
Towards Data-Aware Cost-Driven Adaptation
for Service Orchestrations

November 2009

facultad de informática

universidad politécnica de madrid

Dragan Ivanovic
Manuel Carro

Manuel Hermenegildo
Pedro Lopez-Garcia

Edison Mera

TR Number CLIP 5/2009.0

1

Technical Report Number: CLIP 5/2009.0
November, 2009

Authors

Dragan Ivanovic
idragan@clip.dia.fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Carro
mcarro@fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Hermenegildo
herme@fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Pedro López
pedro.lopez@imdea.org
Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Edison Mera
edison@fdi.ucm.es
Facultad de Informática
Universidad Complutense de Madrid (UCM)

Keywords

Service Orchestrations, Resource Analysis, Data-Awareness, Monitoring, Adaptation

Acknowledgements

ii

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme under the Network of Excellence S-Cube - Grant Agreement n◦ 215483.
It has also been partially supported by Spanish MEC project 2008-05624/TIN DOVES, Madrid Re-
gional Government project S-0505/TIC/0407 PROMESAS, and EU projects FET IST-15905 MOBIUS,
FET IST-231620 HATS, and 06042-ESPASS.

iii

Abstract

Several activities in service oriented computing, such as automatic composition, monitoring, and
adaptation, can benefit from knowing properties of a given service composition before executing
them. Among these properties we will focus on those related to execution cost and resource usage,
in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we
formulate execution costs / resource usage as functions on input data (or appropriate abstractions
thereof) and show how these functions can be used to make better, more informed decisions when
performing composition, adaptation, and proactive monitoring. We present an approach to, on one
hand, synthesizing these functions in an automatic fashion from the definition of the different or-
chestrations taking part in a system and, on the other hand, to effectively using them to reduce the
overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of fail-
ure. We validate our approach by means of simulations of scenarios needing runtime selection of
services and adaptation due to service failure. A number of rebinding strategies, including the use of
cost functions, are compared.

iv

Contents

1 Introduction 1

2 Cost Analysis and Service Networks 2
2.1 An Example . 2
2.2 Cost Functions Under Consideration . 4
2.3 Costs for Service Networks . 5

3 Analysis of Orchestrations 6
3.1 Overview of the Translation . 6
3.2 Restrictions on Input Orchestrations . 8
3.3 Type Translation and Data Handling . 8
3.4 Basic Service and Activity Translation . 9
3.5 Translation for Scopes and Flows . 10
3.6 Cost Functions for Closed-Source Services . 11
3.7 An Example of Translation and Analysis . 11

4 An Experiment on Adaptation 13

5 Conclusions and Future Work 16

A Raw data from experiments 18

References 22

v

Towards Data-Aware Cost-Driven Adaptation 1

1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at expressing and
exploiting the computation possibilities of loosely coupled systems which interact remotely. In any
case, such systems expose themselves as a service interface whose description may include oper-
ation signatures, behavioral descriptions, security policies, and other, while the implementation is
completely hidden. Several services can be combined by calling the operations in their interfaces to
accomplish more complex tasks than any of them in isolation through the process of service compo-
sition. Such compositions are usually expressed using either a general-purpose programming lan-
guage or, alternatively, a language with an ad-hoc design aimed at expressing SOC compositions [11].
These compositions can in turn present themselves as full-fledged services.

One key distinguishing feature of SOC systems is that they are expected to live and be active dur-
ing long periods of time and span across geographical and administrative boundaries. This brings
the need to include monitoring and adaptation capabilities at the heart of SOC. Monitoring checks
the actual behavior of the system and compares it with the expected one. If deviations are too large,
an adaptation process (which may involve, e.g., rebinding to different services with compatible se-
mantics and better behavior) may be necessary.1 When deviations are detected before they happen
(i.e., they are predicted), both monitoring and adaptation can act ahead of time (and they are then
classified as proactive). Of course, the technology involved in proactive adaptation is more complex
but also more interesting and useful, as it performs prevention instead of healing.

In any of these cases, it is necessary to have a model of the behavior of the composition against
which the actual behavior is checked. Usual models try to capture for example service reliability or
execution time, and use statistical analysis or log mining to find out values for these metrics. If the
actual execution departs too much from the expected values, then a warning is issued. Additionally,
if rebinding is needed in the course of an adaptation, then these characteristics can be used to select
from among semantically equivalent candidate services. Needless to say, the more precise this model
is, the better the adaptation / monitoring process can we expected to be.

In this paper we will be dealing with a particular kind of models: those which try to increase accu-
racy by, on one hand, taking into account actual run-time data and, on the other hand, giving always
a correct value for the model at hand or, at least, a safe approximation. An example of such a value is
the number of messages sent / received, which can be related to, for example, execution time (useful
to determine some QoS characteristics) by assuming that data related to network speed is available,
or to monetary cost if bandwidth usage has a cost (as, for example, in the case of short cell phone
messages).

In this paper we will discuss how the ability to predict data-dependent execution characteristics
can be of help in some situations (Section 2.1) and how the particular characteristics of SOC in re-
lation with traditional computing paradigms can be taken into account (Section 2.3). As part of the
needs of this architectural proposal, we will sketch how the models we propose can be automatically
derived from the actual composition code (Section 3) and we will report on the results of a series of
simulations which use data-enhanced models to drive a particular case of adaptation (Section 4).

1See the entries of adaptation and monitoring at http://www.s-cube-network.eu/knowledge-model .

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 2

Provider

Maker 1

Maker K

Cancel
part req.

OK / not OK

Part req.
Cancel

OK / not OK

Figure 1: Simplified car part reservation system.

2 Cost Analysis and Service Networks

Cost analysis aims at statically determining the cost (in terms of execution time, execution steps,
number of instructions, or other general resources) of a computation for some input data, given the
code which expresses the computation. It has been studied for functional languages [15], logic lan-
guages [8, 7], object-oriented languages [2, 13] and it is also of use for worst-case execution-time
analysis [16]. There are also approaches which aim at providing common libraries and representa-
tions to make cost analysis easier across several languages [12, 1].

To the best of the authors’ knowledge, there has not been a similar study for SOC, although
several approaches to automatically deriving QoS characteristics for compositions have been pro-
posed [5, 4]. These have much in common with our proposal as they address the problem of working
out aggregate costs for compositions. However, they do not fully treat data and do not relate cost
estimation with actual input data sizes (they assume, for example, a statistically or otherwise fixed
number of loop iterations). Also, aggregating QoS characteristics for complex networks using service
compositions exposed as services (Section 2.3) is not treated. On the other hand, some proposals [3]
aim at a global optimization, but ignore data-related issues. We will try to balance both dimensions
(use of global information and data-sensitivity) while keeping the cost analysis automatic.

