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Abstract. State variables, loops, and other features of imperative pro-
gramming languages can bring coding simplification for certain program-
ming idioms that are more cumbersome to express recursively. Because of
this, some logic programming systems have incorporated various impera-
tive constructs. FSyntax is a syntactic approach to supporting functional
notation in Prolog systems which is based on the use of the syntax and
term expansion facilities of the language. Hiord is also a syntactic ap-
proach to supporting higher-order in Prolog, building on call/n, and
adding other features such as anonymous predicates. Both are used ex-
tensively, for example, in the Ciao Prolog system. In this paper, we pro-
pose a number of imperative-style constructs based on extending FSyntax
and Hiord. These extensions are designed to combine nicely with the ba-
sic functional notation and the higher-order facilities, as well as with
other extensions, such as constraints. In contrast to other proposals, our
approach provides a set of primitives and a higher-level mechanism that,
together, allow users to easily extend the language with features such as
array notation, state variables, loops, etc. We illustrate the approach by
defining a set of such features and using them to translate idiomatically
in imperative style a large collection of small but interesting programs
from the Euler Project, for which imperative-style implementations are
available in multiple languages. We also show that the approach offers
competitive performance.

Keywords: Imperative Constructs in Declarative Languages; Syntactic
Extensions; Logic and Functional Programming; Higher Order; Prolog.

1 Introduction

Declarative programming allows for the efficient development of complex soft-
ware systems while also helping in achieving correctness and safety. However, for
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run ▶:- module(_, _, [functional]).

primes(Limit) := ~sift(~integers(2, Limit)).

integers(Low, High) := ( Low =< High ? [Low | ~integers(Low+1, High)] | [] ).

sift([]) := [].
sift([I|Is]) := [I | ~sift( ~remove(Is, I)) ].

remove([], _) := [].
remove([I|Is], P) := ( I mod P =\= 0 ? [I | ~remove(Is, P)] | ~remove(Is, P) ).

Fig. 1: Classical declarative example for computing primes in Prolog + FSyntax.

certain problems, it can sometimes be easier or more convenient for the program-
mer to use syntactic constructs and features borrowed from other programming
paradigms. For example, FSyntax [5] is a syntactic approach to supporting func-
tional notation in Prolog systems which is based on the use of the syntax and
term expansion facilities of the language. Hiord [3] is also a syntactic approach
to supporting higher-order in Prolog, building on call/n. Together they bring
in the syntactic convenience of functional and higher-order constructs and both
are used extensively in the Ciao Prolog system [10]. In this paper our focus is
instead (or, more precisely, in addition to) on convenient syntactic constructs
from imperative programming. For example, state variables and loops are im-
portant features of imperative programming languages that can bring coding
simplification for certain algorithms that are more cumbersome to express us-
ing recursion and single assignment. Also, descriptions of algorithms in papers
and textbooks are most often presented using imperative pseudocode, contain-
ing loops and other imperative constructs. Such algorithms can be implemented
in logic languages using recursion, frequently rather elegantly, but this encoding
can also in some cases be awkward and/or blur the correspondence with the
original algorithm description.

Consider, for example, the Sieve of Eratosthenes algorithm for computing
primes (we will refer to it simply as Eratosthenes’ algorithm). It is a classic
example in both functional and logic programming, where it is typically pre-
sented in an elegant recursive form. Figure 1 shows a version of this classic
encoding, using the FSyntax package in Ciao Prolog. 4 Note that FSyntax al-
lows tilde-annotated predicates to be written in function application style, e.g.,
Z = ~p(~sort(X)) is expanded to sort(X,Y), p(Y,Z).

This program is relatively simple, and arguably illustrates the elegance of
declarative programming. Unfortunately, this classic encoding does not imple-
ment Eratosthenes’ algorithm, but rather a naive algorithm known as trial di-
vision (see O’Neill [14]). If we want to implement the actual algorithm by Er-
atosthenes, we can perhaps turn to the Wikipedia, which provides a description
of the algorithm in imperative pseudocode, shown in Figure 2. This algorithm

4 This is the classical eager version. For completeness, a lazy version (from [5]) is
shown in Figure 7, which is essentially the same as in lazy functional languages.
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input: integer N > 1
output: list of prime numbers from 2 to N

A = array with index from 2 to N with all the values set to True

for i = 2,3, ..., sqrt(N) do
if A[i] == True

for j = i*i, i*i + i, i*i + 2i, ... below or equal to N do
A[j] = False

return list with all k where A[k] is True

Fig. 2: Eratosthenes’ algorithm in pseudocode (based on Wikipedia).

run ▶:- module(_, _).
:- use_module(library(logarrays)).

primes(N,Res) :-
new_array(A), % Initialize an extendable array
To is floor(sqrt(N)), % Just need to go to sq root of n
complete_sieve(2,To,N,A,CompleteSieve), % Complete the sieve
% Create a list with the primes
take_primes(2,N,CompleteSieve ,Res).

