
A New Module System for Prolog?

Daniel Cabeza and Manuel Hermenegildo

Department of Computer Science, Technical U. of Madrid (UPM)
dcabeza@fi.upm.es, herme@fi.upm.es

Abstract. It is now widely accepted that separating programs into mod-
ules is useful in program development and maintenance. While many
Prolog implementations include useful module systems, we argue that
these systems can be improved in a number of ways, such as, for exam-
ple, being more amenable to effective global analysis and transformation
and allowing separate compilation or sensible creation of standalone ex-
ecutables. We discuss a number of issues related to the design of such an
improved module system for Prolog and propose some novel solutions.
Based on this, we present the choices made in the Ciao module system,
which has been designed to meet a number of objectives: allowing sepa-
rate compilation, extensibility in features and in syntax, amenability to
modular global analysis and transformation, enhanced error detection,
support for meta-programming and higher-order, compatibility to the
extent possible with official and de-facto standards, etc.
Keywords: Modules, Modular Program Processing, Global Analysis
and Transformation, Separate Compilation, Prolog, Ciao-Prolog.

1 Introduction

Modularity is a basic notion in modern computer languages. Modules allow di-
viding programs into several parts, which have their own independent name
spaces and a clear interface with the rest of the program. Experience has shown
that there are at least two important advantages to such program modulariza-
tion. The first one is that being able to look at parts of a program in a more or
less isolated way allows a divide-and-conquer approach to program development
and maintenance. For example, it allows a programmer to develop or update a
module at a time or several programmers to work on different modules in par-
allel. The second advantage is in efficiency: tools which process programs can
be more efficient if they can work on a single module at a time. For example,
after a change to a program module the compiler needs to recompile only that
module (and perhaps a few related modules). Another example is a program
? This work was supported in part by the “EDIPIA” (CICYT TIC99-1151) and “EC-

COSIC” (Fulbright 98059) projects. The authors would like to thank Francisco
Bueno and the anonymous referees for their useful comments on previous versions of
this document. The Ciao system is a collaborative international effort and includes
contributions from members of several institutions, which are too many to mention
here: a complete list can be found in the Ciao system documentation.

Manuel Hermenegildo
International Conference on Computational Logic, CL2000, LNAI, Num. 1861, p. 131-148, Springer-Verlag, July 2000

verifier which is applied to one module at a time and does its job assuming some
properties of other modules. Also, modularity is also one of the fundamental
principles behind object-oriented programming.

The topic of modules and logic programming has received considerable at-
tention (see, for example, [23, 9, 34, 13, 21, 22]). Currently, many popular Prolog
systems such as Quintus [28] and SICStus [8] include module systems which have
proved very useful in practice.1 However, these practical module systems also
have a series of shortcomings, specially with respect to effectively supporting
separate program compilation, debugging, and optimization.

Our objective is to discuss from a practical point of view a number of issues
related to the design of an improved module system for Prolog and, based on
this, to present the choices made in the module system of Ciao Prolog [2].2 Ciao
Prolog is a next-generation logic programming system which, among other fea-
tures, has been designed with modular incremental compilation, global analysis,
debugging, and specialization in mind. The module system has been designed
to stay as similar as possible to the module systems of the most popular Prolog
implementations and the ISO-Prolog module standard currently being finished
[20], but with a number of crucial changes that achieve the previously mentioned
design objectives. We believe that it would not be difficult to incorporate these
changes in the ISO-Prolog module standard or in other module systems. The
rest of the paper proceeds as follows: Section 2 discusses the objectives of the
desired module system and Section 3 discusses some of the issues involved in
meeting these objectives. Section 4 then describes the Ciao Prolog module sys-
tem. Within this section, Subsection 4.5 discusses some enhancements to stan-
dard Prolog syntax extension facilities. Finally, Section 5 describes the notion of
packages, a flexible mechanism for implementing modular language extensions
and restrictions, which emerges naturally from the module system design. An
example of a package is provided which illustrates some of the advantages of this
design. Because of space restrictions and because the focus is on the motivations
behind the choices made, the presentation is informal.

2 Objectives in the Design of the Ciao Module System

We start by stating the main objectives that we have had in mind during the
design of the Ciao module system:

– Allowing modular (separate) and efficient compilation. This means that it
should be possible to compile (or, in general, process) a module without
having to compile the code of the related modules. This allows for exam-
ple having pre-compiled (pre-processed, in general) system or user-defined
libraries. It also allows the incremental and parallel development of large
software projects.

1 Surprisingly, though, it is also true that a number of Prolog systems do not have
any module system at all.

2 The Ciao system can be downloaded from http://www.clip.dia.fi.upm.es/Software.

– Local extensibility/restriction, in features and in syntax. This means that it
should be possible to define syntactic and semantic extensions and restric-
tions of the language in a local way, i.e., so that they affect only selected
modules. This is very important in the context of Ciao, since one of its ob-
jectives is to serve as an experimental workbench for new extensions to logic
programming (provided that they can be translated to the core language).

– Amenability to modular global analysis. We foresee a much larger role for
global analysis of logic programs, not only in the more traditional applica-
tion of optimization [35, 33, 31, 4], but also in new applications related to pro-
gram development, such as automated debugging, validation, and program
transformation [3, 10, 5, 16, 17]. This is specially important in Ciao because
the program development environment already includes a global analysis
and transformation tool (ciaopp, the Ciao preprocessor [17, 15]) which per-
forms these tasks and which in our experience to date has shown to be an
invaluable help in program development and maintenance.

