
A Segment-Swapping Approach for Executing
Trapped Computations ?

Pablo Chico de Guzmán1, Amadeo Casas2,
Manuel Carro1,3, and Manuel V. Hermenegildo1,3

pchico@clip.dia.fi.upm.es, amadeo.c@samsung.com,
{mcarro,herme}@fi.upm.es

1 School of Computer Science, Univ. Politécnica de Madrid, Spain.
2 Samsung Research, USA.

3 IMDEA Software Institute, Spain.

Abstract. We consider the problem of supporting goal-level, independent and-
parallelism (IAP) in the presence of non-determinism. IAP is exploited when two
or more goals which will not interfere at run time are scheduled for simultaneous
execution. Backtracking over non-deterministic parallel goals runs into the well-
known trapped goal and garbage slot problems. The proposed solutions for these
problems generally require complex low-level machinery which makes systems
difficult to maintain and extend, and in some cases can even affect sequential ex-
ecution performance. In this paper we propose a novel solution to the problem of
trapped nondeterministic goals and garbage slots which is based on a single stack
reordering operation and offers several advantages over previous proposals. While
the implementation of this operation itself is not simple, in return it does not im-
pose constraints on the scheduler. As a result, the scheduler and the rest of the
run-time machinery can safely ignore the trapped goal and garbage slot problems
and their implementation is greatly simplified. Also, standard sequential execu-
tion remains unaffected. In addition to describing the solution we report on an
implementation and provide performance results. We also suggest other possible
applications of the proposed approach beyond parallel execution.
Keywords: Parallelism, Logic Programming, Trapped Computations, Backtrack-
ing, Performance.

1 Introduction

Extracting parallelism from sequential programs has become a key point for the practical
exploitation of multicore technology. However, writing parallel application has shown
to be a difficult, time-consuming, and error-prone process for developers. Consequently,
the design of new language constructs that aim at easing the task of writing parallel ap-
plications and the development of language tools to uncover the parallelism intrinsic in
sequential applications have drawn the interest of the research community. Traditionally,
declarative languages have received much attention for both expressing and exploiting
parallelism due to their comparatively clean semantics and expressive power. In partic-
ular, a large amount of effort has been invested by the community in the area of parallel
? Work partially funded by EU project IST-215483 S-Cube, MICINN project TIN-2008-05624

DOVES, and CAM project S2009TIC-1465 PROMETIDOS. Pablo Chico is also funded by a
MEC FPU scholarship.



execution of logic programs [1], where two main sources of parallelism have been iden-
tified and exploited. Or-parallelism, efficiently exploited by systems such as Aurora [2]
and MUSE [3], aims at executing different branches of the execution in parallel. On
the other hand, and-parallelism schedules the literals of a resolvent to be executed in
parallel. As an alternative to execution models specifically designed for executing and-
parallel programs, efficient models to exploit and-parallelism based on the WAM were
developed. The latter have the advantage of retaining the many optimizations present in
the WAM which improve performance in the sequential execution parts — and, conse-
quently, improve the overall performance. &-Prolog [4] (the first fully described such
system) and DDAS [5] are among the best-known proposals in that class. In addition,
other systems such as (&)ACE [6], AKL [7], Andorra [8] and the Extended Andorra
Model (EAM) [9, 10] have tackled the challenge of increasing performance of applica-
tions by providing solutions that combine both kinds of parallelism. In this paper we will
focus on goal-level, independent and-parallelism, a subclass of and-parallelism in which
parallelism is exploited among goals which do not compete for resources (bindings to
variables, I/O, databases, and others) at run-time.

Although previous systems that have exploited independent and-parallelism excelled
at speeding up the execution of programs in multiprocessor systems [1], the difficulty of
the machinery required to execute nondeterministic programs in parallel hindered their
widespread availability. In particular, one of the most delicate aspects that these systems
need to address is the management of trapped goals and stack unwinding, which are
necessary to free garbage slots left by the nondeterministic parallel execution, resulting
in a complex interaction between goal age, scheduling, and memory management [11,
12]. Dealing with these issues required low-level, complex engineering, such as special
stack frames in the stack sets [4, 13].

Notwithstanding, non-determinism is an essential concept that arises in many core
areas of computer science, such as artificial intelligence and constraint-based optimiza-
tion, and is necessary in general problem-solving patterns, such as generate-and-test. In
order to avoid complexity, recent approaches to independent and-parallelism focus more
on simplicity than on ultimate performance, abstracting core components of the imple-
mentation out to the source level. In [14], a high-level implementation of goal-level IAP
was proposed that showed reasonable speedups despite the overhead added by the high
level nature of the implementation. Other recent proposals [15], with a different focus
from traditional approaches, concentrate on providing machinery to take advantage of
underlying thread-based OS building blocks. Unfortunately, these implementations have
not completely removed to date the need for low-level machinery in order to solve the
trapped goal and garbage slot problems or are only appropriate for coarse-grain paral-
lelism.

In line with this trend towards simplicity, we propose in this paper a novel solution
for trapped goals and garbage slots that is based on reordering the stack to generate
a stack state that could have been generated by a sequential SLD execution. Although
the implementation of this solution is involved, in return it does not impose constraints
on the scheduler for parallel execution which can remain unchanged. As a result, the
scheduler and the rest of the run-time machinery can safely ignore the trapped goal
and garbage slot problems and as a result their implementation and maintenance are
greatly simplified. Finally, it is worth mentioning that our approach does not affect the
performance of standard sequential execution.



m :- a(X, Y) & b(Z).

a(X, Y) :- b(X) & b(Y).

b(1).
b(2).

m(X, Y, Z)

b(X)

Agent 1

a(X, Y)

Agent 2

b(Y)b(Z)

Fig. 1. Example of execution state in IAP with trapped goals.