complete_sieve(Curr,To,_N,Sieve,RSieve):-
Curr > To, !, RSieve = Sieve.

complete_sieve(Curr,To,N,Sieve,RSieve) :- % If it is marked (0) it is not prime
aref(Curr,Sieve,_El), !,
NewCurr is Curr + 1,
complete_sieve(NewCurr,To,N,Sieve,RSieve).

complete_sieve(Curr,To,N,Sieve,RSieve) :- % Gets here if it is not marked (0)
From is Curr * Curr,
set_multiples(From,Curr,N,Sieve,Sieve1), % Mark with 0 multiples of a prime
NewCurr is Curr + 1,
complete_sieve(NewCurr,To,N,Sieve1,RSieve).

set_multiples(Curr,_Step,To,Sieve,RSieve) :-
Curr > To, !, RSieve = Sieve.

set_multiples(Curr,Step,To,Sieve,RSieve) :-
aset(Curr,Sieve,0,Sieve1),
NewCurr is Curr + Step,
set_multiples(NewCurr,Step,To,Sieve1,RSieve).

take_primes(Curr,N,_Sieve,Res) :-
Curr > N, !, Res = [].

take_primes(Curr,N,Sieve,Res) :- % If it is marked (0) it is not prime
aref(Curr,Sieve,_El), !,
NewCurr is Curr + 1,
take_primes(NewCurr,N,Sieve,Res).

take_primes(Curr,N,Sieve,Res) :- % Not marked (0): add it to Res
Res = [Curr| Rest],
NewCurr is Curr + 1,
take_primes(NewCurr,N,Sieve,Rest).

Fig. 3: Eratosthenes, direct Prolog coding, using expandable, logarithmic arrays.

can be coded in standard Prolog (see, e.g., Figure 3), but the result is not very
compact and can feel a bit awkward. A version coded using again FSyntax is
shown in Figure 4. In these two cases we have used the logarrays library of
expandable, logarithmic arrays. Other array implementations provide different
performance/flexibility trade-offs. For example, a version using (arbitrary arity)
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run ▶:- module(_, _, [functional]).
:- use_module(library(logarrays)).

primes(N) := Res :-
complete_sieve(2,~floor(sqrt(N)),N,~new_array ,CompleteSieve),
take_primes(2,N,CompleteSieve ,Res).

complete_sieve(Curr,To,N,Sieve) :=
( Curr > To ? Sieve
| aref(Curr,Sieve,_El) ? ~complete_sieve(Curr+1,To,N,Sieve)
| ~complete_sieve(Curr+1,To,N,~set_multiples(Curr*Curr,Curr,N,Sieve)) ).

set_multiples(Curr,Step,To,Sieve) :=
( Curr > To ? Sieve
| aset(Curr,Sieve,0,Sieve1) ? ~set_multiples(Curr+Step,Step,To,Sieve1) ).

take_primes(Curr,N,Sieve) :=
( Curr > N ? []
| aref(Curr,Sieve,_El) ? ~take_primes(Curr+1,N,Sieve)
| [Curr| ~take_primes(Curr+1,N,Sieve)] ).

Fig. 4: Eratosthenes’ algorithm in Prolog + FSyntax.

run ▶:- module(_, _, [functional]).

primes(N) := Res :-
A = ~functor(~,a,N),
complete_sieve(2,~floor(sqrt(N)),N,A),
take_primes(2,N,A,Res).

complete_sieve(Curr,To,N,Sieve) :-
Curr > To -> true
; arg(Curr,Sieve,El), nonvar(El) -> complete_sieve(Curr+1,To,N,Sieve)
; set_multiples(Curr*Curr,Curr,N,Sieve), complete_sieve(Curr+1,To,N,Sieve).

set_multiples(Curr,Step,To,Sieve) :-
( Curr > To -> true
; arg(Curr,Sieve ,0), set_multiples(Curr+Step,Step,To,Sieve) ).

take_primes(Curr,N,Sieve) :=
( Curr > N ? []
| arg(Curr,Sieve,El), nonvar(El) ? ~take_primes(Curr+1,N,Sieve)
| [Curr | ~take_primes(Curr+1,N,Sieve)] ).

Fig. 5: Eratosthenes’ algorithm in Prolog, using FSyntax, and terms for arrays.

terms and arg/3 for the arrays is shown in Figure 5. The performance of this
version, in the default bytecode grade, is comparable to that of the equivalent
Python version, shown in Figure 6.