– Amenability to error detection. This means that it should be possible to
check statically the interfaces between the modules and detect errors such
as undefined predicates, incompatible arities and types, etc.

– Support for meta-programming and higher-order. This means that it should
be possible to do meta- and higher-order programming across modules with-
out too much burden on the programmer. Also, in combination with the
previous point, it should be possible to detect errors (such as calls to unde-
fined predicates) on sufficiently determined higher-order calls.

– Compatibility with official and de-facto standards. To the extent possible
(i.e., without giving up other major objectives to fulfill this one) the mod-
ule system should be compatible with those of popular Prolog systems (e.g.,
Quintus/SICStus) and official standards, such as the core ISO-Prolog stan-
dard [19, 12] and the current drafts of the ISO-Prolog module standards [20].
This is because it is also a design objective of Ciao that it be (thanks to a
particular set of libraries which is loaded by default) a standard Prolog sys-
tem. This is in contrast to systems like Mercury [30] or Goedel [18] which are
more radical departures from Prolog. This means that the module system
will be (at least by default) predicate-based rather than atom-based (as in
XSB [29] and BIM [32]), i.e., it will provide separation of predicate symbols,
but not of atom names. Also, the module system should not require the
language to become strongly typed, since traditional Prologs are untyped.3

3 Discussion of the Main Issues Involved

None of the module systems used by current Prolog implementations fulfill all of
the above stated objectives, and some include characteristics which are in clear

3 Note however, that this does not prevent having voluntary type declarations or more
general assertions, as is indeed done in Ciao [25, 26].

opposition to such objectives.4 Thus, we set out to develop an improved design.
We start by discussing a number of desirable characteristics of the module system
in order to fulfill our objectives. Amenability to global analysis and being able to
deal with the core ISO-Prolog standard features were discussed at length in [3],
where many novel solutions to the problems involved were proposed. However,
the emphasis of that paper was not on modular analysis. Herein, we will choose
from some of the solutions proposed in [3] and provide further solutions for the
issues that are more specific to modular analysis and to separate compilation.5

– Syntax, flags, etc. should be local to modules. The syntax or mode of com-
pilation of a module should not be modified by unrelated modules, since
otherwise separate compilation and modular analysis would be impossible.
Also, it should be possible to use different syntactic extensions (such as op-
erator declarations or term expansions) in different modules without them
interacting. I.e., it should be possible to use the same operator in different
modules with different precedences and meanings. In most current module
systems for Prolog this does not hold because syntactic extensions and com-
pilation parameters (e.g., Prolog flags) are global. As a result, a module can
be compiled in radically different ways depending on the operators, expan-
sions, Prolog flags, etc. set by previously loaded modules or simply typed
into the top level. Also, using a syntactic extension in a module prevents
the use of, e.g., the involved operators in other modules in a different way,
making the development of optional language extensions very complicated.
In conclusion, we feel that directives such as op/3 and set prolog flag/2
must be local to a module.

– The entry points of a module should be statically defined. Thus, the only
external calls allowed from other modules should be to exported predicates.
Note that modules contain code which is usually related in some way to that
of other modules. A good design for a modular program should produce a
set of modules such that each module can be understood independently of
the rest of the program and such that the communication (dependencies)
among the different modules is as reduced as possible. By a strict module
system we refer to one in which a module can only communicate with other
modules via its interface (this interface usually contains data such as the
names of the exported predicates). Other modules can only use predicates
which are among the ones exported by the considered module. Predicates
which are not exported are not visible outside the module. Many current
module systems for Prolog are not strict and allow calling a procedure of
a module even if it is not exported by the module. This clearly defeats the
purpose of the module system and, in addition, has a catastrophic impact

4 Unfortunately, lack of space prevents us from making detailed comparisons with
other individual module systems. Instead, we discuss throughout the paper advan-
tages and disadvantages of particular solutions present in different current designs.

5 We concentrate here on the design on the module system. The issue of how this
module system is applied to modular analysis is addressed in more detail in [27].

on the precision of global analysis, precluding many program optimizations.
Thus, we feel that the module system should be strict.

– Module qualification is for disambiguating predicate names, not for changing
naming context. This a requirement of separate compilation (processing)
since otherwise to compile (process) a module it may be necessary to know
the imports/exports of all other modules. As an example, given a call m:p
(“call p in module m”), with the proposed semantics the compiler only needs
to know the exports of module m. If qualification meant changing naming
context, since module m can import predicate p from another module, and
that module from another, the interfaces of all those modules would have
to be read. Furthermore, in some situations changing naming context could
invalidate the strictness of the module system.