In Section 2, we provide a brief introduction to the trapped goal problem and review
some of the classical solutions that have been proposed to work around it. Section 3
focuses on the design and low-level details of our approach. Section 4 shows how this
solution can be applied as well to solving the garbage slot problem. In Section 5, we
present a performance evaluation of our approach, together with some data on the fre-
quency of trapped goals in our implementation. Section 6 discusses how our technique
can be applied to the implementation of execution strategies other than and-parallelism.
Finally, Section 7 presents some conclusions.

For brevity, we assume the reader is familiar with the WAM [16, 17] and the RAP-
WAM [4] architectures.

2 The Trapped Goal Problem

As mentioned before, one of the main challenges in IAP implementation is how to deal
correctly with backtracking. The problem stems from the fact that in principle any of the
available parallel goals can be selected for execution, and therefore they can be piled on
the execution stacks in an order which differs from the one which would be generated
by sequential execution. Since IAP implementations have been traditionally required to
follow a right-to-left backtracking order, this clearly leads to a problem: it is possible
that a goal to be backtracked over is trapped under a logically older goal which would
hinder the application of the usual right-to-left backtracking order [11, 12]. We illustrate
this with an example.

Figure 1 shows a possible state of the execution of a call to m using two agents.4

When the first agent starts computing the first answer, goals a(X, Y) and b(Z) are sched-
uled to be executed in parallel. Let us assume that goal b(Z) is executed locally by the
first agent and that goal a(X, Y) is stolen by the second agent for execution. Then, the
second agent schedules goals b(X) and b(Y) to be executed in parallel, which results in
goal b(Y) being locally executed by the second agent and goal b(X) taken by the first
agent after finishing the computation of an answer for goal b(Z). In order to obtain an-
other answer for predicate m, right-to-left backtracking requires computing additional
answers for goals b(Z), b(Y), and b(X), in that order. However, goal b(Z) cannot be di-
rectly backtracked over since the execution of goal b(X) is stacked on top of it. Goal b(Z)
has become a trapped goal.

Several solutions have been proposed to solve this problem. One of the original pro-
posals makes use of continuation markers [4, 13] to skip over stacked goals. Even though

4 Herein we use agent to refer to an executing thread attached to its own stack set.



this solution deals correctly with the trapped goal problem, it leads to a quite complex
implementation, having to cope with a relatively large number of cases. In addition, it
needs to store a good amount of additional information, which increases memory over-
head. Another solution (also suggested in [4, 5, 18] and developed further and studied
in [13]) is to allow public backtracking, i.e., to let an agent perform backtracking over a
choicepoint that belongs to the stack set of a different agent. Unfortunately, this solution
creates a difference between logical and physical views of the stacks, and adds the com-
plexity of having to manage parallel accesses to the private stacks of each of the agents.
More recently, a further solution to the problem was presented in [14], which is based on
moving the execution of the trapped goals to the top of the stack before the agent starts
to compute a new answer of the parallel goal. This solution simplifies the implementa-
tion, reducing the need for low-level machinery in comparison to previous approaches.
However, garbage slots may still appear in the stacks. A common disadvantage of these
approaches is that the parallel scheduler is forced to directly manage trapped goals. Also,
they all share a relatively complex marker architecture. All of this keeps the complexity
of these approaches still relatively high, affecting overall system maintenance, extensi-
bility, and portability, as well as affecting standard sequential execution.

A completely different approach to solving the trapped goal and garbage slot prob-
lems is restricted scheduling: to keep track of goal execution order dependencies in order
to restrict the set of goals that an agent is allowed to execute to only those that ensure that
no goal under them will become trapped or garbage [11, 12]. An agent will not execute a
goal G on a stack set if that stack set already contains a goal which could be backtracked
over before goal G. While this solution shares with our approach the advantage of keep-
ing stacks ordered, it complicates scheduling, adds overhead, and, above all, it comes at
the cost of limiting the degree of parallelism in the system. In Section 5.2 we present a
preliminary performance evaluation that shows that this effect can be quite significant in
practice.

Finally, other systems with support for parallelism, such as Erlang [19], opted to
create a new small stack set for each parallel goal. Note that Erlang, unlike Prolog,
does not have support for backtracking. Therefore the problem we are tackling in this
paper simply does not exist and the shape of the stacks is much simpler. The creation
of multiple stacks (as needed) has also been suggested in the context of Prolog (as early
as [11]), but the WAM multi-stack structure makes creating fresh stacks more expensive
in time and memory.

Note that, while we have discussed so far approaches which keep the sequential
solution order, trapped computations also appear in approaches to and-parallelism which
give up on maintaining sequential execution solution order [20]. Therefore this paper
is not as much a quest for efficiency as an attempt to find a simple solution (which
minimizes changes to the scheduler while keeping the performance of the sequential
execution) to a problem which seems unavoidable in and-parallel execution.

3 Reordering Stacks to Free Trapped Goals

In classical WAM implementations [16, 17], the order of the choicepoints corresponds
to the chronological order in which backtracking has to be performed. This strong cor-
respondence between the logical and the physical view of the choicepoint stack (and
the corresponding heap and trail segments) is exploited to perform backtracking effi-



HEAP

CHOICE

TRAIL

...

C1

C2

...

Cm

1

2

3

4

5

6

7

init_trail

init_cp

T_C1

T_Cn

t1

t2

t3

t4

t5

t6

t7

(a) Snapshot of a trapped goal execution.

