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Summary

Declarative languages have some unique characteristics which make them invaluable in

many applications involving a certain degree of intelligence or knowledge management.

They also are, due to its high-level nature, less error-prone, and the programs coded

using them are more amenable to being thoroughly checked using automatic tools aimed

at uncovering flaws in their design or coding.

The use of such languages is, however, not as widespread as it could be expected

from the above description. They are usually tagged as being inefficient, as lacking some

important features, or as not having all the characteristics needed to interface with the

rest of the world as needed by Computer Science today.

Focusing on the logic languages realm, we study some of the lacks commonly at-

tributed to logic languages, propose some solutions, and evaluate their efficiency in real

problems. More precisely, our work

• proposes visualization methods for sequential, parallel, and constraint logic lan-

guages;

• proposes some optimizations for the parallel execution of logic languages;

• proposes a method for evaluating the performance of the parallel execution of logic

programs; and

• proposes a new method for expressing concurrency in logic languages.

All the points above have been evaluated in real systems.
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Chapter 1

Introduction

Chapter Summary

An overview of the thesis is presented in this chapter. The internal relations of the

work herein presented and how it stems from a sustained research line is clarified and

put in perspective. We also show how the results obtained fit into the development of

an evolving discipline in a world of changing technology. Last, and since new ideas

and developments can seldom be solely attributed to a single individual, we clarify the

contributions of the author and the work in every part of the thesis.

1.1 A Perspective of the Advances and Needs of Programming Languages

As the complexity of computer applications grows, new and more powerful tools and

programming languages are needed. They, on one hand, should free the programmer

from error-prone tasks and, on the other hand, should furnish her/him with advanced

features, which would have been considered as exotic no long ago. Besides, the non-

linearity of the process of software creation should not be forgotten: for reasons inherent

to the human mind, loops and feedback from previous stages are frequent when de-

veloping a software project. One motivation of advanced programming languages is to

minimize this looking backwards by making the path from design to implementation as

straight and error-free as possible. Among the means to reach this goal we can obvi-

ously cite separating the programmer from low-level details, and using programming

languages in which the distance from a conceptual solution, easy to understand solution,

to the final code is as short as possible.

In any case, and with almost total certainty, the revision cycle will be used during long

time in software engineering. Well designed, high level languages, are not enough: there

is a need for good tools which allow understanding why a particular program behaves

as it does. These tools should pair up with the abstraction level of the language and the
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applications to generate. As an example, it is not reasonable to study the behavior of a

complex search procedure (say, a Tabu search) by tracing the assembler code produced

by a compiler. Disregarding the possible compiler bugs, the behavior of the low level

program will surely reflect what the higher-level code expresses.

There are many applications which need a complex internal technology, and which

demand not only a nontrivial conceptual design, but also an important technological

support. They are not just academic experiments: today’s computer applications require

very often solutions to difficult problems. We will mention some (non mutually exclusive)

general cases of such applications, instances of which are not difficult to find in many

computer programs used almost routinely.

• All the applications aimed at processing symbolic information. While information

can be represented and managed numerically, the closer the representation is to the

concepts to be coded, the easier programming the process to be performed is. Many

applications sought during the first years of A.I. would fall into this category, in-

cluding general problem solvers, planners, truth maintenance systems, knowledge

representation methods, theorem provers, language processing. . . All of them are

clear candidates to be expressed using a language with symbolic processing capa-

bilities.1

• In many cases, applications have a strong search or automatic reasoning compo-

nent which, as last resort and apart from knowledge representation issues, boils

down to exploring a search space: verifying a theorem can, in a very simplistic

formulation, be conceptually seen as a search for the right demonstration in the

whole space of demonstrations, and the same can be applied to the elaboration

of a plan. Some languages (e.g., Prolog, those providing finite domains, Oz, and

others) provide builtin search procedures, which are often enough for many cases.

However, in more complicated cases, the search has to be driven by the particular

problem data and by the knowledge on the domain. Many times this driving is

not straightforward, and a good, easy-to-access representation of such information

helps in coding such a search. Advanced representations for data structures makes

writing such customized search procedures easier—as with any other algorithms.

• In a next complexity class we find applications which, besides the above men-

tioned capabilities, need an architecture conceptually based on the interaction of

1This is partly why LISP was termed for a long time “the A.I. language”. A.I. is not tied to a single

language since long ago.
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agents [RN95], possibly with some degree of autonomy or intelligence, which co-

operate (or compete) in solving a task. Communication among distributed agents

poses a practical problem. Although neither the concepts or technology needed

to start a distributed computation2 or to perform the subsequent communication,

code and task migration, etc. are unknown or radically new, an acknowledged way

of doing that easily has still not been reached. RMI and RPC give only a very basic

mechanism, and a homogeneous, widely accepted proposal for transparent access

to distributed data (which has a host of associated problems) is yet to come.3 We

want to point out, however, that access to data and procedure call has a pleasant

symmetry in logic languages, thus reducing the number of cases to be treated.

Following on with the last bullet, there is one point worth paying attention to. If

single-agent systems can admittedly take advantage from higher level languages, should

it not be also the case with “multiagent” and “distributed” systems? Many widely used

architectures nowadays are based on a multilingual concept: applications are built using

several languages, using each of them for the task it is more adequate for. One possible

reason is avoiding using languages for tasks they are not good at, i.e., trying to escape

from language weaknesses rather than embracing language strengths. It is not unusual to

use a language/tool for a task not because that language/tool is the best at it, but because

others tried before performed badly. This follows the path of adopting the technology

which more or less readily provides what is sought for.

As just another example of breaking Occam’s razor in a more practical setting, current

computer systems tend to use a high number of configuration files, each with its own syn-

tax and capabilities. Yet all of them can be homogeneously expressed using a first order

logic syntax: they are either mere facts, or, at most, rules which express dependencies

among capabilities.

Without trying to dispute the practicality of the “off-the-shelf” approach, using

it moves the implementation effort to the burden of making interfaces between dif-

ferent languages, which finally results in the definition of common interfaces (e.g.,

CORBA [Cro96] and COM [Rog97]), which are expected to be universal, versatile, ef-

ficient, and useful for the next future. Cannot it be the case that we are entering, at a

global level, a situation similar to that of the U.S. Department of Defense which lead to

2Assuming, of course, that we know how to distribute this computation effectively.
3We even dare to say more: many widely used and appraised languages and proposals are still in their

childhood, and their growing current popularity still has not been supported by the time or the design metic-

ulousness [Han99, ABV00] needed. Absent capabilities are now being patched up by adding characteristics

not present in a first design [BG00].
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the definition of Ada [daC84]? While interfacing different languages is a necessity which

existed from very soon in the history of Computer Science, the current trend seems to

have made a virtue from this necessity, and have transformed the problem into a solu-

tion [Adl95, KA98, Mau00]. Only time will reveal if this path is the right one or not:

there are confronted opinions.

1.2 Powering High-Level Programming

Restricting ourselves to the class of applications in which having a high capacity of repre-

sentation is essential, and apart from the obvious possibility of multilingualism, it seems

a priori easier to give high-level languages capabilities that are found in lower-level lan-

guages, and which are lacking from the former, than the other way around. This thesis

focuses on techniques and tools to put a remedy to these lacks, and try to obtain the best

from several worlds in terms of, e.g., speed, expressiveness, concurrency capabilities,

distribution, and ancillary tools. A target we want to have always in sight is staying at

the same descriptive level and with the same interface as the rest of the language (i.e.,

new capabilities readily available in other, lower-level languages should not necessarily

lower the level of our language): if we do not accomplish that, we would be exchanging

a (conceptual) bottleneck (using an interface to an external language) by another, dif-

ferent one (making our own language difficult to use, due, perhaps, to non-orthogonal,

non-homogeneous constructions).

Since we have already pointed out that many of the needs and technology in what

concerns (task) distribution, knowledge representation, etc. have been studied and are

known, at least from a theoretical point of view, since long time ago, our contribution

will be mainly practical: search for solutions to existing problems in a family of languages

(logic languages, exemplified by Prolog, in our case). This search will sometimes incor-

porate well known technologies, or variants thereof, and sometimes we will develop new

means to overcome language pitfalls or gaps. We want to point out that practically all the

techniques herein reported have been put to work and proved doable and advantageous

in real systems. They are not, therefore, mere ideas, but they have been tried out and

evaluated in, at least, a controlled environment.

1.3 Attacking the Problem

Very possibly, an eager design of a language with all desirable capabilities would lead

(assuming a successful implementation) to an efficiency so low that it would turn out

4



1.3. Attacking the Problem

to be almost useless. In fact, this has been the casus beli against many higher-level

languages, whose practical use was avoided by extolling their merits until they are placed

in the heavenly category of specification languages.4 This low efficiency was fought with

several weapons, among which we can highlight, in the realm of logic programming,

the use of parallelism, the advances in compilation, and the removal of some language

capabilities.5

The last one is, clearly, the simpler and handier. The second point has been, up to

the moment, one of the most fruitful: there are compilers and analyzers which perform

outstandingly at their task, although they progress quite slowly towards a wider spread-

ing. The first option, using parallelism, has suffered from multiple proposals of parallel

architectures and, mainly, from the intrinsic difficulty of parallelism itself; it has given

very interesting results, exemplified by several implementations, execution models, and

parallelizing compilers. An interesting property of parallel execution models is that they

are, in principle, independent from other optimizations: a more intelligent compilation

can be done without having to give in to abandoning using parallelism.

From another perspective, some tools to help evaluating software under develop-

ment are needed. As an example, the interaction of cooperating tasks in a parallel en-

vironment, whether using shared of distributed memory, have patterns which are not

only potentially different in each execution, but which are also difficult to perceive (and,

therefore, to understand and improve) even in a completely controlled environment.

Besides, in the quest for higher performance, it is important to find out the maximum

performance throughput ever reachable by a parallel program: it may be the case that

4Fortunately this vision seems to be changing: as an example, let us cite the specification language

B [Abr96], which was used to write, in about 100000 LOC, the programs which control line 14 of the

Paris underground [BBM99]. This specification was proved against the properties to be met. After refining

the specification using formal proofs, where many errors were discovered, 87000 lines of Ada code were

generated. A conventional testing process was deployed and not a single error was found. The system is

actually in production, and saved the expenses of constructing an additional line. We have here, therefore,

the case of a specification language whose code produced executable programs without intermediate human

intervention. Is that a mere specification language?
5Although written in a more concrete scenario, the following excerpt may serve as a good example of

what we mean: Evan Tick writes in [Tic95]:

What a long, strange trip it has been! Atomic tell unification (and read-only variable synchro-

nization) in CP was weakened into eventual tell unification and input matching in synchroniza-

tion in Parlog. Deep guards in Parlog were weakened into flat guards in FGHC. Body unification

in FGHC was weakened into assignment in Strand. Multiply shared variables in Strand were

weakened into single-producer single-consumer (single occurence) variables in Janus, and declar-

ative/mutable variables in PCN.
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we do not need to use more processors, or start more agents, but to redesign the whole

program. From another point of view, the time savings that higher-level languages bring

to the programmer are earned at the cost of a considerable run-time effort which is of

difficult understanding without tools designed ad hoc as an X-ray apparatus which give

the user a clearer image of what really happens inside an execution.

Independently from the reasons in the previous paragraphs, having a direct expres-

sion of the interaction and coordination needs in multiagent systems requires some lin-

guistic mechanisms in order to reflect concurrency, distribution, and communication.

This is but the extension of the single-process need of language with which to specify

as cleanly as possible knowledge and behavior to a multiagent, distributed setting. It

is also a goal, of course, not to miss a clear syntax and semantics when going from the

non-distributed to the distributed case.

In view of all the above, we deem necessary having higher-level languages in which

task interaction can be expressed, and to have access to ancillary tools which help in an

intuitive understanding of the execution. Declarative languages are clear candidates for,

at least, specifying and prototyping systems which perform complex tasks with a high

degree of symbolic computation. The advantages of these languages stem, on one hand,

from a simple, non ambiguous semantics, which eases the automatic analysis, and, on

the other hand, from the facilities they give the programmer when allowing him/her to

not to pay attention to, e.g., which kind of machine is the program to be run on, memory

management details, high level representations of the data, etc.

It is certainly possible that a more widespread knowledge and use of declarative

languages was limited by issues concerning their efficiency. But we think also that there

are other important reasons (which we will not deal with). As an example, an incomplete

teaching, which gives the impression of being inferior, less complete, or not as amenable

to many tasks as other, more traditional or industrially more supported languages.

In this thesis we will study a series of techniques to cure, or at least to alleviate, the

aforementioned difficulties. The points to be touched can be grouped in three categories:

Visualization and Simulation: program execution visualization has been used in Com-

puter Science with educational aims, to debug programs, and to represent data.

It becomes very important when it comes to the realm of parallel, constraint, and

logic programming, due to the distance between the programmer and the execu-

tion. This distance relieves the programmer from paying attention to nitty-gritty

implementation details, but, on the other hand, it makes it more difficult to un-

derstand how an execution in particular proceeded. As a drawback, optimizing a

program may require some knowledge of the internal execution of the language.
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Without going down to that level of depth, adequate representations of an execu-

tion can help to understand intuitively its weak points and, therefore, it gives a first

hint towards a solution.

Optimizations for Parallelism in Logic Languages: parallelism has been looked upon

since long time ago as a clear possibility to improve the efficiency of logic pro-

grams by exploiting the potential of multiprocessor machines. Parallel execution

paradigms which do not break with the semantics of sequential execution, and

which retain the view of resolution as computation, were identified. In practice,

multiple parallel systems have been developed, with different capabilities and ap-

proaches to the exploitation of parallelism (essentially, or- and and-parallelism,

unification parallelism, and stream parallelism). There are however two problems

which appear recurrently, related to the complexity of parallel programming. On

one hand, the memory usage, comparatively higher than in sequential execution,

due not only to the fact that there are several processes running at the same time,

but also related to the cost of the additional data structures needed to synchronize

the different tasks. On the other hand, the additional time needed to prepare these

tasks for parallel execution and to start them up. In common cases, as in recur-

sions implementing simple/similar operations on series of elements, these delays

add up. We will study both problems and we will design and test techniques aimed

at ameliorating them.

Concurrency: Concurrency is, in many cases, the most natural and elegant way to ex-

press some algorithms, apart from being the best mechanism to make a better use

of resources in the presence of blocking or slow calls. The interpretation of logic

programming as a collection of processes (one per predicate) is well known, and

proposals based on it use implicit concurrency, which quite often makes it difficult

to understand the program operationally and causes a high resource consumption.

Also, due to efficiency concerns, some capabilities of logic programming are re-

moved (notably, implicit search). We will propose a new technique for communica-

tion and synchronization which uses a different concurrent semantics for accessing

the database. Higher level constructions for concurrency and communication can

be implemented on top of this scheme.

During the development of this thesis, visualization and simulation were used as tools

to study the performance of parallel and constraint programs, and they were developed

simultaneously. For the sake of clarity, we will not follow the time order, but each block

will have its own separate chapter. We will now comment on each of them.
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1.4 Parallelism, Concurrency, and Logic Programming: a (Very Short) In-

troduction [Chapter 2]

Several families of parallel logic languages have been proposed, among which we can

cite those based on shared memory which address and-parallelism [Her86a, She96,

TH87, CA86, Lin97, Bar94], either dependent of independent, or-parallelism [Car90,

Kar92, Lus90], combinations thereof [War88, SCWY91a, GHPSC94], unification paral-

lelism [Bar90], and systems which, belonging to any of those classes, are built assuming

a distributed memory [AR97, Kac90, Kac84]. The implementations of the latter are in

general quite different from the shared memory machine ones, although some proposals

show shared characteristics [GP99].

