or event.
b} b b)

As an user, an administrator accesses to system across WWW interface but in this case, is
executed the “Private Access to Entity” process. This process allows the manager to have a
complete access to the system in a manner similar to the user interface, but on the contrary to
the user interface, the manager need not authenticate for executing the operations modify and
delete. An extra operation is that the administrator can check out the status of all carried out
transactions between CoLogNetWS and other Web-sites, by means of the “Remote transaction
status” process.

1.4 External interface

This interface, allows communication between CoLogNetWS and other Web-sites. This proto-
col is based on the HTTP protocol, and the data exchange is encoded in XML format.

Only a new type of message is defined. This message is asynchronous and exchanged by
CoLogNetWS and the rest of Web-sites in order to update their databases. This message is
encoded in XML format and allows insert, modify and delete data.

In this figure is shown the interaction model between CoLogNetWS and the rest of Web-sites.
As can be seen, CoLogNetWS provides its services by encapsulating an XML message into an
HTTP request.

CoLogNet [€Pie—> ﬂ
Web site :

CoL ogNet
Web site

CoLogNet

Web site i —
€

Chapter 1: Introduction 11

In the next figure, we can appreciate the interaction model among the different processes
belonging to the external interface:

Message sending

Message reception Response

-

Data
Reception

Message processing

Entity
Processing

12

CoLogNetWS: the CoLogNet Web-site

PART I - Application Core

PART I - Application Core

13

This part defines the application core, which allows carrying out these operations:

View the contents of the repository.

e Insert repository data.

e Modify repository data.

e Delete repository data.

The system handles the following entities:
Areas

Events

Groups
People

Projects
Software

14

CoLogNetWS: the CoLogNet Web-site

Chapter 2: Public access to entity interface 15

2 Public access to entity interface

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#1 (2003/12/5, 12:44:15 CET)

NOTE: The documentation of this application is an abstraction that generalizes all entities
stored in the system. The different entities are: groups, areas, events, projects, people, and
software.

This application outputs an HTML page showing the items stored in the system for a given
entity. It uses the entity(Entity,Id) predicate defined in Chapter 4 [Output from entity
interface], page 19, which shows all items corresponding to Entity, where Id is a session identifier
created for each execution of this application. In this case, the execution scope associated to the
session identifier is *public’, so authentication will be required in the operations of modification
and deletion.

2.1 Usage and interface (public_entity)

e Library usage:
This module is typically compiled as a CGI executable.
e Other modules used:
— Internal (engine) modules:

arithmetic, atomic_basic, attributes, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
basic, term_compare, term_typing.

2.2 Documentation on internals (public_entity)

main/0: PREDICATE
Usage:

— Description: Entry predicate to CGI executable.

2.3 Version/Change Log (public_entity)

Version 0.1#1 (2003/12/5, 12:44:15 CET)
Started automatic documentation (Jorge Navas)

16

CoLogNetWS: the CoLogNet Web-site

Chapter 3: Private access to entity interface 17

3 Private access to entity interface

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#2 (2003/12/5, 12:44:43 CET)

NOTE: The documentation of this application is an abstraction that generalizes all entities
stored in the system. The different entities are: groups, areas, events, projects, people, and
software.

This application outputs an HTML page showing the items stored in the system for a given
entity. It uses the entity(Entity,Id) predicate defined in Chapter 4 [Output from entity
interface], page 19, which shows all items corresponding to Entity, where Id is a session identifier
created for each execution of this application. In this case, the execution scope associated to
the session identifier is ’private’, so authentication will be not required in the operations of
modification and deletion.

3.1 Usage and interface (private_entity)

e Library usage:
This module is typically compiled as a CGI executable.
e Other modules used:
— Internal (engine) modules:

arithmetic, atomic_basic, attributes, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
basic, term_compare, term_typing.

3.2 Documentation on internals (private_entity)

main/0: PREDICATE
Usage:

— Description: Entry predicate to CGI executable.

3.3 Version/Change Log (private_entity)

Version 0.1#2 (2003/12/5, 12:44:43 CET)
Started automatic documentation (Jorge Navas)

18

CoLogNetWS: the CoLogNet Web-site

Chapter 4: Output from entity interface 19

4 Output from entity interface

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#3 (2003/12/5, 12:45:2 CET)

NOTE: This module is an abstraction that generalizes all entities stored in the system. The
different entities are: groups, areas, events, projects, people, and software.

This module provides a predicate to show all items of an entity stored in the system by
generating the corresponding HTML code.

4.1 Usage and interface (entity)

e Library usage:
:- use_module(library(entity)) .
e Exports:
— Predicates:
entity/2.
e Other modules used:
— Application modules:
./process_entity.pl, ../../lib/security/authentication.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

4.2 Documentation on exports (entity)

entity /2: PREDICATE
Usage: entity(+Entity, +Id)

— Description: 1d is a session identifier associated to current execution. The predicate
carries out a query over the database in order to obtain all items stored in the system
corresponding to Entity and the information associated to each one, and it outputs an
HTML page with the content of those information by interpreting the corresponding
HTML template.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+Id is a session identifier. (id_session/1)

4.3 Version/Change Log (entity)

Version 0.1#3 (2003/12/5, 12:45:2 CET)
Started automatic documentation (Jorge Navas)

20

CoLogNetWS: the CoLogNet Web-site

Chapter 5: Entity processing 21

5 Entity processing

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#4 (2003/12/5, 12:45:26 CET)

NOTE: This module is an abstraction that generalizes all entities stored in the system. The
different entities are: groups, areas, events, projects, people, and software.

Module that defines operations related with the handling of all entities. These operations
are: insertion, modification and deletion. Besides, these operations imply authentication process,
input operations from HTML forms and output operations to XML files and HTML code through
the CGI protocol.

5.1 Usage and interface (process_entity)

e Library usage:
This module can be compiled as a CGI executable or used as a common library.
e Exports:
— Predicates:
main/1, process_entity/4, process_entity/5.
— Regular Types:
op_type/1, entity/1, response_op/1.
e Other modules used:
— Application modules:
../../lib/pillow_ext/pillow_ext, ../structs.pl.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

5.2 Documentation on exports (process_entity)

main/1: PREDICATE

Usage:
— Description: Allows to process an item corresponding to an entity through the
process_entity/4 predicate, where the input data is previously provided and the
output data is shown by the use of predicates in the PiLLoW library.

process_entity/4: PREDICATE

This predicate allows to insert, modify or delete an item corresponding to an entity as well
as carrying out the implied operations. These operations are: authentication processes,
input operations and output operations.

Usage 1: process_entity(+Entity, +0Op, +Input, ?(Output))

CoLogNetWS: the CoLogNet Web-site

— Description: When Op is ’ask_password’, an authentication process (request of
password) is started to access the operations of modification and deletion. This
process is only carried out if the execution scope is ’public’. Output is an HTML
template to ask for the password of the item corresponding to Entity and given by

Input.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and ask_password unify. (=/2)

+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7 (Output) is a term that defines the name of an HTML template to be shown, and
a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 2: process_entity(+Entity, +0p, +Input, ?(Output))

— Description: When Op is ’confirm_password’, the authentication process (confir-
mation of password) is completed. Checks out that the introduced password in the
previous phase matches with the inserted password in the item registration corre-
sponding to Entity and given by Input. If the authentication is correct, it will pass
to the next phase that is indicated by one of the arguments of Input that will be
modification or deletion of the item. If the authentication is not correct, an HTML
template returned in Output will repeat the authentication process.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and confirm_password unify. (=7/2)

+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7 (Output) is a term that defines the name of an HTML template to be shown, and
a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 3: process_entity(+Entity, +0Op, +Input, ?(Output))

— Description: When Op is ’show’, all items related with the current item in Input
(corresponding to Entity) will be shown by the HTML template returned in Qutput.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and show unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7 (Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 4: process_entity(+Entity, +0Op, +Input, ?(Output))

— Description: When Op is ’delete’, the item given by Input and corresponding to
Entity is deleted from the system. Firstly, if the execution scope is ’public’, it
is checked out that the authentication process has been properly carried out. Then,
the item is deleted from the system by the process_entity/5 predicate defined in

Chapter 5: Entity processing 23

this module. Output is an HTML template to show the result of the operation.
Additionally an XML file is generated by the code_entity_xml/5 predicate defined
in Chapter 13 [XML code generation], page 73. This file contains the data of the item
deletion. Depending on the system configuration, this file will be immediately sent
or stored in an intermediate buffer.
— Call and exit should be compatible with:

+Entity is an entity. (entity/1)
+0p and delete unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
?(Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 5: process_entity(+Entity, +0Op, +Input, ?(Output))
— Description: When Op is ’register’, the HI'ML template returned in Output will
show an HTML form, partially filled by Input, to allow the user to insert a new item
correponding to Entity.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and register unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
?(Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 6: process_entity(+Entity, +0p, +Input, 7 (Output))

— Description: When Op is ’modify’, the HTML template returned in Output will show
an HTML form filled with the data of the item given by Input and corresponding to
Entity in order to the user can modify that form. If the execution scope is ’public’
it is checked out that the authentication process has been properly carried out.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and modify unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
?(Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 7: process_entity(+Entity, +0Op, +Input, ?(Output))

— Description: When Op is ’response_register’, the item given by Input and cor-
responding to Entity is inserted in the system. The item is inserted in the system
by the process_entity/5 predicate defined in this module. Output is an HTML
template to show the result of the operation. Additionally an XML file is generated
by the code_entity_xml/5 predicate defined in Chapter 13 [XML code generation],
page 73. This file contains the data of the item insertion. Depending on the system
configuration, this file will be immediately sent or stored in an intermediate buffer.

24 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and response_register unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7 (Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 8: process_entity(+Entity, +0Op, +Input, ?(Output))

— Description: When Op is ’response_modify’, the item given by Input and corre-
sponding to Entity is modified from the system. Firstly, if the execution scope is
’public’, it is checked out that the authentication process has been properly carried
out. Then, the item is modified from the system by the process_entity/5 predicate
defined in this module. Output is an HTML template to show the result of the op-
eration. Additionally an XML file is generated by the code_entity_xml/5 predicate
defined in Chapter 13 [XML code generation|, page 73. This file contains the data
of the item modification. Depending on the system configuration, this file will be
immediately sent or stored in an intermediate buffer.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and response_modify unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,

input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7 (Output) is a term that defines the name of an HTML template to be shown, and

a dictionary with values for the variables defined in that template. (output_
template/1)

process_entity/5: PREDICATE
This predicate allows to insert, modify or delete an item belonging to an entity without
carrying out another auxiliary operations.
Usage 1: process_entity(+Entity, +0Op, +Input, ?(Output), -Res)

— Description: When Op is ’delete’, the item given by Input and corresponding to
Entity is deleted from the system. If Res is ’ok’ the operation has been properly
carried out, and an HTML template returned in Output will show the final information
of the deleted item. On the contrary, if Res is >error’ the item has not been deleted
because of the existence of another items related with it.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and delete unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
7(Output) is the union of the types: output_area_struct/1, output_event_
struct/1, output_group_struct/1, output_person_struct/1l, output_project_
struct/1 and output_software_struct/1. (output_entity_struct/1)
-Res indicates whether the result of the operation is correct or not. (response_op/1)

Chapter 5: Entity processing 25

Usage 2: process_entity(+Entity, +Op, +Input, ?(Output), 7(Res))

— Description: When Op is ’response_register’, the item given by Input and corre-
sponding to Entity is inserted in the system. An HTML template returned in Output
will show the final information of the inserted item. Res is not used.

— Clall and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and response_register unify. (=/2)
+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
?(Output) is the union of the types: output_area_struct/1, output_event_
struct/1, output_group_struct/1, output_person_struct/1l, output_project_
struct/1 and output_software_struct/1. (output_entity_struct/1)

?(Res) indicates whether the result of the operation is correct or not. (response_
op/1)
Usage 3: process_entity(+Entity, +0Op, +Input, ?(Output), 7(Res))

— Description: When Op is ’response_modify’, the item given by Input and corre-
sponding to Entity is modified from the system. An HTML template returned in
Output will show the final information of the modified item. Res is not used.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p and response_modify unify. (=/2)

+Input is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)

?(Output) is the union of the types: output_area_struct/1, output_event_
struct/1, output_group_struct/1, output_person_struct/l, output_project_

struct/1 and output_software_struct/1. (output_entity_struct/1)
7 (Res) indicates whether the result of the operation is correct or not. (response_
op/1)

op_type/1: REGTYPE

Usage: op_type (Op)
— Description: Op is the type of operation.

entity /1: REGTYPE
Usage: entity(E)

— Description: E is an entity.

response_op/1: REGTYPE
Usage: response_op(R)

— Description: R indicates whether the result of the operation is correct or not.

26 CoLogNetWS: the CoLogNet Web-site

5.3 Version/Change Log (process_entity)

Version 0.1#4 (2003/12/5, 12:45:26 CET)
Started automatic documentation (Jorge Navas)

PART II - I/O Interface 27

PART II - 1/O Interface

This part includes a set of modules that define both the internal interface and external
interface.
The internal interface is a Web interface which is based on aspects such as interpretation

and generation of HTML code, and another related aspects as security. Additionally, an XML
interface is offered.

The external interface is based on modules which allow exchanging data with other Web
sites. This data exchange is carried out by HT'TP protocol and data is encoded in XML format.

28

CoLogNetWS: the CoLogNet Web-site

Chapter 6: HTML code generation 29

6 HTML code generation

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#5 (2003/12/5, 12:46:13 CET)

This library defines predicates for the HTML code generation. Basically it generates lists of
items and HTML form elements.

6.1 Usage and interface (code_html)

e Library usage:
:- use_module(library(code_html)) .
e Exports:
— Predicates:

keys_HTMLItems/3, to_select_default/3, predicate_listref/2, predicate_
ref/3.

— Multifiles:
$is_persistent/2.
e Other modules used:
— Application modules:

../../settings, ../../database/database, ../../src/entity/process_entity,
../pillow_ext/pillow_ext.

— System library modules:
pillow/http, pillow/html, persdb/persdbrt, terms, file_utils, write.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

6.2 Documentation on exports (code_html)

keys_ HTMLItems/3: PREDICATE

Usage: keys_HTMLItems (+Entity, +Keys, 7(HTMLItems))

— Description: Formats a list of identifiers (Keys) to a list of HTML items (HTMLItems)
for the Entity entity.

— Call and exit should be compatible with:

+Entity is an entity. (entity/1)

+Keys is a list of id_htm1ls. (1ist/2)

?(HTMLItems) is a list of item_htmls. (1ist/2)
to_select_default/3: PREDICATE

Usage: to_select_default(+Selected_Items, +Items, ?(HTMLRadio))

30 CoLogNetWS: the CoLogNet Web-site

— Description: Formats a list of items (Items) to HTML form elements of radio type
(HTMLRadio). Selected_Items indicates which elements of that radio type are se-

lected.
— Call and exit should be compatible with:
+Selected_Items is a list of terms. (1ist/2)
+Items is a list of terms. (list/2)
7 (HTMLRadio) is a list of radio_htmls. (1ist/2)
predicate_listref/2: PREDICATE

Usage: predicate_listref(+Items, ?(HTMLItemsRef))

— Description: Formats a list of items (Items) to a list of HTML items (HTMLItemsRef)
in which each item is an hyperlink.

— Call and exit should be compatible with:

+Items is a list of ref_htmls. (1ist/2)
? (HTMLItemsRef) is a list of item_htmls. (1ist/2)
predicate_ref/3: PREDICATE

Usage: predicate_ref (+Items, 7(N1), ?(HTMLRefs))

— Description: Formats a list of items (Items) to a list of HTML hyperlinks separated
by N1 delimitator.

— Call and exit should be compatible with:

+Items is a list of ref_htmls. (1ist/2)
7(N1) is an atom. (atm/1)
7 (HTMLRefs) is a list of terms. (1ist/2)

6.3 Documentation on multifiles (code_html)

$is_persistent /2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.
The predicate is of type data.

6.4 Documentation on internals (code_html)

id_html/1: REGTYPE
Usage: id_html (Id)
— Description: Id is an identifier associated to an entity.

item_html/1: REGTYPE
Usage: item_html (Item)

— Description: Item is a PiLLoW term representing an HTML element of the ’“item’
type.

Chapter 6: HTML code generation 31

radio_html/1: REGTYPE
Usage: radio_html(R)

— Description: R is an atom representing an HTML element of the ’radio’ type.

ref_html/1: REGTYPE
Usage: ref_html (R)

— Description: R is a term that contains the entity name and its associated URL.
6.5 Version/Change Log (code_html)

Version 0.1#5 (2003/12/5, 12:46:13 CET)
Started automatic documentation (Jorge Navas)

32

CoLogNetWS: the CoLogNet Web-site

Chapter 7: Security 33

7 Security

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#6 (2003/12/5, 12:46:48 CET)
This library implements a set of predicates to implement security in the system.

7.1 Security requirements

The security requirements are given, on the one hand, by the functionalities that the appli-
cation offers and on the other hand, by its own Web nature. About the functionalities, there are
public and private accesses, and each one have different needs. About the application nature,
this has an interface accessible by WWW, so it is necessary to take into account some aspects
to give it the adequate security level.

7.2 CoLogNet Web security structure

To access to whatever of the CoL.ogNet nodes exists a previous authentication process based
on NCSA http. This authentication process is simple, based on the conformity to a certain
password. Once the user access to CoLogNet, he or she is in disposition of accessing to the
application. This application offers two different scopes or views with their respective security
levels, that can be:

e Public scope in which any user can access if he or she has previously accessed to CoLogNet,
and requires certain control in some operations. Specifically, both deleting and modifying
an entity implies a process of password request/confirmation.

e Private scope in which an authentication process based on NCSA http must be satisfactorily
passed and later no control is required on operation. Specifically any entity can be deleted
and modified with no restriction any.

7.3 Security methods

The technique used for authentication is the password request /confirmation. Each CoLogNet
user has a password that allows him to access the “net”, and also a password associated to each
item corresponding to an entity. This password can be randomly generated by the application
or given by the own user, and allows the user to delete or modify an item corresponding to
an entity. Other security techniques like integrity, confidentiality and non repudation are not
implemented in this application.

Besides authentication, another important security aspect implemented in this module, is
how the application can decide in each moment in which execution scope is in, and ensure that
there is not a fraudulent use of the execution scopes. A typical fraudulent use would be the
manipulation of the URL, changing its arguments to avoid the authentication process. For it, it
is necessary to implement a mechanism that does not allow these fraudulent uses. This security
mechanism is implemented by associating each execution to a session identifier. Each session
identifier is related to an execution scope (‘public’ or ‘private’) and an authentication that
tells whether that session has been authenticated or not. This mechanism avoids both that an
user skips the authentication process and that it accesses to the web through the private view
without having the adequate permission.

34 CoLogNetWS: the CoLogNet Web-site

7.4 Usage and interface (authentication)

P
e Library usage:
:- use_module(library(authentication)).
e Exports:
— Predicates:

insert_scope/2, check_scope/2, delete_scope/1, init_scope/0,
insert_authentication/2, check_authentication/1, delete_authentication/1,
init_authentication/O.