– Module text should not be in unavailable or unrelated parts. This means
that all parts of a module should be within the module itself or directly
accessible at the time of compilation, i.e., the compiler must be able to
automatically and independently access the complete source of the module
being processed.6

– Dynamic parts should be isolated as much as possible. Dynamic code modi-
fication, such as arbitrary runtime clause addition (by the use of assert-like
predicates), while very useful in some applications, has the disadvantage that
it adds new entry points to predicates which are not “visible” at compile-
time and are thus very detrimental to global analysis [3]. One first idea is to
relegate such predicates to a library module, which has to be loaded explic-
itly.7 In that way, only the modules using those functionalities have to be
specially handled, and the fact that such predicates are used can be deter-
mined statically. Also, in our experience, dynamic predicates are very often
used only to implement “global variables”, and for this purpose a facility for
adding facts to the program suffices. This simpler feature, provided that this
kind of dynamic predicates are declared as such explicitly in the source, pose
no big problems to modular global analysis. To this end, Ciao provides a set
of builtins for adding and deleting facts to a special class of dynamic pred-
icates, called “data predicates” (asserta_fact/1, retract_fact/1, etc),
which are declared as “:- data ...” (similar kinds of dynamic predicates
are mentioned in [11]). Furthermore, the implementation of such data pred-
icates can be made much more efficient than that of the normal dynamic
predicates, due to their restricted nature.

– Most “built-ins” should be in libraries which can be loaded and/or unloaded
from the context of a given module. This is a requirement related to ex-
tensibility and also to more specific needs, such as those of the previous
point, where it was argued that program modification “built-ins” should be

6 Note that this is not the case with the classical user files used in non-modular Prolog
systems: code used by a user file may be in a different user file with no explicit relation
with the first one (there is no usage declaration that allows relating them).

7 Note, however, that in Ciao, to preserve compatibility for older programs, a special
case is implemented: if no library modules are explicitly loaded, then all the modules
containing the ISO predicates are loaded by default.

relegated to a library. The idea is to have a core language with very few pre-
defined predicates (if any) and which should be a (hopefully pure) subset of
ISO-Prolog. This makes it possible to develop alternative languages defining,
for example, alternative I/O predicates, and to use them in a given module
while others perhaps use full ISO-Prolog. It also makes it easier to produce
small executables.

– Directives should not be queries. Traditionally, directives (clauses starting
with “:-”) were executed by the Prolog interpreter as queries. While this
makes some sense in an interpretative environment, where program com-
pilation, load (linking), and startup are simultaneous, is does not in other
environments (and, specially, in the context of separate compilation) in which
program compilation, linking, and startup occur at separate times. For ex-
ample, some of the directives used traditionally are meant as instructions for
the compiler while, e.g., others are used as initialization goals. Fortunately,
this is well clarified in the current ISO standard [19, 12], where declarations
are clearly separated from initialization goals.

– Meta-predicates should be declared, at least if they are exported, and the dec-
laration must reflect the type of meta-information handled in each argument.
This is needed in order to be able to perform a reasonable amount of error
checking for meta-predicates and also to be able to statically resolve meta-
calls across modules in most cases.

4 The Ciao Module System

Given the premises of previous sections, we now proceed to present their con-
cretization in the Ciao module system.

4.1 General Issues

Defining Modules: The source of a Ciao module is typically contained in a single
file, whose name must be the same as the name of the module, except that it
may have an optional .pl extension. Nevertheless, the system allows inclusion
of source from another file at a precise point in the module, by using the ISO-
Prolog [19, 12] :- include declaration. In any case, such included files must
be present at the time of processing the module and can for all purposes be
considered as an integral part of the module text. The fact that the file contains
a module (as opposed to, e.g., being a user file –see below) is flagged by the
presence of a “:- module(...” declaration at the beginning of the file.

For the reasons mentioned in Section 2 the Ciao module system is, as in
most logic programming system implementations, predicate-based (but only by
default, see below). This means that non-exported predicate names are local
to a module, but all functor and atom names in data are shared. We have
found that this choice does provide the needed capabilities most of the time,
without imposing too much burden on the user or on the implementation. The
advantage of this, other than compatibility, and probably the reason why this

option has been chosen traditionally, is that it is more concise for typical Prolog
programs in which many atoms and functors are shared (and would thus have
to be exported in an atom-based system). On the other hand, it forces having to
deal specially with meta-programming, since in that case functors can become
predicate names and vice-versa. It can also complicate having truly abstract data
types in modules. The meta-predicate problem is solved in Ciao through suitable
declarations (see Section 4.4). Also, in order to allow defining truly abstract data
types in Ciao, it is possible to hide atom/functor names, i.e., make them local to
a module, by means of “:- hide ...” declarations, which provide an automatic
renaming of such symbols. This does not prevent a program from creating data
of that type if meta-predicates such as “=..” are loaded and used, but it does
prevent creating and matching such data using unification. Thus, in contrast to
predicate names, which are local unless explicitly exported, functor and atom
names are exported by default unless a :- hide declaration is used.8

Imports, Exports, and Reexports: A number of predicates in the module can
be exported, i.e., made available outside the module, via explicit :- export
declarations or in an export list in the :- module(... declaration. It is also
possible to state that all predicates in the module are exported (by using ’ ’).

It is possible to import a number of individual predicates or also all predi-
cates from another module, by using :- use module declarations. In any case it
is only possible to import from a module predicates that it exports. It is possible
to import a predicate which has the same name/arity as a local predicate. It
is also possible to import several predicates with the same name from different
modules. This applies also to predicates belonging to implicitly-imported mod-
ules, which play the role of the built-ins in other logic programming systems.
In Ciao there are really no “built-ins”: all system predicates are (at least con-
ceptually) defined in libraries which have to be loaded for these predicates to
be accessible to the module. However, for compatibility with ISO, a set of these
libraries implementing the standard set of ISO builtins is loaded by default.