The implementation of parallel logic programming systems is notoriously complex;

we will review in this chapter some well-known techniques for shared memory machines

and and-parallelism which try to preserve sequential semantics, and we will point out

some practical problems of many parallel systems. We include in this chapter also a short

introduction to proposals of concurrency in logic programming [Sha89], which quite

commonly use alternative semantics. We will not deal, however, with details of their

implementation.

1.5 Visualization of Sequential, Constraint and Parallel Logical Programs

[Chapter 3]

Visualization has been used with different aims, among which we may highlight educa-

tion, debugging (both for efficiency and for correctness) and scientific data representa-

tion. Our focus is the second of these issues, although some of the visualizations can be

used with educational purposes.

As software becomes more complex, the tools needed for its development are more

elaborated, and the way these tools work becomes more difficult to understand intu-

itively. The interaction of the different parts of an application is less straightforward,

and a correct depiction can help to understand intuitively problems which could not be

perceived clearly otherwise. Data and/or algorithm visualization is usually intimately

linked to the data format and the control constructions of the language. Therefore, when

applying visualization techniques to new programming paradigms, new graphical repre-

sentation concepts are needed. In particular, the internal behavior of logic programming

systems featuring constraints and parallelism cannot usually be understood immediately.
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1.5.1 Visualization for Sequential Execution

Sequential program visualization has traditionally been related to the use of And-Or

trees in order to reflect the traversal of branches of a tree in an execution. The usual

implementation, using backtracking, uses a depth-first search in the tree.

We will not detach radically from this visualization, which is enough for our initial

purposes, but we will use a variant of And-Or trees, named AORTA trees [EB88], which

offer a somewhat more compact representation. Besides, we will add the possibility of

knowing explicitly the origin of the instantiation of each of the variables in the execution

(so that capturing programming errors which can give rise to unexpected execution re-

sults can be made more easily), and we will see how these capabilities are implemented

in a tool, APT [CH00b, LC97]. We will also see how abstractions of the execution can be

represented, so that efficiency problems can be studied in a better setting. In particular

we will see how a parallel execution can be represented as a kind of abstraction of a

sequential execution tree, in which some nodes are annotated for parallel execution.

1.5.2 Visualization for Parallel Execution

The behavior of parallel systems and algorithms is very often not trivial. Efficiency or

correctness problems, both in user programs as in the system which executes them, can

be located only by means of a global understanding of the whole process. Visualization

tools, with their ability to offer “the whole picture”, are a convenient help [Kar92, GH95]

in research related to parallelism and concurrency. Parts of this thesis describes the de-

sign, implementation, and evaluation of a tool aimed at depicting the parallel execution

of logic programs [CGH93, CGH92a].

This tool offers visualizations for restricted independent And-parallelism (RAP), with

the possibility of task suspension, Or-parallelism, and determinate And+Or-parallelism.

Such a tool has been extensively used in the study of correction of the implementation of

parallel logic programming systems [HG91, Kar92] and in the subsequent improvements

to the compilation and scheduling algorithms (see [HC96] and Chapter 4). The tool has

been instrumental for the work related with parallelism of logic programs in this thesis.

1.5.3 Visualization for Constraint Logic Languages

The execution and machinery of Constraint Logic Languages is inherently complex, de-

rived from the necessity of treating constraints and equations as first order elements in

the language. This makes understanding the actual process executed from the beginning
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of the computation until a solution is reached not straightforward: the combination be-

tween the control of the program and the internal constraint solver must be taken into

account. The solver determines, depending on the state of the data in each moment,

which execution branches can be taken in every moment, and when backtracking (if

needed) will be performed.

Control visualization can be similar to that of logic programs (which, on the other

hand, should be considered as constraint programs over the domain H of Herbrand

terms). However, visualization of data (and their relationships) in constraint programs

is radically different and possibly very complex. Offering a representation thereof in an

intuitive format will help to understand globally the domain narrowing as performed by

the solver. That knowledge would lead to a faster program development, and would also

allow an easier problem detection.

As part of this thesis we have designed and implemented a visualization paradigm

for constraint logic programs which depicts data and constraints (using mainly finite do-

mains, FD) [CH00a]. Special attention has been paid to the use of abstractions as a

means to show the evolution of the execution in a more intuitive and compressed fash-

ion [SCH99].

1.6 Optimizing Executions with Data Parallelism [Chapter 4]

A sizeable part of the execution time of many programs is used in simple constructions

which process data structures elementwise, aggregating its contents into a single piece

of information by some sort of reduction, or returning a data structure similar to the

initial one, implementing a kind of mapping. These operations and their variants are one

of the main targets of the so-called data-parallelism, which tries to assign processors to

every element to be treated in order to perform complex operations in constant time (in

the best case) [MR90, Thi90, HQ91, Thi86, BLM93b]. Assuming independence (in the

sense of Section 2.4 and [HR95]) in the computation of the different iterations, a direct

parallelization boils down to generating a task for each piece of data. Data-parallelism

can therefore be seen as a particular form of independent And-parallelism. This approach

has the associated problem of the accumulated time in the creation of the parallel calls.

We study several ways to avoid accumulating these delays: compiling the original

code so that several tasks (ideally, all of them) are started (almost) at once, unfolding

partially the loops, and making a binary split of the computation on the data structure,

which in turn splits and breaks up the work of starting the different tasks. Implicitly, this

subdivision stems from considering the generation of the structures for the task startup
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as part of the work to be performed.

Not all the loops implementing an aggregation are reducible to the last format (bi-

nary execution): strictly speaking, the operations performed are not the same as in the

original, sequential loop. Right and left associativity are needed in order to guarantee the

same result. We will formalize the unfolding schemata previously evaluated, assuming

the independence conditions are met.

It is a common case (but not strictly necessary) that the operations on each of the

elements of the data structure are deterministic. Since the proposed transformation does

not introduce nondeterminism, the computation as a whole would remain deterministic.

As we will see in Chapter 5, this property and the particular shape of the code generated

by the transformation can be taken advantage of by low-level modifications of an And-

parallel WAM implementation.

1.7 Some Optimizations for Independent And-parallel Systems [Chapter 5]

Although one of the main attractions of logic programming is its implicit nondetermin-

ism (usually implemented as a search), it is true that a great deal of applications have

sizeable parts which are deterministic. Identifying these parts is interesting in that the

implementation of non-determinism needs additional memory and execution time, more

acute in the case of parallel processing: backtracking needs synchronization and work-

load distribution among several agents, which forces generating internal, complex data

structures in order to foresee future backtracking scenarios.

Determinism information (either given by the programmer, or synthesized by an an-

alyzer) can be used to produce more efficient executions by not generating some data

structures. In particular, deterministic programs which are obtained from applying the

transformations proposed in Chapter 4 can take advantage of the low-level optimiza-

tions. The key idea is the existence of deterministic computation subtrees. They can be

executed without keeping the information pertaining to backtracking inside them (and,

in fact, without performing backtracking at all), and using an adaptation of the tail re-

cursion technique, with the associated gain in time and memory.

We have designed and implemented mechanisms which allow a more efficient parallel

execution, once the deterministic calls have been identified. The experiments show a

dramatic reduction in memory consumption and increased speed [PGT+96, TPGC94,

Car93].

11
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1.8 Realistic Simulation of Parallelism in Logic Programs [Chapter 6]

Predicting the behavior and efficiency of a parallel execution in several machine config-

urations (outstandingly, with different number of processors) is not easy in non-trivial

algorithms. Even in programs with a simple, regular structure, there are oscillation phe-

nomena when the number of processors increase. In other programs with irregular com-

putations [Her00], the possibilities are even more involved.

Testing programs in an actual machine with the desired resources can be even impos-

sible, because of the difficulty of accessing such machine, or because of its non existence.

Simulating a parallel system is of great help in these cases, since speedups for a parallel

program in a given configuration can be predicted with a reasonable accuracy. Different

parallelizations of the same program can also be compared in scenarios which would be

actually infeasible (e.g. with an unbound number of processors) in order to estimate how

good is the parallelization. The efficiency of an implementation can also be compared

with the ideal one in different scenarios, by introducing (or removing) delays in selected

parts of the execution, using more/less efficient scheduling algorithms (using, e.g., an a

posteriori global scheduling), etc.

Similar experiments, based on a program metainterpreter [HC91], had already been

carried out. We will, however, use program traces initially designed for program visual-

ization and reinterpreted as descriptions of an execution graph which can be rescheduled.

The results obtained with a tool which simulates parallel execution using those traces are

highly concordant with those obtained from real executions (up to the point a real ex-

ecution can be performed: physical limitations in the validation show up in this case),

which indicates the usefulness of the tool in order to predict its behavior in executions

impossible to realize in practice [FCH96].

1.9 Concurrency in Prolog Using Threads and a Shared Database [Chap-

ter 7]

Concurrent algorithms do not necessarily result in programs with a good parallel be-

havior. Concurrency is, however, a natural way to write certain algorithms and to de-

sign software architectures with some degree of complexity—e.g., agent-based systems,

where planning and knowledge revision are induced by external changes (messages from

other agents, sensor stimuli...) and the moment in which they happen is not explicit in

an algorithm: only the causal relationship between processes is specified. We can say

that parallelism is a physical phenomena, while concurrency is a programming abstrac-
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tion [Smo95].

We can roughly distinguish among explicit concurrency (when specifying which parts

of the program are to be executed concurrently is needed) and implicit concurrency

(when all the calls are concurrent by default). A great deal of proposals of concurrency

in logic languages fall into the latter type [Sha89], synchronization being left to the in-

stantiation of variables, although later approaches [JH91] added constructions aimed at

encapsulating sequential computations inside a general concurrency setting. Concurrent

logic languages have traditionally trimmed different capacities [Tic95] (as, for exam-

ple, search in the presence of concurrency), arriving at the concept of committed-choice

languages.

A practical problem found in concurrent logic languages is the high number of tasks,

quite often unnecessary, and the difficulty of having an explicit control on the execution

flow, which is sometimes necessary. Due to that, some modern languages which come

from a tradition of logic and constraint programming (although maybe not completely

representatives of it) and which had initially explicit concurrency [Smo94, Smo95] have

switched to a sequential-by-default execution model [HF00].

We propose a set of basic thread creation primitives which assign an execution thread

and a memory space to each concurrent goal, and do not affect directly the variables of

other goals. The memory space is separate in that variable unifications are local to the

scope of the concurrent goal. From a practical point of view, this facilitates encapsu-

lated backtracking (i.e., backtracking restricted to the concurrent goal) and independent

garbage collection in each thread. Space independence is currently achieved by making a

fresh copy of the goal to execute to a new WAM. Backtracking is taken care of by provid-

ing builtins which cause a failure (and subsequent backtracking) in an already existing

concurrent goal.

Communication among concurrent goals is based on using the (shared) dynamic

database, visible by all the threads. Accesses to the database in a Prolog system usually

fail if the fact does not appear in the database, and updates usually follow the “logical

vision” [LO87]. This behavior is not appropriate for our aims (we want database updates

to be immediately visible to other threads), and we have based our proposal in the sim-

ilarity between the access to the database and the access to a tuple space, such as that

used by Linda [CG89b, CG89a]. This similarity suggests augmenting the database access

with an operational semantics for concurrency: the access to the database is atomic, and

calls without a matching fact suspend instead of failing. Suspensions and resumptions

allow implementing synchronization among tasks; the data added to the concurrent facts

can be used to perform data communication. This communication means has a higher
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cost than a regular call, and therefore should be reserved to tasks with high granularity

if speedup is sought for.

We include examples of the use of the shared database, along with experimental

results aimed at evaluating the efficiency of task creation and data communication. They

support the flexibility and expressiveness of our communication scheme, and confirms

the possibility of achieving speedups with a right selection of the granularity level. We

show also how higher-level concurrency and parallelism schemes can be implemented

using the shared database and explicit thread creation.

1.10 Programming Systems Used in the Thesis

The work reported in this thesis spans several years, and the platforms used in it changed

throughout this time. The initial implementations, focused on parallelism, were made in

the &–Prolog system [HG91, Her86a], and some of the results have since made their

way through to other academic and commercial platforms, such as ACE [PGH95, PG95a]

and SICStus Prolog [Swe99]. The first visualization systems for parallel execution were

implemented using directly X Window and Athena Widgets. Those for visualization of

sequential execution and constraint logic programming used Tcl/Tk and VRML.

More recent work, related to concurrency, has been carried out in the Ciao Prolog

system [HBC+00, HBC+99, BCC+97]. Experience gained in the &–Prolog platform is

nowadays being transferred to Ciao Prolog.

1.11 Thesis Development

As the work in this thesis was being developed, new necessities were identified and so-

lutions for them sought. The quick development of Computer Science and its increasing

presence (both regarding the available technology and what society demands from it)

has made some points more interesting than others. Techniques initially thought to be

difficult or impractical to work through have been found not only practical, but even

advantageous and necessary. This is due to, e.g., the improvement of hardware and com-

munications, and ideas elaborated at a time when these developments could not have

been foreseen, were finally phased out.

The introduction of new technology, and the shift in what computers are demanded

for, is intimately related with the changes in the way programming is performed. The

present research work has followed these changes, and its focus has moved in order

to adapt to new problems as they were recognized as important. It should, however,
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be pointed out that the problems initially tackled have neither been completely solved

nor invalidated by the time: many of them have just been procrastinated, and the ideas

shown here remain valid.

1.12 Contributions and Thesis Structure

The main contributions of the thesis in the three fields we will tackle can be summarized

as follows:

• Contributions related to the visualization of logic programs:

– Visualization as a graphical representation of a series of observables which

describe an execution at a given abstraction level.

– Definition and study of a paradigm of visualization for sequential programs,

based on [EB88], and design of an extensible tool which implements such

paradigm.

– Proposal of several visualization abstractions for the sequential case aimed at

representing computations of average and big sizes.

– Study of a visualization paradigm for parallel execution and assessment of its

usefulness in real cases.

– Design of methods to represent the evolution of constrained variables, and

implementation of a tool which allows depicting them.

– Definition of a generic method to visualize constraints among variables using

a representation of their values.

– Proposal of an abstraction to visualize constraints based on the constraint net,

and proposal of a 3-D abstraction to visualize constrained variables based on

depicting the size of their range.

• Contributions related to the parallel execution of logic programs:

– Study and evaluation of transformations for parallel programs aimed at alle-

viating the delay due to the preparation and launching of parallel tasks.

– Application and evaluation of these techniques to the case of programs using

lists and vectors.

– Formalization of the transformations and identification of sufficient conditions

for their applicability.
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– Study of the effectiveness of automatic specialization in the programs which

result from the previous transformations.

– Proposal and experimental assessment of modifications in an abstract machine

for parallel execution aimed at increasing speed and decreasing memory usage

in a wide class of programs (including many which result from the previous

transformations).

– Extensive study of the adequacy of a simulation method for the prediction of

execution speed in a parallel program.

• Contributions related to logic programs and concurrency:

– Design and implementation of a set of builtins which allow viewing a goal as

a first-order object of the language, making it possible to start its execution in

a separate environment, wait for its termination, ask for more solutions, etc.

– Application of the aforementioned builtins to the case of concurrent goals,

allowing the execution of goals in separate threads.