2.1 An Example

We illustrate with a simple and motivating example the benefit of taking actual data into account
when generating QoS expressions for service compositions:

Example 1 Figure 1 shows a simple car part reservation system. A car parts Provider needs to give a
client a number of n (equivalent) car parts, and gets in touch with different part Makers’ services to
secure the shipment of these parts. The protocol is such that only a part can be reserved at a time from
a maker using a service invocation. The Maker may answer OK if the part is available and not OK if
it is not. In the latter case the Provider goes to the next Maker. If all the available Makers have been
contacted and not all parts have been reserved, the Provider has to CANCEL all the reservations using
the appropriate message. If some communication link is down or the maker service is not available,
the communication is just not performed.

We will assume that the Provider charges the client depending on the amount of CPU needed
to fulfill a request (which we can approximate as the number of basic activities executed by the
Provider) and that Makers charge the CPU provider per connection (which also should have an effect
on the final price to the client). Additionally, both parameters should have an effect on the amount

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 3

of time that the Provider takes to answer to the client due to the number of messages necessary
to process a request for car parts. Therefore, a more precise announcement of the cost or time for
the Provider service should take into account the size of the requests made, i.e., the costs should be
expressed as functions on the data used for the initial invocation. Additionally, there are two possi-
ble cases we may want to explore (which result in different behaviors): either the communications
and the services are perfect (they do not fail) or there is the possibility that attempting to invoke the
Maker fails.

The analysis is, often, non-trivial, even for these simple cases. The results depend, on one hand,
on the internal logic of the service composition and, on the other hand, on the cost which each of
the Makers charge the Provider for a given query. Section 3.7 shows how, for this particular example,
we can automatically derive a number of cost-related functions which depend on data sizes (see Ta-
ble 2). In that example, for the sake of simplicity, we have neglected the cost incurred by the Makers,
but it should remain clear that in more complex examples these costs (which can in turn depend on
input data – see Section 2.3) would generate more complex cost functions for the Provider — such
as, e.g., quadratic.

We also want to highlight that, while in some cases these automatically generated cost functions
are exact upper or lower bounds, in general, it can be expected that only safe upper and lower bounds
of the actual costs are generated. These approximations arise either because of limitations of the
static analysis, or because the actual cost depends on more parameters than data size, and, thus, an
exact cost function based only on data sizes does not exist.

By safe approximation (safe upper and lower bounds) we mean that an upper bound (c.f., a lower
bound) is always guaranteed to be bigger (c.f., smaller) than the actual cost function. While this may
seem to be a disadvantage when it comes to predicting actual costs,2 this upper or lower bounding of
the actual cost is necessary when what is needed is to statically ensure that some QoS characteristic
(e.g., from a contract) is met, or, conversely, to prove that some QoS characteristic will not be met.

It is illustrating to compare safe approximating functions with probabilistic approximations, used
in many approaches to QoS-driven service compositions. Statistical approximations which summa-
rize the cost characteristics in a single point, that is supposedly valid for all data within the input
range, clearly cannot provide any behavior guarantee, as in general this point represents some kind
of global average instead of a maximum or minimum. This can be extended in two directions: an
interval can be used, where, in order for its bounds to be significant, they have to represent the max-
imum and minimum of the characteristic being measured across all the possible input data range.
This is of course safe, but it is an overly gross approximation, as it does not take into account any
correlation of the cost characteristic with the input data. The other direction corresponds to using
functions which, for every input data, represent some average value of the characteristic. This can be
more precise than using a single point, but it does not allow giving any guarantee. The combination
of the two extensions proposed, i.e., the use functions which represent upper and lower bounds for
different input data, makes it possible to provide more precise guarantees across the complete range
of input data, and therefore allow, at least in principle, the possibility of making more informed ser-
vice selections.

As an example, Figure 2 portrays the upper and lower bounds of two compositions for some QoS
characteristics as a function of some input parameter. Depending on the meaning of these char-
acteristics we may want to make sure that we minimize them (for example, if we want to exchange
a small number of messages) or maximize them (if we want to increase the throughput of the sys-
tem). The former case needs to consider the upper bound (as minimizing the upper bound the whole

2Note, however, that when the inferred upper and lower bounds coincide they are exact cost functions.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8 9 10

Min. for Service 1
Max. for Service 1
Min. for Service 2
Max. for Service 2

Figure 2: Upper and lower bounds for two services.

function is necessarily minimized) and, conversely, the latter requires considering the lower bound.
According to Figure 2, selecting one or another service depends on the particular data size at hand.

2.2 Cost Functions Under Consideration

The type of cost characteristics we will take into consideration are based on counting a number
of relevant events. To this end, we follow the approach to resource-oriented analysis of [14, 13, 12].
The fundamental idea is to specify how much some basic operations in a program contribute to the
usage of some resource, and derive cost functions based on that specification for the whole program
using global analysis techniques.

Higher level characteristics (expressed as compound cost functions) can be derived from these
basic cost functions, which have a meaning on their own. For example, execution time can be built
by aggregating the number of basic activities executed (for CPU time) and the number of messages
exchanged taking into account the network latency and bandwidth. Functions built from upper
bounds can be upper bounds as well (resp. lower bounds). Of course, if the aggregation of cost
functions introduces noise (for example, by using inaccurate estimations of actual bandwidth), the
resulting compound functions will not be accurate. However, as long as the noise is uniformly intro-
duced in all involved functions, comparing aggregated functions should be sound.

Since inferring functions representing upper/lower bounds does not depend on what these func-
tions exactly represent, and comparing them is also independent from their meaning, we will assume

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 5

A

B1

B2

TA(n) = 2n +3+nS(n)

TB1 (n) = n +5

TB2 (n) = 2n +1

binding to B1?

binding to B2 ?

Figure 3: Invoking services with non-null cost.

in what follows that they represent generic costs which, in general, we want to minimize.

2.3 Costs for Service Networks

In the previous sections we dealt with the cost of a single composition under the assumption that
the services it binds to do not contribute to the cost of the compositions. In general this is not so, and
when the definition of these accessed services (Bi in Figure 3), which may be compositions them-
selves, is available, they can be analyzed together with the code of A to derive a global cost. If the
code of some Bi is not available or, for some reason, the owner of that service does not want to reveal
it, the cost function for A can still be inferred if at least Bi publishes its cost functions (and a descrip-
tion of how the sizes of its input and output messages are related, given as a data size function) so
that the analyzer can use them directly instead of working them out. Note that publishing these cost
and size functions should not compromise the confidentiality of the service Bi itself.