— Regular Types:
id_session/1, scope/1, response_authentication/1.
— Multifiles:
$is_persistent/2.
e Other modules used:
— System library modules:
persdb/persdbrt.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

7.5 Documentation on exports (authentication)

insert_scope/2: PREDICATE
Usage: insert_scope(+Id, +3)
— Description: Associates to session identifier Id, the execution scope S.
— Call and exit should be compatible with:

+Id is a session identifier. (id_session/1)
+S is the execution scope, which can be ’public’ or ’private’. (scope/1)
check_scope/2: PREDICATE

Usage: check_scope(?7(Id), 7(S))
— Description: Retrieves the execution scope S associated to the session identifier Id.
— Call and exit should be compatible with:

7(I4d) is a session identifier. (id_session/1)
7(8) is the execution scope, which can be ’public’ or ’private’. (scope/1)
delete_scope/1: PREDICATE

Usage: delete_scope(+Id)
— Description: Deletes the session identifier Id and its execution scope associated.
— Call and exit should be compatible with:
+Id is a session identifier. (id_session/1)

Chapter 7: Security 35

init_scope/0: PREDICATE
Usage:
— Description: Deletes all session identifiers and their associated execution scopes from
the system.
insert_authentication/2: PREDICATE

Usage: insert_authentication(+Id, +A)
— Description: Associates to session identifier Id whether has been authenticated or
not (4).
— Call and exit should be compatible with:

+Id is a session identifier. (id_session/1)
+A states whether the authentication has been carried out or not. (response_
authentication/1)

check_authentication/1: PREDICATE

Usage: check_authentication(+Id)
— Description: Checks out that session identifier Id has been properly authenticated.
— Call and exit should be compatible with:
+1d is a session identifier. (id_session/1)

delete_authentication/1: PREDICATE
Usage: delete_authentication(+Id)

— Description: Deletes the association between a session identifier Id and its authenti-
cation.

— Call and exit should be compatible with:

+Id is a session identifier. (id_session/1)
init_authentication/0: PREDICATE
Usage:
— Description: Deletes all associations among session identifiers and their authentica-
tions.
id_session/1: REGTYPE

Usage: id_session(Id)
— Description: 1d is a session identifier.

scope/1: REGTYPE
Usage: scope(S)

— Description: S is the execution scope, which can be *public’ or ’private’.

36 CoLogNetWS: the CoLogNet Web-site

response_authentication/1: REGTYPE
Usage: response_authentication(A)

— Description: A states whether the authentication has been carried out or not.
7.6 Documentation on multifiles (authentication)

$is_persistent /2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.
The predicate is of type data.

7.7 Documentation on internals (authentication)

scope_def/2: PREDICATE
scope_def (Id, S)

Id is a session identifier and S is the execution scope associated to that identifier.
The predicate is of type data.

authentication/2: PREDICATE
authentication(Id, A)

Id is a session identifier and A indicates whether that session has been authenticated or
not.

The predicate is of type data.

7.8 Version/Change Log (authentication)

Version 0.1#6 (2003/12/5, 12:46:48 CET)
Started automatic documentation (Jorge Navas)

Chapter 8: Information exchange protocol 37

8 Information exchange protocol

8.1 Introduction

This chapter defines an Information Exchange Protocol among the different Web sites that
belong to the CoLogNet Network. It is intended that all Web sites in the Colognet Network use
this protocol to exchange data about groups, researchers, etc.

8.2 CoLogNet Web structure

The Colognet network consists of a set of specific Web sites related to the different areas
in which the network is split. Each Web site may contain a user-updatable database to store
data regarding groups, people, projects, etc, working in each area. The Information Exchange
Protocol here defined will make possible the automatic exchange of data between all Colognet
Web sites, in order to keep databases up-to-date among the different Web sites.

8.3 Protocol Definition

The communication protocol between the different Web sites will be based on the HTTP
protocol, and the information exchanged will be encoded in the XML format.

8.3.1 Information sending

The information will be sent from a Web site to others as if it were the data coming from an
HTML form whose handler is located in the destination Web site. The mimicked form would
have an input field of type “file” and name “filen”, and forced by such input field type the
encoding of the data (“ENCTYPE”) will be “multipart/form-data”.

The process will require the establishment of a TCP connection to port number 80 of the
destination Web site (the HT'TP server port). After establishing the connection with the HTTP
server, the sender application will send data composed by the required HT'TP headers and a
body which will contain an XML file, where the exchanged data will be encoded. The XML file
should be in accordance with the XML Scheme Definition (XSD) defined in Chapter 11 [XSD
associated to the XML data], page 49. After receiving and processing the sent data, if everything
is correct the HTTP server should return an OK response with code 200 and the value of the
‘colognet_error’ header would be ‘not_error’. Another response code or header value will
indicate an error, to be exceptionally handled.

This new HTTP header is defined due to the fact that is not enough a HT'TP server response
with code 200 for knowing if the data has been correctly processed. The problem is that two
sorts of errors can be produced in an information exchange: HTTP server error and XML file
processing error. The first error is defined with code 500 in the HT'TP protocol. However the

second error is not defined in this protocol, so we need another way of signaling an error on
XML file.

A solution would be to define a new HTTP code, but this it is not possible in this protocol.
Due to this, we have decided to define a new HTTP header, which will be added to HTTP
response and will point out the result of processing an XML file. This HTTP header will be
named ‘colognet_error’. The current values of ’colognet_error’ are:

o error_entity_integrity states that there are repeated keys in the XML file.

e error_reference_integrity states that is not accomplished the reference integrity in the XML
file.

e error_empty states that there are empty required fields in the XML file.

38

CoLogNetWS: the CoLogNet Web-site

object_not_found states that an entity has not been found.

error_invalid_syntaz states that the XML file is not correctly formed.

error_category_event states that the event category is not valid.

error_category_group states that the group category is not valid.

error_date_incorrect states that there is an invalid date.

error_not_relations states that an item can not be deleted due to there are other items
belonging to it.

not_error states that the XML data processing has been correct.

Note that you can define new values of the HT'TP header “colognet_error”, if you need them.

8.3.2 Example of HTTP request

In the following an example is shown in order to make clear the data which is sent, using

the HT'TP protocol, in a database update. The data corresponds to a registration of a research
group. Note that the Content-Length header has to match with the length in bytes of the data
following the first blank line. Also note that the boundary can be changed, and should not occur
inside the XML data.

POST /“clip/Projects/COLOGNET/cgi-bin/exchange/recv.cgi HTTP/1.0
Content-Type: multipart/form-data; boundary="6G+f"
Content-Length: 603

--6G+£

Content-Disposition: form-data; name="filen"
Content-Type: text/xml

<register>
<object>
<group>
<insta>UPM</insta>
<instf>Universidad Politecnica de Madrid</instf>
<wwwi>http://www.upm.es</wwwi>
<groupa>CLIP</groupa>
<groupf>Computing Logic: Implementation and Paralelism</groupf>
<wwwg>http://clip.dia.fi.upm.es</wwwg>
<category>University </category>
<description> </description>
<address>Campus MonteGancedo </address>
<zip>28660</zip>
<city>Boadilla del Monte, Madrid</city>
<state> </state>
<country>Spain</country>
<password>clip </password>
<member></member>
<contact_person></contact_person>
<coordinating></coordinating>
<related></related>
<working></working>
</group>

Chapter 8: Information exchange protocol 39

</object>
<associated_data></associated_data>
</register>

~-6G+f--

8.3.3 Information reception

The reception process is equivalent to the reception by a CGI form handler of the data coming
from a form, with the characteristics mentioned above.

8.3.4 Example of HTTP response

In the following an example is shown in order to make clear the data which is sent back,
using the HT'TP protocol, in a succesful database update. Note the use of the HIT'TP header
‘colognet_error’:

HTTP/1.1 200 OK

Date: Fri, 24 Oct 2003 17:33:01 GMT

Server: Apache/2.0.40 (Red Hat Linux)
Colognet_Error: not_error

Content-Length: 0

Connection: close

Content-Type: text/html; charset=IS0-8859-1

40

CoLogNetWS: the CoLogNet Web-site

Chapter 9: Reception of data 41

9 Reception of data

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#26 (2003/12/5, 13:13:39 CET)

This application, which behaves as a CGI executable, implements the reception of data,
encoded in XML format. This data can come from the own Web site or from other Web sites,
thus allowing the communication among the databases of the different nodes corresponding to
CoLogNet. Both ways of communication are based on the HT'TP protocol.

9.1 Usage and interface (recv)

e Library usage:
This module is typically compiled as a CGI executable.
e Other modules used:
— Application modules:

../../src/areas/process_areas, ../../src/events/process_
events, ../../src/groups/process_groups, ../../src/people/process_people,
../../src/projects/process_projects, ../../src/software/process_software,
../../src/structs, ../../settings, ../pillow_ext/pillow_ext, ../xml/error_
xml, ./send.

— System library modules:
pillow/http, pillow/html, file_utils, lists.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

9.2 Documentation on internals (recv)

main/1: PREDICATE
Usage:

— Description: Main entry of the application. Allows to carry out the data reception
encoded in XML format, through the HTTP protocol. Once the XML file is received,
it is processed and the corresponding response is sent to the sender Web site.

ask_file/1: PREDICATE

Usage: ask_file(?7(Output))
— Description: Output refers to the Web page created to ask the user for the XML file
which will be processed.
— Call and exit should be compatible with:

?(Output) is a term that defines the name of an HTML template to be shown, and
a dictionary with values for the variables defined in that template. (output_
template/1)

42 CoLogNetWS: the CoLogNet Web-site

process_file/3: PREDICATE
Once the content of the XML file is received, this file is parsed and validated, and the
values of its different elements are retrieved, in order to this data be processed.
To better explain the different steps, we show a possible XML file, where the more impor-
tant parts are indicated:

<register> <l-- Level 1-->

<object> <!-- Level 1.1-->

<group> <!-- Level 1.1.1-->
<identifier>57</identifier>
<insta>UPM</insta>

<instf>Universidad Politecnica de Madrid</instf>
<wwwi>http://www.upm.es</wwwi>
<groupa>CLIP</groupa>
<groupf>CLIP Lab</groupf>
<wwwg>http:// clip.dia.fi.upm.es</wwwg>
<category>University</category>
<description></description>
<address>Campus MonteGancedo</address>
<zip>28660</zip>
<city>Boadilla del Monte, Madrid</city>
<state></state>
<country>Spain</country>
<password>CLIP</password>
<member><person>56</person></member>
<contact_person><person>56</person></contact_person>
<coordinating><project>62</project></coordinating>
<related><software>0</software></related>
<working>
<area>0</area>
</working>
</group>
</object>
<associated_data> <!-- Level 1.2-->
<person> <!-- Level 1.2.1.-—>
<identifier>56</identifier>
<last_name>Cabeza</last_name>
<first_name>Daniel</first_name>
<password>bardo</password>
</person>
<project> <!-- Level 1.2.2 -->
<identifier>62</identifier>
<titlea>CoLogNet</titlea>
<titlef>CoLogNet</titlef>
<password>colognet</password>
</project>
<software> <!-- Level 1.2.3 -—>
<identifier>0</identifier>
<namea>Ciao</namea>
<namef>The Ciao Program Development System</namef>
<password>ciao</password>

Chapter 9: Reception of data 43

</software>
<area> <I-- Level 1.2.4 -—>
<identifier>0</identifier>
<namea>Automatic Deduction Systems</namea>
<namef>Automated Deduction Systems and Theorem Provers</namef>
<password>jorge</password>
</area>
</associated_data>
</register>

The relevant points are:

e Level 1 element. Allows to know if the operation is an insertion (register), modification
(modify) or deletion (unregister).

e Level 1.1 and level 1.2 elements. The Level 1.1 is defined by the "object" node and
contains all entities on which the operation is carried out. Those entities compose the
level 1.1.x. On the other hand, the level 1.2 is defined by the "associated_data" node
and contains all auxiliary entities to the level 1.1.x entities. Those auxiliary entities
make up the level 1.2.x.

The Chapter 11 [XSD associated to the XML data], page 49 explains the composition of
all the possible XML files.

To process the XML file, two stages clearly differenced are carried out. On the one hand,
the information associated to the level 1.2.x is parsed, validated by a set of checks, and
finally is retrieved. The checks carried out are:

e Unique identifiers. Except for the event entity, since this entity has not defined any
identifier.

e Existence of the auxiliary entities.
e The required fields must be filled.

On the other hand, the data associated to the level 1.1.x is also parsed, validated and
retrieved. This second step is only carried out if the previous checks have not detected
any error. It is very important, in this case, establishing a correct order in the validation
of entities, to avoid inconsistent situations. That is, first the less related entities are
validated, and later the more related ones. The correct order would be: events, areas,
projects, software, people and groups. The checks of the level 1.1.x are:

e Existence of the entity. In case of a modification or deletion.

e The required fields must be filled.

e The referential integrity must be accomplished. Except in the case of deletion.

e The category must be correct. In case it is a group or event.

e The dates must be correct. In case it is an event.
Finally if no error has been produced, the validated information is processed, that is, the
data is inserted, modified or deleted.
Usage 1: process_file(+0p, +Input, ?(Output))

— Description: When Op is ‘register_file’, this service allows to insert, modify or
delete an entity (or entities) by means of an XML file given in Input, from the same
Web site in which the XML file will be processed. Output is an HTML template
that will show the result of processing the XML file. Depending on the system
configuration, the XML file will be immediately sent to the rest of Web sites or stored
in an intermediate buffer.

44

CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:

+0p and register_file unify. (=/2)
+Input is a term that stores the content of a file. (input_file_struct/1)

7 (Output) is a term that defines the name of an HTML template to be shown, and
a dictionary with values for the variables defined in that template. (output_
template/1)

Usage 2: process_file(+0p, +Input, ?(Output))
— Description: When Op is ‘register_nodes’ this service allows to insert, modify or

delete an entity (or entities) by means of an XML file given in Input, from other Web
site. Output is the response of proccessing that XML file.

If there has not been any error, the value of ‘colognet_error’ header contained in
Output, is ’not_error’. This header is added to the rest of HI'TP headers that the
server sends back to the sender Web site. If there has been some error, the same
process is carried out adding the previous header with the value corresponding to the
type of error. Also the cause of the error is added to the HT'TP response body. So,
it is very important to add the ‘colognet_error’ header, because the sender Web
site need it to know the result of the operation.

Call and exit should be compatible with:

+0p and register_nodes unify. (=7/2)
+Input is a term that stores the content of a file. (input_file_struct/1)
?(Output) is a list of html_terms. (1ist/2)

9.3 Version/Change Log (recv)

Version 0.1#26 (2003/12/5, 13:13:39 CET)

Started automatic documentation (Jorge Navas)

Chapter 10: Sending of data 45

10 Sending of data

Version: 0.1#27 (2003/12/5, 13:14:2 CET)

This module implements the sending of data, encoded in XML format to other Web sites by
the HTTP protocol, allowing by this way the communication between the databases correspond-
ing to CoLogNet. Depending on the system configuration, the information will be immediately
sent to the rest of Web sites or stored in an intermediate buffer.

The first type of sending is used when the data traffic is reduced or an inmediate update is
required. On the contrary, the second type of sending is thought to avoid the traffic congestion
among the different Web sites. For this reason, it is executed periodically by a daemon. There-
fore, the XML files are put in intermediate buffers and are not immediately sent. The daemon
will send a burst of data at hours determined by the administrator.

10.1 Usage and interface (send)

e Library usage:
This module is compiled as an executable or can be used as a library.
e Exports:
— Predicates:
main/0, data_exchange/3.
e Other modules used:
— Application modules:
../pillow_ext/http_aux, ../pillow_ext/pillow_ext, ../util/url_websites,
../xml/error_xml, ../../src/entity/process_entity, ../../settings.
— System library modules:
pillow/http, pillow/html, system, file_utils, 1lists, sort, filenames,
pillow/http_11.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

10.2 Documentation on exports (send)

main/0: PREDICATE
Usage:

— Description: Implements the process of sending of data encoded in XML format by
the HT'TP protocol. To this end, it obtains all the XML files stored in the intermediate
buffers using the directory_files_mapped/2 predicate, and then the files are sent
in date order to the rest of the Web sites by the send_files/1 predicate. Both
predicates are defined in this module.

data_exchange/3: PREDICATE
Usage: data_exchange(?(Buffer), +Message, ?(Entity))

46 CoLogNetWS: the CoLogNet Web-site

— Description: Allows to send an XML file, inmediately or in batch mode, to the rest
of Web sites. The way of choosing one of the two types is defined in a configuration
file, called settings.pl.

If the sending of data is inmediate, this predicate sends at once a XML message
Message to the rest of Web sites. These Web sites are defined by the url_websites
predicate.

On the contrary, if the sending of data is in batch mode, it creates a file with the
content of Message regarding an entity Entity, in the Buffer directory. Specifically
it creates an XML file and puts it in an intermediate buffer.

— Call and exit should be compatible with:

?(Buffer) is an intermediate buffer. (buffer/1)
+Message is a message in XML format. (xml_message/1)
?(Entity) is an entity. (entity/1)

10.3 Documentation on internals (send)

directory _files_mapped/2: PREDICATE
Usage: directory_files_mapped(+Buffer, ?(Files_Mapped))

— Description: Provides in Files_Mapped data about all the files stored in the buffer

Buffer.
— Call and exit should be compatible with:
+Buffer is an intermediate buffer. (buffer/1)
?(Files_Mapped) is a list of file_mappeds. (1ist/2)
send _files/1: PREDICATE

Usage: send_files(+Files)

— Description: Sends the XML files Files from the intermediate buffers to the rest
of Web sites with which exists a communication among their databases. Firstly, the
Web sites URLs are obtained. These URLs are obtained by the url_websites/2
predicate defined in the url_websites file. This predicate allows to obtain the URL
depending on the type of entity that has generated the XML file. Later a HTTP
request is created (see Section 8.3.2 [Example of HTTP request], page 38), and is
sent to each URL. Finally the server response is analyzed:

e If a server error is produced (code 500), the file is not removed, waiting for being
sent again. This is because of a temporal fault of the receiving server or problems
in the connection.

e If the server response is correct (code 200) the ‘colognet_error’ header is
analyzed to verify whether the transaction has been done correctly, or the type
of error in case that it has failed. If there has not been any error, the transaction
is considered as finished and the file is deleted after it has been sent to the last
Web site. In other case, the system obtains information about the type of error,
which is written in a log file, and the XML file is moved to a special directory to
be able later analyzed the cause of the error.

— Call and exit should be compatible with:
+Files is a list of file_mappeds. (1ist/2)

Chapter 10: Sending of data

buffer/1:
buffer(B)

47

REGTYPE

B is an intermediate buffer managed by the system to store temporally the XML files,
generated by the different transactions carried out in the Web site. The different types of

buffers are:
e areas stores the XML files associated to areas.
e events stores the XML files associated to events.
[]

groups stores the XML files associated to groups.

people stores the XML files associated to people.
projects stores the XML files associated to projects.
software stores the XML files associated to software.
all stores the XML files received from the own Web site.