– Identification of the similarity between the access to the local shared database

and to a Linda blackboard, and proposal of a semantics to access the database

where suspension replaces failure.

– Implementation of a method to access and update the database atomically, giv-

ing a means to synchronize and communicate data among different threads.

– Evaluation of time and space efficiency of the aforementioned implementa-

tions.

– Implementation and evaluation of different proposals of concurrency and par-

allelism based on the previous ideas.

The body of this thesis is composed of several selected papers, written in collabora-

tion with other coauthors. All of them have been published in national an international

journals and conferences with peer-to-peer review. We want to clarify the sources where

the chapters came, and whose their authorship is:

• Chapter 3 is based on the following papers:

– [CH00b, CH00a], written together with M. Hermenegildo and included as

chapters in the book resulting from the DiSCiPl ESPRIT project [DHM00],

– [SCH99], written with Göran Smedbäk and M. Hermenegildo, and presented

at the Practical Applications of Constraint Logic Programming conference,
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– [CH98], written with M. Hermenegildo and presented at the Appia-Gulp-Prode

conference,

– [CGH93], written with L. Gómez and M. Hermenegildo and presented at the

International Conference on Logic Programming, and [CGH92b], presented at

a workshop of the same conference.

The implementation of the visualization for sequential execution and for con-

straint programs were made as Master Thesis (under the tutoring of the PhD can-

didate) by Ángel López Luengo (APT [Lue97]), J. M. Ramos (VIFID [Ram98b,

RC98, Ram98a]), and Göran Smedbäk (ProVRML and TRIFID [SCH99]). The im-

plementation of VisAndOr [CGH93] is based on a previous one (VisiPal) by M.

Hermenegildo and R. Nasr [HN90], and was made in its greatest part by L. Gómez,

M. Hermenegildo, and the author of the thesis.

• Chapter 4 is based on [HC96], written with M. Hermenegildo and published in the

Computer Languages Journal, and on [HC95], presented at EuroPar. This paper has

been improved with a formalization section not present in the original work.

• Chapter 5 is a selection of [PGT+96], written jointly with E. Pontelli, G. Gupta,

D. Tang, and M. Hermenegildo, and published in the Computer Languages Journal.

The sections which I consider to be in its majority a work of the rest of the authors

have been removed for the present thesis.

• Chapter 6 is based on [FCH96], written jointly with M. J. Fernández and M.

Hermenegildo, and presented at EuroPar. The implementation of the simulation

program was mainly done by M. J. Fernández as Master Thesis.

• Chapter 7 is based on [CH99], written with M. Hermenegildo and published at the

International Conference on Logic Programming. Part of the ideas there appeared

also in [CH96].
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Chapter 2

Parallelism and Concurrency in Logic

Programming: a (Very Short) Survey

Chapter Summary

This chapter gives a brief introduction to parallelism and concurrency in Logic Program-

ming, focusing mainly in and-parallelism. The concept of goal dependency is informally

reviewed, and we introduce one of the techniques more widely used to implement re-

stricted and-parallelism. We then go over some efficiency problems which appear in

parallel executions and which are specially relevant in some types of programs. We

finally point out how we approach ameliorating these problems.

We then make a similar review with concurrency. Although in some ways related to

parallelism, concurrency can be explained and taken advantage of without parallelism,

and, in fact, it has a wider range of practical applications. We will see some prob-

lems associated with concurrency in logic languages, and how different proposals have

tried to overcome these drawbacks. We finally give a short account of our proposal for

communication and concurrency.

2.1 Parallelism in Logic Programming

Much work has been done up to date in the study of parallel logic program execution.

There is ample literature on the matter, and a sizable number of implementations, both

for shared and distributed memory machines, have been realized [GC96]. Shared mem-

ory systems have been more successful so far, due to the easier programming interface

offered by this model1 and to the better speed-ups which can usually be obtained thanks

to the smaller communication cost. Some implementation models are based on adapting
1This decision is nowadays supported by the increasing availability of high-end shared memory multi-

processors at a relatively low price. Modern stock distributed memory hardware, however, can change the

scenario.
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sequential abstract machines for the execution of Prolog in order to separate clearly the

execution of the different parallel goals. In this case, several sequential executions pro-

ceed at a time on different memory zones, trying to minimize interaction and, therefore,

the need of communication. This proposal, which quite often uses the marker model, has

produced the more efficient implementations, since most of the optimizations already

present in sequential machines are reused and put to work.

In particular, many and-parallel models are derived from the RAP/WAM marker

model, introduced in [Her86a, Her87, Her86b], and which appears later, with refine-

ments, in [HG90, She92b, SH94, GHPSC94, PG97]. This model has shown to be practical

and capable of giving good speed-ups in parallel execution, and it has influenced the im-

plementation of other systems featuring and-parallelism. This initial model can however

be optimized in order to reduce the costs associated to parallel execution in common

cases and to give a better overall efficiency. These optimizations are also general enough

as to be used in other implementations of and-parallelism using the marker model.

In the next section we will give a quick account of different schemes for parallel

execution in logic programs, restricting ourselves to the models which we will be dealing

with in the thesis. A more thorough survey of the topic can be found in, e.g., [GC96].

2.2 Types of Parallelism in Logic Programs

Parallelism in a logic program can be, basically, of two different kinds: and-parallelism

and or-parallelism.2 Let us consider the following example [Her86a] which determines

the crew needed for a flight:


rew(t(X, Y)):- navigator(peter).

navigator(X),

pilot(Y). me
hani
(peter).


rew(t(X, Y)):-

me
hani
(X), ...

pilot(Y).

Figure 2.1 shows a search tree for the query

?- 
rew(t(peter, Y)).

2There is also the possibility of performing parallelism in during each head unification [Bar90], which

we will not deal with.
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And And

Or

pilot(Y2)pilot(Y1)navigator(peter) mechanic(peter)

crew(t(peter, Y2))

crew(t(peter, Y))

crew(t(peter, Y1))

Figure 2.1: Or- and and-parallelism in logic programs

where we can see that there are two alternative search paths which satisfy it. The exis-

tence of two clauses for the predicate 
rew/1 makes it possible to explore simultaneously

the two subtrees which root at the predicate call. This gives rise to the so-called or-

parallelism, in which there are no data dependencies (at least in principle), since alter-

natives can be thought as being conceptually independent from each other. In practice,

dependencies can appear due to side effects (e.g., assertions in the data base, file opera-

tions, . . . ) in different branches of the search tree, and also at an implementation level,

due to variables appearing in several branches which could be instantiated at a time by

several processors.3

Or-parallelism can be primarily exploited in code which has non-deterministic search.

Techniques to implement or-parallelism while respecting completely the standard Prolog

operational semantics for the sequential execution are well known [GSC92, War87b,

Lus88, Kal87a, Hau90, Sze89, War87a, CH83, Kar92, Car90]. Some commercial sys-

tems [Swe99, ECR93] include or-parallelism.

Let us consider the execution of one the two alternative clauses, e.g., the first one. In

order to satisfy 
rew/1 we need to satisfy both navigator(peter) and pilot(P). Both

goals can be executed simultaneously without the need of communication, since no one

of them needs information from the other one. The parallelism which results from the

simultaneous execution of both goals is termed and-parallelism. And-parallelism can

3At the risk of overloading the terminology, we will use the term processor to refer to any entity able

to execute code, which could more appropriately be termed agent, as is done in [Her86a, HG91]. We

however run the risk of being misinterpreted as referring to intelligent agents [RN95], when out aim is

rather denoting processing units. The processors we refer to do not need to be actual processors, in the

physical sense, but they can as well be processes in multiprocessing operating system. It is clearly necessary

to have different physical processors if speedup is sought for; this should be implicitly assumed when we

study efficiency and speed matters.
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be used both in deterministic and in non-deterministic problems, and hence it has, in

principle, a wider range of applications than or-parallelism—which does not imply that

better speedups are to be obtained. However, the implementation of and-parallelism is a

delicate task due to the interactions of the goals which are to be executed in parallel.

In general, while sequential execution keeps active only one branch of the search tree

(from the root to the node being worked on), parallel execution proceeds at once in

several nodes of the tree, which forces maintaining several parts of it active at the same

time.

2.3 And-Parallelism and Data Dependencies

A general principle when writing parallel programs is to try to minimize synchroniza-

tion and communication among processors. This is of course applicable to Logic Pro-

gramming, and it should be taken into account in order to have a good parallel exe-

cution, which can take longer than the sequential execution of the same program other-

wise [HR95] (even assuming that the time used in the synchronization among processors

is zero).

Let us allow all goals in a clause body to execute in parallel without any restriction

other than the need of correction (i.e., equality of observable results: same solutions

and in the same order) with respect to the sequential execution. Let us consider also

the following pure implementation (no side effects, no metalogical predicates) of the

pilot/1 predicate

pilot(P):-

li
ense(P),

medi
al_permit(P).

Assuming that the initial query is ?- pilot(peter), a sequential execution would

call li
ense(peter) first and, if it succeeds, medi
al_permit(peter) would be exe-

cuted next. The parallel execution would try to fulfill both goals simultaneously. If the

sequential execution was successful, the parallel one will succeed also, and in a shorter

amount of time, since there is no additional overhead for task communication, and the

time taken by the conjunction should be at most that of the larger task, instead of the

sum of both goals, as in the sequential case.

If the query to post is ?- pilot(P), then a sequential execution would first call

li
ense(P). The variable P could be unified with the constant peter, and, after that,

medi
al_li
ense(peter) would succeed. However, if both goals are executed at a time,
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their execution can yield inconsistent results for the variable P: the order of solutions of

medi
al_permit(P) might not give P = peter as first solution. One of the goals should

be then re-executed in order to generate new solutions and reach to an consistent agree-

ment. This re-execution was not necessary in the sequential program, and can, a priori,

cause more work in the parallel case. Moreover, re-execution could change the order of

solutions with respect to the sequential execution, which in many cases is not desirable,

as it violates the “observable semantics”.

The source of this difference is the restriction the first goal imposes over the search

tree of the second one by means of the instantiation of a shared variable, which does not

happen in the parallel case, where there is no search space preservation. This problem

appears also even if variables do not appear textually in two goals: let us consider the

second clause of the predicate 
rew/1:


rew(t(X, Y)):-

navigator(X),

pilot(Y).

A query such as

?- 
rew(t(Z, Z)).

would lead the same problem, since navigator/1 and pilot/1 will share variables at

run time.

The search space preservation problem can be restated as a notion of independence

of the computations which can in many cases (e.g., when only non-side-effects goals are

being considered) be described in terms of independence (using variable aliasing / shar-

ing) of the parallel goals [GadlBHM93]. Or-parallel execution have this independence

granted since the computation in different branches is already logically independent.

2.3.1 Dealing with Dependencies

A method to overcome the dependency problem would be to generate all solutions for

every goal and make a cross-product of the consistent solution, so determining the set of

solutions for the clause [RK89]. The main advantage of this method is its ease of imple-

mentation, and its main disadvantage is the inefficiency,4 both due to the amount of work

performed (let us think of a case where only one solution is needed: we would generate

4Leading, in some cases, to non-termination!
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all of the solutions), and the high cost associated to the removal of inconsistencies and

to the memory needed to store intermediate results.

A more practical method consists of determining the dependencies among the goals

in the clause body. These dependencies can be used to guide a method of resolution

with parallelism which avoids redundant work. Once these dependencies have been

determined, each model of and-parallelism differs in the effect that they have on the

number of goals to be executed in parallel and on the communication among them. In

some sense, the generate-and-cross-solutions strategy corresponds with a total lack of

knowledge of the dependencies of parallel goals.

Several solutions to the problem of determining dependencies have been pro-

posed [Con83, CDD85], but the method which has finally shown more successful is the

one based on DeGroot’s method. DeGroot’s Restricted And-Parallelism (RAP) finds a com-

promise in the dependency determination of the goals in a clause, splitting the work

between compile time and execution time. The proposal is based on generating several

possible dependency graphs at compile time, corresponding to the different call modes.

These graphs are combined in the so-called Execution Graph Expression (EGE). The run

time instantiation of the arguments determine which goals can be run in parallel and

which ones cannot. It also cuts down the parallelism relationships among objectives to

(nested) fork-joins.

This achieves, on one hand, a considerable simplification of the executing machinery,

and, on the other hand, a considerable widening of the number of cases in which paral-

lelism can be detected (dependencies between two goals of a clause did not impede other

goals of the same clause being executed in parallel). This solution, however, lacked ac-

curacy and expressiveness. It did not provide an specification of the procedure to follow

when one of the parallel goals failed, and it did not give an indication of algorithms or

heuristics to generate the EGE (it is quite common that there are several different EGEs

for the same clause). Additionally, the complexity of the tests to perform restrained its

performance.

2.4 Independent And-Parallelism

Many of the solutions to these problems were provided by Hermenegildo [Her86a,

Her86b, Her87, HN86] with the development of a simpler and more powerful set of

expressions of execution graphs named Conditional Graph Expressions (CGE), and with a

complete operational semantics for a type of parallel execution of logic programs. This

version of RAP was termed Independent And-Parallelism (IAP), and an implementation
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based on the Warren’s Abstract Machine (WAM) [War83] was proposed. The name inde-

pendent comes from one of its main characteristics: once the dependencies among goals

are established, only those which do not share variables at run time can be executed in

parallel. This ensures that the results are not inconsistent [HR89].

This approach guarantees that a parallel execution will not be slower than a sequen-

tial one, so that the complexity expected by the programmer remains unchanged, but

performance is increased thanks to the larger number of tasks being executed in paral-

lel. The absence of shared variables simplifies synchronization, which only has to deal

with control issues, since there will be no competence for variable binding. This eases the

design and implementation of the execution model, and allows having an operational

semantics compatible with that of Prolog.

2.5 Dependent And-Parallelism

There is another type of and-parallelism in which parallel execution is allowed among

goals which share variables. This kind of execution is called dependent and-parallelism

(DAP). There is an interesting taxonomy of DAP approaches in [PG97], where the maxi-

mum efficiency attainable by some primitive operations of a system is used as classifica-

tion criteria. In this thesis we will restrict ourselves to higher level descriptions, guided

by the observable semantics of the language.

DAP encompasses IAP, and therefore it gives rise to more parallelism opportunities,

and it should in principle be able to obtain speedups in a wider range of programs. A way

to perceive this type of parallelism is to simply consider that the independent operations

are happening at a smaller granularity level, i.e., at the variable binding level, instead of

at the resolution subtree level.

A disadvantage of DAP comes from the complexity if its implementation. On one

hand, forward execution must classify goals as consumers or producers of variables (a

classification which changes dynamically), apart from making sure that there are no

low-level conflicts among different bindings of variables (either by locking the access to

the structures being constructed, or by other, more sophisticated schemes [PG97]). On

the other hand, a correct backtracking which abides by sequential Prolog semantics is not

easy, since it may require stopping other agents while they are making forward execution,

or, at least, coordinate several parallel backtrackings until a “safe” point is found.

As a result, many systems which adopt this type of communication among tasks elim-

inate backtracking altogether, and therefore also non-deterministic search of the type

don’t know, i.e., those which allows finding all the solutions to a problem in a “builtin
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search” fashion. Don’t care non-determinism is used instead, which assumes any branch

chosen at a time is the correct one, and execution continues with it.5 A branch is consid-

ered selected when a sequence of designated goals, termed guard, succeed. The guard

usually involves simple primitives which do not generate bindings, but which use pattern

matching or simple tests on the status of the variables. Each clause has a guard, and

execution suspends until there are bindings compatible with the guard(s) of some of the

clauses. At that moment, one of the compatible clauses is selected and execution con-

tinues in the body of that clause, where new bindings can be generated which can wake

up other suspending clauses. Committed choice disallows implicit search, and one of the

most interesting characteristics of logic languages is therefore lost: search has to be ex-

plicitly programmed. Parlog [CG86], Concurrent Prolog [Sha83], and GHC [Ued86] are

well known examples of committed choice languages. We will come back to this matter

in Section 2.10.1.