Assuming that cost functions are cumulative, an upper bound for the cost of A can be expressed,
for the case of binding to only one service, in a form similar to

TA(n) = E A(n)+ g (n)S(f (n))

where E A is a structural cost function which accounts for the contribution of the code of A without
taking into account the contribution of the services it may use, whose upper bound is summarized
as S(f (n)). The function f represents the upper bound of the possible difference between the in-
put data for A and that which is passed on to the invoked service, and g is an upper bound on the
number of times S is invoked. The cost for a given composition comes from replacing S with the Bi

corresponding to the selected service. This process may need to be repeated for the services used
by A in order to generate a cost function which depends solely on the input parameters to A, but
which is potentially different for every different binding of A to a service. For example, (the upper
bound of) the costs corresponding to the composition A when binding to services B1 and B2 would
be, respectively

TA(n) = 2n +3+n(n +5) = n2 +7n +3 for B1

TA(n) = 2n +3+n(2n +1) = 2n2 +4n +3 for B2

Which one of them is bigger depends on the input data.

Note also that this process may have to be repeatedly applied down the stream of invoked services
— i.e., Bi may be a composition invoking other services and may need performing a cost analysis
to provide closed cost functions. This is a consequence of the dynamicity of service-based appli-
cations which is not usually found in traditional software: since the precise components of a given
application can change dynamically, the cost functions of a composition can only be completely de-
termined when this composition is completely known, including the exact services it binds to (or, at

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 6

BPEL

WSDL

Intermediate
language

Logic
program

Analysis
results

Translation

Translation

Tr
an

sl
at

io
n

A
n

al
ys

is

Feedback

Feedback

Figure 4: The overall process.

least, their associated costs and size relations between input and output data). Therefore, since the
application can change dynamically, in order to be up to date the cost of the compositions affected
by that change has to be recomputed — preferably in an incremental fashion in order not to waste
resources.

A key question is how the functions expressing cost and data size relationships can be automat-
ically and effectively inferred for service compositions. As discussed before, this has been studied
previously, but the role of input data has not been satisfactorily (and safely) taken into account so
far. We will devote the next section to presenting our approach. Note that we assume that there is a
point where services do not invoke other services (i.e., they are leaves in an invocation tree) and their
cost bounds are either determined using an approach similar to the one we will present in Section 3
or the ones in [14, 13]. Therefore, we will now focus on how cost functions can be inferred for a given
service composition, with the understanding that they may be later subject to combination across a
service network as previously shown.

3 Analysis of Orchestrations

Our approach is based on translating process definitions, via an intermediate language, to a logic
program to be analyzed by existing tools (see Figure 4). In our case, the input language is a subset of
BPEL 2.0 (for the process definitions – see Section 3.2) and WSDL (for the meta-information). This
intermediate language (see Table 1) can notwithstanding be used (and, if necessary, expanded) to
cover other orchestration languages.3 A set of BPEL processes which form a service network are
taken as the input to the analysis and the result is a logic program where BPEL processes are mapped
onto predicates which call each other to mimic service invocations.

3.1 Overview of the Translation

The declarations in Table 1 can describe namespace prefixes, XML-schema-derived data types
for messages, service port types, and external services that are not analyzed, but have some trusted
properties (in this case, related to cost analysis) that are either given by a human or result from a
separate analysis.

The activities supported by the intermediate language include generic constructs (empty, assign-
ment, sequence,. . .) which are common to many programming languages as well as specific con-
structs to model orchestration workflows: flow, float, scope/handler, and invoke.

3Although, understandably, currently it explicitly deals with BPEL constructs.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 7

Declarations and definitions
Namespace prefix declaration :- prefix(Prefix, NamespaceURI).
Message or complex type definition :- struct(QName, Members).
Port type definition :- port_type(QName, Operations).
External service declaration :- service(PortName, Operation, {

Trusted properties }).
Service definition service(Port, Operation, InMsg[, OutMsg]) :-

Activity .
Activities

Do nothing empty
Assignment to variable / part VarExpr <- Expr
Service invocation invoke(PortName, Operation, OutMsg, InMsg)
Terminating with a response reply(OutMsg)
Sequence Activity1, Activity2
Conditional execution if(Cond, Activity1, Activity2)
While loop while(Cond, Activity)
Repeat-until loop repeatUntil(Activity, Cond)
For-each loop forEach(Counter, Start, End, Activity)
Scope scope(VarDeclarations, Activities and Handlers)
Scope fault handler handler(Activity)

handler(FaultName, Activity)
Parallel flow with dependencies flow(LinkDeclarations, Activities)
Dependent activity in a flow float(Attributes, Activity)

Table 1: Elements of an abstract description of an orchestration in the intermediate language.

In contrast to the structured workflow patterns expressed by UML activity/sequence diagrams,
BPEL’s flow construct can express a wider class of concurrent workflows, where concurrency and
dependencies between activities are expressed by means of precondition formulas involving tri-state
logical link variables, with optional dead-path elimination. The float construct in the intermediate
language annotates an activity within a flow with a description of outgoing links and their values,
join conditions based on incoming links, and a specification of the behavior in case of a join failure.

A BPEL process definition is translated into a service definition which associates a port name and
an operation with a BPEL-style activity that represents the orchestration body. This intermediate
representation is, in turn, translated into a logic programming language augmented with assertions
(Ciao [10, 9]), which in our case are used to express types and modes (i.e., which arguments are input
and output) as well as resource definitions and functions describing resource consumption bounds.
The logic program resulting from the translation is fed to the resource consumption analyzer of the
Ciao preprocessor (CiaoPP [9]), which is able to infer upper and lower bounds for the generalized
cost / complexity of a logic program [6, 8, 14].

An important observation regarding the translation is that, in general, it is not necessary for the
generated logic program to be strictly faithful to the operational semantics of the orchestration: it
has to capture enough of it to ensure that the analyzers will infer correct information (i.e., safe ap-
proximations), with minimal precision loss due to the translation. However, in our case the trans-
lated program is executable (although not operationally equivalent to the BPEL process) and mirrors
quite closely the operational semantics of the BPEL process under analysis.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 8

:- regtype ’factory->resData’/1.
’factory->resData’(’factory->resData’(A, B, C)):-

num(A), num(B), list(C, ’factory->partInfo’).

:- regtype ’factory->partInfo’/1.
’factory->partInfo’(’factory->partInfo’(A, B)):-

atm(A), atm(B).

Figure 5: Translation of types.

3.2 Restrictions on Input Orchestrations

We restrict our analysis to orchestrations that follow a receive–reply interaction pattern, where pro-
cessing activities take place after reception of an initiating message and finish dispatching either a
reply or a fault notification. Orchestrations that may accept several different initiating messages can
be logically decomposed into orchestrations that correspond to individual web service operations.

Another behavioral restriction is that we currently do not support analysis of stateful service call-
backs using correlation sets or WS-Addressing schemes. In future work, we plan to relax both restric-
tions by identifying orchestration fragments that correspond to the receive–reply pattern, isolating
them into sub-processes, and analyzing them as now done for whole orchestrations.