A module m1 can reexport another module, m2, via a :- reexport declara-
tion. The effect of this is that m1 exports all predicates of m2 as if they had been
defined in m1 in the same way as they are defined in m2. This allows implementing
modules which extend other modules (or, in object-oriented terms, classes which
inherit from other classes [24]). It is also possible to reexport only some of the
predicates of another module, by providing an explicit list in the :- reexport
declaration, restricting that module.

In Ciao it is possible to mark certain predicates as being properties. Examples
of properties are regular types, pure properties (such as sorted), instantiation
properties (such as var, indep, or ground), computational properties (such as
det or fails), etc. Such properties, since they are actually predicates, can be
exported or imported using the same rules as any other predicate. Imported
properties can be used in assertions (declarations stating certain characteristics

8 This feature of being able to hide functor and atom names is not implemented in
the distribution version of Ciao as of the time of writing of this paper (Vers. 1.4).

of the program, such as, e.g., preconditions and postconditions) in the same
way as locally defined ones. This allows defining, e.g., the abstract data types
mentioned above. This is discussed in more detail in the descriptions of the Ciao
assertion language [2, 25] and the Ciao preprocessor [17, 15].

Visibility Rules: The predicates which are visible in a module are the pred-
icates defined in that module plus the predicates imported from other mod-
ules. It is possible to refer to predicates with or without a module qualifica-
tion. A module-qualified predicate name has the form module:predicate as in the
call lists:append(A,B,C). We call default module for a given predicate name
the module which contains the definition of the predicate which will be called
when using the predicate name without module qualification, i.e., when calling
append(A,B,C) instead of lists:append(A,B,C). Module qualification makes
it possible to refer to a predicate from a module which is not the default for that
predicate name.

We now state the rules used to determine the default module of a given
predicate name. If the predicate is defined in the module in which the call occurs,
then this module is the default module. I.e., local definitions have priority over
imported definitions. Otherwise, the default module is the last module from
which the predicate is imported in the module text. Also, predicates which are
explicitly imported (i.e. listed in the importation list of a :- use module) have
priority over those which are imported implicitly (i.e. imported when importing
all predicates of a module). As implicitly-imported modules are considered to
be imported first, the system allows the redefinition of “builtins”. By combining
implicit and explicit calls it is also possible not only to redefine builtins, but
also to extend them, a feature often used in the implementation of many Ciao
libraries. Overall, the rules are designed so that it is possible to have a similar
form of inheritance to that found in object-oriented programming languages
(in Ciao this also allows supporting a class/object system naturally as a simple
extension of the module system [24]). It is not possible to access predicates which
are not imported from a module, even if module qualification is used and even
if the module exports them. It is also not possible to define clauses of predicates
belonging to other modules, except if the predicate is defined as dynamic and
exported by the module in which it is defined.

Additional rules govern the case when a module redefines predicates that it
also reexports, which allows making specialized modules which are the same as
a reexported module but with some of the predicates redefined as determined by
local predicate definitions (i.e., instances of a module/class, in object-oriented
terms –see the Ciao manual [2] for details).

4.2 User Files and Multifile Predicates

For reasons mainly of backwards compatibility with non-modular Prolog sys-
tems, there are some deviations from the visibility rules above which are com-
mon to other modular logic programming systems [28, 8]: the “user” module
and multifile predicates.

User Files: To provide backwards compatibility with non-modular code, all code
belonging to files which have no module declaration is assumed to belong to a
single special module called “user”. These files are called “user files”, as op-
posed to calling them modules (or packages –see later). All predicates in the
user module are “exported”. It is possible to make unrestricted calls from any
predicate defined in a user file to any other predicate defined in another user
file. However, and differently to other Prolog systems, predicates imported from
a normal module into a user file are not visible in the other user files unless they
are explicitly imported there as well. This at least allows performing separate
static compilation of each user file, as all static predicate calls in a file are defined
by reading only that file. Predicates defined in user files can be visible in regular
modules, but such modules must explicitly import the “user” module, stating
explicitly which predicates are imported from it.

The use of user files is discouraged because, apart from losing the separation
of predicate names, their structure makes it impossible to detect many errors
that the compiler detects in modules by looking at the module itself (and perhaps
the interfaces of related modules). As an example, consider detecting undefined
predicates: this is not possible in user files because a missing predicate in a user
file may be defined in another user file and used without explicitly importing it.
Thus, it is only possible to detect a missing predicate by examining all user files
of a project, which is itself typically an unknown (and, in fact, not even in this
way, since that predicate could even be meant to be typed in at the top level
after loading the user files!). Also, global analysis of user files typically involves
considerable loss of precision because all predicates are possible entry points [3].
Note that it is often just as easy and flexible to use modules which export all
predicates in place of user files (by simply adding a :- module(,). header to
the file), while being able to retain many of the advantages of modules.

Multifile Predicates: Multifile predicates are a useful feature (also defined in ISO-
Prolog) which allows a predicate to be defined by clauses belonging to different
files (modules in the case of Ciao). To fit this in with the module system, in Ciao
these predicates are implemented as if belonging to a special module multifile.
However, calls present in a clause of a multifile predicate are always to visible
predicates of the module where that clause resides. As a result, multifile predi-
cates do not pose special problems to the global analyzer (which considers them
exported predicates) nor to code processing in general.