HEAP

CHOICE

TRAIL

1

2

3

4

5

6

7

C1

...

Cm

...

init_trail

init_cp

C2

T_C1

T_Cn

t3

t2

t1

t7

t6

t5

t4

(b) Snapshot after choicepoints reordering.

Fig. 2. Example of choicepoint reordering before executing a trapped goal.

ciently, to reclaim all storage in the process in a very simple and fast way, and to pave
the way to other optimizations. Unfortunately, trapped goals break this correspondence
between logical and physical views and therefore some of the WAM assumptions do not
hold anymore. As we saw before, this lack of correspondence appears in most previ-
ous approaches, in which the logical and physical views are separated. We propose to
force this correspondence by explicitly reordering the stacks. The advantage is that this
will maintain all the invariants of the sequential execution, which will in turn facilitate
maintenance and make sequential optimizations easier to adopt.

3.1 An Example of Stack Reordering

Figure 2(a) shows the stack state of an agent which needs to compute a new answer of a
goal that is currently trapped. T C1, . . . , T Cn correspond to the choicepoints generated
by the previous execution of such trapped goal. C1, . . . , Cm correspond to the choice-
points that belong to computations younger than the one of the trapped goal. Pointers on
the left of each choicepoint indicate the corresponding trail section associated to each
choicepoint (trail(choice point)), and show the limits of the logical effects that
need to be undone when backtracking over each of the choicepoints. Pointers on the
right of each choicepoint indicate the corresponding heap section of each of the choi-
cepoints (heap top(choice point)), and show the limit of heap memory that can
be reclaimed on backtracking.5 In this case, it is possible to reinstate the correspondence
between the logical and physical views by reordering the choicepoints in the stack. Fig-
ure 2(b) shows the stack set after reordering, which involves moving the choicepoints
of the trapped goal T C1, . . . , T Cn to the top of the stack, therefore creating a new
backtracking execution order. Note that reordering the choicepoints needs a trail cell re-
ordering in order to remove those logical effects generated by previous goal executions.

In addition, this choicepoint reordering operation requires updating the heap top
pointers heap top(T C1), . . . , heap top(T Cn) of each choicepoint to the cur-
rent heap top of the agent’s stack set, in order to protect the heap positions which be-
long to the trapping computations from backtracking over the trapped goal.6 If these
pointers are not reallocated, backtracking over the previously trapped goal (now on top)

5 Similar pointers for the environment stack have been omitted from Figure 2(a).
6 A similar idea was proposed in the context of tabling [21].



would set the H (heap) pointer to a location under the trapping goal heap area and for-
ward execution would run over the heap area used by the trapping goal. For example,
if heap top(T Cn) were still pointing to cell 4, backtracking over T Cn would set H
= 4 and forward execution could overwrite heap cell 5, which belongs to another com-
putation. By setting all heap pointers from heap top(T C1) to heap top(T Cn)
to point to the heap top, trapped cells remain protected and heap construction happens
at the top of the heap. Given that younger heap cells point to older heap cells (i.e., top
points to bottom in this figure), dangling pointers will not appear.

After reallocating pointers as shown in the previous paragraph, the heap section cor-
responding to the old trapped computation becomes unreachable. This is taken care of
by updating the heap top pointer heap top(C1) associated with choicepoint C1. It is
made to point to the cell where the first choicepoint of the initially trapped computation
was pointing (heap top(T C1)). This will reclaim the unused section on backtracking
as backtracking over C1 will set the heap pointer to the start of the heap area.

A similar operation needs to be performed for the environment stack to protect the
environments of the trapping computation from backtracking. Note that it is not neces-
sary to reorder the heap or the environment frame stack, and that the choicepoint stack
reordering operation can be executed without requiring the agents to compete for mutual
exclusion since this operation only affects locally the stack set of each agent.

3.2 Stack Reordering Algorithm

Figure 3 presents the algorithm that allows restarting the computation of a particular
trapped goal. The procedure move exec top is supplied with a handler h as argument,
which corresponds to a structure that is associated to the execution of each parallel goal,
and stores the execution state of such computation. Let us use the example shown in
Figure 2 to understand this procedure.

Fields initCP(h) and lastCP(h) of a particular handler h return the initial and
the last choicepoint of the parallel computation associated with h. Lines 4 and 5 initialize
local variables to point to the first choicepoint and the first trail cell of the trapped goal.

The first step in the algorithm (line 7) is to check whether the goal execution that
needs to be restarted is currently trapped or not. If that is the case then the choicepoints of
the trapped goal execution need to be moved to the top of the stack and the corresponding
trail sections to the top of the trail (Section 3.1). In the case of the example shown in
Figure 2, lines 8 to 12 of the algorithm copy the choicepoints T C1, . . . , T Cn to an
auxiliary memory location denoted by tg cp and, similarly, the choicepoints C1, . . . ,
Cm are copied over to yg cp, the trail sections t1 to t3 are copied onto tg trail,
and finally trail sections t4 to t7 are copied over to yg trail.7

We maintain a handler stack, HandlerStack, keeping the chronological order in
which goals are executed. It is used by lines 14 to 18 to update the pointers initCP and
lastCP of those handlers representing goals younger than the trapped one.8 Lines 19
and 20 update the pointers initCP and lastCP of the trapped handler. Line 21 moves

7 The amount of necessary auxiliary memory is usually negligible w.r.t. heap memory. Its size
is the maximum between that of the trail/choicepoint stack section of the trapped goal and the
trapping computations.