Usage: buffer(B)

— Description: B is an intermediate buffer.

file_mapped/1:
file_mapped (F)

F contains information about an XML file. This information is
s(Time,Name, Entity) where:

e Time is the date when the XML file was created.
e Name is the complete path of the XML file.
o FEntity is the XML file entity.

Usage: file_mapped (F)
— Description: F contains information about an XML file.

xml_message/1:
Usage: xml_message (M)

— Description: M is a message in XML format.

10.4 Version/Change Log (send)

Version 0.1#27 (2003/12/5, 13:14:2 CET)
Started automatic documentation (Jorge Navas)

REGTYPE

a tuple

REGTYPE

48

CoLogNetWS: the CoLogNet Web-site

Chapter 11: XSD associated to the XML data 49

11 XSD associated to the XML data

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#7 (2003/12/5, 12:47:36 CET)

The communication among the different Web sites is carried out by a data exchange that
allows to keep updated among themselves their databases. This exchange data is encoded in
XML format. Specifically three different XSD (XML Scheme Definition) have been defined for
each type of transaction: insertion, modification and deletion.

11.1 Insertion XSD

<?7xml version="1.0" encoding="UTF-8"7>

<xs:schema targetNamespace="TypesScheme"
xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
xmlns:register="TypesScheme" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!-- Simples Types Declaration -->

<xs:simpleType name="email">
<xs:restriction base="xs:string">
<xs:pattern value="(\w|_)+Q@((\w|_)+\.D)+\w|_)+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="not_empty">
<xs:restriction base="xs:string">
<xs:whiteSpace value="collapse"/>
<xs:pattern value="(.)+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="category_group">
<xs:restriction base="xs:string">
<xs:enumeration value="Company"/>
<xs:enumeration value="Non profit research institute"/>
<xs:enumeration value="Research institute"/>
<xs:enumeration value="University"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="category_event">
<xs:restriction base="xs:string">
<xs:enumeration value="Workshop"/>
<xs:enumeration value="Conference"/>
<xs:enumeration value="Symposium"/>
<xs:enumeration value="Congress"/>
</xs:restriction>
</xs:simpleType>

<!-- Global Elements Definition—-->

20

CoLogNetWS: the CoLogNet Web-site

<xs:element name="password" type="register:not_empty"/>
<xs:element name="identifier" type="xs:integer"/>

<l-- Global Groups Definition-->

<xs:group name="location">

<xs:sequence>

<xs:element name="address" type="register:not_empty"/>
<xs:element name="zip" type="register:not_empty"/>
<xs:element name="city" type="register:not_empty"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="country" type="register:not_empty"/>

</xs:sequence>
</xs:group>

<!-- General Definition -->

<xs:element name="register">

<xs:complexType>

<Xs:sequence>

<xs:element name="object">

<xs:complexType>

<xs:sequence>

<xs:element name="group" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="register:identifier"/>

<xs:element name="insta" type="register:not_empty"/>
<xs:element name="instf" type="register:not_empty"/>
<xs:element name="wwwi" type="register:not_empty"/>
<xs:element name="groupa" type="register:not_empty"/>
<xs:element name="groupf" type="register:not_empty"/>
<xs:element name="wwwg" type="register:not_empty"/>
<xs:element name="category" type="register:category_group"/>
<xs:element name="description" type="xs:string"/>
<xs:group ref="register:location"/>

<xs:element ref="register:password"/>

<xs:element name="member">

<xs:complexType>

<xs:sequence>

<xs:element name="person" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="contact_person">
complexType>

sequence>

element name="person" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

Chapter 11: XSD associated to the XML data

</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="coordinating">
complexType>

sequence>

element name="project" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="related">

complexType>

sequence>

element name="software" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="working">
complexType>
sequence>

element name="area" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xXs:
<xs:
<xs:
:element ref=“register:identifier"/>
<xs:
<xXs:
<xs:
<xs:

<Xs

<xs

<xs
<xs

<xs:
<xs:
<xs:

element name="person" minOccurs="0" maxOccurs="unbounded">
complexType>
sequence>

element name="last_name" type="register:not_empty"/>
element name="first_name" type="register:not_empty"/>
element name="title" type="register:not_empty"/>
element name="www" type="register:not_empty"/>

:element name="email" type="register:email"/>
<xs:
<xs:
:element name="description" type="xs:string"/>
:group ref="register:location"/>

<xs:

element name="phone" type="xs:positivelnteger"/>
element name="fax" type="xs:string"/>

element ref="register:password"/>
element name="member">

complexType>
sequence>

51

CoLogNetWS: the CoLogNet Web-site

<xs:element name="group" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>
<xs:element name="
<xs:complexType>
<Xs:sequence>
<xs:element name="group" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="contact_software">
<xs:complexType>

<Xs:sequence>

<xs:element name="software" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

contact_person">

<xs:element name="project" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="register:identifier"/>

<xs:element name="titlea" type="register:not_empty"/>
<xs:element name="titlef" type="register:not_empty"/>
<xs:element name="www" type="register:not_empty"/>

<xs:element name="category" type="register:not_empty"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="comment" type="xs:string"/>
<xs:element ref="register:password"/>

<xs:element name="coordinating">
<xs:complexType>

<xs:sequence>

<xs:element name="group" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="software" minOccurs="0" maxOccurs="unbounded">

Chapter 11: XSD associated to the XML data

<xs:complexType>

<xs:sequence>

<xs:element ref="register:identifier"/>

<xs:element name="namea" type="register:not_empty"/>
<xs:element name="namef" type="register:not_empty"/>
<xs:element name="www" type="register:not_empty"/>
<xs:element name="ftp" type="register:not_empty"/>
<xs:element name="platforms" type="register:not_empty"/>
<xs:element name="availability" type="register:not_empty"/>
<xs:element name="description" type="xs:string"/>
<xs:element ref="register:password"/>

<xs:element name="contact_software" minOccurs="0">
<xs:complexType>

<xs:sequence>

<xs:element name="person" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="related">
<xs:complexType>

<xs:sequence>

<xs:element name="group" type="xs:integer"
minOccurs="0" max0Occurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="event" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<Xs:sequence>

<xs:element name="title" type="register:not_empty"/>
<xs:element name="category" type="register:category_event"/>
<xs:element name="city" type="register:not_empty"/>
<xs:element name="country" type="register:not_empty"/>
<xs:element name="first_date" type="xs:date"/>

<xs:element name="last_date" type="xs:date"/>

<xs:element name="deadline" type="xs:date"/>

<xs:element name="comment" type="xs:string"/>

<xs:element name="person_contact" type="register:not_empty"/>
<xs:element name="email" type="register:email"/>

<xs:element ref="register:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

53

o4

<xs:
<xs:
<xs:
<xs:
:element name="namea" type="register:not_empty"/>
<xs:
<xs:
:element ref=“register:password"/>

<xs

<Xs

CoLogNetWS: the CoLogNet Web-site

element name="area" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element ref="register:identifier"/>

element name="namef" type="register:not_empty"/>
element name="description" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:

<xs:
<xs:
<xs:
<xs:
<xs:
<xs:
<xs:

element name="associated_data">
complexType>
sequence>

element name="group" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element ref="register:identifier"/>

element name="wwwi" type="register:not_empty"/>

element name="wwwg" type="register:not_empty"/>

element ref="register:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
:element ref="register:identifier"/>
<xs:
<xs:
:element ref=“register:password"/>

<xs

<Xs

element name="person" minQOccurs="0" maxOccurs="unbounded">
complexType>
sequence>

element name="last_name" type="register:not_empty"/>
element name="first_name" type="register:not_empty"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
:element ref=“register:identifier"/>
<xs:
<xs:

<xs

<xs

element name="project" minOccurs="0" maxOccurs="unbounded">
complexType>
sequence>

element name="titlea" type="register:not_empty"/>
element name="titlef" type="register:not_empty"/>

:element ref="register:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>

Chapter 11: XSD associated to the XML data 55

<xs:element name="software" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="register:identifier"/>

<xs:element name="namea" type='"register:not_empty"/>

<xs:element name="namef" type="register:not_empty"/>

<xs:element ref="register:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="area" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="register:identifier"/>

<xs:element name="namea" type="register:not_empty"/>
<xs:element name="namef" type="register:not_empty"/>
<xs:element ref="register:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:key name="GroupObjectKey">
<xs:selector xpath="register:object/register:group"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="PersonObjectKey">
<xs:selector xpath="register:object/register:person"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="ProjectObjectKey">
<xs:selector xpath="register:object/register:project"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="SoftwareObjectKey">
<xs:selector xpath="register:object/register:software"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="Area(ObjectKey">
<xs:selector xpath="register:object/register:area"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="GroupAssociatedKey">
<xs:selector xpath="register:associated_data/register:group"/>
<xs:field xpath="register:identifier"/>

56 CoLogNetWS: the CoLogNet Web-site

</xs:key>

<xs:key name="PersonAssociatedKey">
<xs:selector xpath="register:associated_data/register:person"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="ProjectAssociatedKey">
<xs:selector xpath="register:associated_data/register:project"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="SoftwareAssociatedKey">
<xs:selector xpath="register:associated_data/register:software"/>
<xs:field xpath="register:identifier"/>

</xs:key>

<xs:key name="AreaAssociatedKey">
<xs:selector xpath="register:associated_data/register:area"/>
<xs:field xpath="register:identifier"/>

</xs:key>

</xs:element>

</xs:schema>

11.2 Modification XSD

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema targetNamespace="TypesScheme" xmlns:modify="TypesScheme"
xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- Simples Types Declaration -->

<xs:simpleType name="email">
<xs:restriction base="xs:string">
<xs:pattern value="(\w|_)+@((\w|_)+\.)+\w|_)+"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="not_empty">
<xs:restriction base="xs:string">
<xs:whiteSpace value="collapse"/>
<xs:pattern value="(.)+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="category_group">
<xs:restriction base="xs:string">
<xs:enumeration value="Company"/>
<xs:enumeration value="Non profit research institute"/>
<xs:enumeration value="Research institute"/>
<xs:enumeration value="University"/>
</xs:restriction>
</xs:simpleType>

Chapter 11: XSD associated to the XML data

<xs:simpleType name="category_event">
<xs:restriction base="xs:string">

<xs:enumeration value="Workshop"/>

<xs:enumeration value="Conference"/>

<xs:enumeration value="Symposium"/>

<xs:enumeration value="Congress"/>
</xs:restriction>

</xs:simpleType>

<!-- Global Elements Definition-->
<xs:element name="password" type="modify:not_empty"/>
<xs:element name="identifier" type="xs:integer"/>

<!-- Global Groups Definition-—>

<xs:group name="location">
<xs:sequence>
<xs:element name="address" type="modify:not_empty"/>
<xs:element name="zip" type="modify:not_empty"/>
<xs:element name="city" type="modify:not_empty"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="country" type="modify:not_empty"/>
</xs:sequence>
</xs:group>

<!-- General Definition -->

<xs:element name="modify">

<xs:complexType>

<xs:sequence>

<xs:element name="object">

<xs:complexType>

<xs:sequence>

<xs:element name="group" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="insta" type="modify:not_empty"/>
<xs:element name="instf" type="modify:not_empty"/>
<xs:element name="wwwi" type="modify:not_empty"/>
<xs:element name="wwwg" type="modify:not_empty"/>
<xs:element name="category" type="modify:category_group"/>
<xs:element name="description" type="xs:string" />
<xs:group ref="modify:location"/>

<xs:element name="o0ld_groupa" type="modify:not_empty"/>
<xs:element name="new_groupa" type="modify:not_empty"/>
<xs:element name="old_groupf" type="modify:not_empty"/>
<xs:element name="new_groupf" type="modify:not_empty"/>
<xs:element name="old_password" type="modify:not_empty"/>

o7

o8

CoLogNetWS: the CoLogNet Web-site

<xs:element name="new_password" type="modify:not_empty"/>

<xs:element name="member">

<xs:complexType>

<xs:sequence>

<xs:element name="person" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="contact_person">
<xs:complexType>

<xs:sequence>

<xs:element name="person" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="coordinating">
<xs:complexType>

<xs:sequence>

<xs:element name="project" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="related">

<xs:complexType>

<xs:sequence>

<xs:element name="software" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="working">
<xs:complexType>

<xs:sequence>

<xs:element name="area" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="person" minOccurs="0" maxOccurs="unbounded">

Chapter 11: XSD associated to the XML data

<xs:
<xs:
<xs:
<xs:
:element name="www" type="modify:not_empty"/>
<xs:
<xs:
:element name="fax" type="xs:string"/>
<xs:

<xs

<Xs

<Xs

<xs

<xs:
<xs:
<xs:
<xs:

complexType>

sequence>

element ref="modify:identifier"/>

element name="title" type="modify:not_empty"/>

element name="email" type="modify:email"/>
element name="phone" type="xs:positivelnteger"/>

element name="description" type="xs:string"/>

:group ref="modify:location"/>
<xs:
<xs:
:element name="old_first_name" type="modify:not_empty"/>
<xs:
<xs:
<xs:

element name="o0ld_last_name" type="modify:not_empty"/>
element name="new_last_name" type="modify:not_empty"/>

element name="new_first_name" type="modify:not_empty"/>
element name="o0ld_password" type="modify:not_empty"/>
element name="new_password" type="modify:not_empty"/>

element name="member">

complexType>

sequence>

element name="group" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="contact_person">
complexType>

sequence>

element name="group" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:

<Xs

<xs:
<xs:

element name="contact_software">
:complexType>

sequence>

element name="software" type="xs:integer"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:
<xs:
<xs:
<xs:

element name="project" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element ref="modify:identifier"/>

59

60

CoLogNetWS: the CoLogNet Web-site

<xs:element name="www" type="modify:not_empty"/>
<xs:element name="category" type="modify:not_empty"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="comment" type="xs:string" />
<xs:element name="old_titlea" type="modify:not_empty"/>
<xs:element name="new_titlea" type="modify:not_empty"/>
<xs:element name="old_titlef" type="modify:not_empty"/>
<xs:element name="new_titlef" type="modify:not_empty"/>
<xs:element name="old_password" type="modify:not_empty"/>
<xs:element name="new_password" type="modify:not_empty"/>

<xs:element name="coordinating">
<xs:complexType>

<xs:sequence>

<xs:element name="group" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="software" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<Xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="www" type="modify:not_empty"/>
<xs:element name="ftp" type="modify:not_empty"/>
<xs:element name="platforms" type="modify:not_empty"/>
<xs:element name="availability" type="modify:not_empty"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="old_namea" type="modify:not_empty"/>
<xs:element name="new_namea" type="modify:not_empty"/>
<xs:element name="old_namef" type="modify:not_empty"/>
<xs:element name="new_namef" type="modify:not_empty"/>
<xs:element name="old_password" type="modify:not_empty"/>
<xs:element name="new_password" type="modify:not_empty"/>

<xs:element name="contact_software" minOccurs="0">
<xs:complexType>

<xs:sequence>

<xs:element name="person" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="related">
<xs:complexType>
<xs:sequence>

Chapter 11: XSD associated to the XML data

<xs:element name="group" type="xs:integer"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="event" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element name="category" type="modify:category_event"/>
<xs:element name="city" type="modify:not_empty"/>
<xs:element name="country" type="modify:not_empty"/>
<xs:element name="first_date" type="xs:date"/>

<xs:element name="last_date" type=“xs:date"/>

<xs:element name="deadline" type="xs:date"/>

<xs:element name="comment" type="xs:string"/>

<xs:element name="person_contact" type="modify:not_empty"/>
<xs:element name="email" type="modify:email"/>

<xs:element name="old_title" type="modify:not_empty"/>
<xs:element name="new_title" type="modify:not_empty"/>
<xs:element name="old_password" type="modify:not_empty"/>
<xs:element name="new_password" type="modify:not_empty"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="area" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="description" type="xs:string"/>
<xs:element name="old_namea" type="modify:not_empty"/>
<xs:element name="new_namea" type="modify:not_empty"/>
<xs:element name="old_namef" type="modify:not_empty"/>
<xs:element name="new_namef" type="modify:not_empty"/>
<xs:element name="old_password" type="modify:not_empty"/>
<xs:element name="new_password" type="modify:not_empty"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="associated_data">
<xs:complexType>
<xs:sequence>

CoLogNetWS: the CoLogNet Web-site

<xs:element name="group" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="wwwi" type="modify:not_empty"/>

<xs:element name="wwwg" type="modify:not_empty"/>

<xs:element ref="modify:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="person" min0ccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="last_name" type="modify:not_empty"/>
<xs:element name="first_name" type="modify:not_empty"/>
<xs:element ref="modify:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="project" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="titlea" type="modify:not_empty"/>

<xs:element name="titlef" type="modify:not_empty"/>

<xs:element ref="modify:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="software" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<Xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="namea" type="modify:not_empty"/>

<xs:element name="namef" type="modify:not_empty"/>

<xs:element ref="modify:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="area" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element ref="modify:identifier"/>

<xs:element name="namea" type="modify:not_empty"/>
<xs:element name="namef" type="modify:not_empty"/>
<xs:element ref="modify:password"/>

Chapter 11

</xs:
</xs:
</xs:
</xs:
</xs:
</xs:
</xs:
</xs:

: XSD associated to the XML data 63

sequence>
complexType>
element>
sequence>
complexType>
element>
sequence>
complexType>

<xs:key name="GroupObjectKey">

<xs:selector xpath="modify:object/modify:group"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="PersonObjectKey'">

<xs:selector xpath="modify:object/modify:person"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="ProjectObjectKey">

<xs:selector xpath="modify:object/modify:project"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="SoftwareObjectKey">

<xs:selector xpath="modify:object/modify:software"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="AreaObjectKey">

<xs:selector xpath="modify:object/modify:area"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="GroupAssociatedKey">

<xs:selector xpath="modify:associated_data/modify:group"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="PersonAssociatedKey">

<xs:selector xpath="modify:associated_data/modify:person"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="ProjectAssociatedKey">

<xs:selector xpath="modify:associated_data/modify:project"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="SoftwareAssociatedKey">

<xs:selector xpath="modify:associated_data/modify:software"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
<xs:key name="AreaAssociatedKey">

<xs:selector xpath="modify:associated_data/modify:area"/>
<xs:field xpath="modify:identifier"/>

</xs:key>
</xs:element>

</xs

:schema>

64 CoLogNetWS: the CoLogNet Web-site

11.3 Deletion XSD

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema targetNamespace="TypesScheme"
xmlns:unregister="TypesScheme"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- Simples Types Declaration -->
<xs:simpleType name="not_empty">
<xs:restriction base="xs:string">
<xs:whiteSpace value="collapse"/>
<xs:pattern value="(.)+"/>
</xs:restriction>
</xs:simpleType>

<!-- Global Elements Definition-->

<xs:element name="password" type="unregister:not_empty"/>

<!-- Entities Definition -->
<xs:element name="unregister">
<xs:complexType>

<xs:sequence>

<xs:element name="object">
<xs:complexType>
<xs:sequence>

<xs:element name="group" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element name="groupa" type="unregister:not_empty"/>
<xs:element name="groupf" type="unregister:not_empty"/>
<xs:element ref="unregister:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="person" min0ccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element name="last_name" type="unregister:not_empty"/>
<xs:element name="first_name" type="unregister:not_empty"/>
<xs:element ref="unregister:password"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Chapter 11: XSD associated to the XML data

<xs:
<xs:
<xs:
<xs:
:element name="titlef" type="unregister:not_empty"/>
<xs:

<xs

element name="project" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element name="titlea" type="unregister:not_empty"/>

element ref="unregister:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
<xs:
<xs:
<xs:

element name="software" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element name="namea" type="unregister:not_empty"/>

element name="namef" type="unregister:not_empty"/>

element ref="unregister:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
<xs:

<xs

element name="event" minOccurs="0" max0Occurs="unbounded">
complexType>

sequence>

element name="title" type="unregister:not_empty"/>

:element ref="unregister:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:
<xs:
<xs:
<xs:

<Xs
<Xs

element name="area" minOccurs="0" maxOccurs="unbounded">
complexType>

sequence>

element name="namea" type="unregister:not_empty"/>

:element name="namef" type="unregister:not_empty"/>
:element ref="unregister:password"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:

element name="associated_data"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

In the following, XML examples are defined for each one of the possible transactions.