The versions of Figures4 and 5 are arguably more compact and elegant than
that of Figure 3, but they still suffer from some of the previously mentioned
issues. In particular, the correspondence with the original pseudocode is not ob-
vious, at least to the untrained eye.5 This brings us back to the idea that there
are cases where incorporating syntactic features from imperative programming
can bring programmer convenience and in general potentially also contribute to
5 Note that coding the actual Eratosthenes algorithm in a lazy functional language is

not trivial, as shown by O’Neill [14], and suffers from the same issues.
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import math

def primes(n):
# Initialize the array with n+1 values to access until index n
a = [True] * (n+1)

# The loop goes until the square root of n
to = math.floor(math.sqrt(n))

# We cross out the non primes
for i in range(2,to+1):

if a[i]: # If a[i] is prime we cross out its multiples
for j in range(i*i,n+1,i):

a[j] = False

# We take the primes from the sieve and put them into a list
result = []
for k in range(2,n+1):

if a[k]:
result.append(k)

return result

Fig. 6: Eratosthenes’ algorithm, in Python.

run ▶:- module(_, _, [fsyntax, lazy]).

:- use_module(library(lazy/lazy_lib), [take/3, nums_from/2]).

:- lazy fun_eval cut/1.
cut([]) := [].
cut([H | T]) := [H | ~cut(~cut_(T, H))].

:- lazy fun_eval cut_/2.
cut_([], _) := [].
cut_([H2 | T], H1) := R :-

R = ( H2 mod H1 > 0 ? [H2 | ~cut_(T, H1)] | ~cut_(T, H1) ).

:- lazy fun_eval primes/0.
primes := ~cut(~nums_from(2)).

test_primes(N) := ~take(N, ~primes).

Fig. 7: Classical declarative example for computing primes (trial division): lazy
version, using FSyntax. Note that N here is the number of primes computed.

the wider adoption of declarative languages. Also, depending on their semantics,
the use of loops and other imperative constructs can sometimes help static ana-
lyzers by providing implicit information such as determinacy, non-failure, modes,
types, and bounds on the number of times the loops are executed, which can be
useful, e.g., for cost and complexity analysis.

Motivated by this, and building on the FSyntax and Hiord functional nota-
tion and higher-order facilities, we develop a set of primitives and a higher-level
mechanism that together allow users to easily and selectively extend the language
with imperative features. This generalization of FSyntax, which we call xsyntax,
also allows more fine-grained control of the different extension components, so
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that they can be activated and deactivated selectively at a finer granularity level:
e.g., being able to use state variables without enabling functional notation. We
also propose within xsyntax a notation facility, a convenience built over the
expansion mechanisms of [2] that allows easily defining replacements for given
term patterns.

Related work: Regarding the declarative representation of state, Definite
Clause Grammars (DCGs), can be used to represent, thanks to their implicit ar-
guments, both the previous and next state of a variable. DCGs can be extended
to track multiple variables by encapsulating them in a single structure, but this
can be difficult to manage. To address this, extended DCGs were introduced
by Peter Van Roy [15], which allow simultaneous updates to multiple variables.
However, EDGCs are still a comparatively less intuitive method for state man-
agement. A more direct approach is offered by languages like Picat [21,22], which
uses the := operator for updating state variables. Mercury uses the ! notation to
denote state variables and automatically expands variables into two to represent
the state before and after a state change [9]. In addition to state variables, logic
programming systems often support some form of mutable variables and/or the
setarg/3 primitive, which allows destructive updates to term arguments. This
is typically used for localized updates to large data structures—such as array
assignments– rather than for tracking the state of individual variables. However,
this kind of destructive assignment is at odds with the declarative nature of
logic programming, as it complicates the semantics significantly. Also monads,
originally from functional programming, offer a structured way to manage state
changes while preserving declarative semantics, somewhat related to DCGs. For
example the functional-logic language Curry [8] uses monads to handle effects
like I/O. The addition of monadic abstractions to Prolog via higher-order exten-
sions and syntactic transformations has received some attention [12]. However,
monads are arguably a less natural solution in logic programming.

A number of multiparadigm programming languages exist that integrate fea-
tures from logic-, functional-, constraint-, or imperative programming. Alma-
0 [1] was one of the first approaches, where imperativeness (as an extension
of Modula-2) played a very prominent role, whereas newer proposals start as us
from a declarative programming foundation. Some of these proposals are entirely
new languages, rather than extensions of Prolog, in contrast to our approach.
For example, Picat, in addition to the previously mentioned state variables, also
incorporates two types of loops and array access notation [22]. MiniZinc [13,18]
is a popular modeling language for combinatorial problems. It provides a loop
construct which can be used to place constraints that depend on the loop bounds
in a natural and regular way.

Returning to approaches based on extending Prolog with new syntactic con-
structs, as in our proposal, apart from the already mentioned Hiord and FSyntax
extensions in Ciao Prolog, for instance ECLiPSe introduces logical loops as a
language extension [17], and array notation, although it does not include state
variable support. SICStus [4] has traditionally supported setarg/3 and later
incorporated mutables. XSB [19] also supports setarg/3 and has an array facil-
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ity. SWI [20] has global variables (also supported by Yap [16]) and some other
extensions. François Fages has developed a mathematical modeling library for
Prolog [6], inspired by MiniZinc. This library brings constraint modeling capa-
bilities to Prolog with a mathematical focus. It includes the forall loop notation,
which, like MiniZinc, is limited to verifying that a constraint holds across all
iterations and does not support state variables. To the best of our knowledge,
none of the current Prolog-based systems integrate all of the features that we
address herein or use the compositional approach proposed.