8 Note that the complexity of this traversal is never worse than the choicepoint stack reordering.



1 void move exec top(Handler h)
2 begin
3

4 init cp = initCP(h);
5 init trail = trail(initCP(h));
6

7 if (IS YOUNGER CP(CP(wam), lastCP(h))) then
8 MEM ALLOC COPY(tg cp, init cp, lastCP(h));
9 MEM ALLOC COPY(yg cp, ONE YOUNGER CP(lastCP(h)), CP(wam));

10 MEM ALLOC COPY(tg trail, init trail,
11 ONE OLDER TRAIL(trail(ONE YOUNGER CP(lastCP(h)))));
12 MEM ALLOC COPY(yg trail, trail(ONE YOUNGER CP(lastCP(h))), trail(wam));
13

14 for all handler OnTop(handler, h, HandlerStack) do
15 begin
16 initCP(handler) := initCP(handler) − sizeof(tg cp);
17 lastCP(handler) := lastCP(handler) − sizeof(tg cp)
18 end for;
19 initCP(h) := initCP(h) + sizeof(yg cp);
20 lastCP(h) := lastCP(h) + sizeof(yg cp);
21 MoveToTop(h, HandlerStack);
22

23 MEM COPY(init cp, yg cp);
24 MEM COPY(init cp + sizeof(yg cp), tg cp);
25 MEM COPY(init trail, yg trail);
26 MEM COPY(init trail + sizeof(yg trail), tg trail);
27

28 for all cp in yg cp do
29 begin
30 trail(cp) := trail(cp) − sizeof(tg trail);
31 end for;
32

33 heap top(CP(init cp)) := heap top(initCP(h));
34 frame top(CP(init cp)) := frame top(initCP(h));
35

36 for all cp in tg cp do
37 begin
38 trail(cp) := trail(cp) + sizeof(yg trail);
39 heap top(cp) := heap top(wam);
40 frame top(cp) := frame top(wam);
41 end for;
42 end if
43 end;

Fig. 3. Algorithm to perform choicepoints reordering in an agent’s stack set.

the trapped handler to the top of the handler stack, corresponding with the new stack
order.

The next step in the algorithm is to copy the choicepoints and trail sections back
from the auxiliary memory locations tg cp, yg cp, tg trail and yg trail to the
agent’s stack and trail. This is performed in lines 23 to 26, which first move the choice-



points C1, . . . , Cm back to the stack, followed by choicepoints T C1, . . . , T Cn, and then
move trail sections t4 to t7 over to the trail, followed by trail sections t1 to t3.

Lines 28 to 31 iterate over the trail pointers of each of the initially trapping choice-
points trail(C1), . . . , trail(Cm) to ensure that they point to the updated location
of their corresponding trail sections. Lines 33 and 34 update the heap and frame top
pointers of the first trapping choicepoint in the stack C1 to point to the original value of
the heap and frame top pointers of the first choicepoint of the initially trapped compu-
tation T C1, to allow a proper release of the trapped goal memory when the execution
backtracks over choicepoint C1. After executing lines 23 to 26, init cp is now point-
ing to C1.

The algorithm then continues in lines 36 to 41 updating the trail pointers trail(T C1),
. . . , trail(T Cn) for each of the choicepoints of the initially trapped computation to
point to the new location of their corresponding trail sections, as well as their heap top
and frame top pointers to point to the current heap top of the agent’s stack set, and
therefore protect the heap and the environment frame of choicepoints C1, . . . , Cm from
backtracking over the initially trapped goal. Now, the trapped goal is ready to be back-
tracked over using standard WAM machinery, after the auxiliary memory allocated in
tg cp, yg cp, tg trail and yg trail is released.

Note that this algorithm assumes that choicepoints are not linked, but just stacked one
over the previous one. In implementations where each choicepoint points to the previous
one, reordering can boil down to pointer updating. Also, even for the case of memory
reallocation, as will be shown in Section 5, backtracking over trapped goals does not
occur very often, which reduces the impact of the overhead of the move exec top
algorithm so that it does not significantly impact performance during execution of IAP.

3.3 Some Low Level Details

Our solution for the trapped goals problem requires considering two particular situations
which have to be managed at a low level. The first one involves considering the environ-
ment trimming optimization, and the second one is related to “spurious” trail cells that
may appear after the execution of the Prolog cut/0 operator.

Environment Trimming The environment trimming optimization reclaims, during for-
ward execution, variables of the current environment when it is known that they are not
going to be accessed again during forward execution. This is determined by comparing
the ages of the current environment and the environment pointed to by the current choi-
cepoint (using the environment cp field of the choicepoint). In general, choicepoints
protect local variables which have been created prior to the creation of the choicepoint.
Under IAP execution, environment trimming may occur after a parallel call is performed.
However, remote agents may generate choicepoints that protect some of these local vari-
ables. Unfortunately, environment trimming is not aware of the existence of these remote
choicepoints, and unsafe environment trimming operations may then be performed. The
simplest way to solve this problem is to insert a “void” choicepoint before any parallel
call in order to protect all current local variables. A lighter solution would involve mod-
ifying the environment cp field of the last choicepoint to protect all current local
variables. The trail may be used to reinstall the original value of the environment cp
field before backwards execution is performed over this choicepoint.