In our intermediate language, we support a variant of the scope construct, which, like its BPEL
counterpart, introduces local variables, fault and compensation handlers. However, we do not fully
support compensation handlers, which in BPEL contain logic that “undoes” effects of a successfully
completed scope. The BPEL specification requires compensation handlers to use values of scope’s
variables that were recorded upon successful completion of the scope, which introduces problems
for the analysis. Otherwise, compensation handlers can be treated as pseudo-subroutines on a scope
level, and inlined at their invocation place.

3.3 Type Translation and Data Handling

Services communicate using complex XML data structures whose typing information is given by
an XML Schema. The state of an executing orchestration consists of a number of variables that have
simple or complex types, including variables that hold inbound and outgoing messages. For simplic-
ity reasons, we abstract the simple types in XML Schemata as three disjoint types: numbers, strings
(represented by atoms), and booleans.

WSDL message types and custom complex types from XML Schemata are translated into the in-
termediate representation and finally into the typing / assertion language of Ciao. These type defini-
tions are used to annotate the translated program and are eventually used by the analyzer. Figure 5
shows an automatically obtained translation for the part reservation scenario in Example 1. The type
name ’factory->resData’ is a structure with the same name and with three fields: two numbers
and a list of elements of type ’factory->partInfo’. Each of these elements is in turn a structure
with two fields (atoms).

We use a subset of XPath as the expression language, which allows node navigation only along the
descendant and attribute axes, to ensure that navigation is statically decidable based on structural
typing only. The expression ’$req.body/item[1]/@qty’ in the intermediate language refers to the
attribute qty of the first item element in the body part of a message stored in variable req. We also
support a set of standard XPath operators and basic functions, including position() and last().

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 9

To help the analyzer to track component values and correlate the changes made to them, we stat-
ically unfold XML structures in an environment into their components when necessary, and pass
them around explicitly as predicate arguments from that point onwards. An unfolded structure no
longer needs to be passed along with its components, since it can be reconstructed on demand (see
Section 3.7 and Figure 3.7(c) for an example). The resulting code is less readable for a human, but
more amenable to analysis.4

3.4 Basic Service and Activity Translation

The basic idea of the automatic translation from the intermediate language to a logic program is
to keep track of the functional dependency between the message with which a service is invoked and
the resulting response message. Thus, an orchestration S is translated into a predicate:

s(x̄, y) ← JAKη(y)

where x̄ represents the input message (decomposed in its parts), y stands for the answer, and JAKη(y)
is the translation of the orchestration body A within the initial service environment η. An environ-
ment is a mapping from structured component names within the current scope to logical terms.
Structured component names denote parts within a message, nested XML nodes (elements and at-
tributes), as well as heads and tails of lists. Each data structure is a tree of nodes rooted in a variable.
Leaf nodes represent scalars and unfolded structured components. Since the internal nodes can be
reconstructed from leaf nodes, the entire environment can be represented by its leaf nodes. Initially,
the environment of an orchestration consists only of the input message (and its components). We
write η in an argument position of a predicate to mean the leaf components from η. In the above
case, we could have written s(η, y) instead of s(x̄, y).

A sequence of activities 〈A|C〉 consists of the activity A and the continuation C (which is also a
sequence of activities). A special case is the empty sequence ε. In general we consider the translation
of a sequence, and abbreviate J〈A|C〉K as JA|CK, and JA|εK as JAK. A sequence of two activities (Ai , A j)
is normalized by extending the continuation:

J(Ai , A j)|CKη(y) 7→ JAi |〈A j |C〉Kη(y) .

Activity reply(v) terminates the orchestration and sends a reply, regardless of the continuation.
The translation produces a unification:

Jreply(v)|CKη(y) 7→ y = η(v)

between the service result y and the value of v in the current environment. Another way to terminate
a service is to signal a fault, which is translated into a failure of the logical program:

Jthrow|CKη(y) 7→ fail .

For any activity Ai other than a sequence, empty, reply, and throw, the translation is:

JAi |CKη(y) 7→ ai (η, y) ,

4The alternative being writing in Prolog the counterparts for the supported XPath operations and letting the analyzers deal
directly with them. In our experience, this introduces too much precision loss in current analyzers, and therefore we opted
for a more complex translation.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 10

where ai is a newly generated predicate whose structure depends on Ai , η, and C . First, we exam-
ine the case when Ai ≡ x <− e, i.e., the expression e is evaluated and assigned to the environment
element x (a variable or its component). The generated clause consists of several steps:

ai (η, y) ← [e : E]η, [E/x]η
′
η ,JCKη′ (y) .

Where [e : E]η stands for code that evaluates e into term E in environment η, and [E/x]η
′
η stands for

the assignment of E to x that transforms η into η′.

For an external service invocation, Ai ≡ invoke(p,o, v, w), the generated clause has a similar
structure:

ai (η, y) ← spo(η(v),Y), [Y /w]η
′
η ,JCKη′ (y) ,

where spo is the translation of a service implementing operation o on port type p, v holds the input
message, and w holds the reply.

For Ai ≡ if(c, A j , Ak), two clauses are generated:

ai (η, y) ← [c ?]η, !,JA j |CKη(y)

ai (η, y) ← JAk |CKη(y)

where [c ?]η stands for the code that succeeds if and only if the boolean condition c evaluates to true
in η. Likewise, Ai ≡ while(c, A j) generates:

ai (η, y) ← [c ?]η, !,JA j |〈Ai 〉Kη(y)

ai (η, y) ← JCKη(y)

Other looping constructs, such as repeatUntil and forEach reduce to while.

3.5 Translation for Scopes and Flows

The translation of scopes involves changing the environment on entry and exit, and has to
ensure the execution of a fault handler unless the body scope ends successfully. In Ai ≡
scope(D, A, H1, H2, . . . , HN), D denotes new variable declarations, A is the body of the scope, and
Hi are fault handlers. N +1 clauses are generated for ai , one for A and each of the handlers. Each of
the clauses uses cut to prevent execution of subsequent clauses in case that the scope body / han-
dler attached to the clause completes successfully. Since the process itself can be seen as a scope,
and it normally needs a variable to hold the output message, in the intermediate language we use an
abbreviation:

service(p,o, x, y) ← A

for:
service(p,o, x) ← scope([y : ReplyType], (A, reply(’$y’))) .

The translation of a flow is done following the usual BPEL semantics, but without operationally
parallelizing the execution. Instead, we are interested in total resource consumption of a flow con-
struct, irrespective of the actual number of available threads. Links are internally declared as Boolean
variables, and floats are ordered so that they follow dependencies on outgoing links from previous
floats. After reordering, a flow effectively translates to a sequence, and each float(D, A j) is trans-
formed into: if(c, (A j ,’$o’ <- true),F)

where c is a join condition, o is the outgoing link, and F covers the case when c evalu-
ates to false. When the suppresJoinFailure property is disabled, we simply have F ≡
throw(bpel : joinFailure). Otherwise, F ≡ ’$o’ <- false.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 11

:- struct(factory:resRequest, [

part(body): struct(factory:resData)]).