4.3 Dynamic Modules

The module system described so far is quite flexible but it is static, i.e., except in
user files, it is possible to determine statically the set of imports and exports of a
given module and the set of related modules, and it is possible to statically resolve
to which module each call in the program refers to. This has many advantages:
modular programs can be implemented with no run-time overhead with respect
to a non-modular system and it is also possible to perform extensive static
analysis for optimization and error detection. However, in practice it is sometimes

very useful to be able to load code dynamically and call it. In Ciao this is fully
supported, but only if the special library dynmods which defines the appropriate
builtins (e.g., use module) is explicitly loaded (dynmods actually reexports a
number of predicates from the compiler, itself another library). This can then
be seen by compile-time tools which can act more conservatively if needed. Also,
the adverse effects are limited to the module which imports the compiler.

4.4 Dealing with Meta-Calls

As mentioned before, the fact that the Ciao module system is predicate-based
forces having to deal specially with meta-programming, since in that case func-
tors can become predicate names and vice-versa. This problem is solved in Ciao,
as in similar systems [28, 8] through meta predicate declarations which specify
which arguments of predicates contain meta-data. However, because of the richer
set of higher-order facilities and predicate types provided by Ciao [6], there is
a correspondingly richer set of types of meta-data (this also allows more error
detection):
goal: denotes a goal (either a simple or a complex one) which will be called.
clause: denotes a clause, of a dynamic predicate, which will be asserted/retracted.
fact: denotes a fact (a head-only clause), of a data predicate.
spec: denotes a predicate name, given as Functor/Arity term (this kind of

meta-term is used somewhat frequently in builtin predicates, but seldom in
user-defined predicates).

pred(N): denotes a predicate construct to be called by means of a call/N
predicate call. That is, it should be an atom equal to the name of a predicate
of arity N, a structure with functor the name of a predicate of arity M
(greater than N) and with M -N arguments, or a predicate abstraction with
N arguments.9

addmodule:
this in fact is not a real meta-data specification. Rather, it is used to pass,
along with the predicate arguments, the calling module, to allow handling
more involved meta-data (e.g., lists of goals) by using conversion builtins.10

The compiler, by knowing which predicates have meta-arguments, can verify
if there are undetermined meta-calls (which for example affect the processing
when performing global analysis), or else can determine (or approximate) the
calls that these meta-arguments will produce.

4.5 Modular Syntax Enhancements

Traditionally (and also now in the ISO standard [19, 12]) Prolog systems have
included the possibility of changing the syntax of the source code by the use
9 A full explanation of this type of meta-term is outside the scope of this paper. See [6]

for details.
10 This a “low-level” solution, which can be a reasonable overall solution for systems

without a type system. The higher-level solution in Ciao involves the combination
of the type and meta-data declarations (currently in progress).

of the op/3 builtin/directive. Furthermore, in many Prolog systems it is also
possible to define expansions of the source code (essentially, a very rich form of
“macros”) by allowing the user to define (or extend) a predicate typically called
term expansion/2 [28, 8]. This is usually how, e.g., definite clause grammars
(DCG’s) are implemented.

However, these features, in their original form, pose many problems for mod-
ular compilation or even for creating sensible standalone executables. First, the
definitions of the operators and expansions are global, affecting a number of files.
Furthermore, which files are affected cannot be determined statically, because
these features are implemented as a side-effect, rather than a declaration, and
they are meant to be active after they are read by the code processor (top-level,
compiler, etc.) and remain active from then on. As a result, it is impossible
by looking at a source code file to know if it will be affected by expansions or
definitions of operators, which may completely change what the compiler really
sees. Furthermore, these definitions also affect how a compiled program will read
terms (when using the term I/O predicates), which will also be affected by op-
erators and expansions. However, in practice it is often desirable to use a set of
operators and expansions in the compilation process (which are typically related
to source language enhancements) and a completely different set for reading or
writing data (which can be related to data formatting or the definition of some
application-specific language that the compiled program is processing). Finally,
when creating executables, if the compile-time and run-time roles of expansions
are not separated, then the code that defines the expansions must be included
in the executable, even if it was only meant for use during compilation.

To solve these problems, in Ciao we have redesigned these features so that it is
still possible to define source translations and operators but they are local to the
module or user file defining them. Also, we have implemented these features in a
way that has a well defined behavior in the context of a stand-alone compiler (the
Ciao compiler, ciaoc [7]). In particular, the directive load compilation module/1
allows separating code that will be used at compilation time from code which
will be used at run-time. It loads the module defined by its argument into the
compiler (if it has not been already loaded). It differs from the use module/1
declaration in that the latter defines a use by the module being compiled, but
does not load the code into the compiler itself. This distinction also holds in the
Ciao interactive top-level, in which the compiler (which is the same library used
by ciaoc) is also a separate module.