2 Core primitives and their translations

This section introduces and describes the primitives and translations used in our
approach, without committing yet to a specific syntax, as the building blocks
that later will be used to define specific notations in user programs. In order to
combine imperative constructs with other expansions, our approach introduces
a generalization of FSyntax, called xsyntax that coordinates the expansion of
all the primitives above, and performs a controlled fine-grained expansion of no-
tations. A design objective is to be able to use one extension, like state variables,
without necessarily having to use another, like functional notation.

The following sections describe all the primitives and their translations. We
begin with closures, anonymous predicates that capture variables from their
environment; follow with state variables, abstractions of logical mutable updates
using threaded variables; and finally address loop constructs, code that iterates
while a condition is met.

2.1 Higher-Order and closures

The Hiord extension (hiord package) enables higher-order untyped logic pro-
gramming, allowing the declaration of anonymous predicates and closures in
term positions. A closure is simply a predicate that captures variables from its
surrounding environment. As an instrumental part of this work, we have re-
worked and enhanced the Hiord closures in two ways, referring to this extended
version as hiordx. In particular, we have extended the declaration of captured
variables, so that, in addition to specifying which variables are shared (already
possible in Hiord), we can also declare non-shared variables, as follows:

P = {[ShVars] -> ’ ’(A1 , . . . ,An) :- Body} (1)
P = {-[NonShVars] -> ’ ’(A1 , . . . ,An) :- Body} (2)
P = {’ ’(A1 , . . . ,An) :- Body} (3)

The closure syntax (1) specifies positive sharing, where none of the par-
ent environment variables are captured, except those listed as shared variables
(ShVars). In contrast, syntax (2) specifies negative sharing, where all parent
environment variables are captured, except those listed as non-shared variables
(NonShVars). Finally, syntax (3) specifies default sharing, that is equivalent to
the negative sharing of all variables from the terms in head arguments, which
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is a useful convention in practice. Other enhancements of hiordx with respect
to Hiord concern performance. In particular, the translation generates auxil-
iary predicates as needed, rather than higher-order callable terms, so that no
run-time overhead is incurred from declaring anonymous predicates.

Translation of closures: Syntactic closures, which can appear in arbitrary
term positions (in curly braces), are first translated to an internal literal repre-
sentation by xsyntax. 6 This internal representation is then handled by another
translation step, which we will refer as xcontrol, to compute the actual shared
variables required in the closure, resulting only in a positive sharing list. Note
that although positive sharing can be easily implemented as a goal-local transla-
tion step, negative or default sharing requires keeping track of variable lifetimes.
This can be complex in the presence of other closures or control structures.
Our implementation reuses the same lifetime tracking algorithm that computes
shared variables in if-then-elses, disjunctions, and negated goals in the compiler,
which annotates for each variable if it appears in more than one scope.

We have also included two new optimizations beyond those in the original
Hiord implementation:

– Once the translation process has left only positive sharing closures given by
the literal (P = {[ShVars] -> ’ ’(A1 , . . . ,An) :- Body}), these are ex-
panded as P = auxpred(ShVars), with auxpred a fresh different name, and
a new clause ‘auxpred(ShVars,A1 , . . . ,An) :- Body.’, 7, so that P can be
called as usual with call/n

– In some cases, the (auxiliary) predicate referenced by a closure may be known
statically when using call/n. In general, this requires global program analy-
sis, but in certain cases (such as those for loops we will see) the propagation
is quite simple. In those cases, the compiler can completely translate the
code into static calls, without needing to create a closure term or perform a
dynamic call.

The use of negative and default sharing closures to manage variable scopes
will be essential to simplify the introduction of the loop control structures. More-
over, the optimization of closure compilation, in addition to having value on its
own, also makes the implementation of efficient loop constructs easier.

2.2 State variables

State variables provide a means to model state transitions in a purely declar-
ative fashion, representing and managing mutable state by explicitly threading
state values through predicates as additional input and output arguments. As
mentioned in the introduction, this concept is closely related to Definite Clause
6 This also ensures that other expansions, such as functional notation, are performed

at the correct step.
7 For clarity of presentation, the actual translation shuffles arguments at call time

(using a dedicated internal functor for closures) to preserve first-argument indexing,
which is assumed for predictable performance in Ciao.
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Grammars (DCGs) in Prolog and has been generalized as Extended DCGs to
allow tracking multiple states. However, in this work we adopt a more convenient
syntax based on the state variables of Mercury [9].