Among the proposals of DAP which feature backtracking we can cite the scheme

based on Attributed Variables [HCC95] and the DDAS scheme [She92b, She92a, She96].

The latter has Prolog semantics, which is implemented by classifying each variable either

as producer or as consumer based on the their position in the search tree. Although

the range of applications in which DDAS can execute in parallel is larger than in IAP,

the complexity of its implementation, such as the one in DASWAM [She96] makes it

relatively slow in the sequential parts. Other, more recent proposals, such as the Filtering

Binding Scheme [PG97], which can be seen as an instantiation of the DDAS execution

model, are expected to outperform DASWAM.

There are other alternatives which, although we will not deal with in this thesis,

deserve being mentioned. One of them follows the Andorra Principle proposal: give

preference to deterministic calls, and suspend the non-deterministic ones until they be-

come deterministic, or until they have to be evaluated because there are no deterministic

goals available. This principle can be used to guide parallel execution while allowing

a don’t know semantics: DAP is allowed only among deterministic goals, and the non-

deterministic ones are reduced by a single processor. This is the approach followed by

Andorra-I [SCWY91c, SCWY91b]. The operational semantics does not follow Prolog’s,

which makes Prolog programs to have to pass through a quite complex preprocessing

before they can be executed in Andorra-I with the same results.

5There is a more profound reason for that distinction: concurrent systems are usually reactive (data

computed by ongoing computations affect the rest of the universe), and so a failing path, which in a Prolog-

like language does not give an observable outcome (modulo side-effects), would change the state of the

overall computation.
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The Extended Andorra Model follows the same general idea as the Andorra Principle,

but additionally non-deterministic computations can be encapsulated in boxes. The bind-

ings generated by these computations do not propagate out of the box until they become

deterministic (i.e., they cannot be changed by backtracking in the boxed computation),

and at that point they are promoted out of the box. Perhaps the best known implemen-

tation of this model is the AKL language [JH91, Jan94], but other proposals have been

made, such as Pandora [BG90] and ANDOR-II [Tak92].

Finally, let us point out that there are other proposals which combine IAP and DAP

with or-parallelism [GJ89, GHPSC94, PGH95, GH92, GSCYH91]. They have added diffi-

culties over and-parallelism.

From now on we will focus on IAP, and we will suppose that a preliminary analysis

of data dependencies has been performed, so that we know which conjunctions can be

executed with IAP.6 In order to make clear the independence condition (both for the

reader and for a final compiler) it is customary to use the “&” operator instead of the

comma “,”. Assuming run-time independence between X and Y we would write a previous

example as:


rew(t(X, Y)):-

navigator(X) & pilot(Y).

and execute it while keeping the same declarative semantics.

2.6 Shared Data Structures and Parallel Execution

Since different processors are simply executing parts of the same computation and co-

operating in the construction of a solution to the initial query, it is necessary that each

partial subtree solution is available for the rest of the processors. In a distributed mem-

ory machine this usually increases the data traffic, which affects performance negatively.

In a shared memory machine this is solved just by using different memory zones for each

goal, assigned to a other processor each, and reachable by all the other processors. Fig-

ure 2.2 shows an scheme of the execution of the goal 
rew(T); the initial call and every

of the subcalls are assigned to different processors (P1, P2, and P3), and the variables

must be reachable by the different processors. In particular, P1 must see the bindings

made by P2 and P3 for the names of the pilot and navigator.
6If parallel execution is not possible in all the cases, we will assume that we know the conditions of the

data which allow such an execution, and that we can annotate the program with if-then-else constructions

in order to note them.
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Figure 2.2: Shared data structures are needed

Not only Prolog-level data (i.e., the low-level implementation of Prolog terms) have

to be shared. There are other data structures, needed for a correct synchronization of

the execution which are not seen at the level of Prolog source code. As an example, in


rew(t(X,Y)):-

navigator(X) & pilot(Y), ...

the execution needs to wait until both navigator(X) and pilot(Y) have finished in or-

der to continue with the call to 
rew(t(X, Y)). This synchronization, both in forward

and backward execution, needs additional data structures which complicate the inter-

nal machinery of the parallel system. We will describe them and their rôle in some

more detail. We will assume a simple marker model for the implementation, and we

will see very briefly an implementation scheme for forward execution in an IAP system.

We will deliberately not describe the basic model [Her86a] and its subsequent improve-

ments [SH96, Pon97] in depth. Scheduling issues will not be discussed, since they are

not strictly necessary for this account.

2.7 Forward Execution

When the execution finds a parallel conjunction, the subgoals in it are prepared to be

executed by the free processors. Execution continues after the conjunction only when all

the subgoals of a conjunction have finished. The execution can then be divided in two

phases: the internal one, when the conjunction is being executed, and the external one,

when the conjunction has finished.

Some additional data structures are needed in order to record the status of the ex-

ecution at each moment, and to mark which parts of the tree are being explored. The
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Figure 2.3: Additional data structures

main data structures [HG91] are the goal stack, the parallel call frame (parcall frame)

and the frames which mark where every goal execution starts and ends in a stack (goal

markers), represented in Figure 2.3.

When a parallel conjunction is reached a parcall frame is created, which contains the

information pertaining to the goals to be simultaneously executed. In particular, that

environment has:

• An entry for each goal in the conjunction, with information about that goal (e.g.,

where the predicate code starts) and about its state: if no processor has started

executing it ([a℄), if it is being executed ([e℄), if it is finished ([t℄), if it has left

or not pending alternatives, etc.

• Global information about the status of the parallel call (e.g., number of goals left

to finish, connections with other parallel calls, etc.).

The next step is to allow other processors to take the subgoals of the parallel call.

The subgoals are left in a shared memory area which all processors can access.7 As an

example, each processor can be instrumented with a goal stack where the generated

7As an optimization, the processor which generates the parallel call can reserve a goal for itself, so saving

passing through the general mechanism. We will see later (Chapter 4) how this simple optimization gives

noticeable speedups.
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goals are pushed, and from where all the processors can pick up [Her86a]. Goals in the

stack have pointers to those fields in the parcall frame which have to be consulted and/or

updated during the parallel goal execution.

The execution of a parallel goal taken from a goal stack starts by pushing a goal

marker in the execution stack.8 This marker is needed for several reasons, outstandingly:

• It links all the parallel goals in the correct order. In particular, it contains pointers

to the corresponding parcall frame in order to access it and consult or update its

fields whenever needed. Apart from that, it behaves much as a choicepoint with

the peculiarity that in case of being reached on backtracking, special actions are

performed in order to organize backtracking in parallel.

• It divides the stack in segments corresponding to the different goals, which helps

in performing garbage collection.

Figure 2.3 shows a state in which a parallel call a & b & 
 & d is being executed.

Goal a is not yet taken by any processor, goals 
 and d have finished, and goal b is being

executed. The execution stack of d is shown: a start marker and an end marker signal the

memory space used by this execution. b has not been finished, and thus it has just a start

marker. The markers are linked in order to give an ordering to the different execution

segments.

The processor which finishes the execution of a parallel goal tests (in the parcall

frame) if it was the last one to finish. If so, that very same processor picks up the contin-

uation of the goal conjunction. In any other case, a processor which has finished a goal

and does not have to continue the conjunction can search for more goals to run.

2.8 Backward Execution

The term “backward execution” denotes the steps to be performed after a (logical) failure

in the execution. In a system with and-parallelism, which only explores an or-branch

at a time, this implies making backtracking up to the point of the logically previous

choice point. No matter what the backtracking ordering is, the different calls can have

been scattered over several memory zones and executed by different processors. Let

8Different proposals as to which stack frames and markers should be pushed onto exist. We will assume

that markers go to the choicepoint stack, and frames to the environment stack (which are the same on a

single-stack implementation), although this distinction is not crucial for our description. Creating ad-hoc

stacks is also possible.
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Figure 2.4: Backtracking on a parallel conjunction

us suppose that that we want backtracking to be performed following the sequential

execution order, which preserves solution order.

There are two different backtracking cases: external backtracking, when it happens

after having finished successfully a parallel conjunction, and internal backtracking, when

one of the parallel calls fails before obtaining at least one solution for all the conjunction.

Due to independence considerations, these two cases can be treated differently: in par-

ticular, with the search space preservation assumption, an internal failure before any so-

lution is obtained can immediately cause failure of the full parallel conjunction [Her86a].

Let us consider the call a & b & 
 & d, e. We will assume, for efficiency reasons,

that the processor which finished the last parallel goal started the execution of e, and

in the same stack as e. Then, the processor making backtracking over e detects it is

reaching a parallel conjunction because it finds an end marker instead of a choice point.

In general, the end marker does not have to correspond to d. We want, however, to

force backtracking over d first — if it has any choices left. In any case, when the parallel

conjunction is reached on backtracking, one of the goals in it has to be restarted.

Let us assume that 
 was the last goal to finish (Figure 2.4). The memory segment

where the rightmost goal with pending alternatives was executed (b) is found through

the parcall frame. 
 and d are marked as having no alternatives, and thus a new search

for b is started while, at the same time, 
 and d are restarted from scratch. A parallel

execution with a smaller number of goals (b, 
, and d) is then started.
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Internal backtracking happens when a parallel goal hits a start goal marker on back-

tracking before any solution has been reported by the goal. If independence is main-

tained among parallel goals, then there is no solution for the parallel conjunction (at

least with the initial instantiation). Therefore, the ongoing parallel computations can

be stopped and the and-parallel goals as a whole made fail. This implements a form of

intelligent backtracking.

In both cases the number of possible scenarios of (parallel) backtracking is larger

and considerably more complex than in sequential execution. In general, it is necessary

to have information enough as to “recover” an state which could have never happened

before, and restart an execution from it. This is made more difficult by the spreading of

the execution across several processors, which needs additional coordination.

2.9 Limits of Parallel Execution

There are some overheads associated with parallel execution, which can be summarized

in the following points, common both to and- and or-parallelism:

• The tree structure has to be kept explicitly (at least for the active part of the ex-

ecution tree), while in a depth-first sequential execution only a stack is needed.

Creating and keeping the tree structure is an additional overhead.

• Tree traversals are needed in order to, e.g., find out which part of the tree has to be

re-executed after a failure. These traversals, which are easy to do in a sequential

execution thanks to the stack representation, impose some additional work to take

into account.

• Synchronization among processors is needed. The data structures used for the

synchronization, and the synchronization itself, can be quite complex and add an

additional overhead to the system as a whole.

The sources of overhead just mentioned do not affect equally every implementation

of parallel logic languages: as an example, different scheduling algorithms in or-parallel

languages show a wide variation in what regards efficiency and overhead imposed to

the system. This selection impacts not only the time to reach a solution (which is, a

priori, unknown), but also the global behavior of the system: there are differences in

the work which is necessary to position the agent in the node where a branch starts, the

difficulty of the treatment of side effects, etc. In a system with and-parallelism all and-

parallel tasks should, in principle, be executed, so the selection is less critical. Trying to
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take advantage of semi-intelligent backtracking in the case of and-parallel search would

lead to a selection of schedulers which, unlike in the or-parallel case, prune the search

tree by selecting the failure branches first. Again, in absence of more information, this

selection can only be based on heuristic rules.9 Interestingly, this has clear connections

with labeling in some constraint systems.

We will see how these overheads are relatively important in some kinds of programs

featuring IAP, which have code patterns which appear quite frequently, and which should

therefore be studied with special attention. Although IAP limits communication to the

synchronization points at the beginning and the end of parallel tasks, and scheduling

overhead can be kept small, there are many possible causes of delay in every parallel

execution. Solving some of them requires keeping the work local (i.e., avoiding the

intervention of the scheduler) and do not perform useless work in advance (e.g., try

to foresee which backtracking scenarios cannot happen, and do not make provision for

them). In particular we will examine the following points:

• Preparing tasks to be executed in parallel takes some time: starting a goal in paral-

lel is usually slower than calling it sequentially [HC96, HC95, LGHD96, DJ94]. This

is because setting up a parallel task must prepare a closure of the task so that its ex-

ecution can start in an environment different from that the goal first appeared. It is

possible to identify cases where several parallel tasks can start at once, or distribute

the work of preparing and starting up tasks among several processors.

• As we saw, respecting the sequential semantics has an additional cost: the pos-

sibility of backtracking among parallel calls (even with the simplification of-

fered by their independence) adds an additional memory and time overhead

because of the need to prepare the data structures needed for the backtrack-

ing [Her87, SH96, Car93]. There are, however, frequent cases where this back-

tracking will never be produced, and identifying them can lead to savings in the

creation an maintenance of such data structures.

• In any case, for some initial data and for a given program parallelization, a fixed

number of parallel tasks are generated. The fact that only some of these tasks can

effectively be executed in parallel (due to task dependencies and to the program

structure) limits the speedup attainable, independently from the number of physi-

cal processing units available. Understanding whether this limit has been reached

can be eased with the help of simulation and visualization tools, which help to:
9Unless external information is available. Such information can include expected number of answers,

upper or lower complexity bounds [DL93, LGHD96], . . .
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– Evaluate if a given program cannot accelerate more because of its internal

structure: delays due to scheduling, implementation overheads, and unavail-

ability of physical resources can be eliminated in a simulation.

– Visualize which scheduling problems have appeared in the execution. The

shape of the execution frequently gives relevant clues.

– Study how alternative scheduling algorithms influence the quality of the exe-

cution.

Attacking the previous points will help to increase efficiency, both in time and mem-

ory consumption. These points are not completely independent: as we will see, the

conditions to improve one of them are, quite usually, necessary to improve some of the

others. Simulation and visualization tools give a more intuitive support to the numerical

data and the logical reasoning on the behavior of parallel programs.

Additionally, we will see how visualization in sequential, parallel, and constraint pro-

grams help in verifying our understanding of the global picture, and it is a valuable tool

in order to identify inefficiency points. If necessary, the display can be used to guide a

program restructuring (e.g., a different task partitioning or a change in parallelization

conditions) which increases program efficiency.

2.10 Concurrency in Logic Programming

Concurrency has been studied in the context of many programming paradigms, and dif-

ferent mechanisms to express concurrent computations have been devised in the realm

of procedural and object oriented languages [BA82, Han77, And91, AS89].

Concurrent logic languages usually refers to those which implement a sort of com-

mitted choice semantics, but some other languages which feature encapsulated execution

with deep guards which may promote and cause non-deterministic reductions can also

be termed as concurrent.10 These are not, however, the two only possibilities: we will

see that our proposal belongs to an altogether different case.

2.10.1 Concurrent Logic Languages

Languages of the first group are named as a whole concurrent logic languages.