65

66 CoLogNetWS: the CoLogNet Web-site

11.4 Example of Insertion

<register>
<object>
<group>
<identifier>57</identifier>
<insta>UPM</insta>
<instf>Universidad Politecnica de Madrid</instf>
<wwwidhttp://www.upm.es</wwwi>
<groupa>CLIP</groupa>
<groupf>CLIP Lab</groupf>
<wwwg>http:// clip.dia.fi.upm.es</wwwg>
<category>University</category>
<description></description>
<address>Campus MonteGancedo</address>
<zip>28660</zip>
<city>Boadilla del Monte, Madrid</city>
<state></state>
<country>Spain</country>
<password>CLIP</password>
<member><person>56</person></member>
<contact_person><person>56</person></contact_person>
<coordinating><project>62</project></coordinating>
<related><software>0</software></related>
<working>
<area>0</area>
<area>3</area>
<area>2</area>
<area>1</area>
</working>
</group>
</object>
<associated_data>
<person>
<identifier>56</identifier>
<last_name>Cabeza</last_name>
<first_name>Daniel</first_name>
<password>bardo</password>
</person>
<project>
<identifier>62</identifier>
<titlea>CoLogNet</titlea>
<titlef>CoLogNet</titlef>
<password>colognet</password>
</project>
<software>
<identifier>0</identifier>
<namea>Ciao</namea>
<namef>The Ciao Program Development System</namef>
<password>ciao</password>
</software>
<area>

Chapter 11: XSD associated to the XML data

<identifier>0</identifier>
<namea>Automatic Deduction Systems</namea>
<namef>Automated Deduction Systems and Theorem Provers</namef>
<password>jorge</password>

</area>

<area>
<identifier>3</identifier>
<namea>Logic Programming</namea>
<namef>Logic Programming</namef>
<password>jorge</password>

</area>

<area>
<identifier>2</identifier>
<namea>Data Mining</namea>
<namef>Data Mining</namef>
<password>jorge</password>

</area>

<area>
<identifier>1</identifier>
<namea>CL Systems</namea>
<namef>Computational Logic Systems</namef>
<password>jorge</password>

</area>

</associated_data>
</register>

11.5 Example of Modification

<modify>

<object>

<person>
<identifier>56</identifier>
<title>Mr</title>
<www>http://clip.dia.fi.upm.es/ bardo</www>
<email>bardo@clip.dia.fi.upm.es</email>
<phone>123456789</phone>
<fax></fax>
<description></description>
<address>Campus MonteGancedo</address>
<zip>28660</zip>
<city>Boadilla del Monte, Madrid</city>
<state></state>
<country>Spain</country>
<0ld_last_name>Cabeza</o0ld_last_name>
<new_last_name>Cabeza</new_last_name>
<old_first_name>Daniel</old_first_name>
<new_first_name>Daniel</new_first_name>
<old_password>bardo</old_password>
<new_password>CLIP</new_password>

67

68 CoLogNetWS: the CoLogNet Web-site

<member><group>26</group></member>
<contact_person></contact_person>
<contact_software><software>0</software></contact_software>
</person>
</object>
<associated_data>
<group>
<identifier>26</identifier>
<groupa>CLIP</groupa>
<groupf>CLIP Lab</groupf>
<password>clip</password>
</group>
<software>
<identifier>0</identifier>
<namea>Ciao</namea>
<namef>The Ciao Program Development System</namef>
<password>ciao</password>
</software>
</associated_data>
</modify>

11.6 Example of Deletion

<unregister>
<object>
<group>
<groupa>jorge</groupa>
<groupf>jorge</groupf>
<password>jorge</password>
</group>
</object>
<associated_data> </associated_data>
</unregister>

11.7 Version/Change Log (xsd)

Version 0.1#7 (2003/12/5, 12:47:36 CET)

Started automatic documentation (Jorge Navas)

Chapter 12: Parsing, validating and retrieving of XML files 69

12 Parsing, validating and retrieving of XML files

Version: 0.1427 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#8 (2003/12/5, 12:47:52 CET)

This module allows to parser an XML file, to validate its content and to retrieve the data
stored in it.

12.1 Usage and interface (parser_xml)

e Library usage:
:— use_module(library(parser_xml)) .
e Exports:
— Predicates:

input_file_object_entity/4, input_file_associated_entity/3, process_file_
entity/3.

— Regular Types:

op_xml/1.
e Other modules used:

— Application modules:
../../1ib/pillow_ext/pillow_ext, ../../src/entity/process_entity,
../../src/structs.

— Internal (engine) modules:
hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

12.2 Documentation on exports (parser_xml)

input_file_object_entity /4: PREDICATE

input_file_object_entity(Entity, Op, XML_Term, Input)
Given an XML term (XML_Term) allows to parser the part corresponding to the ‘object’
node, checking out that the parsed data matches with its corresponding XML schema,
and retrieving that data in Input. The ‘object’ node indicates the item corresponding
to Entity on which is carried out the operation. The structure of the XML file is different
depending on Op.
Usage 1: input_file_object_entity(+Entity, +0p, +XML_Term, 7 (Input))

— Description: When Op is ’register’, the root of the XML file is ‘register’. See

Section 11.4 [Example of Insertion], page 66.
— Call and exit should be compatible with:

+Entity is an entity. (entity/1)
+0p and register unify. (=/2)
+XML_Term is an XML file represented as a tree. (xml_tree/1)

?(Input) is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)

70 CoLogNetWS: the CoLogNet Web-site

Usage 2: input_file_object_entity(+Entity, +0p, +XML_Tree, 7(Input))
— Description: When Op is ’modify’, the root of the XML file is ‘modify’. See
Section 11.5 [Example of Modification|, page 67.
— Call and exit should be compatible with:

+Entity is an entity. (entity/1)
+0p and modify unify. (=72)
+XML_Tree is an XML file represented as a tree. (xml_tree/1)

?(Input) is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)
Usage 3: input_file_object_entity(+Entity, +0p, +XML_Tree, ?(Input))
— Description: When Op is ’unregister’, the root of the XML file is ‘unregister’.
See Section 11.6 [Example of Deletion], page 68.
— Call and exit should be compatible with:

+Entity is an entity. (entity/1)
+0p and unregister unify. (=72)
+XML_Tree is an XML file represented as a tree. (xml_tree/1)

7 (Input) is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)

input_file_associated_entity/3: PREDICATE
Usage: input_file_associated_entity(+Entity, +XML_Term, 7(Input))

— Description: Given an XML term (XML_Term) allows to parser the part corresponding
to the ‘associated_data’ node, checking out that the parsed data matches with its
corresponding XML schema, and retrieving that data in Input. The ‘associated_
data’ node indicates the entities associated to the main entity (Entity) on which is
carried out the operation.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+XML_Term is an XML file represented as a tree. (xml_tree/1)
7 (Input) is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)

process_file_entity/3: PREDICATE
Usage: process_file_entity(+Entity, +0p, 7(Input))
— Description: Once the XML file is parsed, validated, and the data corresponding
to Entity has been retrieved in Input; this predicate inserts, modifies or deletes
(depending on Op) that data in the system using the process_entity/5 predicate.

— Call and exit should be compatible with:

+Entity is an entity. (entity/1)
+0p is the type of operation in an XML file. It can be: ‘register’, ‘modify’ or
‘unregister’. (op_xml/1)

7 (Input) is the union of the types: input_area_struct/1, input_event_struct/1,
input_group_struct/1, input_person_struct/1, input_project_struct/1 and
input_software_struct/1. (input_entity_struct/1)

Chapter 12: Parsing, validating and retrieving of XML files 71

op_xml/1: REGTYPE
Usage: op_xml(0Op)
— Description: Op is the type of operation in an XML file. It can be: ‘register’,
‘modify’ or ‘unregister’.

12.3 Version/Change Log (parser_xml)

Version 0.1#8 (2003/12/5, 12:47:52 CET)
Started automatic documentation (Jorge Navas)

72

CoLogNetWS: the CoLogNet Web-site

Chapter 13: XML code generation 73

13 XML code generation

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#9 (2003/12/5, 12:48:19 CET)

This module implements the necessary predicates for the creation of the XML code derived
from a transaction produced over the database.

13.1 Usage and interface (code_xml)

e Library usage:
:- use_module(library(code_xml)).
e Exports:
— Predicates:
code_entities_xml/5, code_relations_xml/3.
— Multifiles:
$is_persistent/2.
e Other modules used:
— Application modules:

../../database/database, ../../settings, ./parser_xml, ./xml_aux, ./label_
xml, ../lists_ext/lists_ext, ../date/date, ../../src/structs.

— System library modules:
pillow/http, pillow/html, persdb/persdbrt, file_utils, terms, lists.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

13.2 Documentation on exports (code_xml)

code_entities_xml/5: PREDICATE
Usage: code_entities_xml (+Entity, +0Op, +Entity_Data, 7(List_Relations),
-Object)

— Description: Object is the XML code associated to the ¢ ‘object’’ node (see Chap-
ter 11 [XSD associated to the XML data], page 49). This node represents the item
on which the transaction has been carried out. The XML code is generated by in-
terpreting the corresponding XML template, which is matched with two types of
information: basic data of the item Entity_Data and the item data corresponding
to the relationships with other items List_Relations. The choice of this template
depends on the entity Entity and the type of operation Op.

— Call and exit should be compatible with:
+Entity is an entity. (entity/1)
+0p is the type of operation in an XML file. It can be: ‘register’, ‘modify’ or
‘unregister’. (op_xml/1)

74 CoLogNetWS: the CoLogNet Web-site

+Entity_Data is the union of the types: output_area_struct/1, output_event_
struct/1, output_group_struct/1, output_person_struct/l, output_project_
struct/1 and output_software_struct/1. (output_entity_struct/1)

?(List_Relations) is a list of ints. (1ist/2)

-Object is an atom which represents the XML code associated to the main item.
(object_xml/1)

code_relations_xml/3: PREDICATE
Usage: code_relations_xml (+Entity, +Relations, -Associated)

— Description: Associated is the XML code associated to the ¢ ‘associated_data’’

node (see Chapter 11 [XSD associated to the XML datal, page 49). This node repre-
sents the items associated to the main item, corresponding to Entity, on which the
transaction has been carried out. The XML code is generated by interpreting the
corresponding XML template, which is matched with the item data corresponding to
the relationships with other items Relations.

— Clall and exit should be compatible with:
+Entity is an entity. (entity/1)
+Relations is a term that contains information about all relationships among the
entities. (relations_struct/1)

-Associated is a term that contains XML terms about the relationships among the
different entities. (associated_xml/1)

13.3 Documentation on multifiles (code_xml)

$is_persistent /2: PREDICATE

No further documentation available for this predicate.
The predicate is multifile.
The predicate is of type data.

13.4 Documentation on internals (code_xml)

associated_xml/1: REGTYPE
associated_xml (Associated)

This type represents the relationships among the different entities. It is defined as:

associated_xml (relations(Member, Contact_Person, Contact_Software,
Coordinating, Related, Working)).

The arguments shown above mean:
e Member is a XML term that contains the groups’ members.
e Contact_Person is a XML term contains the group’s contact people.
e Contact_Software is a XML term contains the contact people of a software.

Chapter 13: XML code generation 75

e Coordinating is a XML term contains the projects coordinated by the groups.
e Related is a XML term contains software related with the groups.
e Working is a XML term contains the areas related with the groups.

Usage: associated_xml (Associated)

— Description: Associated is a term that contains XML terms about the relationships
among the different entities.

object_xml/1: REGTYPE
Usage: object_xml(0Object)

— Description: Object is an atom which represents the XML code associated to the
main item.

13.5 Version/Change Log (code_xml)

Version 0.1#9 (2003/12/5, 12:48:19 CET)
Started automatic documentation (Jorge Navas)

76

CoLogNetWS: the CoLogNet Web-site

Chapter 14: XML error processing 7

14 XML error processing

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#10 (2003/12/5, 12:48:41 CET)

This module implements a set of predicates to check out, to handle, and to notify errors in
an XML file.

14.1 Usage and interface (error_xml)

e Library usage:
:- use_module(library(error_xml)) .
e Exports:
— Predicates:

check_empty/1, check_entity_integrity/2, check_reference_integrity/2,
check_error/1, get_template_error/3, notify_error_xml/1.

e Other modules used:
— Application modules:
./xml_aux, ../../src/structs, ../../settings, ./code_xml.
— System library modules:
system, write.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

14.2 Documentation on exports (error_xml)

check_empty/1: PREDICATE
Usage: check_empty(Val)

— Description: Checks out that the value Val corresponding to a XML element is not

empty.
— Call and exit should be compatible with:
Val is an atom. (atm/1)
check_entity_integrity /2: PREDICATE

Usage: check_entity_integrity(?(Id), 7(E))

— Description: Checks out that the XML identifier Id corresponding to the entity E is
unique.

— Call and exit should be compatible with:
?(Id) is an XML identifier. (id_xml/1)
7(E) is an entity. (entity/1)

78 CoLogNetWS: the CoLogNet Web-site

check _reference_integrity /2: PREDICATE
Usage: check_reference_integrity(+Ids, 7(E))

— Description: Checks out that the referential integrity is fulfilled for a set of XML
identifiers Ids corresponding to the entity E.

— Clall and exit should be compatible with:

+Ids is a list of id_xmls. (list/2)
7(E) is an entity. (entity/1)
check_error/1: PREDICATE

Usage: check_error (+Result_Code)

— Description: Checks out that Result_Code corresponds to one of the different errors
that can be produced in an XML file.

— Call and exit should be compatible with:
+Result_Code is the result of processing an XML file. (result_xml/1)

get_template_error/3: PREDICATE
Usage: get_template_error(+Result_Code, 7(Title), 7(Message))

— Description: Given the result of processing an XML file (Result_Code), associates it
to a title Title and a brief description Message.

— Call and exit should be compatible with:

+Result_Code is the result of processing an XML file. (result_xml/1)

?7(Title) is an atom, which represents a title in HI'ML code, associated to the result

of processing an XML file. (title_html/1)

7 (Message) is an atom, which represents a brief description in HTML code, associated

to the result of processing an XML file. (msg_html/1)
notify_error_xml/1: PREDICATE

Usage: notify_error_xml (+Error)
— Description: Writes in a log file information about the error defined in Error.
— Call and exit should be compatible with:

+Error is a term that contains information about the errors produced during the
processing of an XML file. (error_struct/1)

14.3 Documentation on internals (error_xml)

result_xml/1: REGTYPE
Shows the result of processing an XML file. The different values can be:

e ‘error_invalid_syntax’ states that the XML structure is not valid.
e ‘error_entity_integrity’ states that there are repeated identifiers.
e ‘error_reference_integrity’ states that the referential integrity is not carried out

in the XML file.
e ‘object_not_found’ states that an entity has not been found.

Chapter 14: XML error processing 79

‘error_empty’ states that there are empty required fields.
‘error_category_event’ states that the event category is not correct.

‘error_category_group’ states that the group category is not correct.
‘error_date_incorrect’ states that a date is not correct.

e ‘error_not_relations’ states that there are related entities.

e ‘not_error’ states that the proccessing has been correct.

Usage: result_xml(R)
— Description: R is the result of processing an XML file.

title_html/1: REGTYPE
Usage: title_html(T)

— Description: T is an atom, which represents a title in HTML code, associated to the
result of processing an XML file.

msg_html/1: REGTYPE
Usage: msg_html (M)

— Description: M is an atom, which represents a brief description in HT'ML code, asso-
ciated to the result of processing an XML file.
14.4 Version/Change Log (error_xml)

Version 0.1#10 (2003/12/5, 12:48:41 CET)
Started automatic documentation (Jorge Navas)

80

CoLogNetWS: the CoLogNet Web-site

Chapter 15: XML file processing auxiliary predicates 81

15 XML file processing auxiliary predicates

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#11 (2003/12/5, 12:49:3 CET)

This library defines an interface for the key_xml/2 and key_pair_xml/3 predicates, where
the first predicate allows handling the entity integrity and referential integrity in XML files, and
the second predicate allows to define a equivalence between XML identifiers and database keys.

15.1 Usage and interface (xml_aux)

P
e Library usage:
:- use_module(library(xml_aux)) .
e Exports:
— Predicates:

member_key/2, add_key/2, delete_key/2, deleteall_key/1, member_key_pair/3,
add_key_pair/3, delete_key_pair/3, deleteall_key_pair/1, get_key_pair/3.

— Regular Types:
id_xml/1.
e Other modules used:
— Application modules:
../../src/entity/process_entity.pl, ../../database/database.
— System library modules:
dynamic.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

15.2 Documentation on exports (xml_aux)

member _key /2: PREDICATE

Usage: member_key(?(Id), ?(Entity))
— Description: The XML identifier Id is associated to the entity Entity.
— Call and exit should be compatible with:

?7(Id) is an XML identifier. (id_xml/1)
7(Entity) is an entity. (entity/1)
add _key/2: PREDICATE

Usage: add_key(+Id, +Entity)
— Description: Associates the XML identifier Id to the entity Entity.
— Clall and exit should be compatible with:
+Id is an XML identifier. (id_xml1/1)
+Entity is an entity. (entity/1)

82 CoLogNetWS: the CoLogNet Web-site

delete key/2: PREDICATE
Usage: delete_key(+Id, +Entity)

— Description: Deletes the relation between the XML identifier Id and the entity

Entity.
— Call and exit should be compatible with:
+Id is an XML identifier. (id_xml1/1)
+Entity is an entity. (entity/1)
deleteall key/1: PREDICATE

Usage: deleteall_key(+Entity)
— Description: Deletes the relation between the XML identifiers and the entity Entity.
— Clall and exit should be compatible with:
+Entity is an entity. (entity/1)

member _key _pair/3: PREDICATE
Usage: member_key_pair(?(Id), ?(Key), ?(Entity))

— Description: There is a equivalence between the XML identifier Id, associated to the
entity Entity, and the internal key Key.