We now briefly introduce the syntax and semantics of such state variables.
Given a state variable (S) passed as an argument (denoted as !S, e.g., p(!S)),
each predicate receives the current version of the variable as input (a logical
variable) and returns an updated version as output (e.g., p(S0,Sn), where n is
the last version number of the variable in the clause body). Similarly, each body
literal can refer to the current version of the state variable (e.g., p(S) as p(Sk),
where k is the current version of the variable), or call a predicate that performs
an update (e.g., p(!S) as p(Sk, Sk+1)). The sequence of variable versions repre-
sents the sequence of updates for that variable. Usually an assignment operator
is provided as a special literal that just performs an update (e.g., S := V as Sk+1

= V).
Similar to the treatment of closures, the user-level syntax for state variables

is delegated to the xsyntax package, which is customized to transform high-level
constructs into a set of intermediate primitives. These primitives are processed
later by the xcontrol translation phase, responsible for managing versions of
state variable across control structures.

Syntactic lowering: As mentioned before, this first phase is performed by
xsyntax, which specializes in expanding terms to give them a meaning. It de-
fines the syntax for representing and modifying state and performs the following
transformations:

– The syntax !X as an argument of a structure is expanded as a pair of
arguments X◦, X• (read as “before X” and “after X”) that represents the
initial version and updated versions of the state variable, respectively.

– The goal X :=V , denoting an imperative assignment of state variable X to
value V (which itself can be a logical variable), is translated into the form X•
= V. That is, the unification of the update version of X with V.

Translation of state variables: The translation of state variables is per-
formed as part of the xcontrol phase. We introduce some notation to describe
this process. Let Γ be a state variable environment mapping each state vari-
able to a (logical) variable representing its current state; Γ (S) obtains the value
(logical variable) for S in the environment; Γ [S 7→ V ] obtains a new environ-
ment where the value for S is updated to V . The environment is initialized with
all the state variables in the clause (including variables in the head and other
state variables appearing in the body). We define a translation for terms and
goals TJtK(Γ ) = (t′, Γ ′), where t is a term or goal, t′ is its translated form, Γ is
the initial environment, and Γ ′ is the resulting environment. This translation is
then applied to the clause body. Note that at this point other notations (such
as functional notation) have already been expanded by xsyntax.
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The translation of terms or literals (except conjunctions and disjunctions and
other control structures) is as follows:

TJtK(Γ ) = (t′, Γ ′) where:
Γ ′ = Γ [X 7→ new-fresh-var | X• occurs in t]

t′ = t with all X◦ replaced by Γ (X), and all X• replaced by Γ ′(X)

The translation of control structures is as follows. Conjunctions are translated
by sequentially threading the environments:

TJG1, G2K(Γ ) = ((G′
1, G′

2), Γ2)

where (G′
1, Γ1) = TJG1K(Γ ),

(G′
2, Γ2) = TJG2K(Γ1)

Treatment of disjunctions is more involved. The translation processes each
branch individually, applying updates based on the environment at the disjunc-
tion point. After translating both branches, their resulting environments are
unified. Specifically, if a state variable is updated in both branches, it unifies the
two resulting states. If the state variable is updated in only one branch, it adds
a new clause to the other branch that unifies the current state of the first branch
with the environment at the disjunction point:

TJG1 ; G2K(Γ0) = ((G′
1, U ; G′

2, U), Γ ′)

where (G′
1, Γ1) = TJG1K(Γ0),

(G′
2, Γ2) = TJG2K(Γ0),

(U, Γ ′) = Join(Γ1, Γ2, Γ0)

The join operator Join(Γ1, Γ2, Γ0) = (U, Γ ′) is defined as follows. For each
variable X, Γi(X) = xi, and:

– If x1 = x2: set Γ ′(X) = x1 and emit no unification.
– If x1 ̸= x2: introduce fresh x′, set Γ ′(X) = x′, and emit unifications x′ = x1,

x′ = x2.
– U is the conjunction of all such unifications.

2.3 Loops

In declarative languages, loops are not primitive constructs but must be encoded
using recursion. The purpose of loop syntax is to provide a more natural and
expressive way of modeling iteration, often involving mutable state variables
that evolve across iterations. In this section we define a general-purpose logical
loop construct as a building block (purely internal, and not exposed to the user),
without committing to any fixed concrete syntax. As for previous primitives, the
concrete user-level syntax will be handled by an xsyntax expansion, but for the
case of loops, this will be described in more detail in Section 3.

10



Primitive loop construct: A loop ’$loop’(Vars, Init, Cond, Goal) con-
sists of the following components:
– A set of iteration variables, scoped to each iteration.
– An initialization goal, evaluated once before the loop starts.
– A condition, tested at the beginning of each iteration.
– A body goal, executed if the condition holds, also must prepare state for the

next iteration.

Operationally, the loop executes the initialization first, and then repeatedly: it
checks the condition, and if true, executes the body, prepares the state for the
next iteration, and loops again. When the condition fails, the loop terminates.
This corresponds to the recursive schema:

«begin» :- Init, «body».
«body» :- (Cond -> Goal, «body» ; true).