This group includes Parlog [CG86], Concurrent Prolog [TSS87], Guarded Horn
10This classification is perhaps not an usual one, but in [Tic95] a similar taxonomy is made, albeit with

a different terminology. [Tic95] examines expressiveness and implementation techniques of the former, but

not of the latter.
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Clauses [Ued87], Janus [Sar90] and others [Sha89, Tic95]. These share a number of

characteristics. First, concurrency is implicit, i.e., a clause literal represents a concurrent

process. Even if this is an elegant interpretation of Horn Clauses at first sight, it can cause

the generation of an unnecessarily large number of concurrent processes, and impedes

writing sequential code. It seems more advantageous, in general, generating concur-

rent computations explicitly by means of language primitives (or, conversely, that the

language have operators to express sequential composition of processes) [HC94, CH96].

Although there is still debate in this sense, it is remarkable that some languages which

started as implicitly concurrent, such as Oz [Har96] have finally opted for explicit con-

currency in more recent versions [HF00].

Another common characteristic of concurrent logic languages is that communication

and synchronization is performed through shared variables, which represent a channel

in which communication happens when variables are instantiated. Synchronization hap-

pens when processes wait for some variables to be instantiated (sometimes to a given

value). This very attractive model has various practical problems. The first and more im-

portant is that backtracking is highly difficult to implement (and, according to a reactive

view of the computation, inadequate). Thus, these languages opted for removing back-

tracking altogether. We think, however, that backtracking is part of the control model of

Prolog, and that eliminating it is, simply, an unacceptable option.

2.10.2 Deep Guards and Non-Deterministic Concurrent Languages

Although probably not conceived as concurrent logic languages, a more modern family

of logic languages, including Andorra-I [SCWY91a, War88] and AKL [JH91] tackle the

problem of backtracking in concurrent languages while still maintain variable sharing

among different goals. Due to the difficulty of mimicking the sequential backtracking

behavior, they adopt an alternative selection rule, or an encapsulated backtracking.

In Andorra-I the computation performed by every process is suspended unless a de-

terministic path can be followed; if that is not possible, computation is performed se-

quentially. Although Andorra-I is most frequently perceived (and not incorrectly) as a

parallel language with a well-defined, alternative execution rules, suspension of execu-

tion agents depends on the values of the arguments, and not only on processor availabil-

ity. This point makes Andorra-I a concurrent language, as process evolution depends on

explicit program data.

AKL allows encapsulated search while, at the same time, deterministic bindings are

communicated outside the encapsulated computations. Although this solves some of the

problems associated with backtracking, it still has some drawbacks: apart from support-
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ing an explicit concurrency approach, they require very specialized implementation tech-

nology, particularly in what respects variable representation, which in some cases leads

to a poorer performance with respect to sequential execution. Besides, the operational

semantics of these languages (specially that of AKL) if far from Prolog’s.

2.10.3 Reusing Existing Machinery

Another interesting focus toward concurrency is using the existing capabilities of parallel

Prolog implementations, such as &–Prolog [HG91], Aurora [Lus90], MUSE [AK90b] and

ACE [GHPSC94]. These systems proved time ago the possibility of creating resilient and

efficient multiprocessor Prolog implementations. In fact, some of them have been used

to build (parts of) concurrent applications (Aurora in [SMS96]) or even concurrent and

distributed Prolog systems [CH96, HCC95]. From the point of view of internal machinery,

although these systems were designed as WAM extensions, we feel that for a practical

purpose, a model which requires less modifications for the WAM is useful, and we are

interested in better solutions for communication and synchronization among execution

threads.

2.10.4 Other Proposals of Concurrency and Communication

The difficulties associated to the variable-based communication lead to the develop-

ment of other means of communication and synchronization. One of them is that of

ports [JH91], used, e.g., in MT-SICStus [EC98].

MT-SICStus has a relatively simple design, with some details taken from Er-

lang [AVWW96]. Threads can be created (with an initial goal) and removed. Goal

copies can be sent and received using a port in each thread. This allows creating sim-

ple goal servers which execute any goal received. This model is certainly useful, but it

lacks a clean interaction with backtracking (what is send through a port is not recovered

on backtracking), and the aforementioned goal server interacts with the module system.

Besides, coding explicitly that goal server seems a must in most applications.

Threads are started by means of an explicit construct in Oz 2.0 [Har96], which returns

a value as if it were an expression evaluation. Message passing and synchronization use

shared variables and an abstract data type, the Port, which can be shared among several

processes and handed down to functions and procedures. A shared data zone allows fast

communication among threads. A very interesting characteristic of Oz is the coherence

and caching mechanism used when performing concurrent and distributed executions.

Erlang [AVWW96] is a functional language whose ideas impregnate MT-SICStus. Syn-
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chronization and communication are made by using a single port in every thread. Waiting

on a port causes suspension until an atom arrives.

An alternative to ports is using Linda blackboards [CG89b, CG89a]. Linda is a sim-

ple but powerful communication paradigm which focuses on (and unifies) concurrency

and synchronization mechanisms. The Linda model assumes a shared data area (the

blackboard) where tuples are stored and retrieved from, using pattern matching, by con-

current processes. The read and write operations are made by atomic primitives. This

mechanism has been provided, either by means of native support or as libraries, in dif-

ferent logic programming systems [BC91, Swe95, CH96, HCC95, Tar99, De 89].

A practical example of this approach is the Jinni [Tar99] system, based on Bin Prolog.

Jinni has a relatively rich set of primitives to create threads, giving them an initial goal

to work on, and to recover the solutions to a goal until the call finitely fails. Coordina-

tion among engines (the entities which perform work in Jinni) happens through a set of

primitives similar to that of Linda, which access and modify a shared blackboard. These

operations allow reading and writing (using pattern matching) to and from the black-

board, and collecting all the tuples which match a pattern. The synchronization can

be based on constraints, and it gives the possibility of migrating computations to other

hosts. Jinni is attractive, but in our opinion, the shared blackboard is a device external

to the Prolog model and language, and it is not really needed.

2.10.5 Proposals Based on a Global State

Other proposals [BC91, Sha86] fall into the category of parallel languages with a global

environment, and need an explicit control in the interactions. Our approach belongs

to this last category. The main difference with a synchronization based on Linda or in

another form of blackboards, is that in the former case the programmer is forced to

use the interface provided (probably by means of a library) to an external entity. Our

approach incorporates some characteristics related to a global blackboard, increasing

Prolog’s semantics when necessary.
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Chapter 3

Visualization of Sequential,

Constraint, and Parallel Logical

Programs

Chapter Summary

This chapter addresses the design and implementation of visual paradigms for observing

the execution of logic programs. Three different approaches, tailored to three different

needs, are discussed: visualization of sequential execution, visualization of parallel

execution, and visualization of constraints.

Sequential program visualization focuses on depicting the search tree generated by a

query to a program, and includes the capability of looking at the actual values of the

parameters at run time. Parallel program visualization focuses more on control-related

issues, reflecting very faithfully the time characteristics of parallel executions. The last

visualization schema shown targets the display of data in CLP executions, where repre-

sentation for constrained variables and for the constrains themselves are seeked. In all

three cases, abstractions of the proposed depictions are discussed. Tools exemplifying

the devised depictions have been implemented, and are used to showcase the usefulness

of the visualizations developed.

3.1 Introduction

Program visualization has been classically used by computer scientists for many different

purposes. We are not referring here to the use of programs to represent graphically data

or processes (undoubtedly of outmost interest), but rather to the use of visualization to

depict programs, either statically (recall, for example, the flowcharts or block diagrams)

or dynamically; in the last case, both control and data evolution can be represented.

39



Chapter 3. Visualization of Sequential, Constraint, and Parallel Logical Programs

Visualization of Prolog (and, in general, CLP) executions is receiving much attention

recently, since it appears that classical visualizations are often too dependent on the

programming paradigms they were devised for, and do not adapt well to the nature of

the computations performed by CLP programs. Also, the needs of CLP programmers

are quite different [Fab97] from those of programmers working with more traditional

paradigms. It is not that the types of data objects used in CLP languages (e.g., lists, n-ary

trees...) cannot be implemented in procedural or object-oriented languages, but rather

that they are primitive objects of the target languages, and as such we expect them to be

directly represented by a visualization tool. In a language where those types of data have

to be explicitly expressed and handled, we might delegate the task of visualizing them to

specialized procedures.

Basic applications of visualization in the context of CLP, as well as Logic Programming

(LP), include1:

• Debugging. In this case it is often crucial that the programmer obtain a clear

view of the program state (including, if possible, the program point) from the pic-

ture displayed. In this application, visualization is clearly complementary to other

methods such as assertions [AM94, DNTM89, BDD+97] or text-based debugging

[Byr80, Duc92b, Fer94, EJ99]). In fact, many proposed visualizations designed for

debugging purposes can be seen as a graphical front-end to text-based debuggers

[DN94].

• Tuning and optimizing programs and programming systems (which may be

termed—and we will refer to it with this name—as performance debugging). This is

an application where visualization can have a major impact, possibly in combina-

tion with other well-established methods as, for example, profiling statistics.

• Teaching and education. Some applications to this end have already been devel-

oped and tested, using different approaches (see, for example, [EB88, Kah96]).

In all of the above situations, a good pictorial representation is fundamental for

achieving a useful visualization. Thus, it is important to devise representations that

are well suited to the characteristics of CLP data and control. In addition, a recurring

problem in the graphical representations of even medium-sized executions is the huge

amount of information that is usually available to represent. To cope successfully with

these undoubtedly relevant cases, abstractions of the representations are also needed.

1These applications are, of course, not exclusive of (C)LP.
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Here, “abstracting” refers to a process which allows a user to focus on interesting prop-

erties of the data available, by filtering pieces of unnecessary information and which will

hinder the comprehension of the phenomena under study rather than easing it. Ide-

ally, such abstractions should show the most interesting characteristics (according to the

particular objectives of the visualization process, which may be different in each case),

without cluttering the display with unneeded details.

The aim of the visualization paradigms we discuss is quite broad—i.e., we are not

committing exclusively to teaching, or to debugging—, but our focus is debugging for

correctness and, mainly, for performance. This focus coalesces totally with our quest for

more efficiency in the execution of logic programs: the tool and techniques presented

in this chapter can be seen as an aid to explore and understand the behavior of logic

programs. But, interestingly, the dual view can also be taken: the performance of a logic

programming system can be evaluated (and this is, arguably, the only relevant factor

to an end user) with respect to programs being executed. Inspecting how programs

with known characteristics execute gives information on how the underlying machine

performs, and thus it helps to uncover weaknesses.

In the next sections we will present an approach to the study of the run–time behavior

of logic systems based on devising visualization paradigms which represent the execution

of such systems. The gap between the general characteristics of program execution in the

system under study and the final visualization paradigm used to represent it will be filled

using a methodology based on stepwise refinement. This refinement leads to a number of

different visual representations which will be devised in a natural fashion for a number

of models of execution in logic programs, based on the structure of the dependencies

that hold for the execution represented.

The visualization paradigms we will deal with can be divided into three non-exclusive

categories: visualizing the execution flow / control of the program, visualizing the actual

variables (i.e., representing their run-time values), and visualizing constraints among

variables. The last two categories are specially difficult to handle in CLP, and do not

have a clear counterpart in procedural languages—at least, not at the level of being “first

class” citizens of the language.

In the following sections we will give an account of three approaches developed:

• Visualization of sequential program execution (starting at Section 3.3), paying at-

tention to issues related to creation and binding of variables (either LP or CLP),

and

• Visualization of parallel program execution (starting at Section 3.8), focusing on
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control and resource (e.g., time, processor, memory) usage, and

• Visualization of the history of the data in a program (starting at Section 3.11),

focusing on the display of CLP variables and the relationships (i.e., constraints)

among them.

These three approaches can be used for any of the applications mentioned previously.

Obviously they can be used to teach, since an intuitive view of the execution is displayed,

giving sometimes the possibility of replaying an execution and showing how the rules

of the language led the control flow. They can also be used to debug user programs,

since the views shown by the tools come from actual executions. Each tool offers a

different representation of the execution, and thus it can be used to locate different

types of program errors or performance problems.

3.2 Basic Notions and Methodology

In order to derive homogeneous visualization paradigms starting from the basic proper-

ties of different execution models we propose the use of a methodology loosely based on

stepwise refinement.

We briefly introduce three basic notions for this purpose (since these concepts are

quite primitive, we will rely somewhat on the reader’s intuition to avoid verbosity): An

observable is any generic characteristic of the system under study whose variation we

want to track. An event is a uniquely distinguishable instantiation of an observable in

an execution. A trace is a collection of events which corresponds to a particular execu-

tion. Observables abstract out details of concrete operations, and allow concentrating

on characteristics perceived as interesting for study. Events usually include their type,

which names the corresponding observable, and some additional information, which

distinguishes a particular event from other events of the same type. Such information

may include for example time stamps, invocation number, goal and agent2 identifiers,

etc. In general it is required that no two identical events can ever appear in the same

execution—the use of unique time stamps can ensure this. Traces can gathered using a

variety of methods (e.g., instrumenting a real system, or by means of simulation), and

can be stored in trace files or be interactively obtained as the visualization proceeds.

Each method has its advantages and drawbacks.

2Throughout the paper we use the term “agent” (or worker) to refer to the process, normally mapped on

an agent, that is working on a task.
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Once an execution model is chosen the first step is to decide at what abstraction level

the model is to be visualized. This is done by defining the observables and the informa-

tion which will be encoded in the events3. Also, a notion of dependency among events

is defined. A graph structure results from this dependency relation which is then used

as the basis for developing the visualization paradigm. Finally, common characteristics

of the possible graph structures generated should be identified and unifying principles

found in order to devise a visualization paradigm. Such a paradigm should be as simple,

flexible, accurate, and intuitive as possible, reflect the structure of the graph, and hope-

fully be homogeneous across execution models and types of parallelism. Of course, the

final result can certainly only be satisfactory if the resulting visualizations prove to be

useful enough in practice for program development or system debugging, and this may

require several iterations through the paradigm design cycle.

Finally, some models can be seen as a combination of several individual models. A vi-

sualization paradigm can often be derived in such cases by combining the corresponding

individual visualization paradigms in a way that mimics the combined execution model.

Sometimes this is not possible (properties of independence do not hold, or the graphical

representation is not intuitive or elegant). In these cases the problem has to be tackled

from scratch as a whole, and perhaps even different observables will have to be defined

in order to arrive at a satisfactory representation.

3.3 Sequential Search Tree Visualization

One of the main characteristics of declarative programming is the absence of explicit

control. Although this theoretical property results in many advantages regarding, for

example, program analysis and transformation, programs are executed in practice with

fixed evaluation rules,4 and different declaratively correct programs aimed at the same

task can show wide differences in efficiency (including termination, which obviously

affects total correctness). These differences are often related to the evaluation order.

Understanding those evaluation rules is important in order to write efficient programs. In

logic languages where these rules are complex (for example, the Andorra family [War88,

FHJ91, War93] or, as we will see later, concurrent or parallel programs in which the

scheduling can be very different among runs) a high level vision of the execution is of

great help. In this context, a good visualization of the program execution (probably
3Note, also, that a visualization tool (or any other tool) can change the abstraction level by ignoring the

some of the information contained in the events.
4By “fixed” we mean that these rules can be deterministically known at run-time, although maybe not

known statically.
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Observable Comment

NEW_CALL A new call is performed

TRY_HEAD The next untried clause is tried

HEAD_SUCCESS The tried head finished unified with the call

HEAD_FAILURE The tried head did not unify

CALL_SUCCESS All goals in the current clause succeeded

CALL_FAILURE No clause for the goal succeeded

Table 3.1: Common observables for sequential execution of logic programs

combined with other tools) can help to uncover performance (or even correctness) bugs,

either in the user code or in the system programmer code.