— Call and exit should be compatible with:

?(Id) is an XML identifier. (id_xml/1)

?7(Key) is an integer which represents a database key. (key_db_int/1)

?(Entity) is an entity. (entity/1)
add_key _pair/3: PREDICATE

Usage: add_key_pair(7(Id), 7(Key), 7(Entity))

— Description: Associates the XML identifier Id, corresponding to the entity Entity,
to the internal key Key.

— Clall and exit should be compatible with:

?(Id) is an XML identifier. (id_xml/1)

7 (Key) is an integer which represents a database key. (key_db_int/1)

?7(Entity) is an entity. (entity/1)
delete_key _pair/3: PREDICATE

Usage: delete_key_pair(7(Id), ?(Key), 7(Entity))

— Description: Deletes the equivalence between the XML identifier Id, associated to
the entity Entity, and the internal key Key.

— Call and exit should be compatible with:
?(Id) is an XML identifier. (id_xml/1)
7 (Key) is an integer which represents a database key. (key_db_int/1)
?7(Entity) is an entity. (entity/1)

Chapter 15: XML file processing auxiliary predicates 83

deleteall key _pair/1: PREDICATE
Usage: deleteall_key_pair(?7(Entity))
— Description: Deletes all the equivalences between all the XML identifiers associated
to the entity Entity, and their corresponding internal keys.
— Call and exit should be compatible with:
?7(Entity) is an entity. (entity/1)

get_key _pair/3: PREDICATE
Usage: get_key_pair(+Ids, +Entity, 7(Keys))
— Description: Keys is a list of internal keys, which are provided by the XML identifiers
Ids associated to the entity Entity.

— Call and exit should be compatible with:

+Ids is a list of id_xmls. (list/2)

+Entity is an entity. (entity/1)

7 (Keys) is a list of key_db_ints. (1ist/2)
id_xml/1: REGTYPE

Usage: id_xml (Id)
— Description: Id is an XML identifier.

15.3 Documentation on internals (xml_aux)

key_xml/2: PREDICATE
The predicate is of type dynamic.
Usage: key_xml(Id, Entity)
— Description: Id is associated to entity Entity.
— Call and exit should be compatible with:

Id is an XML identifier. (id_xml/1)
Entity is an entity. (entity/1)
key_pair_xml/3: PREDICATE

The predicate is of type dynamic.

Usage: key_pair_xml(Id, Key, Entity)
— Description: Id is associated to internal key Key and to the entity Entity.
— Call and exit should be compatible with:

Id is an XML identifier. (id_xml/1)
Key is an integer which represents a database key. (key_db_int/1)
Entity is an entity. (entity/1)

15.4 Version/Change Log (xml_aux)

Version 0.1#11 (2003/12/5, 12:49:3 CET)
Started automatic documentation (Jorge Navas)

84

CoLogNetWS: the CoLogNet Web-site

Chapter 16: XML labels 85

16 XML labels

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#12 (2003/12/5, 12:49:27 CET)
This library implements a set of predicates for the generation of XML labels.

16.1 Usage and interface (label_xml)

e Library usage:
:- use_module(library(label_xml)) .
e Exports:
— Predicates:
gen_label_body/3, gen_label_init/2, gen_label_end/2.
e Other modules used:
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

16.2 Documentation on exports (label_xml)

gen_label _body/3: PREDICATE
Usage: gen_label_body(+Name, +Body, 7(Tag))
— Description: Generates a XML label Tag whose name is Name and whose body is

Body.
— Call and exit should be compatible with:
+Name is an atom. (atm/1)
+Body is an atom. (atm/1)
7(Tag) is an atom. (atm/1)
gen_label_init/2: PREDICATE

Usage: gen_label_init(+Name, 7(Tag_Init))
— Description: Generates a start XML label Tag_Init whose name is Name.
— Call and exit should be compatible with:

+Name is an atom. (atm/1)
?(Tag_Init) is an atom. (atm/1)
gen_label_end/2: PREDICATE

Usage: gen_label_end(+Name, ?(Tag_End))
— Description: Generates a end XML label Tag_End whose name is Name.
— Call and exit should be compatible with:
+Name is an atom. (atm/1)
?7(Tag_End) is an atom. (atm/1)

86 CoLogNetWS: the CoLogNet Web-site

16.3 Version/Change Log (label_xml)

Version 0.1#12 (2003/12/5, 12:49:27 CET)
Started automatic documentation (Jorge Navas)

Chapter 17: Output from data exchange status 87

17 Output from data exchange status

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#13 (2003/12/5, 12:50:5 CET)

This CGI application outputs a HTML page with the content of a log file, showing all errors
produced during the data exchange among the Web sites, to make easier the administration
tasks.

17.1 Usage and interface (errors_log)

p
e Library usage:
This module is typically compiled as a CGI executable.
e Other modules used:
— Application modules:
../lib/xml/error_xml, ../settings, ../lib/date/date.
— System library modules:
pillow/http, pillow/html, file_utils, sort, lists.
— Internal (engine) modules:

arithmetic, atomic_basic, attributes, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
basic, term_compare, term_typing.

17.2 Documentation on internals (errors_log)

main/0: PREDICATE
Usage:
— Description: Entry predicate to CGI executable.

17.3 Version/Change Log (errors_log)

Version 0.1#13 (2003/12/5, 12:50:5 CET)
Started automatic documentation (Jorge Navas)

88

CoLogNetWS: the CoLogNet Web-site

Chapter 18: Structures related to input/output data 89

18 Structures related to input/output data

Version: 0.1427 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#14 (2003/12/5, 12:50:25 CET)

This module contains a set of basic structures to deal with input/output data. These input
operations can be from an HTML form or an XML file. The output operations can be either
to the own Web site by the CGI protocol and HTML code or to other web sites by the HTTP
protocol and XML files.

18.1 Usage and interface (structs)

e Library usage:
:- use_module(library(structs)).
e Exports:
— Regular Types:

input_group_struct/1, input_
person_struct/1, input_project_struct/1l, input_software_struct/1, input_
event_struct/1, input_area_struct/1, input_file_struct/1l, input_entity_
struct/1, output_group_struct/1, output_person_struct/1, output_project_
struct/1, output_software_struct/l, output_event_struct/l, output_area_
struct/1, output_entity_struct/1, relations_struct/1, error_struct/1.

e Other modules used:
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

18.2 Documentation on exports (structs)

input_group_struct/1: REGTYPE
input_group_struct (Input_Group_Struct)

This type represents group data obtained by input operations. It is defined as:

input_group_struct (input_group(Key,Password, Inst_a,Inst_f,WWW_inst,
Group_a,Group_£f ,WWW_group,
Category,Description,
Address,Zip,State,City,Country,
Member,Contact,Coordinating,
Related,Working,Subop, Id,
01d_Group_a,01d_Group_f,01d_Password,
Id_Session)).

The arguments shown above mean:
e Key is a unique identifier.

90 CoLogNetWS: the CoLogNet Web-site

Password is an access key.
Inst_a is the institution’s abbreviated name to which the group belongs to.
Inst_f is the institution’s complete name to which the group belongs to.

WWW_inst is the institution’s Web address to which the group belongs to.

Group_a is the abbreviated name.
Group_f is the complete name.
WWW_group is the Web address.

Category can be: ‘company’, ‘non profit research institute’, ’research
institute’ or ‘university’.

Description is a brief description.
Address is the address.

Zip is the zip code.

State is the state (it is optional).

City is the city.

Country is the country.
Member are the people belonging to the group.

Contact are the group’s contact people.

Coordinating are the projects coordinated by the group.
Related is software related with the group.

Working are the areas associated to the group.

Subop can be ’modify’ or ’delete’.
I4 is the value of the element ’identifier’ in an XML file.

e 01d_Group_a is the abbreviated name before carrying out the modification of group
data.

e 01d_Group_f is the complete name before carrying out the modification of group
data.

e (01d_Password is the access key before carrying out the modification of group data.

e Id_Session is a session identifier.

Usage: input_group_struct (Input_Group_Struct)

— Description: Input_Group_Struct is a term that contains group data, obtained by
an input operation.

input_person_struct/1: REGTYPE

input_person_struct (Input_Person_Struct)
This type represents person data obtained by input operations. It is defined as:

input_person_struct (input_person(Key,Password, Last_Name,First_Name,
Title,WWW,Email,Phone,Fax,
Description,
Address,Zip,State,Country,
Member,Contact_Group,Contact_Soft,
Subop, Id,
0ld_Last_Name,0ld_First_Name,
01d_Password, Id_Session)).

Chapter 18: Structures related to input/output data 91

The arguments shown above mean:
e Key is a unique identifier.
Password is an access key.
Last_Name is the last name.
First_Name is the first name.

Title is the degree.
WWW is the Web address.
Email is the email.

Phone is the telephone number.

Fax is the fax number.

Description is a brief description.

Address is the address.

Zip is the zip code.

State is the state where the researcher lives. (It is optional).
City is the city where the person lives.

Country is the country where the person lives.

Member are the groups of which the person is member.

Contact_Group are the groups of which the person is contact.

Contact_Soft is the software of which the person is contact.

Subop can be: ’modify’ or ’delete’.

14 is the value of the element ’identifier’ in an XML file.

01d_Last_Name is the last name before carrying out the modification of person data.
01d_First_Name is the first name before carrying out the modification of person data.
01d_Password is the access key before carrying out the modification of person data.

Id_Session is a session identifier.

Usage: input_person_struct (Input_Person_Struct)

— Description: Input_Person_Struct is a term that contains person data, obtained by
an input operation.

input_project_struct/1: REGTYPE
input_project_struct (Input_Project_Struct)

This type represents project data obtained by input operations. It is defined as:

input_project_struct (input_project (Key,Password, Title_a,Title_f,WWW,
Category,Description,Comment,
Coordinating, Subop,Id,
01d_Title_a,01d_Title_f,
01d_Password,
Id_Session)).

The arguments shown above mean:
e Key is a unique identifier.

92

Password is an access key.
Title_a is the abbreviated title.
Title_f is the complete title.

WWW is the Web address.

Category is the category.
Description is a brief description.
Comment is an additional comment.

CoLogNetWS: the CoLogNet Web-site

Coordinating are the groups which coordinate the project.

Subop can be: ’modify’ or ’delete’.

Id is the value of the element ’identifier’ in a XML file.
01d_Title_a is the abbreviated title before carrying out the modification of project

data.

01d_Title_f is the complete title before carrying out the modification of project

data.

01d_Password is the access key before carrying out the modification of project data.

Id_Session is a session identifier.

Usage: input_project_struct(Input_Project_Struct)

— Description: Input_Project_Struct is a term that contains project data, obtained

by an input operation.

input_software_struct/1:
input_software_struct (Input_Software_Struct)

REGTYPE

This type represents software data obtained by input operations. It is defined as:

input_software_struct(input_software(Key,Password, Name_a,Name_f,

The arguments shown above mean:

Key is a unique identifier.
Password is an access key.
Name_a is the abbreviated name.
Name_f is the complete name.
WWW is the Web address.

FTP is the FTP address.

Platforms are the platforms supported.

Availability is the type of license.
Description is a brief description.

WWW,FTP,
Platforms,Availability,
Description,
Related,Contact,

Subop, Id,
01d_Name_a,0l1d_Name_f,
0ld_Password,
Id_Session)).

Chapter 18: Structures related to input/output data 93

Related are groups related with the software.
Contact are contact people.

Subop can be: ’modify’ or ’delete’.
Id is the value of the field ’identifier’ in a XML file.

e (01d_Name_a is the abbreviated name before carrying out the modification of software
data.

e (01d_Name_f is the complete name before carrying out the modification of software
data.

e (01d_Password is the access key before carrying out the modification of software data.

e Id_Session is a session identifier.

Usage: input_software_struct(Input_Software_Struct)

— Description: Input_Software_Struct is a term that contains software data, obtained
by an input operation.

input_event_struct/1: REGTYPE

input_event_struct(Input_Event_Struct)
This type represents event data obtained by input operations. It is defined as:

input_event_struct (input_event (Key,Password, Title,
Day_f ,Month_f,Year_f,
Day_1,Month_1,Year_1,
Day_d,Month_d,Year_d,
Category,City,Country,Comment,
Person_Contact,Email, Subop,
01d_Title,01d_Password, Id_Session)).

The arguments shown above mean:
e Key is a unique identifier.
e Password is an access key.
e Title is the title.
Day_f is the start day.
Month_f£ is the start month.
Year_f is the start year.

Day_1 is the end day.
Month_1 is the end month.
Year_1 is the end year.

Day_d is the deadline day.
Month_d is the deadline month.
Year_d is the deadline year.

Category is the category.

City is the city where the event is held.

Country is the country where the event is held.
e Comment is an additional comment.

94

CoLogNetWS: the CoLogNet Web-site

Person_Contact is the contact person.

Email is the contact person’s email.

Subop can be: ’modify’ or ’delete’.

Id is the value of the field >identifier’ in an XML file.

01d_Title is the title before carrying out the modification of event data.
01d_Password is the access key before carrying out the modification of event data.
Id_Session is a session identifier.

Usage: input_event_struct(Input_Event_Struct)

Description: Input_Event_Struct is a term that contains event data, obtained by
an input operation.

input_area_struct/1: REGTYPE

input_area_struct (Input_Area_Struct)

This type represents area data obtained by input operations. It is defined as:

input_area_struct(input_area(Key,Password, Name_a,Name_f,
Description,
Working, Subop,Id,
0ld_Name_a,0l1d_Name_f,01d_Password,
Id_Session)).

The arguments shown above mean:

Key is a unique identifier.

Password is an access key.

Name_a is the abbreviated name.

Name_f is the complete name.

Description is a brief description.

Working are the groups that are classified in the area.
Subop can be: ’modify’ or ’delete’.

14 is the value of the field “identifier’ in an XML file.

01d_Name_a is the abbreviated name before carrying out the modification of area
data.

01d_Name_f is the complete name before carrying out the modification of area data.
01d_Password is the access key before carrying out the modification of area data.
Id_Session is a session identifier.

Usage: input_area_struct(Input_Area_Struct)

Description: Input_Area_Struct is a term that contains area data, obtained by an
input operation.

input_file_struct/1: REGTYPE
input_file_struct (Input_File_Struct)

This type represents the content of a file. It is defined as:

Chapter 18: Structures related to input/output data 95

input_file_struct(input_file(File)).

The arguments shown above mean:
e File is the content of an XML file.

Usage: input_file_struct(Input_File_Struct)
— Description: Input_File_Struct is a term that stores the content of a file.

input_entity _struct/1: REGTYPE
Usage: input_entity_struct(Input_Entity_Struct)
— Description: Input_Entity_Struct is the union of the types: input_
area_struct/1, input_event_struct/1, input_group_struct/1, input_person_
struct/1, input_project_struct/1 and input_software_struct/1.

output_group_struct/1: REGTYPE
output_group_struct (Output_Group_Struct)

This type represents data about a group, used for output operations. It is defined as:

output_group_struct (output_group (Key,Password,
Inst_a,Inst_f,WWW_inst,
Group_a,Group_£f ,WWW_group,
Category,Description,
Address,Zip,State,City,
Country,Member,Contact,
Coordinating,Related,Working,
Title_filen,
01d_Group_a,01d_Group_f£,

01d_Password)) .

The arguments shown above mean:
e Key is a unique identifier.
e Password is an access key.
e Inst_a is the institution’s abbreviated name to which the group belongs to.

Inst_f is the institution’s complete name to which the group belongs to.
WWW_inst is the institution’s Web address to which the group belongs to.
Group_a is the abbreviated name.

Group_f is the complete name.

WWW_group is the group’s Web address.
Category is the category.

Description is a brief description.
Address is the address.
e Zip is the zip code.

96 CoLogNetWS: the CoLogNet Web-site

e State is the state (it is optional).

e City is the city.

e Country is the country.

e Member are the researchers of the group.

e Contact are the contact people.

e Coordinating are the projects coordinated by the group.
e Related is software related with the group.

e Working are the areas related with the group.

e Title_file is a message, used for HTML output, when an operation is carried out
in several steps.

e (01d_Group_a is the abbreviated name before carrying out the modification of group
data.

e 01d_Group_f is the complete name before carrying out the modification of group
data.

e 01d_Password is the access key before carrying out the modification of group data.

Usage: output_group_struct (Output_Group_Struct)

— Description: Output_Group_Struct is a term that contains data about a group, used
for output operations.

output_person_struct/1: REGTYPE

output_person_struct (Output_Person_Struct)
This type represents data about a person, used for output operations. It is defined as:

output_person_struct (output_person(Key,Password,
Last_Name,First_Name,Title,
WWW,Email,Phone,Fax,Description,
Address,Zip,State,City,Country,
Member,Contact_Group,Contact_Soft,
Title_file,
0l1d_Last_Name,0ld_First_Name,
01d_Password)) .

The arguments shown above mean:
e Key is a unique identifier.

Password is an access key.

Last_Name is the last name.

First_Name is the first name.

Title is the degree.

WWW is the Web address.

Email is the email.

Phone is the telephone number.

Fax is the fax number.

Description is a brief description.

Address is the address.

Chapter 18: Structures related to input/output data 97

Zip is the zip code.

State is the state where the person lives. (It is optional).
City is the city where the person lives.

Country is the country where the person lives.

Member are the groups to which the person belongs to.
Contact_Group are the groups of which the person is contact.
Contact_Soft is the software of which the person is contact.

Title_file is a message, used for HTML output, when an operation is carried out
in several steps.

01d_Last_Name is the last name before carrying out the modification of person data.
e (01d_First_Name is the first name before carrying out the modification of person data.
e (01d_Password is the access key before carrying out the modification of person data.

Usage: output_person_struct (Qutput_Person_Struct)

— Description: Output_Person_Struct is a term that contains data about a person,
used for output operations.

output_project_struct/1: REGTYPE
output_project_struct (Qutput_Project_Struct)

This type represents data about a project, used for output operations. It is defined as:

output_project_struct(output_project(Key,Password, Title_a,Title_f,
WWW,Category,
Description,Comment,
Coordinating,Title,
01d_Title_a,01d_Title_f,
01d_Password)) .

The arguments shown above mean:
e Key is a unique identifier.
Password is an access key.
Title_a is the abbreviated title.
Title_f is the complete title.
WWW is the Web address.
Category is the category.
Description is a brief description.
Comment is an additional comment.
Coordinating are the groups which coordinate the project.

Title is a message, used for HT'ML output, when an operation is carried out in
several steps.

e 01d_Title_a is the abbreviated title before carrying out the modification of project
data.

e 01d_Title_f is the complete title before carrying out the modification of project
data.