Note that the use of “->” in the schema implicitly introduces a cut. We addi-
tionally support pairs of conditions with the syntax posneg(PosCond, NegCond),
that is then expanded into the following pure recursive schema.

«begin» :- Init, «body».
«body» :- (NegCond ; PosCond,Goal, «body»).

Note that such a recursive schema without cut is more convenient for some use
cases, such as when using breadth-first and other search strategies, program
analyses or transformations, running “backwards” (supporting several modes),
etc.

Translation of loops: Translation of loops requires identifying all the state
variables involved during iterations. This is performed in the xcontrol step as
part of the variable lifetime analysis. Loop constructs are annotated as:

$shloop(Vars, StLoopVars, Init, Cond, Goal)

where StLoopVars is the set of state variables (S1, . . ., Sn) potentially updated
within the loop.

The final loop form is finally translated to nested closures, where each closure
introduces its own scope and versioned state variables. These closures are then
statically compiled into plain predicates (similary for the pure recursive schema):

Begin = {
’’(!S1, ..., !Sn) :-
Init,
Body = {
-[Vars] -> ’’(!S1, ..., !Sn) :-
( Cond -> Goal, Body(!S1, ..., !Sn) ; true )

},
Body(!S1, ..., !Sn)

},
Begin(!S1, ..., !Sn).
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Each closure introduces new versions of the state variables through the trans-
formation rules described in Section 2.2. Since each iteration forms a distinct
scope, proper versioning and unification of state is required to maintain cor-
rectness. The use of negative-sharing in Body ensures that the marked iteration
variables are independent through recursive invocations.

Once transformed into this canonical form, the hiordx translation (see Sec-
tion 2.1) eliminates the closures via specialization, resulting in efficient (as hand-
written recursions), statically compiled code that faithfully implements the loop
semantics in a declarative setting.

3 Defining a concrete imperative syntax

As mentioned before, in our proposal, we make an explicit separation between
the higher-level syntactic constructs and the core primitives (such as closures,
state variables, and loops) necessary to define such constructs in a coherent and
composable way that fits in a logic programming setting. Following this idea,
this section presents an example concrete proposal for imperative syntax, built
on top of the previous primitives, and the xsyntax expansions.

More flexible notation: FSyntax allows customization of expansions us-
ing the fun_eval declaration. For example, :- fun_eval arith(true) en-
ables the evaluation of arithmetic functors (in a module or module context)
as Prolog arithmetic functions (p(A+B) expands to X is A+B, p(X)), or :-
fun_eval append/3 enables functional expansion of, e.g, p(append([1],[2]))
to append([1],[2],X), p(X) without having to explicitly annotate the expan-
sion (i.e., without the ~ in p(~append([1],[2]))). In xsyntax we offer a richer
customization. First, it is possible to select different arithmetic evaluations.
For example, :- fun_eval arith(clpfd) expands p(A+B) as X #= A+B, p(X),
which is convenient for constraint modeling, running imperative code backwards,
etc. Another notable addition is the possibility of defining notation patterns
with :- notation(Pattern, T), where all occurrences that match Pattern are
replaced by T (the “notation” name is intended to evoque the process of in-
troducing notation in mathematical text). For example, :- notation(X ∈ Ls,
member(X,Ls)) expands X ∈ [1,2,3] to member(X, [1,2,3]). Note that these
declarations are just user-definable notational aids which do not change the un-
derlying semantics of Prolog. They are a user-friendly convenience built over
the more traditional (and also more powerful) term expansion mechanisms –in
particular, those of [2]. This notation facility will be useful in what follows to
easily map the higher-level imperative constructs to the lower level primitives.

Array notation: Arrays are a fundamental data structure in programming,
especially in imperative languages. They also offer a natural way to represent
mathematical objects such as vectors, matrices, or functions over finite domains,
which are useful in modeling constraints or mathematical problems. We use the
previously introduced notation declarations to define custom syntax for accessing
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array elements and to overload the assignment operator for element updates,
analogous to function update in mathematical logic: 8

:- notation(Arr[I], ~get_elem(Arr,I)).
:- notation(Arr[I]:=Val, (Arr := ~replace_elem(Arr,I,Val))).

The notation above maps access and updates to get_elem/3 and
replace_elem/4 predicates. If defined as multifile (e.g., as described in [7]), these
predicates can act as a bridge interface between several array-like data structures.
To test this we implement a package for array-like syntax and interface (includ-
ing other useful operations like array_length/2). We provide this unified inter-
face with non-destructive arrays with logarithmic access (library(array_log)),
functor-based arrays with O(n) update operations, destructive mutable arrays
using setarg/3, as well as linked lists with nth-element accessor and update
operations.

While loops: We can define a while loop simply by setting an empty initial-
ization and iterating Goal while the condition Cond holds:

:- notation(while (Cond) { Goal },
’$loop’([], true, Cond, Goal)).