Spurious trail cells Trail entries keep track of the cells with conditional bindings: those
made to variables which appeared before a given choicepoint was pushed and bound
after that choicepoint is pushed. These cells will not be reclaimed after backtracking
over the last choicepoint of a goal execution, but their bindings need to be undone on
backtracking. After executing a cut/0 operator, some of these bindings become un-
conditional (because the choicepoint which was pushed between cell creation and cell
binding is no longer active), and therefore they should not be part of the trail. Some
Prolog systems remove these bindings as soon as a cut/0 is executed. However, other
systems (such as Ciao, on which our implementation is based) do not do so because
these “spurious” trail cells do not affect the standard sequential execution: they always
point to reclaimed memory. Unfortunately, spurious trail cells become a problem after
the execution of the move exec top procedure, since the order of cells in the trail
changes. In the case of environment frame variables, environment trimming or last call
optimizations could make these spurious trail cells point to new, live environment stack
sections. Using again the example in Figure 2, referencing a spurious trail cell belonging
to choicepoint T Cn could affect the environment frame of C1. The problem is solved by
invalidating those trail cells of choicepoints T C1, . . . , T Cn which do not belong to the
heap and the environment frame segments of these choicepoints (because they are not
conditional).

4 Dealing with Garbage Slots

In addition to the trapped goal problem, unused sections of the stack may appear when
executing nondeterministic parallel programs under IAP. Let us consider the goal g :-
a, (b & c), d.. Let us assume that all goals in the body of g/0 can return several
solutions. There are several scenarios that may occur depending on which subgoal fails:

– If subgoal a/0 fails, sequential backtracking is performed.
– Since subgoals b/0 and c/0 are mutually independent, if either one of them fails

without a solution, backwards execution must proceed over subgoal a/0, because
subgoals b/0 and c/0 do not affect each other’s search space.

– If subgoal d/0 fails, backwards execution must proceed over the right-most choi-
cepoint of the parallel conjunction b & c, which could be trapped, and recompute
the answers for all subgoals to the right of that choicepoint. Thus, backtracking
within a conjunction of parallel subgoals occurs only if initiated by a failure from
outside of the subgoals conjunction (also known as outside backtracking). Instead,
if the backwards execution is initiated from within the subgoals in the parallel con-
junction, backtracking proceeds outside of all these subgoals, i.e., to the left of the
conjunction (also known as inside backtracking).

Inside backtracking requires canceling the execution of the parallel goals that belong
to the same parallel goal conjunction. These goals could be trapped and they would
then produce garbage slots in the trail, choicepoint stack, and heap. Traditionally, IAP
implementations have solved this problem with methods closely related to those used
to solve the trapped goal problem, with similar drawbacks, including complexity in the
implementation of the parallel scheduler, as well as impacting its performance.

The solution for trapped goals that we have presented in Section 3.2 can be reused
to avoid leaving garbage slots in the stack by executing the procedure move exec top



before canceling the execution of a trapped goal. By doing so, the corresponding trail
cells and choicepoints of the canceled goal would be immediately reclaimed. The heap
and environment frame stack would be reclaimed by garbage collection or upon back-
wards execution over the first choicepoint above the choice points of the canceled goal
(choicepoint C1 following the example in Figure 2). In our set of benchmarks, the
trapped heap memory increases the memory use by 1% in the worst case.

5 Performance Evaluation
We present in this section some of the performance results obtained with the imple-
mentation of our proposed solution in the Ciao [22, 23] system. Such implementation
is based on a previous high-level implementation of IAP [14], whose functionality has
been augmented with the support to manage trapped goals and garbage slots.

All the benchmarks that are shown in this section were automatically parallelized
with CiaoPP [24], using the annotation algorithms described in [25–27]. Finally, the
actual performance results for each of the benchmarks were obtained after averaging ten
different runs on a Sun UltraSparc T2000 (known as Niagara architecture) machine with
eight 4-thread cores and 8Gb of memory running Solaris 10u1.

As we stated before, the aim of this paper is not so much to evaluate raw performance
gains as it is to clarify up to which point the proposed technique is advantageous. In order
to measure this, we will evaluate, on one hand, how often trapped goals appear in typical
and-parallel computations and how much overhead the stack reorganization operations
impose on the execution and, on the other hand, what speedups can be expected from
executions which respect goal dependencies in order to avoid trapped computations.

We have used some deterministic and non-deterministic benchmarks selected from [28,
20], listed in Table 1. All these benchmarks can produce trapped goals (i.e., goals stacked
out of order w.r.t. the sequential execution). Note that even if some of these benchmarks
only return one solution, they are forced to fail in order to backtrack and explore all the
search tree. For deterministic benchmarks, this means that backtracking is attempted on
all parallel goals which are piled out-of-order in the stacks following the logical depen-
dencies across the execution tree, even if they do not produce additional solutions.

5.1 Deterministic and Non-Deterministic Benchmarks

Table 2 presents the ratio of trapped goals vs. total parallel goals in the execution of each
benchmark (column Trapped) and the percentage of the parallel execution time that is
spent on the move exec top operation (column Lost). While this of course depends
on the particular scheduling performed, it has been found to be quite stable in our current
implementation. The evaluation is performed only up to 8 agents in order to make sure
that every agent receives the full computing power of a core (threads in a core compete
for shared resources, such as arithmetic units). The cases for one and two agents are also
omitted since they do not generate trapped goals.

The first conclusion is that trapped goals do not appear very often in general, and
their behavior depends largely on the nature of the benchmark itself. This scarcity favors
our approach, whose cost grows with the number of trapped goals that need to be moved
but otherwise does not pose overhead. This explains that the overhead imposed by the
move exec top operation is very small in all of the benchmarks. These benchmarks
create between 200 and 6000 choicepoints, and the precise number is related to the



Program Description
fft Fast Fourier transform.
fibo 22nd Fibonacci number, executed sequentially from the 12th downwards.
hanoi Towers of Hanoi of size 14, executed sequentially from the 7th downwards.
hanoi dl Towers of Hanoi with difference lists.
mmat Multiplication of two 50 × 50 matrices.
pal Recursively generates a palindrome of 215 elements, switching to sequential exe-

cution when generating palindromes of length 27.
qsort Use QuickSort to sort a list of 10000 elements, switching to sequential execution

when the list to be sorted has 300 elements.
qsort dl QuickSort with difference lists.
iqsort QuickSort with an irregular input list which makes the subgoals to be very differ-

ent in size and favours the occurrence of trapped goals.
iqsort dl QuickSort with difference lists, sorting an irregular input list.
tak Takeuchi function with arguments tak(14, 10, 3).
qsort nd Non-deterministic QuickSort (gives topological sortings) with an input list size

4000 elements, switching to sequential execution on 50 elements.
Table 1. Benchmark descriptions.