3.3.1 Choosing Observables

Sequential execution display can draw its graphical representation directly from the res-

olution trees traditionally used in logic; this does not mean that this representation is the

best suited for any purpose, but in any case it may serve as a basis for future develop-

ments. Additionally the representation can be adorned to include information pertaining

characteristics not included in the raw depiction of the search tree.

The observables we want to register have a strong operational flavor, even if we

want to display a resolution tree. This so because we are interested in displaying in

a performance-oriented fashion, and therefore we are interested in retaining most of the

operational characteristics. Apart from the global success or failure of a (toplevel) goal

(which will possibly give us a too coarse view of the execution, but which can however be

used to abstract parts of the execution—see Section 3.7), the fundamental observables

are the invocations, backtrackings, successes, and failures of goal calls. The observables

we have chosen are shown in Table 3.1; they resemble the ports used by the debuggers

based on the Byrd Box model [Byr80], although they are slightly more fine-grained. This

level of detail is motivated by the desire of displaying failed head unifications, which

some Byrd-box based debuggers do not show. As an example, the code

q(a,a).

q(b,b).

q(
,
).

traced using a industry-standard Prolog system produces the following output:
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| ?- q(X, b).

1 1 Call: q(_158,b) ?

1 1 Exit: q(b,b) ?

where the failure of the unification of the first clause head is absent. This makes it diffi-

cult to map immediately the trace to the textual program source, and makes correctness

debugging more involved: we are missing failing clauses in the trace, and these clauses

might be the ones leading us to a solution. Hence the finer granularity of our observables.

The sequential order of generation of observables gives by itself a natural way of

stamping (and identifying) events and producing unique instantiation of observables.

This ordering information is however not enough to render a tree: knowledge about the

relationship of a given event with (a subset of) the preceding events is needed in order

to construct the search tree. As an example, all events should specify which part of the

tree they correspond to, either by giving absolute coordinates in the tree (e.g., by coding

the path from the root) or by providing identifiers of parent/sibling events.

There are some event properties which can be used to derive a depiction: for exam-

ple, TRY_HEADs should always refer to a previous, already existing NEW_CALL (ditto for

HEAD_SUCCESSes, HEAD_FAILUREs, CALL_SUCCESSes, and CALL_FAILUREs), and alterna-

tive clauses for a call always use the same runtime arguments. Adding this information

to the events will allow us to relate subsequent observables with a given initial invoca-

tion; this, as we will see, makes it easy to represent dynamically the evolution of the

execution. Since all the events in an execution can be related to NEW_CALLs, only unique

identifiers for NEW_CALLs are needed.

Additionally, there are some ordering constraints which must be met by the events: no

TRY_HEAD can appear unless a previous NEW_CALL with same identifier was emited be-

fore; no HEAD_SUCCESS or HEAD_FAILURE can appear unless a previous TRY_HEAD event

referring to the same call (i.e., with the same identifier) was issued, and they must be bal-

anced; only a CALL_FAILURE for every NEW_CALL must appear; etc. These per-invocation

constraints on events are summarized as a DFA in Figure 3.1. TRY_HEADi refers to the

ith clause of the predicate being called; every time a new clause is tried, i is incremented

until the of clauses of the predicate are exahusted—or a cut is executed in a clause.

These observables do not take into account how unifications take place in each call,

although we may have included explicit events for that purpose. In the latter case,

HEAD_SUCCESSes and HEAD_FAILUREs should have been decomposed on unifications.5

Probably showing by default information about runtime arguments in the search tree will
5Note that it is possible to approximate the latter behavior by decomposing at source level the head

unification into explicit unifications in the body of each clause, and then using the shown events.
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new
call

head
try

success
call

head
failure

head
success

failure
call

i := 1

i

i

i
i := i + 1

i := i + 1

Figure 3.1: Precedence in the events for sequential tree display

provide too much detail; we will, at the moment, focus on showing the control-related

part of the execution, and leave the data display for a later moment (and, possibly, un-

der user request). Thus we do not need to include explicit events related to argument

unification at this level.

3.3.2 Choosing a Depiction

From the initial description and dependencies, we can derive a graph which represents

the execution of a program: NEW_CALLs are represented by nodes in the graph (one per

invocation), and the events related to a particular invocation are dynamically reflected

in the graph by adorning it with labels (at least, at the moment). The structure of the

execution is depicted by using caller/callee dependencies. Note that if we want to fully

represent how the search process took place (which will help us to have a more useful

tool, see Section 3.5.2), we need to distinguish the different subtrees arising from differ-

ent clauses, i.e., we need to distinguish And continuations from Or alternatives. One way

to perform this is, keeping the idea of having a node per invocation, to label the edges of

the graph so that it is apparent which correspond to an alternative and which correspond

to a continuation.

To illustrate this, we will use the program in Figure 3.2 with the query ?- a(1, 2).

The graphs in Figure 3.3 represent, from left to right and from top to bottom, several

stages in the execution of the query. The nodes are labeled with the name of the predicate

being called, and adorned with the state of that node. Throught the rest of the section

46



3.3. Sequential Search Tree Visualization

a(X,Y):- b(X,Z), 
(Z,Y).

a(X,Y):- 
(X,Y).

b(1,2):- true.


(1,2):- true.

Figure 3.2: Sample program

we suppose that the text of the program is available when displaying the execution (it

could, if necessary, have been emitted with the trace), so that any information pertaining

to the program source is available. We have used a lighter color to represent continuation

(sibling) edges and a darker color for edges representing a father/children relationship.

Thus, a series of nodes linked with light-colored edges correspond to the body of a clause,

and they appear in the order in which they were executed (i.e., textual order, for standard

Prolog). For the different alternative clauses of a predicate, we rely on the order in

the graphical depiction. Although at any given moment only one clause is responsible

forthe success of a clause, it is important to detail the order in which clauses were tried;

otherwise, the result of side-effect and control-related predicates could not be portrayed

properly.

In Figure 3.3, from left to right, the toplevel goal a/2 is called first. Its first clause

is tried, and the head unification also succeeds. At that point the clause is “expanded”,

and the calls to b/2 and 
/2 have to be performed. The first clause of b/2 is tried, and it

suceeds. The first clause of 
/2 is then tried, and the head unificacion fails; since there

is only one clause of 
/2 the whole call fails. A new clause is then tried for b/2, and the

call fails. The first clause for a/2 has then failed, and the second clause is tried with a

new TRY_HEAD. This clause calls 
/2 and it suceeds. Then, in the same graph, we have

the whole search tree with Or alternatives from top to bottom, and And continuations

from left to right.

Since the graph reflects the state of the execution at any given time, this depiction

shows a quite faithful history of the execution, specially regarding the structure of the

recursive calls. This can be used to explore and understand, for example, where the

program made most of the calls, which parts of the program fail the more often, whether

there are frequent left recursions (which, in a system with last call optimization, uses up

comparatively more memory), and other characteristics which affect performance. As it

is not static, but updated as the program proceeds, the user has, at least in principle,

the possibility of stopping the replay and examining the state of the computation up to
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new_call

a

⇒

try_head

a/2

⇒
b/2

head_success

head_success

head_success

a/2

true

c/2
⇒

b/2 c/2

head_success

head_success new_call

a/2

true

b/2 c/2

head_success

head_success try_head

a/2

true

⇒
b/2 c/2

try_head

call_failure

call_failure

a/2

true

⇒

b/2 c/2

call_failure

call_failure

c/2

call_success

call_success

a/2

true true

Figure 3.3: Successive graphs for a sequential execution

the point allowed by the information contained in the events. On the other hand, the

graph display, although having many of the characteristics we want to show in a program

depiction, is still probably overloaded with gaudy decoration which might obscure rather

than enlighten the structure of the execution. For this, we will, based on these graphs,

develop a more stylized representation.

A Note on Alternative Search Rules: The timestamp suggested for the events is not

only a convenient way of generating unique identifiers: it is also of utmost importance

to tackle the representation of alternative search rules. The order in which calls were

executed in a given search tree is ultimately defined by the timestamps. As an important

example which we will discuss more in depth in Section 3.8 and following, parallel ex-

ecution can be seen as an alternative execution rule, which is only known at run-time,

and which depends on external facts such as the load and scheduling characteristics of

the machine.
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3.4. AORTA Trees and the APT Tool

3.4 AORTA Trees and the APT Tool

In order to test the basic ideas of the previous section, we designed and implemented

a tool named APT (A Prolog Tracer [Lue97]) which serves as a control visualizer for

CLP languages. APT is essentially a search tree visualizer based on the TPM [EB88],6

and inherits many of its characteristics. However, APT also adds some interesting new

features. APT is built around a meta-interpreter coded in Prolog which rewrites the

source program and runs it, gathering information about the goals executed and the

state of the store at run-time. This execution can be performed depth-first or breadth-

first, and can be replayed at will, using the collected information. All APT windows are

animated, and are updated as the (re)execution of the program proceeds.
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a/2

b/2 c/2 c/2

call_failure call_failure call_success

call_success

Figure 3.4: Graph for an execu-

tion of the program in Figure 3.2

a/2

b/2 c/2 c/2

Figure 3.5: AORTA execution tree

for the program in Figure 3.2

The main visualization window of APT provides a tree-like depiction, derived from

that shown in the previous section. Nodes in this portrayal represent invocations, and

the different events are shown with color codes which correspond to the state of the

invocation (white when the call corresponding to a node has not yet been performed,

yellow when the node is CALLed or reTRIed, green for SUCCESSed and red for FAILed).

Additionally, calls are adorned (optionally) with the name of the predicate being called.

Figures 3.5 and 3.4 show the execution graph and AORTA tree corresponding to this

program with the query ?- a(1, 2).. The figures show all the search process, including

failed paths, so it is easy to perceive, at a glance, all the work performed until a solution

is reached. Note that these figures do not show the call corresponding to the (implicit)

true in the facts. This is more adequate for real programs, and avoids having too many

objects in the display.

There has been a graphical transformation from the graph to the AORTA tree: the

continuation edges in the graph, linking nodes in execution order, are replaced by a line

6Another CLP visualizer that depicts the control part as a tree in the TPM spirit is the one developed by

PrologIA [Pro98].
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grouping the goals inside each clause, and all of these nodes are linked to the parent

call. The order is now implicitly represented by the left-to-right order of nodes in the

portray. Thus, goals in the body of the first clause of a/2 (b(X, Z) and 
(Z,Y)) are

shown as nodes whose edges to their parent are crossed with a line—these are And-

branches corresponding to the goals inside the clause. The goals in the body of the

second clause (only one, in this case) are linked to the parent node with a “separate” set

of edges. The actual run-time arguments are not shown at this level, but nodes can be

blown up for more detail, as we will see later.

Figure 3.6: A small execution tree, as shown by APT

3.4.1 Control in APT

Figure 3.6 shows a view of an actual APT window. The buttons at the top are used

to load programs, execute queries, and navigate through the execution. The bottom

frame is a full-featured text editor, and the top frame displays the execution tree. In this

representation, calls to user code are drawn as squares and nodes corresponding to built-

ins appear as circles. The portray of an execution tree gives information on the amount

of work performed in the execution. As an example, Figure 3.7 shows the execution tree

and code for a simple version of the times/3 predicate using Peano arithmetic [SS87].

This predicate is called as times(M, N, R) (M = 4, N = 3 in the example). It is easy to see

that most of the work is performed on the right side of the tree and that it is the plus/3
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predicate the one which performs this work. Moreover, it is as well easy to perceive a

pattern: plus/3 is executed a different number of times in each execution step, which

suggests7 a complexity of, at least, quadratic on some argument (this the rate at which

the series 1+ 4 + 7 + 10..., the number of calls to plus/3, grows), and linear in some

other (because the increment of plus/3 in different recursion steps is not fixed). This

reasoning might not be apparent from this example only, but trying a couple of different

cases would help to clarify what each argument is responsible for in the picture. The

complexity is actually O(M2 · N), which can be straightforwardly derived by mapping

the search tree in the picture to the actual code: it is easy to spot that the running times

of plus/3 is governed by its first argument, and this argument is bigger in the outer

recursion steps of times/3, since it is the result of a series of previous multiplications.

Moreover, the predicate is right-recursive, which is also also easy to deduce from the tree.

example(R):-

times(s(s(s(s(0)))), s(s(s(0))), R).

plus(0,X,X).

plus(s(X),Y,s(Z)):- plus(X,Y,Z).

times(0,_Y,0).

times(s(X),Y,Z):-

times(X,Y,Z1),

plus(Z1,Y,Z).

Figure 3.7: Execution tree and code for a left-recursive, non-accumulative multiplication

The result of removing left-recursion (an accumulating parameter will suffice in this

case) is shown in the search tree and code in Figure 3.8. The layout of the tree generated

by the same call is notoriusly different: it clearly right-recursive, the bulk of the work

being performed by the plus/3 predicate on the left part of the tree. Also, the amount of

work is clearly smaller: the number of calls to plus/3 is constant for every recursion step

of times/3, and the leaning rectangle-shaped pattern suggests a O(M · N) complexity.

7Of course a complexity study will reveal the exact order; but we are, precisely, trying to give an intuitive

understanding of the behavior of the programs being examined.
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Looking at the code it is clear that the size of the calls to plus/3 depends solely on the

second argument of times/3, which does not change in different recursive calls.

example(R):-

times(s(s(s(s(0)))), s(s(s(0))), R).

plus(0,X,X).

plus(s(X),Y,s(Z)):- plus(X,Y,Z).

times(X, Y, Z):- times(X, Y, 0, Z).

times(0, _Y, Z, Z).

times(s(X), Y, A

um, Z):-

plus(Y, A

um, Mid),

times(X, Y, Mid, Z).

Figure 3.8: Execution tree and code for a right-recursive, accumulative multiplication

Even in cases where left- and right recursion do not lead to different complexity

results, using right recursion is usually better; in many systems implementing last call

optimization, right recursive predicates usually run in constant memory space, since the

stack space holding local variables can be released prior to the last call. This case is

also easy to detect (and understand) using search tree depiction. We will use an example

(code omitted, due to its simplicity) which adds the numbers from 1 to N, using a non-tail-

recursive program (Figure 3.9) and a tail-recursive program (Figure 3.10). The amount

of work is almost the same in both cases (the number of nodes in the tree can just

be counted, or, more roughly, estimated at a glance), but most Prolog implementations

would favor the tail-recursive implementation. In Figure 3.9 the branches on the right

of tree are the operations for which local variables have to be presumably kept in the

local environment. These branches do not appear in Figure 3.10; albeit the latter has an

arguably less pleasant aesthetics, the use of environment space disallows very important

optimizations in the memory usage.

Execution can be performed either in depth-first or breadth-first mode. In the case

of depth-first search, the user can specify a maximum depth to search; when this depth

has been reached, the user is warned and prompted to decide whether to stop executing,

or to search with a new, deeper maximum level. The search mode and search depth

are controlled by the metainterpreter built in APT, so that no special characteristics are
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Figure 3.9: Non tail-recursive simple predicate

Figure 3.10: Tail-recursive simple predicate

required from the underlying CLP system. APT treats correctly the cuts in program,

showing the pruned alternatives; it also deals properly with the metacalls, since the

whole program is itself metaexecuted.