For loops with iterators: Similarly to while loops, it is possible to define for
loops that iterate over elements extracted from an iterable object. As with arrays,
we define a simple interface to iterable objects (terms) as multifile predicates,
as follows:

– iter_cond(Curr,X): obtains the iterator value X for the current state Curr;
fails if there are no more values.

– iter_next(Curr, Curr2): transitions from Curr to next state Curr2.

For example, we can define iterators over lists or integer ranges as follows:

iter_cond([X|_], X).
iter_next([_|Xs], Xs).

iter_cond(range_iter(B, _Step, X), X) :- X=<B.
iter_next(range_iter(B,Step,Curr), range_iter(B,Step,Curr2)) :-

Curr2 is Curr+Step.

We can then use a notation declaration to define a for loop over an iterable as
follows:

:- notation(for (I in Iter) { Goal },
’$loop’([I],

Curr := Iter,
iter_cond(Curr, I),
(Goal, Curr := ~iter_next(Curr)))).

8 Note that the same approach can be used to offer notation for access and update of
other indexed data structures like dictionaries.
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run ▶:- module(_, _, [functional ,loops,arrays]).

:- use_module(library(arrays/arrays_log)).

primes(N) := Res :-
% Initialize the array with n+1 values to access until index n
A = ~new_array_log ,
for (I in 2 .. N) { A[I] := true },
% We cross out the non primes
for (I in 2 .. ~floor(sqrt(N))) { % Loop goes until square root of N

if (A[I] == true) { % If a[i] is prime we cross out its multiples
for (J in I*I .. I .. N) { A[J] := false }

}
},
% We take the primes from the sieve and put them into a list
Res = ResTail,
for (K in 2 .. N) {

if (A[K] == true) { accum(!ResTail,K) }
},
ResTail = [].

accum(!R, X) :- R = [X|Tail], R := Tail.

Fig. 8: Eratosthenes algorithm, in Prolog + the developed syntax.

This represents generic code that would work for any data that implements
the iterator interface. In particular, it is also convenient to define shorter syn-
tax for some iterators (or alternatively, just map Begin..End as a notation for
range_iter(Begin,1,End)):

:- notation(for (I in Begin..End) { Goal },
for (I in range_iter(End, 1, Begin)) { Goal }).

Additionally, for efficiency, unfolded iterators can be provided using auxiliary
notations that factorize definitions (note that the same effect can also be achieved
through partial evaluation). As an example, this is the result for this range
iteration:

:- notation(for (I in Begin..End) { Goal },
’$loop’([I],

Curr := Begin,
Curr =< End,
(Goal, Curr := Curr + 1))).

Back to Eratosthenes: Figure 8 presents an encoding of the Sieve of Eratos-
thenes algorithm using a number of the extensions developed. It is relatively
easy now to see the correspondance with the pseudocode in Figure 2, and with
the Python version (Figure 6). Also, as mentioned before, the generated code is
equivalent to the plain Prolog recursive versions, and the default bytecode grade
compilation of Figure 8 is comparable in performance to the Python code.

4 Some experimental results

The proposed extensions are provided as separate Ciao packages hiordx, loops,
statevars, and arrays, which can be selectively enabled as required. These
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extensions are implemented as previously described and depend on the xsyntax
extension and the xcontrol internal phases, which together provide coherent
support for all the proposed features.

In order to test the convenience, implementation, and performance of these
extensions, we have chosen to use a large set of problems from the Euler
Project [11]. The choice of these benchmarks is motivated in part by the variety
of problems and algorithms involved, which allows illustrating the expressiveness
and flexibility of the proposed extensions, and also because encodings of many of
these problems are available in several imperative languages, and in particular a
good number of them are accessible from the Picat web site. As mentioned be-
fore, Picat is also a logic-based language, different from Prolog, that has loops,
state variables, and array index notation in addition to constraints and tabling,
and thus we consider it a very good point of reference.

We have encoded the examples in Ciao using our extensions. The resulting
code9 constitutes perhaps the best illustration of the approach. In particular,
these programs test the use of the array-like structures, state variables, and
loops presented, as well as other Ciao extensions like clpfd, tabling, assoc, or
pmrules. The coding used typically involves an imperative syntactic style, but
often makes use also of Prolog’s search, unification, constraint solving, etc., thus
illustrating how our approach allows synergistically mixing both styles.

Regarding performance, we have carried out a comparison with Picat, which
is known to be quite performant, so we also consider it a very good point of
reference from this point of view. In this sense our objective is not to perform
an in-depth performance comparison, since both the implementation and the
problem encodings can still be improved, but rather to have an estimation of
whether the approach is competitive.

Table 1 shows the execution times of each program, in seconds, in Picat
and Ciao, grouped in different subtables by the extensions or utilities they use.
The symbol ’-’ means that no output/answer is produced for some reason. The
experiments were run on a MacBook Pro, 3,1 GHz Dual-Core Intel Core i5;
16 GB 2133 MHz LPDDR3; macOS: Ventura 13.7.4 (22H420). 10 The results
computed in both languages are identical for all cases.