98 CoLogNetWS: the CoLogNet Web-site

e (01d_Password is the access key before carrying out the modification of project data.

Usage: output_project_struct(Output_Project_Struct)

— Description: Output_Project_Struct is a term that contains data about a project,
used for output operations.

output_software_struct/1: REGTYPE
output_software_struct (Output_Software_Struct)

This type represents data about a software, used for output operations. It is defined as:

output_software_struct (output_software(Key,Password, Name_a,Name_f,
WWW,FTP,
Platforms,Availability,
Description,
Related,Contact,Title,
01d_Name_a,01d_Name_f,
01d_Password)) .

The arguments shown above mean:

e Key is a unique identifier.
Password is an access key.
Name_a is the abbreviated name.
Name_f is the complete name.
WWW is the Web address.
FTP is the FTP address.
Platforms are the platforms supported.
Availability is the type of license.
Description is a brief description.
Related are groups related with the software.
Contact are contact people.

Title is a message, used for HT'ML output, when an operation is carried out in
several steps.

e (01d_Name_a is the abbreviated name before carrying out the modification of software
data.

e (01d_Name_f is the complete name before carrying out the modification of software
data.

e (01d_Password is the access key before carrying out the modification of software data.

Usage: output_software_struct (Output_Software_Struct)

— Description: Output_Software_Struct is a term that contains data about a software,
used for output operations.

output_event_struct/1: REGTYPE
output_event_struct (Output_Event_Struct)

This type represents data about an event, used for output operations. It is defined as:

Chapter 18: Structures related to input/output data 99

output_event_struct (output_event (Password, City,Country,
Category,Title,
Day_f ,Month_f,Year_f,
Day_1,Month_1,Year_1,
Day_d,Month_d,Year_d, Comment,
Person_Contact,Email, Title_f,
01d_Title,01d_Password)).

The arguments shown above mean:
e Key is a unique identifier.

Password is an access key.

Title is the title.

Day_f is the start day.

Month_f is the start month.

Year_f is the start year.

Day_1 is the end day.
Month_1 is the end month.
Year_1 is the end year.

Day_d is the deadline day.
Month_d is the deadline month.

Year_d is the deadline year.

Category is the category of the event.

City is the city where the event is held.
Country is the country where the event is held.
Comment is an additional comment.

Person_Contact is the contact person.

Email is the contact person’s email.

e Title_f is a message, used for HI'ML output, when an operation is carried out in
several steps.

e 01d_Title is the title before carrying out the modification of event data.
e (01d_Password is the access key before carrying out the modification of event data.

Usage: output_event_struct (Output_Event_Struct)

— Description: Output_Event_Struct is a term that contains data about an event,
used for output operations.

output_area_struct/1: REGTYPE
output_area_struct (Qutput_Area_Struct)

This type represents data about an area, used for output operations. It is defined as:

output_area_struct (output_area(Key,Password, Name_a,Name_f,
Description,Title,
01d_Name_a,01d_Name_f,01d_Password)).

100 CoLogNetWS: the CoLogNet Web-site

The arguments shown above mean:

e Key is a unique identifier.

Password is an access key.
Name_a is the abbreviated name.
Name_f is the complete name.

Description is a brief description.

Title_f is a message, used for HTML output, when an operation is carried out in
several steps.

e (01d_Name_a is the abbreviated name before carrying out the modification of area
data.

e (01d_Name_f is the complete name before carrying out the modification of area data.
e (01d_Password is the access key before carrying out the modification of area data.

Usage: output_area_struct (Output_Area_Struct)

— Description: Output_Area_Struct is a term that contains data about an area, used
for output operations.

output_entity struct/1: REGTYPE
Usage: output_entity_struct(Output_Entity_Struct)

— Description: Output_Entity_Struct is the union of the types: output_area_
struct/1, output_event_struct/1, output_group_struct/l, output_person_
struct/1, output_project_struct/1 and output_software_struct/1.

relations_struct/1: REGTYPE
relations_struct(Relations_Struct)

This type represents the relationships among the entities. Depending on each entity,
differents relationships can be used. It is defined as:

relations_struct(relations(Member, Contact_Person, Contact_Software,
Coordinating, Related, Working)).

The arguments shown above mean:

e Member contains the groups’ members.

Contact_Person contains the group’s contact people.
Contact_Software contains the contact people of a software.
Coordinating contains the projects coordinated by the groups.

Related contains software related with the groups.
e Working contains the areas related with the groups.

Usage: relations_struct(Relations_Struct)

— Description: Relations_Struct is a term that contains information about all rela-
tionships among the entities.

Chapter 18: Structures related to input/output data 101

error_struct/1: REGTYPE

error_struct(Relations_Struct)
This type represents the errors produced during the processing of an XML file. Its defined
as:

error_struct (error(Date,Type,File,0p)) .

The arguments shown above mean:
e Date is the date when the error was produced.
e Type is the type of error.
e File is the complete path of the erroneous XML file.
Op states if the error was produced in a sending or receiving.

Usage: error_struct (Error_Struct)
— Description: Error_Struct is a term that contains information about the errors
produced during the processing of an XML file.

18.3 Version/Change Log (structs)

Version 0.1#14 (2003/12/5, 12:50:25 CET)
Started automatic documentation (Jorge Navas)

102 CoLogNetWS: the CoLogNet Web-site

PART III - Database 103

PART III - Database

This part includes a number of libraries that allow defining and manipulating the application
database.

104 CoLogNetWS: the CoLogNet Web-site

Chapter 19: Database persistent predicates 105

19 Database persistent predicates

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#15 (2003/12/5, 12:50:52 CET)

This module defines the application database. The database is implemented by persistent
predicates.

19.1 Usage and interface (database)

e Library usage:
:- use_module(library(database)).
e Exports:
— Predicates:

group/1, person/1, project/1, software/1, event/1l, area/l, member_of/2,
working/2, contact_person_group/2, coordinating_group/2, related_group/2,
contact_person_soft/2.

— Regular Types:
key_db_atm/1, key_db_int/1.

— Multifiles:
$is_persistent/2.

e Other modules used:

— Application modules:
../src/types.

— System library modules:
persdb/persdbrt.

— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

19.2 Documentation on exports (database)

group/1: PREDICATE

Contains data about a group.
The predicate is of type data.
Usage: group(?7(G))
— Description: G is data about a group.
— Call and exit should be compatible with:
7(G) is a term that contains data about a group. (group_struct/1)

106 CoLogNetWS: the CoLogNet Web-site

person/1:
Contains data about a person.

The predicate is of type data.
Usage: person(7(Per))
— Description: Per is data about a person.
— Call and exit should be compatible with:
?(Per) is a term that contains data about a person.

project/1:
Contains data about a project.
The predicate is of type data.
Usage: project(?(Pro))
— Description: Pro is data about a project.
— Call and exit should be compatible with:

?(Pro) is a term that contains data about a project.

software/1:
Contains data about a software.

The predicate is of type data.
Usage: software(7(S))
— Description: S is data about a software.
— Call and exit should be compatible with:
7(8) is a term that contains data about a software.

event /1:
Contains data about an event.

The predicate is of type data.
Usage: event (7 (E))
— Description: E is data about an event.
— Call and exit should be compatible with:
?7(E) is a term that contains data about an event.

area/1:
Contains data about an area.

The predicate is of type data.
Usage: area(7(A))
— Description: A is data about an area.
— Call and exit should be compatible with:
7(A) is a term that contains data about an area.

PREDICATE

(person_struct/1)

PREDICATE

(project_struct/1)

PREDICATE

(software_struct/1)

PREDICATE

(event_struct/1)

PREDICATE

(area_struct/1)

Chapter 19: Database persistent predicates 107

member_of/2: PREDICATE
The predicate is of type data.

Usage: member_of (7(G), 7(Per))
— Description: Per is a person belonging to the group G.
— Call and exit should be compatible with:

7(G) is an atom which represents a database key. (key_db_atm/1)
?7(Per) is an atom which represents a database key. (key_db_atm/1)
working/2: PREDICATE

The predicate is of type data.

Usage: working(?7(G), 7(A))
— Description: G is a group classified in the area A.
— Call and exit should be compatible with:

7(G) is an atom which represents a database key. (key_db_atm/1)
7(A) is an atom which represents a database key. (key_db_atm/1)
contact_person_group/2: PREDICATE

The predicate is of type data.

Usage: contact_person_group(?(G), ?7(Per))
— Description: Per is a contact person of the group G.
— Call and exit should be compatible with:

7(G) is an atom which represents a database key. (key_db_atm/1)
?7(Per) is an atom which represents a database key. (key_db_atm/1)
coordinating_group/2: PREDICATE

The predicate is of type data.

Usage: coordinating_group(?7(G), 7(Pro))
— Description: Pro is a project coordinated by the group G.
— Call and exit should be compatible with:

7(G) is an atom which represents a database key. (key_db_atm/1)
?7(Pro) is an atom which represents a database key. (key_db_atm/1)
related_group/2: PREDICATE

The predicate is of type data.
Usage: related_group(?(G), 7(8))
— Description: S is a software related with the group G.
— Call and exit should be compatible with:
7(G) is an atom which represents a database key. (key_db_atm/1)
7(8) is an atom which represents a database key. (key_db_atm/1)

108 CoLogNetWS:

contact_person_soft /2:
The predicate is of type data.

Usage: contact_person_soft(7(Per), 7(S))
— Description: Per is a contact person of the software S.
— Call and exit should be compatible with:
?(Per) is an atom which represents a database key.
?7(S) is an atom which represents a database key.

key_db_atm/1:
Usage: key_db_atm(Key)

the CoLogNet Web-site

PREDICATE

(key_db_atm/1)
(key_db_atm/1)

REGTYPE

— Description: Key is an atom which represents a database key.

key_db_int/1:
Usage: key_db_int (Key)

REGTYPE

— Description: Key is an integer which represents a database key.

19.3 Documentation on multifiles (database)

$is_persistent /2:
No further documentation available for this predicate.

The predicate is multifile.
The predicate is of type data.

19.4 Version/Change Log (database)

Version 0.1#15 (2003/12/5, 12:50:52 CET)
Started automatic documentation (Jorge Navas)

PREDICATE

Chapter 20: Database queries 109

20 Database queries

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#16 (2003/12/5, 12:51:18 CET)
This module defines a set of predicates to carry out predefined queries over the database.

20.1 Usage and interface (queries_db)

e Library usage:
:— use_module(library(queries_db)).
o Exports:
— Predicates:

all_groups/1, all_people/1, all_projects/1,
all_software/1, all_areas/1, working/4, member_of/4, coordinating_group/4,
contact_person_group/4, related_group/4, contact_person_soft/4.

— Multifiles:
$is_persistent/2.
e Other modules used:
— Application modules:
../../database/database, ../../lib/pillow_ext/pillow_ext.
— System library modules:
persdb/persdbrt, aggregates, terms.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

20.2 Documentation on exports (queries_db)

all_groups/1: PREDICATE

Usage: all_groups(?(Gs))
— Description: Gs are all the groups stored in the database.
— Call and exit should be compatible with:
7(Gs) is a list of group_reds. (1ist/2)

all_people/1: PREDICATE

Usage: all_people(?(Ps))
— Description: Ps are all the people stored in the database.
— Call and exit should be compatible with:
7(Ps) is a list of person_reds. (1ist/2)

110 CoLogNetWS: the CoLogNet Web-site

all_projects/1: PREDICATE
Usage: all_projects(?7(Pros))

— Description: Pros are all the projects stored in the database.
— Call and exit should be compatible with:
7 (Pros) is a list of project_reds. (1ist/2)

all_software/1: PREDICATE
Usage: all_software(7(Ss))

— Description: Ss is all the software stored in the database.
— Call and exit should be compatible with:
7(Ss) is a list of software_reds. (1ist/2)

all_areas/1: PREDICATE
Usage: all_areas(?(As))

— Description: As are all the areas stored in the database.
— Clall and exit should be compatible with:
7(As) is a list of area_reds. (list/2)

working/4: PREDICATE
Usage 1: working (+Entity, +Key_Area, 7(URL), 7(G))

— Description: When Entity is ‘group’, G is the list of groups classified in the area
Key_Area. Specifically, if URL is non ground, G is a list of Key-Name pairs. On the
contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and group unify. /2)
+Key_Area is an atom which represents a database key. (key_db atm/ 1)
?7(URL) is an URL (Uniform Resource Locator). (url/1)
7(G) is a list of terms. (1ist/2)

Usage 2: working(+Entity, +Key_Group, ?(URL), ?(4))

— Description: When Entity is ‘area’, A is the list of areas to which the group Key_
Group belongs. Specifically, if URL is non ground, A is a list of Key-Name pairs. On
the contrary, it is a list of URL-Name pairs.

— Clall and exit should be compatible with:

+Entity and area unify. /2)
+Key_Group is an atom which represents a database key. (key_db atm/ 1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(A) is a list of terms. (1ist/2)
member_of/4: PREDICATE

Usage 1: member_of (+Entity, +Key_Group, 7(URL), 7(P))

Chapter 20: Database queries 111

— Description: When Entity is ‘person’, P is the list of people belonging to the group
Key_Group. Specifically, if URL is non ground, P is a list of Key-Name pairs. On the
contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and person unify. (=/2)
+Key_Group is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(P) is a list of terms. (1ist/2)

Usage 2: member_of (+Entity, +Key_Person, ?(URL), 7(G))

— Description: When Entity is ‘group’, G is the list of groups to which the person
Key_Person belongs. Specifically, if URL is non ground, G is a list of Key-Name pairs.
On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and group unify. (=/2)
+Key_Person is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(G) is a list of terms. (1ist/2)
coordinating_group/4: PREDICATE

Usage 1: coordinating_group(+Entity, +Key_Group, ?(URL), 7(P))

— Description: When Entity is ‘project’, P is the list of projects coordinated by the
group Key_Group. Specifically, if URL is non ground, P is a list of Key-Name pairs.
On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and project unify. (=/2)
+Key_Group is an atom which represents a database key. (key_db_atm/1)
7(URL) is an URL (Uniform Resource Locator). (url/1)
7(P) is a list of terms. (1ist/2)

Usage 2: coordinating_group(+Entity, +Key_Project, 7(URL), 7(G))

— Description: When Entity is ‘group’, G is the list of groups which coordinate the
project Key_Project. Specifically, if URL is non ground, G is a list of Key- Name pairs.
On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and group unify. (=/2)
+Key_Project is an atom which represents a database key. (key_db_atm/1)
7(URL) is an URL (Uniform Resource Locator). (url/1)
7(G) is a list of terms. (1ist/2)
contact_person_group/4: PREDICATE

Usage 1: contact_person_group(+Entity, +Key_Group, 7(URL), 7(P))
— Description: When Entity is ‘person’, P is the list of contact people of the group
Key_Group. Specifically, if URL is non ground, P is a list of Key-Name pairs. On the
contrary, it is a list of URL-Name pairs.

112 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:

+Entity and person unify. (=/2)
+Key_Group is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(P) is a list of terms. (1ist/2)

Usage 2: contact_person_group(+Entity, +Key_Person, ?(URL), 7(G))

— Description: When Entity is ‘group’, G is the list of groups whose contact person
is Key_Person. Specifically, if URL is non ground, G is a list of Key-Name pairs. On
the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and group unify. (=/2)
+Key_Person is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(G) is a list of terms. (1ist/2)
related_group/4: PREDICATE

Usage 1: related_group(+Entity, +Key_Group, ?(URL), 7(S))
— Description: When Entity is ‘software’, S is the list of software associated to the
group Key_Group. Specifically, if URL is non ground, S is a list of Key-Name pairs.
On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and software unify. (=/2)
+Key_Group is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(S) is a list of terms. (1ist/2)

Usage 2: related_group(+Entity, +Key_Software, 7(URL), 7(G))

— Description: When Entity is ‘group’, G is the list of groups which is related with
the software Key_Software. Specifically, if URL is non ground, G is a list of Key- Name
pairs. On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and group unify. (=/2)
+Key_Software is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(G) is a list of terms. (1ist/2)
contact_person_soft /4: PREDICATE

Usage 1: contact_person_soft(+Entity, +Key_Person, 7(URL), 7(S))

— Description: When Entity is ‘software’, S is the list of software whose contact
person is Key_Person. Specifically, if URL is non ground, S is a list of KeyName
pairs. On the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and software unify. (=/2)
+Key_Person is an atom which represents a database key. (key_db_atm/1)
?(URL) is an URL (Uniform Resource Locator). (url/1)
7(S) is a list of terms. (1ist/2)

Chapter 20: Database queries 113

Usage 2: contact_person_soft (+Entity, +Key_Software, ?(URL), 7(P))

— Description: When Entity is ‘person’, P is the list of contact people of the software
Key_Software. Specifically, if URL is non ground, P is a list of Key-Name pairs. On
the contrary, it is a list of URL-Name pairs.

— Call and exit should be compatible with:

+Entity and person unify. =/2)
+Key_Software is an atom which represents a database key. (key_db atm/ 1)
?7(URL) is an URL (Uniform Resource Locator). (url/1)
7(P) is a list of terms. (1ist/2)

20.3 Documentation on multifiles (queries_db)

$is_persistent /2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.
The predicate is of type data.

20.4 Version/Change Log (queries_db)

Version 0.1#16 (2003/12/5, 12:51:18 CET)
Started automatic documentation (Jorge Navas)

114 CoLogNetWS: the CoLogNet Web-site

Chapter 21: Database operations 115

21 Database operations

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#17 (2003/12/5, 12:51:34 CET)

This module implements a set of typical operations over the database. Specifically, it allows
defining relationships among the database entities.

21.1 Usage and interface (add_relations)

e Library usage:
:- use_module(library(add_relations)).
e Exports:
— Predicates:

add_member_of/3, add_contact_person_group/3, add_coordinating_group/3,
add_related_group/3, add_contact_person_soft/3, add_working/3.

— Multifiles:

$is_persistent/2.
e Other modules used:

— Application modules:
../../database/database.

— System library modules:
persdb/persdbrt.

— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

21.2 Documentation on exports (add_relations)

add_member_of/3: PREDICATE
Defines a ‘member_of’ relationship between a key Key and a list of keys Keys. The
‘member_of’ relationship is defined by the member_of/2 predicate in Chapter 19
[Database persistent predicates], page 105.

Usage 1: add_member_of (+Entity, +Key, +Keys)

— Description: When Entity is ‘groups’, Key is a group’s key, and each element of
Keys is a person’s key.

— Call and exit should be compatible with:

+Entity and groups unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Usage 2: add_member_of (+Entity, +Key, +Keys)

— Description: When Entity is ‘people’, Key is a person’s key, and each element of
Keys is a group’s key.

116 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:

+Entity and people unify. (=/2)

+Key is an atom which represents a database key. (key_db_atm/1)

+Keys is a list of key_db_ints. (1ist/2)
add_contact_person_group/3: PREDICATE

Defines a ‘contact_person_group’ relationship between a key Key and a list of keys Keys.
The ‘contact_person_group’ relationship is defined by the contact_person_group/2
predicate in Chapter 19 [Database persistent predicates], page 105.