3 4 5 6 7 8
Program Trapped Lost Trapped Lost Trapped Lost Trapped Lost Trapped Lost Trapped Lost
fft 0.03 0.00 0.00 0.00 0.05 0.00 0.09 0.00 0.10 0.00 0.15 0.00
fibo 0.00 0.00 0.02 0.01 0.03 0.00 0.03 0.01 0.04 0.01 0.06 0.02
hanoi 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.04 0.00 0.04 0.00
hanoi dl 0.00 0.02 0.00 0.03 0.03 0.05 0.04 0.05 0.03 0.05 0.04 0.07
mmat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
pal 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.03 0.00
qsort 0.02 0.00 0.02 0.00 0.07 0.00 0.11 0.00 0.06 0.00 0.09 0.00
qsort dl 0.03 0.00 0.03 0.00 0.06 0.00 0.13 0.01 0.11 0.01 0.11 0.01
iqsort 0.03 0.00 0.09 0.01 0.18 0.02 0.26 0.02 0.27 0.02 0.35 0.03
iqsort dl 0.03 0.00 0.08 0.01 0.15 0.02 0.20 0.02 0.28 0.03 0.36 0.03
tak 0.00 0.00 0.08 0.00 0.01 0.00 0.13 0.00 0.07 0.00 0.05 0.00
qsort nd 0.02 0.00 0.07 0.00 0.14 0.00 0.21 0.00 0.33 0.01 0.39 0.01

Table 2. Trapped goal statistics.

amount of work that move exec top operation has to perform. The highest overhead
(7%) is in hanoi dl, which appears as an exceptional case. These results appear to
support our thesis that it is debatable whether providing a very efficient but complex
solution to the trapped goals problems is worth the effort. Instead, the proposed solution
seems more practical since it greatly simplifies the parallel scheduler (with the added
advantage, discussed later, that it can be reused for other purposes). This is even more
so if we take into account that the frequency of trapped goals can be largely reduced by
out-of-order backtracking with answer memoization [20], in which the traditional right-
to-left order in backtracking is not maintained on parallel goal conjunctions. In this case
the stack reorganization operation, although still necessary, is used even less frequently.

5.2 Avoiding Trapped Goals: the Impact of Goal Precedence

As mentioned in Section 2, a valid approach [12] to solving the trapped goal problem
is to respect a notion of goal precedence during forward execution to completely avoid



2 3 4 5 6 7 8
Program Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec
fft 1.75 1.74 2.06 1.75 2.69 2.68 2.68 2.69 2.87 2.68 2.97 2.67 3.02 2.68
fibo 1.91 1.72 2.62 2.51 3.18 2.50 3.98 4.10 4.51 3.98 5.48 5.14 5.98 5.13
hanoi 1.81 1.81 1.94 1.91 2.93 1.91 3.24 3.24 3.41 3.21 3.74 3.23 4.11 3.42
hanoi dl 1.41 1.41 1.41 1.41 1.86 1.40 2.95 2.76 3.06 2.75 3.59 2.75 3.75 2.67
mmat 1.52 1.53 2.24 2.23 2.95 2.91 3.72 3.67 4.35 4.11 4.97 4.68 5.63 5.42
pal 1.81 1.82 2.27 1.83 2.59 1.82 3.18 1.82 3.29 3.17 3.60 3.18 3.96 3.03
qsort 1.79 1.78 2.25 1.78 2.51 2.27 2.69 2.29 2.84 2.29 3.42 2.29 3.73 2.29
qsort dl 1.73 1.71 2.23 1.71 2.44 2.19 2.65 2.19 3.13 2.19 3.25 2.19 3.32 2.16
iqsort 1.33 1.33 1.33 1.33 1.67 1.33 2.27 1.33 2.43 1.33 2.80 1.33 3.02 1.33
iqsort dl 1.29 1.29 1.30 1.29 1.64 1.29 2.13 1.29 2.68 1.29 2.88 1.29 3.19 1.29
tak 0.89 0.89 1.77 1.77 2.38 2.38 3.50 3.50 3.54 3.54 4.47 3.54 4.25 4.40
qsort nd 1.53 1.53 1.59 1.58 1.92 1.59 1.93 1.59 2.01 1.59 2.34 1.59 2.54 1.66

Table 3. Speedup comparison: dependence analysis vs. trapped goals.

trapped goals. The low frequency of trapped goals previously found seems to suggest
that this approach might be effective in practice.