In addition, in order to make the task of writing expansions easier,11 the
effects usually achieved through term expansion/2 can be obtained in Ciao by
means of four different, more specialized directives, which, again, affect only the
current module. Each one defines a different target for the translations, the first
being equivalent to the term expansion/2 predicate which is most commonly
included in Prolog implementations. The argument for all of them is a predicate
indicator of arity 2 or 3. When reading a file, the compiler (actually, the general

11 Note that, nevertheless, writing interesting and powerful translations is not neces-
sarily a trivial task.

purpose module processing library –see [7]) invokes these translation predicates
at the appropriate times, instantiating their first argument with the item to be
translated (whose type varies from one kind of predicate to the other). If the
predicate is of arity 3, the optional third argument is also instantiated with the
name of the module where the translation is being done, which is sometimes
needed during certain expansions. If the call to the expansion predicate is suc-
cessful, the term returned by the predicate in the second argument is used to
replace the original. Else, the original item is kept. The directives are:

add sentence trans/1 : Declares a translation of the terms read by the com-
piler which affects the rest of the current text (module or user file). For each
subsequent term (directive, fact, clause, ...) read by the compiler, the trans-
lation predicate is called to obtain a new term which will be used by the
compiler in place of the term present in the file. An example of this kind of
translation is that of DCG’s.

add term trans/1 : Declares a translation of the terms and sub-terms read by
the compiler which affects the rest of the current text. This translation is
performed after all translations defined by add sentence trans/1 are done.
For each subsequent term read by the compiler, and recursively any subterm
included in such a term, the translation predicate is called to possibly obtain
a new term to replace the old one. Note that this is computationally intensive,
but otherwise very useful to define translations which should affect any term
read. For example, it is used to define records (feature terms [1]), in the Ciao
standard library argnames (see 5.1).

add goal trans/1 : Declares a translation of the goals present in the clauses
of the current text. This translation is performed after all translations de-
fined by add sentence trans/1 and add term trans/1 are done. For each
clause read by the compiler, the translation predicate is called with each goal
present in the clause to possibly obtain another goal to replace the original
one, and the translation is subsequently applied to the resulting goal. Note
that this process is aware of meta predicate definitions. In the Ciao system,
this feature is used for example in the functions library which provides
functional syntax, as functions inside a goal add new goals before that one.

add clause trans/1 : Declares a translation of the clauses of the current text.
The translation is performed before add goal trans/1 translations but af-
ter add sentence trans/1 and add term trans/1 translations. This kind
of translation is defined for more involved translations and is related to the
compiling procedure of Ciao. The usefulness of this translation is that infor-
mation on the interface of related modules is available when it is performed,
but on the other hand it must maintain the predicate defined by each clause,
since the compiler has already made assumptions regarding which predicates
are defined in the code. For example, the object-oriented extension of Ciao
(O’Ciao) uses this feature [24].

Figure 1 shows, for an example clause of a program, to which subterms each
type of translation would be applied, and also the order of translations. The

c(D,B) :- findall(l(S,D), cf(B,D,S), Ls), cl(0, Ls).
.. sentence trans

term trans

clause trans

goal trans

Fig. 1. Subterms to which each translation type is applied in a clause

principal functor of the head in the clause translation is dashed because the
translation cannot change it.

Finally, there is another directive in Ciao related to syntax extension, whose
raison d’être is the parametric and extensible nature of the compiler framework:
new declaration/1 (there is also a /2 variant). Note that in ISO-Standard Pro-
log declarations cannot be arbitrary Prolog goals. Thus, the Ciao compiler flags
an error if a declaration is found which is not in a predefined set. A declaration
new declaration(Decl) can be used to declare that Decl is a valid declaration
in the rest of the current text (module or user file). Such declarations are simply
ignored by the compiler or top level, but can be used by other code processing
programs. For example, in the Ciao system, program assertions and machine-
readable comments are defined as new declarations and are processed by the
ciaopp preprocessor and the lpdoc [14] automatic documenter.

5 Packages

Experience using the Ciao module system shows that the local nature of syntax
extensions and the distinction between compile-time and run-time work results
in the libraries defining extensions to the language having a well defined and
repetitive structure. These libraries typically consist of a main source file which
defines only some declarations (operator declarations, declarations loading other
modules into the compiler or the module using the extension, etc.). This file is
meant to be included as part of the file using the library, since, because of their
local effect, such directives must be part of the code of the module which uses
the library. Thus, we will call it the “include file”. Any auxiliary code needed
at compile-time (e.g., translations) is included in a separate module which is
to be loaded into the compiler via a load compilation module directive which
is placed in the include file. Also, any auxiliary code to be used at run-time
is placed in another module, and the corresponding use module declaration is
also placed in the include file. Note that while this run-time code could also
be inserted in the include file itself, it would then be replicated in each module
that uses the library. Putting it in a module allows the code to be shared by all
modules using the library.

Libraries constructed in this manner are called “packages” in Ciao. The main
file of such a library is a file which is to be included in the importing module.
Many libraries in Ciao are packages: dcg (definite clause grammars), functions
(functional syntax), class (object oriented extension), persdb (persistent

database), assertions (to include assertions –see [25, 26]), etc. Such libraries
can be loaded using a declaration such as :- include(library(functions)).
For convenience (and other reasons related to ISO compatibility), this can also
be written as :- use package(functions).12

There is another feature which allows defining modules which do not start
with a :- module declaration, and which is useful when defining language ex-
tensions: when the first declaration of a file is unknown, the declared library
paths are browsed to find a package with the same name as the declaration, and
if it is found the declaration is treated as a module declaration plus a declara-
tion to use that package. For example, the package which implements the object
oriented capabilities in Ciao is called “class”: this way, one can start a class
(a special module in Ciao) with the declaration “:- class(myclass)”, which is
then equivalent to defining a module which loads the class package. The class
package then defines translations which transform the module code so that it
can be used as a class, rather than as a simple module.