3.4.2 Visualizing Data in APT

Clicking on a node of the tree opens a different window in which the relevant part of

the program source, i.e., the calling body atom and the matching clause head, are rep-

resented together with the (run-time) state of the variables in that node, including the

input/output modes. The default depiction offered by APTcorresponds to the Herbrand

domain. This depiction is is built into APT, and it was chosen since that most CLP systems

include the Herbrand domain as default, in order to be able to build data structures. The

following examples will focus on the visualization of Herbrand terms (although alter-

native representations are possible, see Section 3.11.2) and we will veer to constrained

variables later in the chapter.
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As a simple example, Figure 3.11 shows a blow-up of a leaf node of the execution in

Figure 3.6. The run-time call appears on top at the right, and the matching head is placed

below it. The answer substitution (i.e., the result of head unification and/or execution of

the clauses in the body) is shown enclosed by rounded rectangles. The arrows represent

the source and target of the substitution, i.e., the data flow: variable I21 was free at

the time of the call, and is unified with the void constant. On the other hand, D11 was

already bound, and matches the void constant in the source.

Figure 3.11: A simple leaf node

The diagram on the left of the program text (still in Figure 3.11) represents the state

of the call: marked with a tick (
√

) for success (as in this case), crossed (×) for failure,

and signaled with a question mark if the call (either first call or subsequent backtracking)

has not finished yet. The number below the symbol denotes the number of clauses in the

predicate. For each of these clauses there is a small segment sticking out from the bottom

of the box. Clauses tried and failed have a “bottom” (⊥) sign; the clause (if any) currently

under execution, but not yet finished, has a small box with a question mark; and a clause

finished with success is marked with a tick. In this case the first clause suceeded.

In the example shown in Figure 3.12 the arguments were already instatiated to struc-

tures with variables inside. Some of these variables receive values from other goals inside

the clause (variables I11, I21, and D21 in the head, which unify with T10, T20, and X0),

and others receive their bindings due to variable sharing in the clause head: variable

Val0 unifies with R1, which appears twice in the clause head, and it subsequently receives

a 2 from the call.

The presentation of these node views depends on the type of data (i.e., the constraint

domain) used. This is one of the most useful general concepts underlying the design of
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Figure 3.12: An internal node with different instantiation modes

APT : the graphical display of control is logically separated from that of data. This allows

developing data visualizations independently from the control visualization, and using

them together. The data visualization can then be taken care of by a variety of tools,

depending on the data to be visualized. Following the proposal outlined in the previous

section, this allows using APT as a control skeleton for visualizing CLP execution. In

this case, the windows which are opened when clicking on the tree nodes offer views

of the constraint store in the state represented by the selected node. These views vary

depending on the constraint domain used, or even for the same domain, depending on

the data visualization paradigm used (e.g., if different visualizations for the same type of

data are chosen). Visualization for CLP data will be discussed more in deph later in this

chapter.

A prominent feature of APT is its ability to show the origin of the instantiation of

any variable at any moment in the execution. In order to do that, APT keeps track of

the point in the tree in which the (current) substitution of a variable was generated.

Clicking on a substitution causes a line in the main tree to be drawn from the current

node to the node where the substitution was generated. Figure 3.13 shows a part of

an execution (from a 5-queens problem) in which a black line from a no_atta
k node

points to an invocation of queens as the instantiation origin of a variable. This is a very

powerful (and expensive) feature which helps in correctness debugging, as the source

of a (presumably) wrong instantiation (causing, for example an unexpected failure or

a wrong answer) can be easily located. The culprit node can in turn be blown up and

inspected to find out the cause of the generation of those values.

A similar capability can be found in the Color Prolog tool [NKD97], where the “his-
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Figure 3.13: Showing the origin of an instantiation

tory” of every variable in the execution is depicted using a different color. Variables (or,

in general, terms) describe thus a colored path in the search tree from the moment in

which they are created up to the leaves. This tool is undoubtedly of much value for

teaching (which is its original aim), but it probably lacks some abstraction properties

and the performance debugging orientation we pursue. Quite interestingly, the authors

had to face the issue of color unification.

3.4.3 Some Implementation Details

The tool reads source programs, “enriches” them (basically numbering each clause and

marking variables so that tracing their origin is easier and faster), and metaexecutes

them, producing an internal trace with information about the search tree, the variables

in each call, and the run-time (Herbrand) constraints associated. APT uses a “rich meta-

interpreter”, in the sense that it keeps track of a large amount of information, and ex-

ecutes an “enriched program”: the program is rewritten so that it helps the metainter-

preter. In retrospect, the “rich meta-interpreter” approach has advantages and disadvan-

tages. On one hand it allows determining very interesting information such as, e.g., the

origin of a given binding. On the other hand, it cannot cope easily with large executions,

both due to time and memory consumption.

After reading and running the program, the execution can be replayed, either auto-

matically or step-by-step, and the user can move forwards and backwards. More detailed

information about each invocation can be requested by accessing the node with repre-

sents the call. The tool has a built-in text editor, with a full range of editing commands,
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most of them compatible with the Emacs editor, and files open from the visualizer are

loaded into the editor. The queries to the program are entered in the window APT was

launched from. Once a query has been finished, the user can ask for another solution

to the same query. As in a toplevel, this is performed by forcing backtracking after a

simulated failure. If the tree to be visualized is too large to fit in the window (which is

often the case), slide bars make it possible to navigate through the execution.

APT uses Tcl/Tk [Ous94] to provide the graphical interface. The original imple-

mentation of APT was developed under SICStus Prolog. It has also been ported to the

clp(fd)/Calypso system developed at INRIA [DC93].

3.5 Programmed Search and the Enumeration Process

The control-focused observables proposed so far are not only useful for traditional logic

programming, but also for constraint logic programming, since the control behavior of

most CLP systems is inherited from that of Prolog. Regarding control, in CLP programs

(especially in those using finite domains) it is possible to distinguish two execution

phases from the point of view of control flow: the programmed search which results

from the actual program steps encoded in the program clauses, and the solver operations,

which encompass the steps performed inside the solver when adding equations or when

calling the (generally built-in) enumeration predicates. These two phases can be freely

interleaved during the execution. The control behavior of common CLP languages during

the programmed search is similar to that of LP languages, in the sense that failure causes

backtracking to the nearest branch not yet taken, and many ideas regarding visualization

of control can be interchanged among them; as we will see later, in some cases the solver

operations can also be shown as a specialized, implicit search procedure8.

In general, however, understanding a visual representation of how the constraint

solver works internally requires ample knowledge of its structure by the user inspecting

it. A quite general tradeoff (and the one proposed here) is to leave this particular point

open, and have other modules or external applications to display the data, plus the possi-

ble constraints, by using the additional, non control-related information included in the

events. A starting point, both in the Herbrand and in the more general contraint solving

setting, could be to visualize variables using source language constructs, although a true

graphical display of variables needs a more involved representation (Section 3.11).

8This does not mean that such solver operations should be represented similarly to the programmed

search; only that it is possible to do it that way.

57



Chapter 3. Visualization of Sequential, Constraint, and Parallel Logical Programs

3.5.1 The Programmed Search

The programmed search part of CLP execution is similar in many ways to that of LP

execution. The visualization of this part of (C)LP program execution can take the form of

a direct representation of the search tree, whose nodes stand for the events which take

place during execution. Classical LP visualization tools, of which the Transparent Prolog

Machine (TPM [EB88]) is paradigmatic, are based on this representation. In particular,

the augmented And-Or tree (AORTA), used by APT and TPM , in which And and Or nodes

are compressed and take up less vertical space, conveys basically the same information

as a usual And-Or tree. Thus, an AORTA tree can be used for displaying the search as

explicitly coded by the programmer, and for representing the search implicitly performed

by enumeration predicates.

It is true that in CLP programs the control part has typically less importance than in LP,

since most of the time is spent in equation solving and enumeration. However, note that

one of the main differences between C(L)P and, e.g., Operations Research, is the ability

to set up equations in an algorithmic fashion, and to search for the right set of equations.

Although this part of the execution may sometimes be short and deterministic, it may

also be quite large. It is, in any case, relevant for performance debugging, to be able to

represent and understand the control flow.

Given the previous considerations, a first approach which can be used in order to

visualize CLP executions is to represent the part corresponding to the execution of the

program clauses (the programmed search) using a search tree depiction. Note that the

constraint-related operations of a CLP execution (enumeration/propagation) typically

occur in “bursts” which can be associated to points of the search tree. Thus, the search

tree depiction can be seen as primary view or a skeleton onto which other views of the

state of the constraint store during enumeration and propagation (and which we will

address in Section 3.5.2) can be grafted or to which they can be related.

3.5.2 Representing the Enumeration Process as a Search Tree

The enumeration process, typically performed by finite domain solvers (involving, e.g.,

domain splitting, choosing paths for constraint propagation, and heuristics for enumer-

ation), often affects performance critically. Observing the behavior of this process in a

given problem (or class of problems) can help to understand the source of performance

flaws and reveal that a different set of constraints or a different enumeration strategy

would improve the efficiency of the program.

The enumeration phase can be seen as a search for a mapping of values to variables
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which satisfy all the constraints set up so far. It takes the form of (or can be modeled as)

a search which non-deterministically narrows the domains of some variables and, as a re-

sult of the propagation of these changes, updates the domains of other variables. Each of

these steps results in either failure (in which case another branch of the search is chosen

by setting the domain of the selected variable differently, by picking another variable to

update, or by backtracking to an alternative in the programmed search tree) or in a new

state with updated domains for the variables.9 Thus, one approach in order to depict

this process is to use the same representation proposed for the programmed search, i.e.,

to use a tree representation, in either time or event space. Of course, a representation

which shows all the details involved in the selection of variable and/or domain would

probably convey too much info to be useful. Thus, this search can be explicitly encapsu-

lated as nodes in the tree; these nodes should be clearly distinguished, as they represent

choices of a kind different from the programmed search ones. Another alternative, which

focuses more on data evolution than on control flow, is to simply visualize those steps as

a series of states for all the variables (as shown in Section 3.11.1 and Figures 3.31, 3.35,

and 3.47), or show an altogether ad-hoc representation of enumeration [SA00].

The display of the enumeration process can have different degrees of faithfulness

to what is mathematically more accurate10 and to what actually happens internally in

the solver; moreover, as we have argued, a total representation is not always desirable.

Actually, showing the internal behavior of the solver is not always possible, since in some

CLP systems the enumeration and propagation parts of the execution are performed at

a level not accessible from user code. This complicates the program visualization, since

in order to gather data, either the system itself has to be instrumented to produce the

data (as in the CHIP Tree Visualizer [SA00]), or sufficient knowledge about the solver

operation must be available so that its operation can be mimicked externally in a meta-

interpreter inside the visualizer, and inserted transparently between the user-perceived

execution steps.

Other types of visualization concerned with the internal work performed by the solver

need low-level support from the constraint solver. They are very useful for system im-

plementors who have access to the system internals, and for the programmer who wants

to really fine-tune a program to achieve superior performance in a given platform, but

its own nature prevents them from being portable across platforms. Therefore we chose

9This enumeration can often be encoded as a Prolog-like search procedure which selects a variable,

inspects its domain, and narrows it, with failure as a possible result. The inspection and setting of the

domains of the variables are typically primitive operations of the system.
10Solvers often keep and upper approximation of the domain of the variables, especial in Finite Domains

and in Intervals of Reals.
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to move towards generalization at the expense of some losses, and base a more general,

user-definable depiction, on simpler, portable primitives, while possible. These may not

have access to all the internal characteristics of a CLP system, but in turn can be used in

a wider variety of environments.

3.6 Coupling Control Visualization with Assertions

One of the techniques used frequently for program verification and correctness debug-

ging is to use assertions which (partially) describe the specification and check the pro-

gram against these assertions (see, e.g., [AM94, DNTM89, BDD+97], and [DHM00] and

its references). The program can sometimes be checked statically for compliance with the

assertions, and when this cannot be ensured, run-time tests can automatically be incor-

porated into the program. Typically, a warning is issued if any of these run-time tests fail,

flagging an error in the program, since it has reached a state not allowed by the specifica-

tion. It appears useful to couple this kind of run-time testing with control visualization.

Nodes which correspond to run-time tests can be, for example, color coded to reflect

whether the associated check succeeded or failed; the latter case may not necessarily

mean that the branch being executed has to fail as well. This allows the programmer

to easily pinpoint the state of the execution that results in the violation of an assertion

(and, thus, of the specification) and, by clicking on the nodes associated to the run-time

checks, to explore for the reason of the error by tracking the source of instantiation of

the variables. As mentioned before, the design of the tree is independent from the con-

straint domain, and so the user should be able to click on a node and bring up a window

(perhaps under the control of a different application) which shows the variables / con-

straints active at the moment in which the node was clicked. This window allows the

programmer to peruse the state of the variables and detect which are the sources of the

bindings of the variables involved in the faulty assertion.

This does not mean, of course, that assertion checking at compile time should be seen

as opposed to visualization: rather, visualization can be effectively used as user interface,

with interesting characteristics of its own, to assertion-based debugging methods.

3.7 Abstracting Control

The AORTA search tree gives a good representation of the space being traversed. It also

offers some degree of abstraction with respect to a classical search tree by reusing some

of the tree nodes during backtracking. But it has the drawback, shared with the classical
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search trees, of being too explicit, taking up too much space, and showing too much

detail to be usable in medium-sized computations, which can easily generate thousands

of nodes. A means of abstracting this view is desirable.

An obvious way to cope with a very large number of objects (nodes and links) in

the limited space provided by a screen is using a virtual canvas larger than the physical

screen (as done by APT). However, this makes it difficult to perceive the “big picture”.

An alternative is simply squeezing the picture to fit into the available space; this can be

made uniformly, or with a selection which changes the compression ratio in different

parts of the image (this, in fact, is related to whether a time- or event-oriented view is

used). The former has the drawback that we lose the capability to see the details of the

execution when necessary. The latter seems more promising, since there might be parts

of the tree which the user is not really interested in watching in detail (for example,

because they belong to parts of the program which have already been tested).

Figure 3.14: Exposing hidden parts of a tree

An example of a tool which compresses automatically parts of the search tree is the

VISTA tool for the visualization of concurrent logic programs [Tic92]. This compression

is performed automatically at the points of greater density of objects—near the leaves.

But this disallows blowing up those parts if a greater detail is needed. An alternative

possibility is to allow the user to slide virtual magnifying lenses, which provide with a

sort of fish-eye transformation and give both a global view (because the whole tree is

shrunk to fit in a window) and a detailed view (because selected parts of the tree are

zoomed out to greater detail). Providing at the same time a compressed view of the

whole search tree, in which the area being zoomed is clearly depicted, can also help to

locate the place we are looking at; this option was already present in VisAndOr, where

the canvas could be zoomed out, and the window on it was represented as a dotted

square in a reduced view of the whole execution.

Another possibility to avoid cluttering up the display is to allow the user to hide

parts of the tree (see Figure 3.14 and [Sch97]). This actually allows for its selective
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Figure 3.15: Abstracting parts of a tree

exploration (i.e., in the cases where a call is being made to a predicate known to be

correct, or whose performance has already been tested). Whereas this avoids having

too many objects at a time, feedback on the relative sizes of the subtrees is lost. It can

be recovered, though, by tagging the collapsed subtrees with a mark which measures

the relative importance of the subtrees. This “importance” can range from execution

time to the number of nodes, number of calls, number of added constraints, number of

fixpoint steps in the solver, etc.; different measures would lead to different abstraction

points of view. Possible tagging schemes are raw numbers attached to the collapsed

subtrees (indicating the concrete value measured under the subtree) or different shades

of gray (which should be automatically re-scaled as subtrees are collapsed/expanded;

see Figure 3.15).