Usage 1: add_contact_person_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘groups’, Key is a group’s key, and each element of
Keys is a person’s key.

— Call and exit should be compatible with:

+Entity and groups unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Usage 2: add_contact_person_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘people’, Key is a person’s key, and each element of
Keys is a group’s key.

— Call and exit should be compatible with:

+Entity and people unify. (=/2)

+Key is an atom which represents a database key. (key_db_atm/1)

+Keys is a list of key_db_ints. (1ist/2)
add_coordinating_group/3: PREDICATE

Defines a ‘coordinating_group’ relationship between a key Key and a list of keys Keys.
The ‘coordinating_group’ relationship is defined by the coordinating_group/2 pred-
icate in Chapter 19 [Database persistent predicates|, page 105.

Usage 1: add_coordinating_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘groups’, Key is a group’s key, and each element of
Keys is a key of a project.

— Call and exit should be compatible with:

+Entity and groups unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Usage 2: add_coordinating_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘projects’, Key is a key of a project, and each element
of Keys is a group’s key.

— Call and exit should be compatible with:
+Entity and projects unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Chapter 21: Database operations 117

add_related_group/3: PREDICATE
Defines a ‘related_group’ relationship between a key Key and a list of keys Keys. The

‘related_group’ relationship is defined by the related_group/2 predicate in Chapter 19
[Database persistent predicates]|, page 105.

Usage 1: add_related_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘groups’, Key is a group’s key, and each element of
Keys is a key of software.

— Clall and exit should be compatible with:

+Entity and groups unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Usage 2: add_related_group(+Entity, +Key, +Keys)

— Description: When Entity is ‘software’, Key is a key of software, and each element
of Keys is a group’s key.

— Call and exit should be compatible with:

+Entity and software unify. (=/2)

+Key is an atom which represents a database key. (key_db_atm/1)

+Keys is a list of key_db_ints. (1ist/2)
add_contact_person_soft/3: PREDICATE

Defines a ‘contact_person_soft’ relationship between a key Key and a list of keys
Keys. The ‘contact_person_soft’ relationship is defined by the contact_person_
soft/2 predicate in Chapter 19 [Database persistent predicates|, page 105.

Usage 1: add_contact_person_soft (+Entity, +Key, +Keys)

— Description: When Entity is ‘people’, Key is a person’s key, and each element of
Keys is a key of software.

— Call and exit should be compatible with:

+Entity and people unify. (=/2)
+Key is an atom which represents a database key. (key_db_atm/1)
+Keys is a list of key_db_ints. (1ist/2)

Usage 2: add_contact_person_soft (+Entity, +Key, +Keys)

— Description: When Entity is ‘software’, Key is a key of software, and each element
of Keys is a person’s key.

— Call and exit should be compatible with:

+Entity and software unify. (=7/2)

+Key is an atom which represents a database key. (key_db_atm/1)

+Keys is a list of key_db_ints. (1ist/2)
add_working/3: PREDICATE

Defines a ‘working’ relationship between a key Key and a list of keys Keys. The

‘working’ relationship is defined by the working/2 predicate in Chapter 19 [Database
persistent predicates], page 105.

Usage 1: add_working(+Entity, +Key, +Keys)

118 CoLogNetWS: the CoLogNet Web-site

— Description: When Entity is ‘groups’, Key is a group’s key, and each element of

Keys is a key of area.
— Clall and exit should be compatible with:
+Entity and groups unify.
+Key is an atom which represents a database key.
+Keys is a list of key_db_ints.

Usage 2: add_working(+Entity, +Key, +Keys)

(= /2)

(key_db_atm/1)

(1ist/2)

— Description: When Entity is ‘areas’, Key is a key of an area, and each element of

Keys is a group’s key.
— Call and exit should be compatible with:
+Entity and areas unify.
+Key is an atom which represents a database key.
+Keys is a list of key_db_ints.

21.3 Documentation on multifiles (add_relations)

$is_persistent /2:

No further documentation available for this predicate.
The predicate is multifile.
The predicate is of type data.

21.4 Version/Change Log (add_relations)

Version 0.1#17 (2003/12/5, 12:51:34 CET)
Started automatic documentation (Jorge Navas)

(=/2)

(key_db_atm/1)

(1ist/2)

PREDICATE

Chapter 22: Database types 119

22 Database types

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#18 (2003/12/5, 12:51:57 CET)

This module consists of a set of basic types used by the predicates defined in Chapter 19
[Database persistent predicates]|, page 105.

22.1 Usage and interface (types)

e Library usage:
:- use_module(library(types)) .
e Exports:
— Regular Types:

group_struct/1, person_struct/1,
project_struct/1, software_struct/1, event_struct/1, area_struct/1, group_
red/1, person_red/1, project_red/1, software_red/1, event_red/1, area_red/1.

e Other modules used:
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

22.2 Documentation on exports (types)

group_struct/1: REGTYPE

group_struct (Group_Struct)
This type contains data about a group. It is defined as:

group_struct (group(Date,Key,Password,Inst_a,Inst_f,WWW_inst,
Group_a,Group_£f ,WWW_group,Category,Description,
Address,Zip,State,City,Country)).

The arguments shown above mean:
e Date is the date when the group was registered. It is defined by the system.

Key is a unique identifier. It is defined by the system.
Password is an access key.
Inst_a is the institution’s abbreviated name to which the group belongs to.

Inst_f is the institution’s complete name to which the group belongs to.

WWW_inst is the institution’s Web address to which the group belongs to.
Group_a is the abbreviated name.

Group_f is the complete name.

WWW_group is the Web address.

Category is the category.

e Description is a brief description.

120

CoLogNetWS: the CoLogNet Web-site

Address is the address.

Zip is the zip code.

State is the state (it is optional).
City is the city.

Country is the country.

Usage: group_struct (Group_Struct)

Description: Group_Struct is a term that contains data about a group.

person_struct/1: REGTYPE
person_struct (Person_Struct)

This type contains data about a person. It is defined as:

person_struct (person(Date,Key,Password,Last_Name,First_Name,Title,
WWW,Email,Phone,Fax,Description,Address,Zip,
State,City,Country)).

The arguments shown above mean:

Date is the date when the person was registered. It is defined by the system.
Key is a unique identifier. It is defined by the system.
Password is an access key.

Last_Name is the last name.

First_Name is the first name.

Title is the degree.

WWW is the Web address.

Email is the email.

Phone is the telephone number.

Fax is the fax number.

Description is a brief description.

Address is the address.

Zip is the zip code.

State is the state (it is optional).

City is the city.

Country is the country.

Usage: person_struct(Person_Struct)

Description: Person_Struct is a term that contains data about a person.

project_struct/1: REGTYPE
project_struct(Project_Struct)

This type contains data about a project. It is defined as:

project_struct(project(Date,Key,Password,Title_a,Title_f,WWW,
Category,Description,Comment)) .

The arguments shown above mean:

Chapter 22: Database types 121

Date is the date when the project was registered. It is defined by the system.
Key is a unique identifier.It is defined by the system.

Password is an access key.
Title_a is the abbreviated title.
Title_f is the complete title.
WWW is the Web address.
Category is the category.

e Description is a brief description.
e Comment is an additional comment.

Usage: project_struct(Project_Struct)
— Description: Project_Struct is a term that contains data about a project.

software_struct/1: REGTYPE

software_struct(Software_Struct)
This type represents data about a software. It is defined as:

software_struct(software(Date,Key,Password,Name_a,Name_f ,WWW,FTP,
Platforms,Availability,Description)).

The arguments shown above mean:
e Date is the date when the project was registered. It is defined by the system.

Key is a unique identifier. It is defined by the system.
Password is an access key.

Name_a is the abbreviated name.

Name_f is the complete name.

WWW is the Web address.

FTP is the FTP address.

Platforms are the platforms supported.

Availability is the type of license.
e Description is a brief description.

Usage: software_struct(Software_Struct)
— Description: Software_Struct is a term that contains data about a software.

event_struct/1: REGTYPE

event_struct (Event_Struct)
This type represents data about an event. It is defined as:

event_struct(event (Date_first,Key,Password,Title,Date_last,Deadline,
Category,City,Country,Comment,Person_Contact,
Email)).

The arguments shown above mean:
e Date_first is the start date.

e Key is a unique identifier. It is defined by the system.

122 CoLogNetWS: the CoLogNet Web-site

e Password is an access key.
Date_last is the end date.
Deadline is the deadline date.
Title is the title.

Category is the category.

City is the city where the event is held.
Country is the country where the event is held.
Comment is an additional comment.
Person_Contact is the contact person.

Email is the contact person’s email.

Usage: event_struct (Event_Struct)
— Description: Event_Struct is a term that contains data about an event.

area_struct/1: REGTYPE

area_struct (Area_Struct)
This type contains data about an area. It is defined as:
area_struct (area(Name_a,Name_f ,Key,Date,Description,Password)).

The arguments shown above mean:
e Name_a is the abbreviated name.
e Name_f is the complete name.
e Key is a unique identifier. It is defined by the system.
e Date is the date when the area was registered. It is defined by the system.
e Description is a brief description.
e Password is an access key.

Usage: area_struct(Area_Struct)
— Description: Area_Struct is a term that contains data about an area.

group_red/1: REGTYPE
Usage: group_red(G)

— Description: G contains reduced information (key and name) about a group

person_red/1: REGTYPE
Usage: person_red(Per)

— Description: Per contains reduced information (key and name) about a person.

project_red/1: REGTYPE
Usage: project_red(Pro)

— Description: Pro contains reduced information (key and name) about a project.

Chapter 22: Database types 123

software_red/1: REGTYPE
Usage: software_red(S)

— Description: S contains reduced information (key and name) about a software.

event_red/1: REGTYPE
Usage: event_red(E)

— Description: E contains reduced information (key and name) about an event.

area_red/1: REGTYPE
Usage: area_red(A)

— Description: A contains reduced information (key and name) about an area.
22.3 Version/Change Log (types)

Version 0.1#18 (2003/12/5, 12:51:57 CET)
Started automatic documentation (Jorge Navas)

124 CoLogNetWS: the CoLogNet Web-site

PART IV - Ciao Prolog extensions 125

PART IV - Ciao Prolog extensions

This part includes a set of libraries that are an extension of the Ciao libraries.

126 CoLogNetWS: the CoLogNet Web-site

Chapter 23: The PiLLoW Web programming library extension 127

23 The PiLLoW Web programming library
extension

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#19 (2003/12/5, 12:52:31 CET)

This library is an extension of the PiLLoW library, defining new functionalities, related with
parsing, manipulating and generating HTML and XML structured documents and data; pro-
ducing HTML forms; writing form handlers and CGl-scripts and HTML/ XML templates.

23.1 Usage and interface (pillow_ext)

P
e Library usage:
:- use_module(library(pillow_ext)).
e Exports:
— Predicates:
get_form_values/3, form_value_empty/1, form_value_default/2, url_query/3,
output_html/2, get_xmlfile_input/2, get_xmlfile_value/3, get_xmlfile_
node/3, get_xmlfile_nodes/3, xml_html/1.
— Regular Types:
xml_file/1, html_term/1, xml_tree/1, output_template/1, dic/1, url/1.
e Other modules used:
— Application modules:
./http_aux, ../strings_ext/strings_ext, ../../settings.
— System library modules:
pillow/http, pillow/html, file_utils, terms, aggregates.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

23.2 Documentation on exports (pillow_ext)

get_form_values/3: PREDICATE

Usage: get_form_values(+Dict, +Var, 7(Values))
— Description: Provides all the Values of the variable Var from the dictionary Dict.
— Call and exit should be compatible with:

+Dict is a dictionary of ‘attribute-value’ pairs. (dic/1)

+Var is an attribute. (html_attr/1)

?(Values) is a list of html_vals. (1ist/2)
form_value_empty/1: PREDICATE

Usage: form_value_empty(7(Val))
— Description: If the value Val of a variable belonging to a dictionary is empty, this
value unifies with >$empty’.

128 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:
?7(Val) and $empty unify. (=/2)

form_value_default/2: PREDICATE
Usage: form_value_default(?(Vall), 7(Val2))

— Description: The value Vall unifies with Val2. If Vall is empty, Val2 unify with
J

url_query/3: PREDICATE
Usage: url_query(+URL, +Dict, -URLArgs)

— Description: Provides a URL by translating a dictionary Dict of parameter values
into a string URLArgs for appending to a URL pointing to a URL.

— Call and exit should be compatible with:

+URL is an URL (Uniform Resource Locator). (url/1)

+Dict is a dictionary of ‘attribute-value’ pairs. (dic/1)

-URLArgs is an URL (Uniform Resource Locator). (url/1)
output_html/2: PREDICATE

Usage: output_html (+Template, ?(Dict))

— Description: Outputs an HTML template with the content of the dictionary Dic. Reads
the contents of the Template file, interpreting it as a HTML template, and obtains
an structure of HTML terms, which includes variables, unifying them with the values
of the dictionary Dict.

— Call and exit should be compatible with:

+Template is an HTML template. (html_template/1)
?7(Dict) is a dictionary of ‘attribute-value’ pairs. (dic/1)
get_xmlfile_input /2: PREDICATE

Usage: get_xmlfile_input (+XMLString, -Input)
— Description: Input is the term which represents the XML code XMLString.
— Call and exit should be compatible with:

+XMLString is a string that represents an XML file. (xml_string/1)
-Input is a term that represents an XML file. (xml_input/1)
get_xmlfile_value/3: PREDICATE

Usage: get_xmlfile_value(+XMLTree, +Node, 7(Val))
— Description: Val is the value of the node Node belonging to the tree XMLTree. In case
that Val is empty, it fails.
— Call and exit should be compatible with:
+XMLTree is an XML file represented as a tree. (xml_tree/1)
+Node is the name of an XML file node represented as a tree. (xm1_node/1)
?7(Val) is the value of an XML file node. (xml_val/1)

Chapter 23: The PiLLoW Web programming library extension 129

get_xmlfile_node/3: PREDICATE
Usage: get_xmlfile_node(+XMLTree, +Node, 7(SubTree))

— Description: SubTree is the content of the node Node belonging to the tree XMLTree.
Node has not children nodes.

— Call and exit should be compatible with:

+XMLTree is an XML file represented as a tree. (xml_tree/1)

+Node is the name of an XML file node represented as a tree. (xml_node/1)

?(SubTree) is an XML file represented as a tree. (xml_tree/1)
get_xmlfile_nodes/3: PREDICATE

Usage: get_xmlfile_nodes(+XMLTree, +Node, 7(SubTree))

— Description: SubTree is the content of the node Node belonging to the tree XMLTree.
Node can have children nodes.

— Call and exit should be compatible with:

+XMLTree is an XML file represented as a tree. (xml_tree/1)

+Node is the name of an XML file node represented as a tree. (xml_node/1)

7 (SubTree) is an XML file represented as a tree. (xml_tree/1)
xml_html/1: PREDICATE

Usage: xm1_html (+XMLFile)
— Description: Translates an XML file XMLFile into HTML and outputs it.
— Call and exit should be compatible with:
+XMLFile is the name of an XML file. (xml_file/1)

xml_file/1: REGTYPE
Usage: xml_file(F)

— Description: F is the name of an XML file.

html_term/1: REGTYPE
Usage: html_term(T)

— Description: T is a PiLLoW HTML term.

xml_tree/1: REGTYPE
Usage: xml_tree(X)

— Description: X is an XML file represented as a tree.

output_template/1: REGTYPE
Usage: output_template (Qutput)

— Description: Output is a term that defines the name of an HTML template to be
shown, and a dictionary with values for the variables defined in that template.

130 CoLogNetWS: the CoLogNet Web-site

dic/1:
Usage: dic(Dic)

— Description: Dic is a dictionary of ‘attribute-value’ pairs.

url/1:
Usage: url (U)

— Description: U is an URL (Uniform Resource Locator).

23.3 Documentation on internals (pillow_ext)

html_attr/1:
Usage: html_attr(A)

— Description: A is an attribute.

html_val/1:
Usage: html_val (Value)

— Description: Value is a value.

html_template/1:
Usage: html_template(T)

— Description: T is an HTML template.

xml_string/1:
Usage: xml_string(S)

— Description: 8 is a string that represents an XML file.

xml_type/1:
Usage: xml_type(T)

— Description: T is a type of XML file. The types can be:
e register
o modify
e unregister

xml_attr/1:
Usage: xml_attr(A)

— Description: A is a attribute of an XML file element.

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

Chapter 23: The PiLLoW Web programming library extension 131

xml_input/1: REGTYPE
Usage: xml_input (1)

— Description: I is a term that represents an XML file.

xml_node/1: REGTYPE
Usage: xml_node (N)

— Description: N is the name of an XML file node represented as a tree.

xml_val/1: REGTYPE
Usage: xml_val(Value)

— Description: Value is the value of an XML file node.
23.4 Version/Change Log (pillow_ext)

Version 0.1#19 (2003/12/5, 12:52:31 CET)
Started automatic documentation (Jorge Navas)

132 CoLogNetWS: the CoLogNet Web-site

Chapter 24: HTTP protocol basic predicates 133

24 HTTP protocol basic predicates

Version: 0.1427 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#20 (2003/12/5, 12:52:46 CET)

This module implements basic predicates related to the HTTP protocol, which allows re-
trieving data from HTTP servers.

24.1 Usage and interface (http_aux)

e Library usage:
:—- use_module(library (http_aux)) .
e Exports:
— Predicates:
http_response/3.
e Other modules used:
— System library modules:
pillow/pillow_aux.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

24.2 Documentation on exports (http_aux)

http_response/3: PREDICATE

Usage: http_response(?(Response), +ResponseChars, +RestResponseChars)

— Description: Response is the result of processing the server response ResponseChars
and the rest of this response RestResponseChars.

— Clall and exit should be compatible with:

?(Response) is an HTTP protocol header. (http_head/1)
+ResponseChars is a string (a list of character codes). (string/1)
+RestResponseChars is a string (a list of character codes). (string/1)

24.3 Documentation on internals (http_aux)

http_head/1: REGTYPE

Usage: http_head (H)
— Description: His an HTTP protocol header.
24.4 Version/Change Log (http_aux)

Version 0.1#20 (2003/12/5, 12:52:46 CET)
Started automatic documentation (Jorge Navas)

134 CoLogNetWS: the CoLogNet Web-site

Chapter 25: List processing extension 135

25 List processing extension

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#21 (2003/12/5, 12:53:17 CET)
This library is an extension of the 1ist library, defining new functionalities.

25.1 Usage and interface (lists_ext)

e Library usage:
:— use_module(library(lists_ext)).
o Exports:
— Predicates:
delete_repeated/2.
e Other modules used:
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

25.2 Documentation on exports (lists_ext)

delete_repeated/2: PREDICATE
Usage: delete_repeated(+L1, 7(L2))

— Description: L2 is L1 without repeated elements.