:- struct(factory:resResponse, [

part(body): struct(factory: resData)]).

:- struct(factory:resData, [

child(factory:partCount): number,

child(factory:priceLimit): number,

child(factory:part):

list(struct(factory:partInfo))]).

:- struct(factory:partInfo, [

attribute(’’:partName): atom,

attribute(’’:variantName): atom,

child(factory:partVendor): atom,

child(factory:serialNo): number]).

:- port(factory:agent, [

reserveGroup(struct(factory:resRequest)):

struct(factory:resResponse)]).

:- port(factory:sales, [

reserveSingle(struct(factory:partInfo)):

struct(factory:partInfo),

cancelReservation(struct(factory:partInfo)):

struct(factory:partInfo)]).

service(factory:agent, reserveGroup, ’$req’, ’$resp’):-

[

’$resp.body/factory:partCount’<-0,

’$resp.body/factory:part’<-’$req.body/factory:part’,

scope([i:number],

[’$i’ <- 1,

while(’$req.body/factory:partCount>0’,

[

scope([p: struct(factory:partInfo),

r: struct(factory:partInfo)],

[’$p’<- ’$req.body/factory:part[$i]’,

invoke(factory:sales, reserveSingle, ’$p’, ’$r’),

if(’$r/factory:unitNo>0’,

’$resp.body/factory:part[$i]’<-’$r’,

throw(factory:unableToReserveGroup)),

handler(

[while(’$i>1’,

[’$i’<- ’$i - 1’,

’$p’<- ’$resp.body/factory:part[$i]’,

invoke(factory:sales, cancelReservation,

’$p’,’$r’)]),

throw(factory:unableToCompleteRequest)])

]),

’$i’ <- ’$i+1’,

’$req.body/factory:partCount’ <-

’$req.body/factory:partCount - 1’])])].

Figure 6: Abstract representation of a group reservation process.

3.6 Cost Functions for Closed-Source Services

During the analysis we have assumed that the orchestration code of the service(s) to be analyzed
is available. However, this may not be always the case (see Section 2.3). The proposed solution was
to publish the cost functions plus the size relations among arguments to be used by the analyzers.
Another possibility is to make available the code representing the abstraction of the services so that it
can be downloaded and directly used in the analysis. Hopefully, such code can be schematic enough
not to reveal sensitive data about the actual service, but concrete enough to make inferring cost
functions possible.

3.7 An Example of Translation and Analysis

We will illustrate the process of analysis by using a description of an orchestration, translating it
into a logic program, and reasoning on the results of applying to it a resource usage analysis.

We use a representation of a process that performs part reservation, along the lines (but slightly
simplified, for space reasons) of the example used in Section 2.1. For compactness, we present the
abstract description of this orchestration in our internal representation form instead of plain BPEL
(see Figure 6). This representation contains information that is both found in the WSDL document
(data types, interface descriptions) and in the process definition itself (the processing logic).

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 12

:- entry ’service_factory->agent->reserveGroup’/4

:{gnd,num}*{gnd,num}*{gnd,’list_of_factory->partInfo’}*var.

’service_factory->agent->reserveGroup’(A,B,C,D) :-

act_1(A, B, C, 0, 0, [], D).

(a) Translation of the entry point to the process.

act_4(A, B, C, D, E, F, G, H):-

----(this is act_4:while(’$req.body/factory:partCount>0’)),

A>0, !, act_5(A, B, C, D, E, F, G, H).

act_4(_, _, _, D, E, F, _, ’, factory->resResponse’(D, E, F)).

(b) Translation of the main while loop.

act_7(A, B, C, D, E, F, G, H, _, _, _, _, M):-

----(this is act_7:invoke(factory:sales, reserveSingle, ’$p’, ’$r’)),

H=’factory->partInfo’(N, O, P, Q),

’service_factory->sales->reserveSingle’(N, O, P, Q, R),

act_8(A, B, C, D, E, F, G, N, O, P, Q, R, M).

(c) Translation of an external service invocation.

Figure 7: Translation into a logic program.

The orchestration traverses the list of parts to reserve, external factory sales service.5 If that is not
possible, or if a failure arises, a failure handler is activated that tries to cancel the reservations that
were already made before signaling failure to the client.

The translation of the orchestration produces an annotated logic program, some of whose parts
we present in Figure 3.7. Part (a) shows the translation of the entry point of the service, along with
an entry annotation that helps the analyzer understand what the input arguments are. The input
message is unfolded into the first three arguments (A, B , C), and D plays the role of y . Part (b) shows
the translation of the main while loop, and the second clause finishes the process by constructing
the answer from the current value of the response variable. Part (c) shows the translation of the
service invocation, with previous unfolding of the outgoing message, and subsequent pruning of the
response variable data tree.

The resource analysis finds out how many times some specific operations will be called during the
execution of the process. The resources we are interested in in this example are: the number of all ba-
sic activities performed (assignments, external invocations); the number of invocations of individual
part reservations (operation reserveSingle at the factory service); and the number of invocations
of reservation cancellations (operation cancelReservation at the factory service). From the num-
ber of invocations it is easy to deduce the number of messages exchanged during the execution of
the process. The results are displayed in Table 2, where the estimated upper and lower bounds are
expressed as a function of the initiating request. We differentiate explicitly two cases: one which
has the possibility of failure, in which the associated fault handling is executed, which gives wider,
more cautious estimates, and another one in which the execution is successful (i.e., without fault
generation and handling). These two cases were obtained by means of different translations which
explicitly generated or not Prolog code corresponding to the fault handling.

5This is a difference from Example 1: the orchestration does not query different factories.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 13

With fault handling Without fault handling
Resource lower bound upper bound lower bound upper bound

Basic activities 2 7×n 5×n +2 5×n +2
Single reservations 0 n n n

Cancellations 0 n −1 0 0

Note: In the above formula, n stands for the value of the input argument $req.body/factory:partCount,
taken as a non-negative integer.

Table 2: Resource analysis results for the group reservation service.

Client

S1 ub1(n)

S2 ub2(n)

SN ubN (n)

...

Part group reservation tier

Figure 8: Single-tier simulation setting.

4 An Experiment on Adaptation

We will study the effectiveness of applying our data-aware cost analysis to adaptation by simu-
lating several arrangements of service networks. We consider adaptation by means of dynamic (re-
)selection of partner services using several strategies (see later for more details). The goal is to as-
sess their relative efficiency (in terms of benefits) when considering worst-case execution scenarios,
where service executions incur maximal costs under their stated upper bounds.

In the simulations, we consider the cost in terms of number of messages exchanged. That is mean-
ingful in situations where the number of messages reflects the intensity of computation within the
service network. However, as we argued before, the concrete meaning of the cost functions is not
really relevant, and as long as they safely measure a characteristic which we want to maximize (min-
imize), the techniques and experiments herein presented can be applied to other characteristics.

