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WHY VALIDATE STATIC ANALYZERS?
Static analysis tools are crucial in modern software
development: verification, optimization, etc.
But building analyzers is hard:
▶Complex, large systems
▶Prone to subtle bugs
▶Used in critical tasks needing trustworthy results

Validating analyzers is also difficult!

▶Formal methods are hard to apply directly
▶Specifications are often missing or not

complete
▶The who checks the checker? problem

rises

In practice, extensive testing is the most realistic
option.
▶But, unit-tests miss integration bugs
▶ It’s hard to define testing oracles
▶Generation of complex data structures with

hard-to-test conditions is challenging

HOW? Checkification Algorithm

1 Source program or set
of benchmarks

2 Program is analyzed
with domain D

3 true status is replaced
with check

tree.pl

:- module(tree, _, [assertions]).

:- pred insert(+nnegint, +tree, -).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
X < Y,
insert(X,tree(X,LC,LC_p).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
X > Y,
insert(X,tree(X,RC,RC_p).

:- pred belongs(+nnegint, +tree).
...

:- pred root(+tree,-).
...

tree_analysis.pl

:- module(tree_analysis, _, [assertions]).

:- true insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
true(nnegint(X),tree(LC),nnegint(Y),tree(RC)),
X < Y,
true(...),
insert(X,tree(X,LC,LC_p),
true(...).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
true(...),
X > Y,
true(...),
insert(X,tree(X,RC,RC_p),
true(...).

...

tree_check.pl

:- module(tree_check, _, [assertions ,rtchecks]).

:- check insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
check(nnegint(X),tree(LC),nnegint(Y),tree(RC)),
X < Y,
check(...),
insert(X,tree(X,LC,LC_p),
check(...).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
check(...),
X > Y,
check(...),
insert(X,tree(X,RC,RC_p),
check(...).

...

4 Generation of tests

Use assertion preconditions as generators of valid
test inputs.
→ Prolog’s declarative nature lets properties be

expressed as predicates.
Traditional Prolog uses depth-first search: efficient
but incomplete.
Classic Ciao Prolog allows other search strategies.

A new mechanism to execute predicates under non-
standard search rules (breadth-first, id, random,
guided, . . . ) as well to explore diverse inputs.

✓Not rewriting predicates, but running them with
alternative execution strategies.

✓More expressive specifications.

:- search_rule(tree/1,bf).

:- prop tree/1 + regtype.
tree(empty).
tree(tree(LC,N,RC)) :-
tree(LC),

gen([sr(df)],(nnegint(N)))

tree(RC).

% Check if tree T is sorted
sorted_tree(T) :- ...

% Constrains the sum of all node values in
% tree T to equal N
tsum(T,N) :- ...

:- check insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

+ gen([sorted_tree(T1),tsum(T1,10)]).

✓Facilitates automatic + user-guided test
case generation.

✓Pushes further towards general-purpose
flexible search in (C)LP.

E.g., test cases insert(N,T1,T2) where N is instantiated
to a non-negative integer, T1 is a tree, and T2 is a free
variable.

But, in the insert/3 specification, the generator is
further guided by auxiliary properties: sorted_tree/1 and
tsum/2, which restrict the structure and content of the
input trees.
• Test 1: insert(2,tree(empty,10,empty),T)
• Test 2: insert(5,tree(empty,2,tree(empty,8,empty)),T)
• . . .
• Test n: insert(8,tree(empty,1,tree(empty,4,tree(empty,5,empty))),T)

If any of these test cases produce a run-time error then
there is a bug!

I.e., if a run-time check reports a violation, then the analyzer
must have inferred the assertion incorrectly, revealing a bug in the
analyzer.

Current experimental outcomes

Many applications, depending on which parts of the system
are trusted:
+ Debugging Abstract Domains.
+ Testing the Abstract Interpretation Engine.

Testing less trusted fixpoints and options (e.g., incremental analysis).

+ Debugging trust assertions and custom transfer functions
+ Testing the overall consistency of the framework.

E.g., when semantics is underspecified, check at least that runtime and
static semantics agree.

+ Integration Testing of the Analyzer.
+ Testing external or third party solvers (e.g., PPL).

Analyzed programs with increasing levels of complexity:

→Success in finding known bugs or unsupported features in
old versions (e.g., rational terms, attributed variables).

→Actual analysis bugs found, mainly in less mature domains.
→Some inconsistencies found in the framework (e.g., in in-

terpretation of native properties by analyzer and runtime-
checks).

→Some bugs in other components found and fixed (e.g., the
analysis output).

→Reasonable overhead, with test execution time < 60s.

Full paper?
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