5.1 An Example Package: argnames

To clarify some of the concepts introduced in the paper, we will describe as an
example the implementation of the Ciao library package “argnames”.13 This li-
brary implements a syntax to access term arguments by name (also known as
records). For example, Fig. 2 shows a fragment of the famous “zebra” puzzle
written using the package. The declaration :- argnames (where argnames is
defined as an operator with suitable priority) assigns a name to each of the ar-
guments of the functor house/5. From then on, it is possible to write a term
with this functor by writing its name (house), then the infix operator ’$’,
and then, between brackets (which are as in ISO-Prolog), the arguments one
wants to specify, using the infix operator ’=>’ between the name and the value.
For example, house${} is equivalent in that code to house(_,_,_,_,_) and
house${nation=>Owns_zebra,pet=>zebra} to house(_,Owns_zebra,zebra,_,_).

The library which implements this feature is composed of two files, one which
is the package itself, called argnames, and an auxiliary module which implements
the code translations required, called argnames trans (in this case no run-time
code is necessary). They are shown in Appendix A (the transformation has been
simplified for brevity by omitting error checking code).

The contents of package argnames are self-explanatory: first, it directs the
compiler to load the module argnames trans (if not already done before), which
contains the code to make the required translations. Then, it declares a sentence
translation, which will handle the argnames declarations, and a term translation,
12 We are also considering adding a feature to allow loading packages using normal

:- use module declarations, which saves the user from having to determine whether
what is being loaded is a package or an ordinary module.

13 This package uses only a small part of the functionality described. Space restric-
tions do not allow adding a longer example or more examples. However, many such
examples can be found in the Ciao system libraries.

:- use_package([argnames]).

:- argnames house(color, nation, pet, drink, car).

zebra(Owns_zebra, Drinks_water, Street) :-

Street = [house${},house${},house${},house${},house${}],

member(house${nation=>Owns_zebra,pet=>zebra}, Street),

member(house${nation=>Drinks_water,drink=>water}, Street),

member(house${drink=>coffee,color=>green}, Street),

left_right(house${color=>ivory}, house${color=>green}, Street),

member(house${car=>porsche,pet=>snails}, Street),

...
Fig. 2. “zebra” program using argnames

which will translate any terms written using the argnames syntax. Finally, it
declares the operators used in the syntax. Recall that a module using this package
is in fact including these declarations into its code, so the declarations are local
to the module and will not affect the compilation of other modules.

The auxiliary module argnames trans is also quite straightforward: it ex-
ports the two predicates which the compiler will use to do the translations.
Then, it declares a data predicate (recall that this is a simplified dynamic
predicate) which will store the declarations made in each module. Predicate
argnames_def/3 is simple: if the clause term is an argnames declaration, it
translates it to nothing but stores its data in the above mentioned data predi-
cate. Note that the third argument is instantiated by the compiler to the module
where the translation is being made, and thus is used so that the declarations
of a module are not mixed with the declarations in other modules. The second
clause is executed when the end of the module is reached. It takes care of deleting
the data pertaining to the current module. Then, predicate argnames_use/3 is
in charge of making the translation of argname’d-terms, using the data collected
by the other predicate. Although more involved, it is a simple Prolog exercise.

Note that the argnames library only affects the modules that load it. Thus,
the operators involved (argnames, $, =>) can be used in other modules or libraries
for different purposes. This would be very difficult to do with the traditional
model.

6 Conclusions

We have presented a new module system for Prolog which achieves a number of
fundamental design objectives such as being more amenable to effective global
analysis and translation, allowing separate compilation and sensible creation of
standalone executables, extensibility/restriction in features and in syntax, etc.
We have also shown in other work that this module system can be implemented
easily [7] and can be applied successfully in several modular program processing
tasks, from compilation to debugging to automatic documentation generation [7,
27, 17, 14]. The proposed module system has been designed to stay as similar as
possible to the module systems of the most popular Prolog implementations and
the ISO-Prolog module standard currently being finished, but with a number
of crucial changes that achieve the previously mentioned design objectives. We

believe that it would not be difficult to incorporate these changes in the ISO-
Prolog module standard or in other module systems. In the latter case, the
cost would be some minor backward-incompatibility with some of the existing
modular code, but which could generally be fixed easily with a little rewriting.
We argue that the advantages that we have pointed out clearly outweigh this
inconvenience.

References

1. H. Aı̈t-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system for
logic programming with entailment. In Proc. Fifth Generation Computer Systems
1992, pages 1012–1021, 1992.

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao Prolog System. Reference Manual. TR CLIP3/97.1, School of Computer
Science, Technical University of Madrid (UPM), August 1997.

3. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

4. F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Trans. on Programming Languages and Systems, 21(2):189–238, March 1999.

5. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Int’l WS on Automated Debugging–
AADEBUG’97, pages 155–170, Sweden, May 1997. U. of Linköping Press.

6. D. Cabeza and M. Hermenegildo. Higher-order Logic Programming in Ciao. TR
CLIP7/99.0, Facultad de Informática, UPM, September 1999.

7. D. Cabeza and M. Hermenegildo. The Ciao Modular Compiler and Its Generic
Program Processing Library. In ICLP’99 WS on Parallelism and Implementation
of (C)LP Systems, pages 147–164. N.M. State U., December 1999.