We also make the realistic assumption that the selected service may be unavailable or fail to fulfill
the expected task within the limits set by the user or mandated by some Service-Level Agreement.
In both cases, we continue with the selection and invocation of the “next-best” candidate from the
partner pool. For the sake of simplicity, and although in reality failure probabilities vary from one
service to another, in each simulation we adopt a single partner failure probability p f .

Within the general setting of the car part reservation system (Section 2.1), we simulate the behavior
of two arrangements of services. The first arrangement, shown in Figure 8, is a single tier of services
that provide the reservation of particular car parts. There is a pool of N = 12 part provider services
with different resource consumption features. The client invokes one of these services to reserve n
units of a particular part type. Upper bounds for services in the pool are shown on Figure 9. For the
input range of 0 to 50 requested units, the upper bounds are a family of curves that were chosen to
maximize data-aware choice opportunities. The upper bound of the first service (marked as ub1(n)

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 14

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

ub_1(x)
ub_2(x)
ub_3(x)
ub_4(x)
ub_5(x)
ub_6(x)
ub_7(x)
ub_8(x)
ub_9(x)

ub_10(x)
ub_11(x)
ub_12(x)

lub(x)

Figure 9: Cost upper bounds for different ser-
vices, single-tier setting.

Figure 10: Single-tier simulation results for
p f = 0.

Figure 11: Single-tier simulation results for
p f = 0.5.

Figure 12: Single-tier simulation results for
p f = 0.8.

on Figure 8) is quadratic on the input size n, and has the form:

ub1(n) = An2 +B ,

Other services from the pool have linear upper bounds of the form:

ubk (n) = k ·α ·n +β
N−1∑
i=k

1

i
,

(k = 2..N) with choice ofα= 1/2 and β= 45. The underlying bold black line on Figure 9, marked with
lub, is the least upper bound for each given n in the input range — i.e., it describes the best possible
case among the more pessimistic prediction for all the available services and for each n in the data
range

The simulation uses three selection strategies: (a) a random choice of service; (b) a data-aware
cost-minimizing choice based on the input data, which selects service offering the least upper bound
for a given n; and (c) fixed preferences over services, where the cost associated to every service is a
constant corresponding to its actual cost for the input size n = 20. Each result obtained from the
simulation is the average from one hundred simulations of service invocations.

The simulation results for the single-tier setting with p f = 0 (i.e., without failure) are shown in
Figure 10. Unsurprisingly, the costs using the data-aware selection strategy closely follow the least

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 15

Client

P1

UB1(m)

P2

UB2(m)

PN

UBN (m)

Tier 1: Lot reservation

...

S1 ub1(n)

S2 ub2(n)

SN ubN (n)

Tier 2: Part group reservation

...

Figure 13: Two-tier simulation setting.
upper bound curve from Figure 9 and, naturally, it meets the fixed preferences strategy at n = 20.
Moving to the left or to the right the point chosen to create the fixed preferences would of course
make this strategy loose precision on the other end.

In terms of cost savings, the data-aware strategy is significantly better than random choice, and
also beats fixed preferences. The simulation also shows that the advantage of the data-aware strategy
is resilient to increments of the fault rate. In Figure 11, with p f = 0.5, which is a very high fault rate,
the data-aware strategy on average maintains its benefits, which are close to be lost only at very high
failure rates, such as p f = 0.8 (Figure 12). This experimental data supports the claim that taking into
account actual data when performing service selection bring substantial gains.

The second simulation arrangement, shown on Figure 13, consists of two tiers of services. The first
tier, invoked by the client, consists of services that reserve a mix of M = 5 different types of parts for
a lot of m vehicles. Each vehicle requires ci units of part type i , i = 1..M . These parts are obtained
from the second tier of part providers, which behave in the same way as in the single-tier case. The
upper bound cost (in terms of messages exchanged) UB j (m) of a lot reservation service j in the first
tier is given as:

UB j (m) = E j (m)+M +
M∑

i=1
ub∗(m · ci)

where E j (m) stands for the upper bound of the internal, structural cost of j , M is added for each
invocation of a part reservation service, and ub∗ stands for the upper bound of the cost of reserving
m · ci parts of type i . Under a data-aware selection strategy, ub∗ corresponds to the second-tier
service with lowest upper bound for the given n = m · ci that is selected by the first-tier service j . In
the experiment we took the same number of N = 12 second- and first-tier services, and varied their
structural complexity to have both the quadratic case:

E1(m) =C m2 +D ,

and linear cases:

E j (m) = j ·γ ·m +δ
N−1∑
i= j

1

i
,

(j = 2..N) with γ = 5/2 and δ = 225. Thus, the relationship between different E j (j = 1..N) is anal-
ogous to the relationship between different ubk (k = 1..N) in Figure 9. The meaning of E j is the
number of messages exchanged between the first-tier service j and entities that are either passive
(e.g., filing repositories or mail message recipients) or have a constant upper-bound cost function,
that does not depend on a particular m.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 16

In the two-tier case we also have three selection strategies. Random selection, which applies both
to invocations from the client to the first tier services, and to invocations from the first to the second
service layer. Data-aware selection works in a more sophisticated manner, in order to account for
costs incurred by services in both layers. In this particular simulation, we have taken the top-down
approach, where first-tier services are queried for their total upper bound cost, including the costs
of the second-tier services they invoke. In order to present their total upper bound cost, relative to
a particular input value of m, the first-tier services perform pre-selection, i.e., advance planning of
second-tier partner links, to which they stick if selected by the client.

Although in our case the top-down pre-selection process ends with the second-tier services, in re-
ality it can extend until it either reaches the terminal points (atomic services that do the actual work),
or detects a circular reference between services, in which case the tier-to-tier cost dependencies ef-
fectively turn into a set of recurrent relations that need to be solved using adequate mathematical
methods. However, we argue that the existence of such circularities is not common, since service
networks usually rely on back-ends of “worker” services that are atomic in the sense that they do not
rely on the invocation of other external services.

Another approach to select services based on data-related functions would be to approximate the
cost bounds of a collection of connected services with the corresponding structural costs, which do
not depend on bindings the orchestration may make. While we have explored this possibility, for
space reasons we are not reporting. It amounts to saying that the structural cost is not necessarily
a good predictor of the actual costs of a composition after partner binding and that, in any case, it
cannot be used as real upper bound as it does not provide a guarantee for the real cost function.

The third partner selection strategy in the two-tier setting is again fixed preferences over services
in both tiers. This time, we form the preference over services in the first tier by minimizing their
structural costs for the particular m = 20.