In order to assess whether this is the case, we have developed a prototype imple-
mentation of IAP which schedules goals according to their precedence. Table 3 presents
some of the speedups we obtained w.r.t. the Ciao sequential execution using this proto-
type (column Prec) and the speedups of our approach to handle trapped goals (column
Trap), but adding the overhead of determining precedences: precedence dependencies
are calculated but not used. The reason is that our dependency calculation algorithm may
be suboptimal, and by applying it to both cases we obtain a conservative comparison.9

From the experimental results, the speedups obtained with a goal-precedence sched-
uler are in general reduced, with some benchmarks having a bigger difference (e.g.,
iqsort and iqsort dl, probably due to an initial imbalanced split of the input list).
In addition, the execution based on goal precedence of our prototype has been shown
to be quite sensitive to the order in which the parallel goals are taken by remote agents,
which makes the overall speed of the parallel execution less predictable. Finally, this so-
lution is intended to match the behavior of standard sequential execution and is of no use
in the case of strategies which use less strict execution strategies to increase the amount
of search performed in parallel [20]. Therefore, we believe that avoiding trapped goals
based on goal precedence has drawbacks which makes it not advantageous in practice.

6 Other Applications for Stack Reordering

So far, we have used move exec top to arrange the stack order so that it could have
been generated by the standard sequential execution. However, other execution algo-
rithms for logic programs can also benefit from this approach and take advantage of
the move exec top operation. We show two examples: swapping evaluation [29] and
intelligent backtracking [30].

Swapping Evaluation Swapping evaluation originates in the context of tabling [31].
Tabling records calls to goals to reuse their solutions and also to break infinite loops:

9 Note that the observed overhead of the precedence analysis is rarely above 1%.



repeated calls (which generate loops) are suspended and other clauses for the looping
predicate are tried in order to generate answers which allow the suspended computa-
tion branch to continue. The first call to a tabled predicate is named the generator and
subsequent calls are named the consumers. Consumers read answers from a table where
the generator inserted them. If the generator returns answers on demand, consumers can
appear out of the scope of the generator execution. These consumers, named external
consumers, suspend waiting for the generator to compute more answers, and fail when
there are no more available answers.

External consumers change the standard SLD execution order. Assume t/1 is tabled
and has two solutions, t(1) and t(2). In the query ?- t(X), t(Y) goal t(X)
is a generator and t(Y) is an external consumer. In an SLD execution, the answer
sequence would be: {X=1, Y=1}, {X=1, Y=2}, {X=2, Y=1} and {X=2, Y=2}.
Under tabled evaluation, t(Y) suspends and more answers of t(X), the generator,
are generated on backtracking. In this case, under tabled execution, the sequence of
answers would be: {X=1, Y =1}, {X=2, Y=1}, {X=2, Y=2} and {X=1, Y=2}.
With standard scheduling strategies (e.g., batched scheduling), the suspension of an ex-
ternal consumer can lead to massive memory consumption.

Swapping evaluation exchanges the role of the external consumer and its generator
to avoid external consumer suspension. When t(Y) consumes the first answer, the ex-
ecution tree of t(X), which is trapped in the stack, is moved to the top of the stack
so it can generate more answers. Swapping evaluation was originally implemented in
XSB [32] and it is currently being ported to Ciao Prolog using the move exec top
operation in order to untrap the execution tree of the generator.

Intelligent Backtracking Intelligent backtracking strategies are based on the idea of per-
forming backtracking directly on the goal which generated the bindings that caused a
failure. In the following example:

p(X,Y) :- a(X), b(Y), c(X).
a(1). a(2). b(1). b(2). c(2).

the execution of c(X) fails because a(X) unified X with 1. Standard backtracking
would retry b(Y) in a purposeless attempt to execute c(X) with a new binding for
Y. Intelligent backtracking would change the backward execution order to allow back-
ward execution over a(X) before backtracking over b(X). Intelligent backtracking
needs to keep track of the point where bindings were produced in order to safely de-
tect the closest useful backtracking point. Intelligent backtracking could make use of the
move exec top operation to change the backtracking order.

7 Conclusions
We have presented a new algorithm to solve the trapped goal problem in which the stack
is reordered to generate an execution state that could have been generated by the sequen-
tial execution. Using this algorithm simplifies the implementation of the scheduler for
parallelism and does not affect the performance in case of standard sequential execu-
tion. Our approach has been implemented in the Ciao system, and we have performed
an experimental evaluation of its effectiveness. We have also compared our approach
to that based on keeping track of goal dependencies in order not to generate trapped
goals and found that the restriction in the degree of parallelism brought about by the



dependency-based approach makes this solution less advantageous. On the other hand,
the use of the move exec top operation imposes only a limited overhead and does
not restrict parallelism. Finally, the stack reordering operation presented in this paper
represents semantically a change in the backtracking execution order, which we believe
could be successfully applied to the implementation of tabling, swapping evaluation, or
intelligent backtracking.

References

1. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution of Prolog
Programs: a Survey. ACM Transactions on Programming Languages and Systems 23(4), pp.
472–602 (July 2001)

2. Lusk, E., Butler, R., Disz, T., Olson, R., Stevens, R., Warren, D.H.D., Calderwood, A., Sz-
eredi, P., Brand, P., Carlsson, M., Ciepielewski, A., Hausman, B., Haridi, S.: The Aurora
Or-parallel Prolog System. New Generation Computing 7(2/3), pp. 243–271 (1988)

3. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Performance. In:
1990 North American Conference on Logic Programming, pp. 757–776. MIT Press (October
1990)

4. Hermenegildo, M., Greene, K.: The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9(3,4), pp. 233–257 (1991)

5. Shen, K.: Overview of DASWAM: Exploitation of Dependent And-parallelism. Journal of
Logic Programming 29(1–3), pp. 245–293 (November 1996)

6. Pontelli, E., Gupta, G., Hermenegildo, M.: &ACE: A High-Performance Parallel Prolog Sys-
tem. In: International Parallel Processing Symposium, IEEE Computer Society Technical
Committee on Parallel Processing, pp. 564–572. IEEE Computer Society (April 1995)