8. M. Carlsson and J. Widen. Sicstus Prolog User’s Manual. Po Box 1263, S-16313
Spanga, Sweden, April 1994.

9. W. Chen. A theory of modules based on second-order logic. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pages 24–33, San Francisco, 1987.

10. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic
programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification
of Multiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture
Notes in Computer Science, pages 22–50. Springer-Verlag, 1996.

11. S.K. Debray. Flow analysis of dynamic logic programs. Journal of Logic Program-
ming, 7(2):149–176, September 1989.

12. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer, 1996.
13. J.A. Goguen and J. Meseguer. Eqlog: equality, types, and generic modules for

logic programming. In Logic Programming: Functions, Relations, and Equations,
Englewood Cliffs, 1986. Prentice-Hall.

14. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In this volume:
Proceedings of CL2000, LNCS, Springer-Verlag.

15. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In Proc. of
ICLP’99, pages 52–66, Cambridge, MA, November 1999. MIT Press.

16. M. Hermenegildo and The CLIP Group. Programming with Global Analysis. In
Proc. of ILPS’97, pages 49–52, October 1997. MIT Press. (Invited talk abstract).

17. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-
Verlag, July 1999.

18. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, 1994.
19. International Organization for Standardization. PROLOG. ISO/IEC DIS 13211

— Part 1: General Core, 1994.
20. International Organization for Standardization. PROLOG. Working Draft 7.0

X3J17/95/1 — Part 2: Modules, 1995.
21. D. Miller. A logical analysis of modules in logic programming. Journal of Logic

Programming, pages 79–108, 1989.
22. L. Monteiro and A. Porto. Contextual logic programming. In Proc. of ICLP’89,

pages 284–299. MIT Press, Cambridge, MA, 1989.
23. R.A. O’Keefe. Towards an algebra for constructing logic programs. In IEEE

Symposium on Logic Programming, pages 152–160, Boston, Massachusetts, July
1985. IEEE Computer Society.

24. A. Pineda and M. Hermenegildo. O’ciao: An Object Oriented Programming Model
for (Ciao) Prolog. TR CLIP 5/99.0, Facultad de Informática, UPM, July 1999.

25. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. In ILPS’97 WS on Tools and En-
vironments for (C)LP, October 1997. Available as TR CLIP2/97.1 from
ftp://clip.dia.fi.upm.es/pub/papers/assert lang tr discipldeliv.ps.gz.

26. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging
of Constraint Logic Programs. In Analysis and Visualization Tools for Constraint
Programming, LNCS. Springer-Verlag, 2000. To appear.

27. G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In ICLP’99 WS on Optimization and Implemen-
tation of Declarative Languages, pages 45–61. U. of Southampton, U.K, Nov. 1999.

28. Quintus Prolog User’s Guide and Reference Manual—Version 6, April 1986.
29. K. Sagonas, T. Swift, and D.S. Warren. The XSB Programming System. In

ILPS WS on Programming with Logic Databases, TR #1183, pages 164–164. U. of
Wisconsin, October 1993.

30. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative LP language. JLP, 29(1–3), October 1996.

31. A. Taylor. High performance prolog implementation through global analysis. Slides
of the invited talk at PDK’91, Kaiserslautern, 1991.

32. P. Van Roy, B. Demoen, and Y. D. Willems. Improving the Execution Speed of
Compiled Prolog with Modes, Clause Selection, and Determinism. In Proceedings
of TAPSOFT ’87, LNCS. Springer-Verlag, March 1987.

33. P. Van Roy and A.M. Despain. High-Performace Logic Programming with the
Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54–68, January 1992.

34. D.S. Warren and W. Chen. Formal semantics of a theory of modules. TR 87/11,
SUNY at Stony Brook, 1987.

35. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684–699. MIT Press, August 1988.

CLIP WS papers, TRs and manuals available at http://www.clip.dia.fi.upm.es

A Code for the Package argnames

The package argnames:
:- load_compilation_module(library(argnames_trans)).
:- add_sentence_trans(argnames_def/3).
:- add_term_trans(argnames_use/3).
:- op(150, xfx, [$]).
:- op(950, xfx, (=>)).
:- op(1150, fx, [argnames]).

The translation module argnames trans:
:- module(argnames_trans, [argnames_def/3, argnames_use/3]).
:- data argnames/4.

argnames_def((:- argnames(R)), [], M) :-
functor(R, F, N),
assertz_fact(argnames(F,N,R,M)).

argnames_def(end_of_file, end_of_file, M) :-
retractall_fact(argnames(_,_,_,M)).

argnames_use($(F,TheArgs), T, M) :-
atom(F),
argnames_args(TheArgs, Args),
argnames_trans(F, Args, M, T).

argnames_args({}, []).
argnames_args({Args}, Args).

argnames_trans(F, Args, M, T) :-
argnames(F, A, R, M),
functor(T, F, A),
insert_args(Args, R, A, T).

insert_args([], _, _, _).
insert_args(’=>’(F,A), R, N, T) :-

insert_arg(N, F, A, R, T).
insert_args((’=>’(F,A), As), R, N, T) :-

insert_arg(N, F, A, R, T),
insert_args(As, R, N, T).

insert_arg(N, F, A, R, T) :-
N > 0,
(arg(N, R, F)
-> arg(N, T, A)
; N1 is N-1,

insert_arg(N1, F, A, R, T)).