The results of the simulation for the two-tier setting and p f = 0 are shown in Figure 14. We again
notice that the data-aware top-down approach with pre-planning beats (by far this time) both the
random and fixed-preferences strategies. Again, the results are resilient to increments of the fault
rate, and tend to deteriorate only at very high failure rates (Figures 15 and 16) which, again, gives a
strong support to the use of cost functions in the cases where they can be applied.

5 Conclusions and Future Work

We have presented a resource analysis for orchestrations (using BPEL as a concrete example)
which is based on a translation into Prolog, for which cost analyzers are available, via an intermedi-
ate programming language. These analyzers can be customized to focus on user-defined resources,
thereby opening the possibility of generating cost functions for characteristics other than computa-
tion complexity, some of them relevant for SOC. As we argued and showed by simulations, automat-
ically inferring and applying these functions can be used as a core technology for some approaches
to service adaptation and matchmaking.

We sketched the core of the translation process, which approximates the behavior of the original
process network in such a way that the analysis results are valid for the original network. Our trans-
lation is partial in the sense that some issues, like correlation sets, are not yet taken into account.
A richer translation which we expect will take into account this (and other) issues is the subject of
current work.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 17

Figure 14: Two-tier simulation results for p f = 0.

Figure 15: Two-tier simulation results for
p f = 0.5.

Figure 16: Two-tier simulation results for
p f = 0.8.

Finally, we performed a series of experiments with different adaptation strategies and services
which support the usefulness of using data functions in the selection of services.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 18

A Raw data from experiments

In order for the reviewers to have all the information coming from the experiments (which we
depicted in Figures 10 to 12), we are including here tables for all the data points we generated. Note
that in the figures we are not including the plot for the case with failure 0.25 (shown in Figure 3) as it
is not very different from that for failure rate 0.5 (shown in Figure 11).

The simulation results in Figure 3 show resilience of the data-aware selection strategy in the single-
tier setting, when a significant fraction (one quarter) of service calls fails. Compared to Figure 10 with
p f = 0, the shape of cost curves does not significantly change, except that they are slightly shifted
upwards to account for repeated calls to second-best, third-best, etc. service in a row. The same
applies to Figure 11 in comparison to 14.

Single-tier simulation results with p f = 0.25.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 19

Two-tier simulation results with p f = 0.25.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 20

p f = 0.0 p f = 0.25 p f = 0.5 p f = 0.8

n rnd. fixed u.b. rnd. fixed u.b. rnd. fixed u.b. rnd. fixed u.b.

1 40 46 8 40 46 10 41 47 14 44 50 32
2 43 49 14 43 48 16 44 49 19 47 52 36
3 46 51 20 46 51 21 48 52 25 50 55 40
4 50 54 26 49 53 27 51 54 30 53 57 44
5 53 56 32 52 56 33 54 57 36 56 60 48
6 56 59 38 55 58 39 58 59 41 60 63 52
7 60 61 44 59 61 45 61 62 47 63 65 56
8 63 64 50 62 63 50 64 64 52 66 68 60
9 66 66 55 65 66 56 68 67 57 69 71 64

10 70 69 59 69 68 60 71 69 62 72 73 68
11 73 71 62 72 71 63 74 72 65 76 76 71
12 76 74 65 75 74 66 78 75 69 79 79 75
13 80 76 68 79 76 70 81 77 73 82 82 78
14 83 79 71 82 79 73 85 80 76 86 84 81
15 87 81 75 85 81 77 88 83 80 89 87 85
16 90 84 79 89 84 80 92 86 83 92 90 88
17 94 86 83 92 87 84 95 88 87 96 93 92
18 97 89 87 96 89 88 99 91 90 99 96 95
19 101 91 91 99 92 92 102 94 94 103 99 99
20 104 94 94 103 95 95 106 97 97 106 101 101
21 108 96 96 106 97 97 109 100 99 110 104 104
22 111 99 99 110 100 100 113 103 102 113 107 107
23 115 101 101 113 103 102 117 105 104 117 110 110
24 119 104 103 117 106 104 120 108 107 120 113 113
25 122 106 105 120 108 106 124 111 109 124 116 116
26 126 109 107 124 111 108 127 114 111 127 120 119
27 130 111 109 128 114 110 131 117 113 131 123 122
28 133 114 111 131 117 112 135 120 115 135 126 125
29 137 116 113 135 120 114 139 123 117 138 129 127
30 141 119 115 139 122 116 142 126 119 142 132 130
31 144 121 116 142 125 118 146 130 121 146 135 133
32 148 124 118 146 128 119 150 133 123 149 138 136
33 152 126 119 150 131 121 154 136 125 153 142 139
34 156 129 121 154 134 123 157 139 127 157 145 142
35 159 131 122 157 137 124 161 142 128 161 148 144
36 163 134 124 161 140 126 165 145 130 164 151 147
37 167 136 125 165 142 127 169 149 132 168 155 150
38 171 139 127 169 145 129 173 152 134 172 158 153
39 175 141 128 173 148 130 177 155 135 176 161 156
40 179 144 130 177 151 132 181 158 137 180 165 159
41 183 146 131 181 154 133 184 162 139 184 168 161
42 187 149 133 185 157 135 188 165 140 188 172 164
43 191 151 134 188 160 136 192 168 142 191 175 167
44 195 154 136 192 163 138 196 172 144 195 178 169
45 198 156 137 196 166 139 200 175 145 199 182 172
46 202 159 138 200 169 141 204 179 147 203 185 175
47 207 161 139 205 172 142 208 182 148 207 189 177
48 211 164 140 209 175 143 212 185 150 211 192 180
49 215 166 141 213 178 144 216 189 151 215 196 183
50 219 169 142 217 181 145 221 192 153 219 200 185

Table 3: The simulation data for the single-tier setting.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 21

p f = 0.0 p f = 0.25 p f = 0.5 p f = 0.8

n rnd. fixed u.b. rnd. fixed u.b. rnd. fixed u.b. rnd. fixed u.b.

