
The Ciao Multiparadigm Language

and Program Development Environment

The Ciao Development Team

Ciao is a modern, multiparadigm programming language with an advanced
programming environment. It has a dual nature: on one hand it provides a high-
performance, industrial quality, freely available, ISO-standard-compliant Prolog
system. At the same time, its modular approach allows both restricting and
augmenting the language through libraries in a well-controlled fashion. This
allows providing significant extensions which make Ciao a truly next-generation

logic-programming language as well as a multiparadigm programming system.
One of fundamental aspects of the Ciao approach is based on the observation

that a single set of basic, well-chosen features (a language kernel) can effectively
support several programming paradigms and styles [11,10]. This approach is, of
course, not exclusive to Ciao, but in Ciao these facilities are uniformly available
(and their use encouraged) from the system programmer level to the application
programmer level.

The extensibility-based approach makes it possible to work with fully declar-

ative subsets of logic programming and also to extend the core language both
syntactically and semantically. Most importantly, these restrictions and exten-
sions can be activated separately on a per-module basis without interfering with
each other thanks to the notion of packages [4]. The different source-level con-
structs (and sub-languages / DSLs) are typically supported by compilation into
the kernel language via source-to-source transformations, with the (rather infre-
quent) help of modules written in an external language using one of the several
interfaces provided. Due to the existence of a common kernel, the programming
styles that Ciao implements share much at both the semantic and implemen-
tation levels, and they naturally reuse significant portions of modern (C)LP
implementation technology.

Ciao provides support for both programming in the small (by providing
scripts and reduced-size executables, which include only those builtins and li-
braries used by the program) and programming in the large. Programming in the
large is facilitated by its robust module system [4] and rich assertion language

(another product of the “extensibility approach”) combined with the capabilities
of the Ciao preprocessor [2,12,13] for modular static verification, static debug-
ging, and dynamic checking of such assertions.

Some of the principal distinguishing features of Ciao are:

ISO-Prolog: Ciao provides in its default mode an excellent Prolog system,
without giving up on all of its “new-generation” features, thanks to the library-
based approach. This distinguishes Ciao from other new-generation (C)LP sys-
tems that do not have an ISO-Prolog compliant mode.



Support for Multiple Programming Models and Paradigms: At the same
time Ciao supports, also via libraries, different LP languages, several types of
constraint domains (including CHR support), functional notation (including lazy
evaluation), higher-order (with predicate/function abstractions), as well as sev-
eral computation rules (Andorra model, breadth-first, iterative deepening, fuzzy
Prolog) and object-oriented programming facilities. Modules written in ISO-
Prolog can be combined freely with other modules written in these other sup-
ported paradigms, and some paradigms can even be mixed within the same
module.

Powerful Preprocessor: A number of program analyzers, integrated in the
Ciao preprocessor, allow inferring and checking many useful program properties.
Most analyses are performed at the kernel language level, so that the same
analyzers can be used for several of the supported programming models. The
availability of this information provides quite unique functionality [13]:

– Assertions and Program Debugging/Validation: The properties that
are statically inferred by the analyzers can be compared against programmer-
provided (typically partial) specifications written using Ciao’s unique asser-

tion language. These properties include types/modes (data structure shape
–including variable sharing– and instantiation state of variables), bounds on
data sizes, determinacy, termination, non-failure, or bounds on resource con-
sumption (time, space, or user-defined resources). The preprocessor verifies

whether those properties are met by the actual code and statically debugs

the program otherwise. Assertions that the system cannot prove nor disprove
at compile-time can be optionally subject to run-time checking, with tests
automatically added to the program. Both static and dynamic checking are
safe in the sense that all errors flagged are violations of the specifications.

– Assertions are not Compulsory: A fundamental advantage of the Ciao
approach in this context is that assertions are not compulsory. This dis-
tinguishes Ciao from other new-generation (C)LP systems where, e.g., type
definitions or declarations are compulsory, and is of course instrumental in
allowing Ciao to support Prolog.

– Mobile Code Safety through Abstraction-Carrying Code: When pro-
grams are validated the preprocessor can generate automatically certificates
that can be attached to programs to be checked at the receiving end in order
to guarantee compliance with a given safety policy [1].

– Source-to-source Optimizations: The information inferred by the global
analyzers can be used to perform source-level code optimizations, including
multiple abstract specialization, partial evaluation, dead code removal, goal
reordering, parallelization with granularity control, reduction of concurrency
/ dynamic scheduling, low-level optimization, etc.

Rich Program Development Environment: In addition to all the facilities
provided by the preprocessor, compiler, and top level, the programming envi-
ronment includes:



– Rich Graphical Development Interface: based on the latest, graphical
versions of Emacs (offering menu and widget-based interfaces with direct
access to the top-level/debugger, preprocessor, and autodocumenter) as well
as an embeddable source-level debugger with breakpoints, and several exe-
cution visualization tools. The environment provides also automated access
to the documentation, extensive syntax highlighting, auto-completion, auto-
location of errors in the source, etc., and is highly customizable. A plugin
with very similar functionality is also available for the Eclipse environment.

– Automatic Documentation Generation: The assertions and directives
present in the program and libraries, as well as all other program informa-
tion available to the compiler, are used to generate automatically program
documentation (including types, modes, machine-readable comments, etc.)
by means of the Ciao autodocumenter [9].