— Call and exit should be compatible with:
+L1 is a list. (list/1)
7(L2) is a list. (list/1)

25.3 Version/Change Log (lists_ext)

Version 0.1#21 (2003/12/5, 12:53:17 CET)
Started automatic documentation (Jorge Navas)

136 CoLogNetWS: the CoLogNet Web-site

Chapter 26: String processing extension 137

26 String processing extension

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#22 (2003/12/5, 12:53:43 CET)
This library is an extension of the string library, defining new functionalities.

26.1 Usage and interface (strings_ext)

e Library usage:
:- use_module(library(strings_ext)).
e Exports:
— Predicates:
removed_delimitator/2, concat_line/2, value_default/2.
e Other modules used:
— System library modules:
lists, terms.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

26.2 Documentation on exports (strings_ext)

removed_delimitator/2: PREDICATE
Usage: removed_delimitator (+Stringl, ?(String2))

— Description: String2 unify with Stringl but without delimitators (a positive num-
ber of space (32), tab (9), newline (10) or return (13) characters) neither at the
beginning nor at the end of the string.

— Call and exit should be compatible with:

+Stringl is a string (a list of character codes). (string/1)
7(String2) is a string (a list of character codes). (string/1)
concat_line/2: PREDICATE

Usage: concat_line(LL, L)
— Description: L is the concatenation of all the lists in LL, separated by ’> ’.
— Call and exit should be compatible with:

LL is a list of 1ists. (1ist/2)
L is a list. (list/1)
value_default /2: PREDICATE

Usage: value_default(?(Var), ?(Val))
— Description: Var unifies with Val. If Var is empty, Val unify with ¢ °.

138 CoLogNetWS: the CoLogNet Web-site

26.3 Version/Change Log (strings_ext)

Version 0.1#22 (2003/12/5, 12:53:43 CET)
Started automatic documentation (Jorge Navas)

Chapter 27: Persistent counters processing 139

27 Persistent counters processing

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#23 (2003/12/5, 12:54:4 CET)

This library is a redefinition of the counter library, where the counters are stored by persistent
predicates.

27.1 Usage and interface (counters_ext)

e Library usage:
:- use_module(library(counters_ext)) .
e Exports:
— Predicates:
egetcounter/2, egetcircularcounter/2, esetcounter/2.
— Multifiles:
$is_persistent/2.
e Other modules used:
— Application modules:
../../database/database.
— System library modules:
persdb/persdbrt.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

27.2 Documentation on exports (counters_ext)

egetcounter/2: PREDICATE
Usage: egetcounter(?(Name), ?(Val))

— Description: Returns in Val the current value of the Name counter, and increases it
one unit.

— Call and exit should be compatible with:

7(Name) is a atom which represents a counter. (name/1)
?7(Val) is a atom which represents the value of a counter. (val/1)
egetcircularcounter/2: PREDICATE

Usage: egetcircularcounter (?(Name), ?(Val))

— Description: Returns in Val the current value of the Name counter, and increases it
one unit. When it reaches to the established end, it begins from zero. This end is
defined in 10000.

140 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:
? (Name) is a atom which represents a counter.
?7(Val) is a atom which represents the value of a counter.

esetcounter/2:
Usage: esetcounter (+Name, +Val)

— Description: Assigns the counter Name to the value Val.
— Call and exit should be compatible with:

+Name is a atom which represents a counter.

+Val is a atom which represents the value of a counter.

27.3 Documentation on multifiles (counters_ext)

$is_persistent /2:
No further documentation available for this predicate.

The predicate is multifile.
The predicate is of type data.

27.4 Documentation on internals (counters_ext)

counter/2:
The predicate is of type data.

Usage: counter (?(Name), 7(Val))
— Call and exit should be compatible with:
?(Name) is a atom which represents a counter.
?7(Val) is a atom which represents the value of a counter.

name/1:
Usage: name (N)

— Description: N is a atom which represents a counter.

val/1:
Usage: val (V)

— Description: V is a atom which represents the value of a counter.

27.5 Version/Change Log (counters_ext)

Version 0.1#23 (2003/12/5, 12:54:4 CET)
Started automatic documentation (Jorge Navas)

(name/1)
(val/1)

PREDICATE

(name/1)
(val/1)

PREDICATE

PREDICATE

(name/1)
(val/1)

REGTYPE

REGTYPE

PART V - Application libraries 141

PART V - Application libraries

This part includes a set of libraries not defined in Ciao, and that are required in order to the
application works correctly.

142 CoLogNetWS: the CoLogNet Web-site

Chapter 28: Date processing 143

28 Date processing

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#24 (2003/12/5, 12:54:26 CET)
This library defines a set of predicates that allows handling and manipulating dates.

28.1 Usage and interface (date)

e Library usage:
:- use_module(library(date)).
e Exports:
— Predicates:

cod_month/2, dec_month/4, get_date/4, set_date_f0/4, set_date_f1/4, set_
date_£2/2.

— Regular Types:
date/1.
e Other modules used:
— System library modules:
system.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

28.2 Documentation on exports (date)

date/1: REGTYPE
Usage: date(D)
— Description: D is a date.

cod_month/2: PREDICATE
Usage: cod_month(?(Month), ?(Month_Textual))

— Description: Month_Textual is the name of the Month month.
— Call and exit should be compatible with:

?(Month) is a number which represents a month. (month/1)
?(Month_Textual) is the name of a month. (month_textual/1)
dec_month/4: PREDICATE

Usage: dec_month(?(Year), +Month, 7(Day), ?(Date))

— Description: Date is the date consisting of Year, Month and Day decreased in one
month.

144 CoLogNetWS: the CoLogNet Web-site

— Clall and exit should be compatible with:
?(Year) is a year.
+Month is a number which represents a month.
?(Day) is a day.
7(Date) is a date.

get_date/4:
Usage: get_date(+Date, ?(Year), 7?(Month), 7?(Day))

PREDICATE

— Description: Provides the Year, Month and Day of the date Date represented in the

year-month-day format.
— Call and exit should be compatible with:
+Date is an atom.
?(Year) is a year.
?(Month) is a number which represents a month.
7(Day) is a day.

set_date_f0/4:
Usage: set_date_f0(?(Date), +Year, +Month, +Day)

(atm/1)
(year/1)
(month/1)
(day/1)

PREDICATE

— Description: Provides the Date date in the year-month-day format from Year, Month

and Day.

— Call and exit should be compatible with:
?(Date) is an atom.
+Year is an atom which represents a year.
+Month is the name of a month.
+Day is an atom which represents a day.

set_date_f1/4:
Usage: set_date_f1(?7(Date), +Year, +Month, +Day)

(year_atm/1
(month_textual/1
(day_atm/1

PREDICATE

— Description: Provides the Date date in the year-month-day format from Year,Month

and Day.

— Call and exit should be compatible with:
7(Date) is an atom.
+Year is a year.
+Month is a number which represents a month.
+Day is a day.

set_date_f2/2:
Usage: set_date_f2(+Time, 7(Time_Format))

— Description: Provides the Time_Format date in the
hour:minute:second format from Time.

— Call and exit should be compatible with:
+Time is an structure which stores the current date and time.
?(Time_Format) is an atom.

(atm/1)
(year/1)
(month/1)
(day/1)

PREDICATE

year month day

(datime_struct/1)
(atm/1)

Chapter 28: Date processing

28.3 Documentation on internals (date)

year/1:
Usage: year (Y)
— Description: Y is a year.

month /1:
Usage: month (M)

— Description: M is a number which represents a month.

day/1:
Usage: day (D)

— Description: D is a day.

month_textual /1:
Usage: month_textual (M)

— Description: M is the name of a month.

year_atm/1:
Usage: year_atm(Y)

— Description: Y is an atom which represents a year.

day_atm/1:
Usage: day_atm(D)

— Description: D is an atom which represents a day.

datime_struct/1:
Usage: datime_struct (D)

— Description: D is an structure which stores the current date and time.

28.4 Version/Change Log (date)

Version 0.1#24 (2003/12/5, 12:54:26 CET)
Started automatic documentation (Jorge Navas)

145

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

REGTYPE

146 CoLogNetWS: the CoLogNet Web-site

Chapter 29: Password processing 147

29 Password processing

Version: 0.1#27 (2003/12/5, 13:14:2 CET)
Version of last change: 0.1#25 (2003/12/5, 12:54:45 CET)
This library defines a set of predicates that allows handling and manipulating passwords.

29.1 Usage and interface (password)

e Library usage:
:— use_module(library(password)) .
o Exports:
— Predicates:
get_password/1, process_password/2.
e Other modules used:
— Application modules:
../strings_ext/strings_ext.
— System library modules:
random/random, terms, dec10_io.
— Internal (engine) modules:

hiord_rt, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

29.2 Documentation on exports (password)

get_password /1: PREDICATE
Usage: get_password(-Password)

— Call and exit should be compatible with:
-Password is a eight items long pseudoramdom string. (password/1)

process_password /2: PREDICATE

Usage: process_password(+Passwordl, ?(Password2))
— Description: Passwordl unifies with Password2 but without blanks.

29.3 Documentation on internals (password)

password/1: REGTYPE
Usage: password (P)

— Description: P is a eight items long pseudoramdom string.

148 CoLogNetWS: the CoLogNet Web-site

29.4 Version/Change Log (password)

Version 0.1#25 (2003/12/5, 12:54:45 CET)
Started automatic documentation (Jorge Navas)

Chapter 30: Installing CoLogNetWS 149

30 Installing CoLogNetWS

30.1 Installation steps

The following provides the different steps which are necessary to make a complete installation

of CoLogNetWs.

Uncompress (using gunzip) and unpackage (using tar -xpf) the distribution in a suitable
directory.

Edit the SETTINGS file and change values to suit your installation.
Edit the settings.pl file and change values to suit your installation.

In a shell, cd to the CoLogNetWS root and run make all. This creates the CGI executa-
bles, creates the target directories, and copies several files to their destinations in these
directories.

PERMISSIONS:

e The directory private will contain the CGI executables which allow the management
of the Web-site. You will probably want to protect it with an HTTP password. In this
directory you can find the scripts for manipulating password files for NCSA httpd.

Ideally, private should not be readable by anyone (but needs to be readable by the
HTTP daemon, of course).

e Check that your system’s httpd configuration file allows the CGI executables (all
ending in .cgi) located in cgi-bin and private to be run from a browser. Also,
the user under which the httpd is run needs to have write permission in directories
database/database, database/counters_ext, and lib/security/authentication.

You are done! If you want to delete temporary files created during the installation, run
make clean in the source directory.

30.2 Usage Summary

A very brief summary of usage (you should consult the relevant sections of the manual for a

full explanation):

To consult the database (no modification allowed), see the directory database/database
and its files.

To consult the XML files which are stored in the intermediate buffers (no modification
allowed), see the directory 1ib/exchange/sending and its subdirectories.

To consult the log file which stores the errors produced during data exchange with
other Web-sites (no modification allowed), see the file 1ib/exchange/errors_log/errors_
xml.pl.

To consult and modify the group and event categories, see the file 1ib/util/category.pl.

To consult and modify the Web-site URL’s, with which it exists a communication, see the
file 1ib/util/url_websites.pl.

30.3 Customization

Extensive customization of the appearance of the application Web pages is possible:

The layout of the pages is determined by the HTML files in the templates/html directory.
You can change these files (between the body tags) to change the appearance of the HTML
pages. The title of each template file explains what the template is used for, and lists the
template variables between parenthesis. In these files, the template variables are written

150

CoLogNetWS: the CoLogNet Web-site

like this <V>varname</V> if they appear in normal text or like _varname, if they appear as
an attribute or attribute value of a tag.

You can change these templates by hand or using an HTML editor. Beware, however, of
WYSIWYG HTML editors! Always check that they have not arbitrarily changed attributes,
tag ordering, etc.

The layout of the XML file is determined by the XML files in the templates/xml directory.
You can change these files (between the body tags) to change the appearance of the XML
files. The title of each template file explains what the template is used for, and lists the
template variables between parenthesis. In these files, the template variables are written
like this <V>varname</V> if they appear in normal text or like _varname, if they appear as
an attribute or attribute value of a tag.

You can change these templates by hand or using an XML editor. Beware, however, of
WYSIWYG XML editors! Always check that they have not arbitrarily changed attributes,
tag ordering, etc.

References 151

References

[CHO1] D. Cabeza and M. Hermenegildo.
Distributed WWW Programming using (Ciao-)Prolog and the PiLLoW Library.
Theory and Practice of Logic Programming, 1(3):251-282, May 2001.

[GCH98] J.M. Gomez, D. Cabeza, and M. Hermenegildo.
persdb: Persistent Database Interface.
Technical Report D3.1.M2-A1 CLIP9/98.0, RADIOWEB Project, December 1998.

152 CoLogNetWS: the CoLogNet Web-site

Predicate/Method Definition Index

Predicate/Method Definition Index

$

$is_persistent/2..... 30, 36, 74, 108, 113, 118, 140

A

add_contact_person_group/3 116
add_contact_person_soft/3 117
add_coordinating_group/3.................... 116
add_Key/2 . .. 81
add_key_pair/3 i 82
add_member_of/3 115
add_related_group/3...............ii.... 116
add_working/3 117
all_areas/l.ot 110
all_groups/1........ 109
all_people/l...... ..., 109
all_projects/1 il 109
all_software/1ot 110
area/l ... 106
ask_file/ 1. ... 41
authentication/2ccoviiii.... 36

C

check_authentication/1....................... 35
check_empty/1........... 7
check_entity_integrity/2..................... 7
check_error/l. ... 78
check_reference_integrity/2 7
check_scope/2............... 34
cod_month/2......................, 143
code_entities_xml/5............... 73
code_relations_xml/3................iiin.... 74
concat_line/2 ... 137
contact_person_group/2...................... 107
contact_person_group/4. ..., 111
contact_person_soft/2....................... 107
contact_person_soft/4....................... 112
coordinating_group/2........................ 107
coordinating_group/4........................ 111
COUNtET/2 . .t 140

D

data_exchange/3 45
dec_month/4.o, 143
delete_authentication/1...................... 35
delete_key/2.ot 82
delete_key_pair/3 ..., 82

delete_repeated/2........... 135

153
delete_scope/1ttt 34
deleteall key/1oviiinnneineineee.. 82
deleteall _key_pair/1......................... 82
directory_files_mapped/2..................... 46
E
egetcircularcounter/2....................... 139
egetcounter/2 139
entity/2. .. e 19
esetcounter/2 140
event/l 106
F
form_value_default/2................ccoou... 128
form_value_empty/1.......................... 127
G
gen_label _body/3 85
gen_label_end/2 ... 85
gen_label init/2 85
get_date/4. 144
get_form_values/3........................... 127
get_key_pair/3 i 83
get_password/1 147
get_template_error/3................ 78
get_xmlfile_input/2......................... 128
get_xmlfile node/3.......................... 129
get_xmlfile nodes/3......................... 129
get_xmlfile_value/3......................... 128
group/l 105
H
http_response/3 133
I
init_authentication/0........................ 35
init_scope/0. ...t 35
input_file_associated_entity/3.............. 70
input_file_object_entity/4 69
insert_authentication/2...................... 35
insert_scope/2 ... 34

154

K

key_pair_xml/3 83
key_xml/2. 83
keys_HTMLItems/3 29
M

main/O. ...t 15, 17, 45, 87
main/l.o 21, 41
member_Key/2. 81
member_key_pair/3 82
member_of/2. 106
member_of/4. 110
N
notify_error_xml/1.......... 78
output_html/2 128
P

person/l. 105
predicate_listref/2.......................... 30
predicate_ref/3 30
process_entity/4 i 21
process_entity/5 il 24
process_file/3 42
process_file_entity/3............... 70
process_password/2 147

project/l. 106

CoLogNetWS: the CoLogNet Web-site

related_group/2 107
related_group/4 ...t 112
removed_delimitator/2....................... 137
scope_def/2......... ool 36
send_files/1. 46
set_date_fO/4 144
set_date_f1/4 144
set_date_f2/2 ... 144
software/1.o 106
T

to_select_default/3.......................... 29
url_query/3. ... 128
value_default/2 ..., 137
working/2............... . oo 107
working/4........... ...l 110
X

xml_html/1...... .. . 129

Regular Type Definition Index

Regular Type Definition Index

A

area_red/l. 123
area_struct/1 ... 122
associated_xml/1 74
B

buffer/1 46
D

date/1 ... 143
datime_struct/1 145
day/L . 145
day_atm/1.t 145
Aic/ L .o 130
E

entity/1. 25
error_struct/1 101
event_red/1. 123
event_struct/1 121
F

file_mapped/l..... ..ot 47

G

group_red/1......o 122
group_struct/1l 119
H

html_attr/1. ... 130
html_template/1 130
html_term/1..... 129
html_val/1...... ... i 130
http_head/1....... 133
I

id_html/1 .. 30
id_session/1. 35
1d_xmL/ L . 83
input_area_struct/1.............., 94
input_entity_struct/1........................ 95
input_event_struct/1........... 93

input_file_struct/1.............. 94

155
input_group_struct/1........... 89
input_person_struct/1l........................ 90
input_project_struct/1....................... 91
input_software_struct/1...................... 92
item_html/1. 30
K
key_db_atm/1.......ooviiiiiiiii 108
key_db_int/1........ 108
M
month/1 145
month_textual/l, 145
msg_html/1..... 79
N
name/1 140
O
object_xml/1. 75
op_type/l. ... 25
op_xmL/1 71
output_area_struct/1......................... 99
output_entity_struct/1...................... 100
output_event_struct/1........................ 98
output_group_struct/1........................ 95
output_person_struct/1....................... 96
output_project_struct/1...................... 97
output_software_struct/1..................... 98
output_template/1..................... ... 129
P
password/1......l 147
person_red/l....... 122
person_struct/1 L 120
project_red/1 122
project_struct/1 120
R
radio_html/1. 31
ref_html/1.. 31
relations_struct/1.......... 100
response_authentication/1.................... 35
response_op/l..... ... 25

156

result_xml/1....... ... 78
S

scope/l 35
software_red/1 ... 122
software_struct/1 121
T

title_html/1. 79
U

Url/d 130
A\

CoLogNetWS: the CoLogNet Web-site

Val/d o 140
X

xml_attr/1. . . 130
xml_file/1. 129
xml_input/1. ... 130
xml_message/l........... i 47
xml_node/1.o 131
xml_string/1. 130
xml_tree/l. 129
xml_type/l. 130
xml_val/l. .. . 131
Y

year/l 145

Concept Definition Index 157

Concept Definition Index

A M

authentication 3 manager interface 3

C P

CGL. 3 persistent predicates............... ... 3
Private scope 33
Publicscope........ooo i 33

D

data exchange i 3 R
Relational model 5

E

external interface................ 3 T

templates. ... 3
graphic interface i 5 U

user interface 3

HTML ... 3 ” »
HTTP protocol ..., 3 Web-SIte. . oot 1
WWW interface........................u... 3

I

internal interface................................
Internal interface................................ 3 XML .o 3

158 CoLogNetWS: the CoLogNet Web-site