1 276 309 113 277 308 123 285 316 142 377 374 262
2 327 349 206 330 349 214 337 356 229 432 418 335
3 379 389 278 384 390 287 391 397 303 488 463 404
4 432 429 345 440 431 353 445 439 367 544 510 469
5 487 469 403 496 473 410 500 483 424 602 558 517
6 542 509 452 553 515 459 556 527 473 660 608 571
7 599 549 495 611 557 503 613 574 518 719 659 623
8 657 589 536 670 600 543 671 622 560 779 712 678
9 717 629 575 731 643 582 730 671 600 840 766 725

10 777 669 606 792 687 615 790 721 636 901 822 768
11 839 709 632 854 731 642 850 773 668 964 879 814
12 902 749 656 917 776 669 912 826 699 1027 938 859
13 967 789 680 981 820 695 974 881 730 1091 998 905
14 1032 829 704 1047 866 721 1037 937 760 1156 1059 950
15 1099 869 729 1113 911 747 1102 994 790 1221 1122 995
16 1167 909 752 1180 958 772 1167 1053 819 1288 1187 1040
17 1236 949 775 1248 1004 797 1233 1113 848 1355 1253 1085
18 1307 989 799 1317 1051 823 1300 1174 878 1424 1321 1130
19 1378 1029 822 1388 1098 848 1367 1237 907 1493 1390 1182
20 1451 1069 842 1459 1146 870 1436 1301 934 1563 1460 1215
21 1525 1109 862 1531 1194 892 1506 1366 961 1633 1532 1283
22 1601 1149 882 1604 1242 914 1576 1433 988 1705 1606 1328
23 1677 1189 901 1678 1291 936 1648 1502 1014 1777 1680 1374
24 1755 1229 919 1754 1340 956 1720 1571 1040 1851 1757 1435
25 1834 1269 937 1830 1390 977 1793 1642 1066 1925 1835 1481
26 1914 1309 955 1907 1440 998 1868 1715 1091 2000 1914 1526
27 1996 1349 973 1985 1491 1018 1943 1788 1117 2075 1995 1576
28 2079 1389 991 2064 1542 1039 2019 1863 1142 2152 2077 1622
29 2163 1429 1009 2145 1593 1059 2096 1940 1167 2229 2161 1669
30 2248 1469 1027 2226 1644 1080 2173 2018 1193 2307 2246 1715
31 2334 1509 1044 2308 1697 1099 2252 2097 1218 2386 2333 1684
32 2422 1549 1061 2391 1749 1119 2332 2178 1243 2466 2421 1728
33 2511 1589 1078 2475 1802 1139 2412 2260 1267 2547 2511 1773
34 2601 1629 1095 2561 1855 1159 2494 2343 1292 2629 2602 1818
35 2692 1669 1112 2647 1909 1178 2576 2428 1317 2711 2695 1860
36 2785 1709 1129 2734 1963 1198 2659 2514 1342 2794 2789 1906
37 2879 1749 1146 2822 2017 1218 2743 2601 1367 2878 2885 1952
38 2974 1789 1163 2911 2072 1237 2828 2690 1391 2963 2982 1998
39 3070 1829 1180 3001 2128 1257 2914 2780 1416 3049 3081 2098
40 3168 1869 1197 3093 2183 1276 3001 2872 1440 3135 3181 2145
41 3266 1909 1214 3185 2239 1296 3089 2965 1465 3223 3282 2192
42 3366 1949 1231 3278 2296 1315 3177 3059 1490 3311 3385 2240
43 3468 1989 1248 3372 2353 1335 3267 3154 1514 3400 3490 2288
44 3570 2029 1265 3467 2410 1354 3357 3252 1539 3490 3596 2336
45 3674 2069 1282 3564 2468 1374 3449 3350 1563 3581 3703 2384
46 3779 2109 1298 3661 2526 1393 3541 3450 1587 3672 3812 2433
47 3885 2149 1314 3759 2584 1411 3634 3551 1612 3765 3923 2481
48 3992 2189 1330 3858 2643 1430 3728 3653 1636 3858 4035 2530
49 4101 2229 1346 3958 2702 1449 3823 3757 1660 3952 4148 2579
50 4210 2269 1362 4060 2762 1468 3919 3862 1684 4047 4263 2628

Table 4: The simulation data for the two-tier setting.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 22

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost Relation Systems: a Language–Independent
Target Language for Cost Analysis. In Spanish Conference on Programming and Computer Lan-
guages (PROLE’08), volume 17615 of ENTCS. Elsevier, October 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Ramírez, and D. Zanardini. The COSTA cost and
termination analyzer for java bytecode and its web interface (tool demo). In Anna Philippou,
editor, 22nd European Conference on Object-Oriented Programming (ECOOP’08), July 2008.

3. Mohammad Alrifai and Thomass Risse. Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition. In International World Wide Web Conference, pages
881–890. ACM, April 2009.

4. J. Cardoso. About the Data-Flow Complexity of Web Processes. In 6th International Workshop on
Business Process Modeling, Development, and Support: Business Processes and Support Systems:
Design for Flexibility, pages 67–74, 2005.

5. J. Cardoso. Complexity analysis of BPEL web processes. Software Process: Improvement and
Practice, 12(1):35–49, 2007.

6. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions on Programming
Languages and Systems, 15(5):826–875, November 1993.

7. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.
In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages
174–188. ACM Press, June 1990.

8. S. K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation
for Logic Programs. In 1997 International Logic Programming Symposium, pages 291–305. MIT
Press, Cambridge, MA, October 1997.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program Debugging, Ver-
ification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140, October 2005.

10. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J.F. Morales, and G. Puebla. An Overview of The
Ciao Multiparadigm Language and Program Development Environment and its Design Philoso-
phy. In Jose Meseguer Pierpaolo Degano, Rocco De Nicola, editor, Festschrift for Ugo Montanari,
number 5065 in LNCS, pages 209–237. Springer-Verlag, June 2008.

11. D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guízar, N. Kartha, C. Kevin Liu, R. Khalaf, D. König, M. Marin, V. Mehta, S. Thatte,
D. van der Rijn, P. Yendluri, and A. Yiu. Web Services Business Process Execution Language Ver-
sion 2.0. Technical report, IBM, Microsoft, BEA, Intalio, Individual, Adobe Systems, Systinet, Ac-
tive Endpoints, JBoss, Sterling Commerce, SAP, Deloitte, TIBCO Software, webMethods, Oracle,
2007.

12. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the Anal-
ysis of Object-Oriented Programs. In 17th International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR 2007), number 4915 in LNCS, pages 154–168. Springer-
Verlag, August 2007.

Report No. CLIP 5/2009.0 November, 2009

Towards Data-Aware Cost-Driven Adaptation 23

13. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage Bounds Anal-
ysis for Java Bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification, Anal-
ysis and Transformation (BYTECODE’09), Electronic Notes in Theoretical Computer Science. El-
sevier - North Holland, March 2009.

14. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-Definable Resource Bounds Anal-
ysis for Logic Programs. In International Conference on Logic Programming (ICLP), volume 4670
of LNCS, pages 348–363. Springer-Verlag, September 2007.

15. Á. Rebón Portillo, K. Hammond, H-W. Loidl, and P. Vasconcelos. Cost Analysis Using Auto-
matic Size and Time Inference. In Proceedings of the International Workshop on Implementa-
tion of Functional Languages, volume 2670 of Lecture Notes in Computer Science, pages 232–247,
Madrid, Spain, September 2002. Springer-Verlag.

16. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The
Worst-Case Execution-Time Problem – Overview of Methods And Survey of Tools. ACM Trans-
actions on Embedded Computing Systems, 7(36), 2008.

Report No. CLIP 5/2009.0 November, 2009