7. Janson, S.: AKL. A Multiparadigm Programming Language. PhD thesis, Uppsala University.
(1994)

8. Santos-Costa, V.M.: Compile-Time Analysis for the Parallel Execution of Logic Programs in
Andorra-I. PhD thesis, University of Bristol. (August 1993)

9. Warren, D.: The Extended Andorra Model with Implicit Control. In Sverker Jansson, ed.:
Parallel Logic Programming Workshop, Box 1263, S-163 13 Spanga, SWEDEN. SICS (June
1990)

10. Lopes, R., Costa, V.S., Silva, F.: A Novel Implementation of the Extended Andorra Model.
In Ramakrishnan, I.V., ed.: Practical Aspects of Declarative Languages, Third International
Symposium. Volume 1990 of Lecture Notes in Computer Science., pp. 199–213. Springer
(March 2001)

11. Hermenegildo, M.: An Abstract Machine Based Execution Model for Computer Architecture
Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of Texas
at Austin. (August 1986)

12. Hermenegildo, M.: Relating Goal Scheduling, Precedence, and Memory Management in
AND-Parallel Execution of Logic Programs. In: 4th. ICLP, pp. 556–575. MIT Press (1987)

13. Pontelli, E., Gupta, G.: Backtracking in independent and-parallel implementations of logic
programming languages. IEEE Transactions on Parallel and Distributed Systems 12(11), pp.
1169–1189 (November 2001)

14. Casas, A., Carro, M., Hermenegildo, M.: A High-Level Implementation of Non-
Deterministic, Unrestricted, Independent And-Parallelism. In Garcı́a de la Banda, M., Pon-
telli, E., eds.: 24th International Conference on Logic Programming (ICLP’08). Volume 5366
of LNCS., pp. 651–666. Springer-Verlag (December 2008)

15. Moura, P., Crocker, P., Nunes, P.: High-level multi-threading programming in logtalk. In
Warren, D., Hudak, P., eds.: 10th International Symposium on Practical Aspects of Declarative
Languages (PADL’08). Volume 4902 of LNCS., pp. 265–281. Springer-Verlag (January 2008)



16. Warren, D.: An Abstract Prolog Instruction Set. Technical Report 309, Artificial Intelligence
Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025 (1983)

17. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press (1991)
18. Shen, K., Hermenegildo, M.: Flexible Scheduling for Non-Deterministic, And-parallel Ex-

ecution of Logic Programs. In: Proceedings of EuroPar’96. Number 1124 in LNCS, pp.
635–640. Springer-Verlag (August 1996)

19. AB, E.: Erlang Efficiency Guide. 5.8.5 edn. (October 2011) From
http://www.erlang.org/doc/efficiency guide/users guide.html.

20. P. Chico de Guzmán, Casas, A., Carro, M., Hermenegildo, M.: Parallel Backtracking with
Answer Memoing for Independent And-Parallelism. Theory and Practice of Logic Program-
ming, 27th Int’l. Conference on Logic Programming (ICLP’11) Special Issue 11(4–5), pp.
555–574 (July 2011) http://arxiv.org/abs/1107.4724.

21. Demoen, B., Sagonas, K.: CHAT: the copy-hybrid approach to tabling. Future Generation
Computer Systems 16, pp. 809–830 (2000)

22. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garcı́a, P., Puebla-(Eds.), G.:
The Ciao System. Ref. Manual (v1.13). Technical report, School of Computer Science, T.U.
of Madrid (UPM) (2009) Available at http://www.ciaohome.org.

23. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., Puebla, G.: An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming
12(1–2), pp. 219–252 (January 2012) http://arxiv.org/abs/1102.5497.

24. Hermenegildo, M., Puebla, G., Bueno, F., López-Garcı́a, P.: Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor). Science of Computer Programming 58(1–2), pp. 115–140 (2005)

25. Muthukumar, K., Bueno, F., de la Banda, M.G., Hermenegildo, M.: Automatic Compile-time
Parallelization of Logic Programs for Restricted, Goal-level, Independent And-parallelism.
Journal of Logic Programming 38(2), pp. 165–218 (February 1999)

26. Cabeza, D.: An Extensible, Global Analysis Friendly Logic Programming System. PhD the-
sis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla
del Monte, Madrid-Spain. (August 2004)

27. Casas, A., Carro, M., Hermenegildo, M.: Annotation Algorithms for Unrestricted Independent
And-Parallelism in Logic Programs. In: LOPSTR’07. Number 4915 in LNCS, pp. 138–153.
Springer-Verlag (August 2007)

28. Casas, A.: Automatic Unrestricted Independent And-Parallelism in Declarative Multi-
paradigm Languages. PhD thesis, University of New Mexico (UNM), Electrical and Com-
puter Engineering Department, University of New Mexico, Albuquerque, NM 87131-0001
(USA). (September 2008)

29. Chico de Guzmán, P., Carro, M., Warren, D.S.: Swapping Evaluation: A Memory-Scalable
Solution for Answer-On-Demand Tabling. Theory and Practice of Logic Programming, 26th
Int’l. Conference on Logic Programming (ICLP’10) Special Issue 10 (4–6), pp. 401–416 (July
2010)

30. Pereira, L., Porto, A.: Intelligent backtracking and sidetracking in horn clause programs - the
theory. Report 2/79, Departamento de Informatica, Universidade Nova de Lisboa (October
1979)

31. Warren, D.S.: Memoing for Logic Programs. Communications of the ACM 35(3), pp. 93–111
(1992)

32. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order Stratified
Logic Programs. ACM Transactions on Programming Languages and Systems 20(3), pp.
586–634 (May 1998)


