
SEARCH-GUIDED GENERATION OF PROPERTIES
FOR PROGRAM ANALYZERS

1,2Daniela Ferreiro
1Universidad Politécnica de Madrid (UPM) 2IMDEA Software Institute, Madrid, Spain

SEARCH-GUIDED GENERATION OF PROPERTIES
FOR PROGRAM ANALYZERS

1,2Daniela Ferreiro
1Universidad Politécnica de Madrid (UPM) 2IMDEA Software Institute, Madrid, Spain

WHY VALIDATE STATIC ANALYZERS?
Static analysis tools are crucial in modern software
development: verification, optimization, etc.
But building analyzers is hard:
▶Complex, large systems
▶Prone to subtle bugs
▶Used in critical tasks needing trustworthy results

Validating analyzers is also difficult!

▶Formal methods are hard to apply directly
▶Specifications are often missing or not

complete
▶The who checks the checker? problem

rises

In practice, extensive testing is the most realistic
option.
▶But, unit-tests miss integration bugs
▶ It’s hard to define testing oracles
▶Generation of complex data structures with

hard-to-test conditions is challenging

HOW? Checkification Algorithm

1 Source program or set
of benchmarks

2 Program is analyzed
with domain D

3 true status is replaced
with check

tree.pl

:- module(tree, _, [assertions]).

:- pred insert(+nnegint, +tree, -).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
X < Y,
insert(X,tree(X,LC,LC_p).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
X > Y,
insert(X,tree(X,RC,RC_p).

:- pred belongs(+nnegint, +tree).
...

:- pred root(+tree,-).
...

tree_analysis.pl

:- module(tree_analysis, _, [assertions]).

:- true insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
true(nnegint(X),tree(LC),nnegint(Y),tree(RC)),
X < Y,
true(...),
insert(X,tree(X,LC,LC_p),
true(...).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
true(...),
X > Y,
true(...),
insert(X,tree(X,RC,RC_p),
true(...).

...

tree_check.pl

:- module(tree_check, _, [assertions ,rtchecks]).

:- check insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC) :-
check(nnegint(X),tree(LC),nnegint(Y),tree(RC)),
X < Y,
check(...),
insert(X,tree(X,LC,LC_p),
check(...).

insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p) :-
check(...),
X > Y,
check(...),
insert(X,tree(X,RC,RC_p),
check(...).

...

4 Generation of tests

Use assertion preconditions as generators of valid
test inputs.
→ Prolog’s declarative nature lets properties be

expressed as predicates.
Traditional Prolog uses depth-first search: efficient
but incomplete.
Classic Ciao Prolog allows other search strategies.

A new mechanism to execute predicates under non-
standard search rules (breadth-first, id, random,
guided, . . . ) as well to explore diverse inputs.

✓Not rewriting predicates, but running them with
alternative execution strategies.

✓More expressive specifications.

:- search_rule(tree/1,bf).

:- prop tree/1 + regtype.
tree(empty).
tree(tree(LC,N,RC)) :-
tree(LC),

gen([sr(df)],(nnegint(N)))

tree(RC).

% Check if tree T is sorted
sorted_tree(T) :- ...

% Constrains the sum of all node values in
% tree T to equal N
tsum(T,N) :- ...

:- check insert(N, T1, T2)
: (nnegint(N), tree(T1), var(T2))
=> (nnegint(N), tree(T1), non_empty_tree(T2)).

+ gen([sorted_tree(T1),tsum(T1,10)]).

✓Facilitates automatic + user-guided test
case generation.

✓Pushes further towards general-purpose
flexible search in (C)LP.

E.g., test cases insert(N,T1,T2) where N is instantiated
to a non-negative integer, T1 is a tree, and T2 is a free
variable.

But, in the insert/3 specification, the generator is
further guided by auxiliary properties: sorted_tree/1 and
tsum/2, which restrict the structure and content of the
input trees.
• Test 1: insert(2,tree(empty,10,empty),T)
• Test 2: insert(5,tree(empty,2,tree(empty,8,empty)),T)
• . . .
• Test n: insert(8,tree(empty,1,tree(empty,4,tree(empty,5,empty))),T)

If any of these test cases produce a run-time error then
there is a bug!

I.e., if a run-time check reports a violation, then the analyzer
must have inferred the assertion incorrectly, revealing a bug in the
analyzer.

Current experimental outcomes

Many applications, depending on which parts of the system
are trusted:
+ Debugging Abstract Domains.
+ Testing the Abstract Interpretation Engine.

Testing less trusted fixpoints and options (e.g., incremental analysis).

+ Debugging trust assertions and custom transfer functions
+ Testing the overall consistency of the framework.

E.g., when semantics is underspecified, check at least that runtime and
static semantics agree.

+ Integration Testing of the Analyzer.
+ Testing external or third party solvers (e.g., PPL).

Analyzed programs with increasing levels of complexity:

→Success in finding known bugs or unsupported features in
old versions (e.g., rational terms, attributed variables).

→Actual analysis bugs found, mainly in less mature domains.
→Some inconsistencies found in the framework (e.g., in in-

terpretation of native properties by analyzer and runtime-
checks).

→Some bugs in other components found and fixed (e.g., the
analysis output).

→Reasonable overhead, with test execution time < 60s.

Full paper?

� PROPOSED SOLUTION