Table 1a presents examples that use only loops, including state variables,
without any other extensions. These examples demonstrate that Ciao’s imple-
mentation of state variables and loops is competitive with Picat’s. We observe
some performance differences, which may be due to variations in the virtual
machine implementations. Table 1b presents examples that use tabling, showing
similar performance overall. However, in Picat, they execute slightly faster and
comparing this with Table 1a, we can infer that the difference is likely to be
because of variations in the tabling implementation. Table 1c presents examples
that use loops and index notation over lists from the new array extension. The
performance is generally similar in both languages, with some exceptions such as

9 See: https://gitlab.software.imdea.org/ciao-lang/ciaoimp-benchmarks
10 In order to save space we have left out of the table the problems for which the

execution times were too low to be significant.
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File Picat Ciao Picat/
Ciao

p004 0.750 0.102 7.288
p007 0.299 0.172 1.731
p012 11.250 6.975 1.612
p016 0.001 0.000 6.134
p020 0.001 0.000 13.157
p022 0.021 0.021 0.957
p025 3.392 2.117 1.601
p029 2.353 2.288 1.028
p030 1.114 2.220 0.501
p034 0.403 0.289 1.392
p036 1.250 0.841 1.485
p045 0.043 0.030 1.388
p046 0.041 0.027 1.517
p048 0.826 0.017 47.906
p056 0.781 0.210 3.704

(a) Examples that just use
loops.

File Picat Ciao Picat/
Ciao

p021 0.173 0.137 1.257
p027 1.823 4.482 0.406
p037 3.029 4.278 0.707
p041 0.012 0.014 0.834
p053 0.041 0.036 1.112
p055 0.073 0.070 1.029

(b) Examples that use loops
and tabling.

File Picat Ciao Picat/
Ciao

p017 0.011 0.016 0.665
p019 0.051 0.050 1.016
p024 1.150 8.596 0.133
p026 0.074 1.946 0.038
p040 0.197 0.161 1.218
p042 0.025 0.030 0.829
p060 142.493 91.048 1.565
p076 0.003 0.057 0.052
p077 0.013 0.204 0.063

(c) Examples that use loops
and index notation in lists.

File Picat Ciao Picat/Ciao
p010_log - 9.778
p010_mut 0.909 0.933 0.973
p047_log - 10.553
p047_mut 0.804 1.184 0.678
p050_log 0.282 1.909 0.147

(d) Examples that use loops and index notation
in arrays.

File Picat Ciao Picat/Ciao
Loops and assoc

p032 2.398 2.005 1.195
p044 1.465 2.458 0.595
p062 0.032 0.168 0.190

Loops and pmrule
p052 0.418 0.538 0.775
p049 0.138 0.113 1.218

(e) Examples that use loops
and other extensions.

Table 1: Experimental results on Euler Project problems in Picat and Ciao.

p024, p026, p076, and p077. These are likely to be due to the fact that replacing
an element in a list is destructive in Picat but not in Ciao. Table 1d presents
examples that use loops and index notation over arrays from the new array ex-
tension. Specifically, they are implemented in Ciao using both logarithmic and
mutable arrays, indicated by file name suffix. Performance in mutable arrays is
similar to Picat’s, which makes sense since Picat’s array implementation is also
mutable. Table 1e presents other examples that use loops. The examples using
single-side unification rules (denoted as pmrule) show performance comparable
with Picat. The other examples use maps, for which we have used simply the
traditional library(assoc)module, and the performance difference is likely due
to the faster destructive map updates in Picat.

In general, these results suggest that our implementation approach achieves
the objective of supporting a customizable and rich set of imperative constructs
within Prolog with competitive performance.
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5 Conclusion

We have proposed a number of imperative-style constructs that build on and
extend the FSyntax and Hiord syntactic extensions to Prolog. The proposed ex-
tensions have been designed so that they combine well with the basic functional
notation and the higher-order facilities as well as with other extensions, such as
constraints, tabling, etc. In addition, our approach is based on a set of primitives
and a simplified, higher-level expansion mechanism that together have allowed
us to easily add features such as array notation, state variables, loops, etc. We
have also made on the way instrumental extensions to the previous work on
Hiord and FSyntax. We have implemented and evaluated the proposed mech-
anisms by defining a set of imperative features and exercising their usefulness
by translating idiomatically, in imperative style, but also using simultaneously
Prolog’s characteristics, a large collection of small but interesting programs from
the Euler Project. Apart from their intrinsic interest, the choice of these bench-
marks was also motivated by the fact that encodings of many of these problems
are available in a number of imperative languages, and in particular in Picat,
which, as we have argued, is a very good point of reference. We have also stud-
ied the performance of the translated programs. While some imperative-style
constructs were previously available in some form or another in some Prolog
systems, and more comprehensively in non-Prolog systems like Picat, we argue
that our Prolog-based proposal is comprehensive, coherent, and extensible, as
well as offering competitive performance.
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