Versatile, Incremental Compiler and Abstract Machine: A central piece
of the system is the Ciao compiler, ciaoc [5] and its target abstract machine,
which offer:

– Modular, Incremental Compilation: ciaoc performs automatically an
incremental compilation which takes module dependencies into account with-
out the need for Makefiles. Program modules can be linked statically, dy-
namically, or be automatically loaded on demand.
The executables generated are competitive in both performance and size
with current commercial and academic Prolog systems.

– Versatile, Multiplatform Compilation Options: Several types of exe-
cutables can be built easily. In addition to the traditional Prolog top-level,
the system offers support for the use of Ciao as a scripting language, for
compilation to multiarchitecture bytecode executables, and for compilation
to single-architecture, standalone executables. Multiple platforms are sup-
ported, including Windows, Linux, Mac Os X, and many other Un*x-based
OSs. Optimizing compilation to native code (via C) is in a mature state [8]
and will be part of the standard distribution in the near future.

– Kernel Abstract Machine: A comparatively simple, but optimized ab-
stract machine supports the kernel language. It includes native support for
attributed variables and for threading primitives, and a synchronization-
enabled shared database [7].

– Rich foreign interfaces: Bidirectional foreign interfaces to C (with auto-
matic generation of glue code), Java, TclTk, SQL databases (with a notion
of predicate persistence), etc.

Support for Concurrency, Parallelism, and Distributed Execution: Ciao
includes concurrency, parallelism, and distributed execution capabilities [3]. The
notion of “active module” (or active object) allows compiling modules in such a
way that they are ultimately mapped to a standalone process, which is transpar-
ently accessed by the rest of the application. In addition, the system also offers
a full-fledged library for developing WWW-based applications [6].



Free Availability: Ciao is free software protected to remain so by the GNU
LGPL license. It can be used freely to develop both free and commercial appli-
cations.

Finally, the system includes a large set of libraries, many of them contributed
by users.

Probing Further

The reader is encouraged to explore the system, its documentation, and the
tutorial papers that have been published on it. We are currently working on the
new 1.14 system version which includes significant enhancements with respect
to the previous version (1.10), including integration of the preprocessor and
autodocumenter into the Ciao development tree as a single package (previously
they had to be downloaded and installed separately). This version is available
already on demand from the Ciao subversion repository.

Contact / download info:

http://www.ciaohome.org

http://www.cliplab.org

ciao@clip.dia.fi.upm.es

The Ciao Development Team
Technical U. of Madrid, Spain
U. of New Mexico, USA
U. Complutense de Madrid, Spain

Acknowledgments

The Ciao system is in continuous and very active development through the
collaborative effort of numerous members of several institutions, including UPM,
UNM, UCM, Roskilde U., U. Melbourne, Monash U., U. Arizona, Linköping
U., NMSU, K. U. Leuven, Bristol U., Ben-Gurion U, INRIA, as well as many
others. The development of the Ciao system has been supported by a number of
European, Spanish, and other international projects (currently by EU IST-15905
MOBIUS project, the Spanish TIN-2005-09207 MERIT project, and the CAM
PROMESAS program. Manuel Hermenegildo is also supported by the IST Prince
of Asturias Chair at the University of New Mexico. The system documentation
and related publications contain more specific credits for the many contributors
to the system.

References

1. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.
of LPAR’04, number 3452 in LNAI, pages 380–397. Springer-Verlag, 2005.

2. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Au-
tomated Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997.
U. of Linköping Press.

http://www.ciaohome.org
http://www.cliplab.org
ciao@clip.dia.fi.upm.es


3. D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Execution in
the CIAO System. In Proc. of the 1995 COMPULOG-NET Workshop on Paral-
lelism and Implementation Technologies, Utrecht, NL, September 1995. U. Utrecht
/ T.U. Madrid. Available from http://www.cliplab.org/.

4. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In Interna-
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
131–148. Springer-Verlag, July 2000.

5. D. Cabeza and M. Hermenegildo. The Ciao Modular, Standalone Compiler and
Its Generic Program Processing Library. In Special Issue on Parallelism and Im-
plementation of (C)LP Systems, volume 30(3) of Electronic Notes in Theoretical
Computer Science. Elsevier - North Holland, March 2000.

6. D. Cabeza and M. Hermenegildo. Distributed WWW Programming using (Ciao-
)Prolog and the PiLLoW Library. Theory and Practice of Logic Programming,
1(3):251–282, May 2001.

7. M. Carro and M. Hermenegildo. Concurrency in Prolog Using Threads and a
Shared Database. In 1999 International Conference on Logic Programming, pages
320–334. MIT Press, Cambridge, MA, USA, November 1999.

8. M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo. High-Level
Languages for Small Devices: A Case Study. In Krisztian Flautner and Taewhan
Kim, editors, Compilers, Architecture, and Synthesis for Embedded Systems, pages
271–281. ACM Press / Sheridan, October 2006.

9. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna-
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
1345–1361. Springer-Verlag, July 2000.

10. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,
P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65–85. Nova
Science, Commack, NY, USA, April 1999.

11. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the De-
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principles
and Practice of Constraint Programming, number 874 in LNCS, pages 123–133.
Springer-Verlag, May 1994.

12. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-
Verlag, July 1999.

13. M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Pro-
gram Debugging, Verification, and Optimization Using Abstract Interpretation
(and The Ciao System Preprocessor). Science of Computer Programming, 58(1–
2):115–140, October 2005.

Most of these and other papers and technical reports related to Ciao can be
obtained from the Clip lab main WWW server, http://www.cliplab.org/.

http://www.cliplab.org/
http://www.cliplab.org/

	The Ciao Multiparadigm Language and Program Development Environment
	The Ciao Development Team 