3.8 Visualization for Parallel Logic Programming Systems

The abstractions basd on collapsing view are not, of course, the only possible ones in

a control depiction: in any graphical representation the ultimate leading guide should

be the adequacy of the pictures to what we want to explore. The APT control view is

intimately tied to the sequential execution of logic programs; however, if we want to

inspect graphically a parallel execution, probably we would be more interested in how

the scheduling was performed, how long the processors were idle, etc. than in looking

at the invocation of separate predicates—after all, a parallel execution is supposed not

to change the semantics of the sequential program, but merely to reduce the execution

time.11 Therefore, we might devise a visualization that abstracts the source-level details

11There are parallel logic-based languages which do have semantics (and sometimes syntax) different

from that of standard Prolog, but we will focus on parallel execution models which try to follow quite

closely the sequential semantics.
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of the execution while highlighting the relationships among the different branches being

explored simultaneously.

Writing programs for parallel hardware has traditionally been considered a difficult

task both because of the intrinsic difficulty of having to coordinate several execution

threads and because of the need for considering the particular characteristics of the tar-

get machine which may also arise. On the other hand, languages which are essentially

declarative, and logic languages in particular, offer great opportunities for transparently

exploiting parallelism. Their well understood semantics makes them more amenable

to automatic parallelization than traditional imperative languages, thus freeing the pro-

grammer from the error–prone task of data dependency analysis. One remaining prob-

lem, however, is that much of the complexity is transferred to the compiler or the pro-

gram evaluation system, whose implementation then becomes quite a challenge. Fur-

thermore, in practice, although programmers are certainly freed from worrying about

low level issues, their view may be so separated from the real execution that it may be

difficult for them to realize how their program is behaving. It is our belief that a clear

and intuitive graphical presentation of the actual parallel execution structure at a suit-

able level of abstraction can greatly help both the implementor of logic programming

systems and the user of such systems to achieve better results in their tasks.

Our objective now is to apply the methodology sketched in Section 3.2 and develop

paradigms for the visualization of parallel models for execution of logic programs. We

will focus on the visualization of Restricted And–parallelism (RAP) [DeG84, Her86a], Or–

parallelism [AK90b, Lus88, CSW88, CA86] and Determinate Dependent And–parallelism

(DDAP) [BHW88], although we are also interested in visualizing combinations of these

models. A tool implementing such paradigms (VisAndOr) will be presented, and its

features and usefulness illustrated through examples.

3.8.1 Common Design Concepts

Examples of common observables, aimed at studying the systems of interest in this part

under the viewpoint of tasks rather than processes, are shown in Table 3.2. Given that

we are focusing here on the visualization of parallel execution, the set of observables has

been chosen to abstract away details in the sequential parts. As additional characteristics

to be visualized for particular execution models are identified, new observables will be

defined. For brevity the presentation will be somewhat simplified with respect to what is

really present in the implementation described in Section 3.9 in terms of the number of

events and the information conveyed by them.

With respect to the information contained in the events, since time is an important
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Observable Comment

START_EXECUTION Start of the whole execution

END_EXECUTION End of the whole execution

START_GOAL The task (corresponding to a goal) starts

FINISH_GOAL The task (corresponding to a goal) ends

SUSPEND A task is suspended

RESTART A task is restarted

FORK Execution splits in two branches

JOIN Different branches join

Table 3.2: Common observables for parallel execution of logic programs

issue in parallel execution, all events carry a time stamp corresponding to the time when

the event occurred. This induces a natural precedence relation among events. Other

types of (causal) dependencies are also present: for example, a goal can only start after

its parent forks it. The conceptual graph for each execution is naturally constructed using

both the time precedence and the other dependencies among events.

The visualization paradigms aim at effectively displaying the structure of the graph,

as well as some information associated with each event. Temporal precedence will be

assigned to spatial precedence in the vertical axis, so that the later an event is gener-

ated, the farther from the top it will be placed12. Despite time being the main source

of precedence, it is not the only coordinate basis that we will use, as will be shown in

Section 3.10. The information attached to the events will be depicted in a number of

ways: for example, a different color can be assigned to each agent (or a label attached

to the proper place in a monochrome display—e.g this paper).

3.8.2 Or–parallelism

Or–parallel execution corresponds to the parallel execution of different alternatives of a

given predicate. It is exploited, for example, in SICStus [Swe95], Muse [Kar92, AK90a],

Aurora [Lus88, Car90] and the Delphi system [CA86]. Since each alternative belongs

conceptually to a different “universe”, there are (in principle) no dependencies among

alternatives. However, dependencies do arise in real systems due to the particular way

in which common parts of alternatives are shared. Consider for example the following

12This orientation was chosen instead of, for example, left–to–right orientation for similarity with the

usual drawings of the resolution trees.
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Figure 3.16: Dependency graphs for Or–parallelism and visualization

program which has three clauses for the predicate p:

q:- p. p1:- ...

p2:- ...

p3:- ...

A possible dependency graph is the one depicted in Figure 3.16 left: different alter-

natives are represented by different universes. Note that p2 is suspended at some point

and then restarted. This suspension could probably have been caused by p1, in the sense

that p2 is waiting for some built–in to be executed in p1. In this first design we have

chosen to abstract these other types of dependencies away. Many practical models share

computation up to the branch point (or copy what was done before at that point). This

situation is depicted in Figure 3.16, center, where a FORK has been introduced, which

explicitly shows the point where execution branches. One common important feature of

the dependency graphs of Or–parallel executions is that branches do not join. In terms

of dependencies among observables, FORKs do not need to be balanced by JOINs. The

resulting graph is thus a tree.13

A visualization paradigm is shown in Figure 3.16, right. The nodes of the graph have

been replaced by segment starts and endings, marked with arrows in the figure.14 Edges

of the graph are represented by vertical and horizontal segments. As mentioned before

actual time is represented by the vertical axis. The point where the FORK happens is

marked with a horizontal thin line, whereas parallel tasks are represented as vertical

13Although all–solution predicates can be depicted using this paradigm, the resulting representation is

not natural. A visualization closer to what the user perceives for these predicates needs structures similar to

that of Restricted And–parallelism.
14These arrows have been added for clarification, and are not part of the visualization paradigm.
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Figure 3.17: Dependency graph for Restricted And–parallelism and its visualization

lines. Each vertical thick segment represents an agent working, whereas a vertical dotted

line represents a task on which no agent is working. Information associated to the events

not explicitly shown in the graph is added as labels (and, if on a color display, as colors).

In this case, these labels are intended to mean the clause being resolved in the branch

and the agent working on it.

Real parallelism achieved can be seen simply by looking at the number of vertical

thick lines present at each vertical coordinate—which represents a point in time in the

execution—whereas the potential parallelism can be deduced from the total amount of

vertical lines. Potential parallelism not being exploited can also be detected. Task sus-

pension is represented by (dashed) interruptions in the vertical thick lines.

3.8.3 Restricted And–parallelism

Restricted And–parallelism (RAP), as implemented for example by &–Prolog [HG90,

HG91], refers to the execution of independent goals in the body of a clause using a fork

and join paradigm.15 In this case data dependencies among the goals before and after

the parallel execution and the goals executed in parallel can exist. Consider the program

below, where the “&” operator, in place of the comma operator, stands for And–parallel

execution:

p:- a, q & r & s, b.

15Non–restricted Independent And–parallelism allows execution structures which cannot be described by

FORK–JOIN events. Such structures are generated, for example, by Conery’s or Lin and Kumar’s models

[Con83, LK88] and by &–Prolog when wait is used. Also, similar cosntructions can be expressed using Ciao

concurrency constructs.
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Figure 3.18: Determinate Dependent And–parallelism and two possible graphical repre-

sentations

A (simplified) dependency graph for this program is depicted in Figure 3.17, left. In

the RAP model there is a JOIN corresponding to each FORK (failures are not seen at this

level of abstraction), and FORKS are followed by START_GOALs of the tasks originated.

In turn, JOINs are preceded by FINISH_GOALs. In the case of nested FORKs, the corre-

sponding JOINs must appear in reverse order to that of the FORKs. The START_GOAL and

FINISH_GOAL events (note that finish can also be caused by ultimate goal failure) must

appear balanced by pairs. Under these conditions, the RAP execution can be depicted by

a directed acyclic planar graph, where And–parallel executions appear nested.

A possible visualization paradigm for RAP is shown in Figure 3.17, right. JOIN and

FORK events are depicted as horizontal thin lines. The rest of the information is common

with the paradigm for Or–parallelism.

3.8.4 Determinate Dependent And–parallelism

Determinate Dependent And–parallelism (DDAP) performs parallel execution when goals

are detected to be determinate at run–time. There is a special agent, called the master,

which is in charge of performing non–deterministic work. When deterministic work

becomes available a number of other agents, the slaves, perform it in parallel. Two new

observables are defined in order to notify the start and finish of a slave: START_SLAVE

and FINISH_SLAVE.

The dependencies are different from those found in RAP: only one global fork is done,

splitting from the master, regardless of whether there is And–parallel work available

or not. In the determinate phase of the execution the master works with the slaves

performing determinate reductions, and in the nondeterminate phase the master (alone)
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does nondeterminate reductions. START_GOAL/FINISH_GOAL events, issued by the slaves,

reflect the state of each slave. A dependency graph corresponding to a possible execution

is given in Figure 3.18, left.

Quite a number of visualization paradigms can be chosen for DDAP. A possible one

is that illustrated in Figure 3.18, middle, in which slaves fork from the master and wait

(dashed lines) for determinate work to be available. As soon as a slave starts working

on a task, it becomes a solid thick line. When the task is finished, the slave becomes

idle again. This has the advantage of showing every agent even if no work is being

performed by it. This process–oriented representation is very similar to the traditional

agent occupation charts. An alternative, task–oriented representation, which appears

to be more useful in practice, is to depict the master as a thick vertical line and make

slaves appear to split from it when determinate reductions are performed. Apart from

producing a less crowded picture an additional reason for this choice will become clear

in Section 3.8.5 since it is related to the visualization of the combination of DDAP with

Or–parallelism.

3.8.5 Combinations of the Previous Types of Parallelism

Combinations of the previous schemata are possible. We will mention two of them.

Or–parallelism can be combined with DDAP as in Andorra–I [SCWY91a], where Or–

parallelism is not allowed under DDAP. Several master–slave teams are formed which

independently work on different branches. The resulting graph is merely a tree of DDAP

graphs, each of its branches being a separate universe. A similar scheme to that of

Section 3.8.2 can be used for the Or–parallel part. Since various masters exist, the JOIN

and FORK events must include information about their identity.

If visualization were performed by combining the fork approach for Or–parallelism

(Figure 3.16, middle) and the global fork approach (Figure 3.18, middle) a tree of pro-

cessor occupation charts would be obtained. But this visualization scheme is weak if

slaves are allowed to migrate from a team to another team, because all slaves would, in

principle, belong to every team. A good compromise would be to show only the slaves

which are effectively working in a team—and this is what Figure 3.18, right, shows.

Thus, we propose a combination of Figure 3.18, right and Figure 3.16, right.

Combining RAP with Or–parallelism is somewhat more tricky. AND_FORKS need to

be distinguished from OR_FORKS. Allowing And–parallelism under Or–parallelism is not

(conceptually) a problem, since each Or branch represents a separate universe in which

And–parallelism evolves independently. The opposite situation is more complicated: al-

lowing Or–parallelism inside And–parallelism means that multiple Or branches belong-
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ing to different And–parallel goals have to be joined. This leads, in general, to a lattice

structure which is not easy to visualize in an intuitive manner. However this lattice

structure can be transformed to a tree by taking a “recomputation” view of execution, as

presented in [GH92].

3.9 From the Paradigm to the Tool

In this section we present VisAndOr, a tool which implements the visualization paradigms

of the preceding sections, adding some extensions. VisAndOr shows statically the whole

parallel execution of a logic program in a single window. The VisAndOr general layout

is the same for all the visualization paradigms, and it also incorporates a good number

of additional features beyond the simple paradigms proposed which are of much help in

practice. VisAndOr reads event files which have previously been dumped by the system

under study.16 Figure 3.22, left, shows a window dump of VisAndOr and can be used for

reference throughout this section.17

The topmost area of VisAndOr holds the menus, the messages, and the dialog boxes.

A small window at the right always shows the whole execution. The bottommost area

displays the type of parallelism being depicted and the name of the current trace file. The

central part of VisAndOr shows the (selected part of the) execution. Time or events can

be chosen as vertical measurement units. When a trace is loaded VisAndOr scales the

execution to exactly fit the central part of the screen. In the case of complex executions,

condensation is thus automatically performed by the screen resolution limitations — in

fact, this is what happens, for example, in the small window at the top right corner. The

scaling mentioned above can be disabled so that the time scale active before loading the

trace remains active: this can be used to compare different executions.

Time or events can be measured accurately with the help of the mouse, simply by

clicking and dragging to select a rectangle. The instant corresponding to the uppermost

and bottommost edges of the rectangle, as well as the difference between them (mea-

sured in actual time or number of events), is shown over the menus. This rectangle,

which also appears in the small window, can optionally be zoomed out to perform de-

tailed analysis of the execution. When such a zoom is actually performed, slide bars

appear surrounding the central window. Then, navigation through the picture can be

16In general the events are generated at a low level, so that the programs to be traced do not need to be

rewritten in any way. However, the design of VisAndOr poses no restrictions on how the traces are to be

obtained—i.e. they could also be generated using for example a meta–interpreter or a simulator.
17The horizontal thick line in the middle can be ignored since its meaning is totally local to the topic

addressed in that picture.
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Figure 3.19: A simple Muse trace Figure 3.20: Aurora trace

accomplished using the slide bars or, alternatively, dragging the rectangle in the small

window. The central window immediately responds, showing the corresponding part of

the execution at the current zoom level.

VisAndOr can place icons at interesting points in the execution to give additional

information about events: for example, success or failure of a branch in an Or–parallel

execution. In a color display each agent is depicted in a different color. This helps to

appreciate how scheduling has been performed: when scheduling favors locality in the

search tree, the trace tends to have unevenly distributed colors; this is usually a better

scheduling policy. Colors uniformly spread all around the execution mean the opposite

situation. As suggested before (Section 3.8.1), to perform a more detailed analysis, stack

set and agent identifiers can be attached to each sequential task, so that it is possible

to follow their history throughout the execution18. As an additional help to perform

scheduling analysis, a single agent’s life–line can be highlighted.

VisAndOr is interfaced with the Or–parallel systems Aurora and Muse, with the Inde-

pendent And–parallel system &-Prolog, and with the Determinate Dependent And+Or–

parallel system Andorra–I, and is included as a third-party product in SICStus Prolog,

which includes Or-parallelism capabilities imported from Muse. All these systems can

generate traces which VisAndOr is able to understand.

3.9.1 Showing Or-parallelism

Figure 3.19 shows a simple Or-parallel Muse trace. Time is being used as measurement

unit. Branch suspensions and resumptions are shown as dotted vertical lines interrupting

thick vertical lines, as stated in the paradigm design. There are also delays in the starting
18Allowing the separate study of stack sets versus agents is mandatory in execution models where they

are not intimately related.
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Figure 3.21: Zoom of Aurora trace

of some branches, which can be attributed (since no more information is available) to

scheduling duties or perhaps to the need of waiting for built–ins in branches at the left.

Another possibility is that no resources (processors) are available at this moment. This is

not the case, quite obviously, but in more complicated executions realizing this is difficult.

Assigning a different color to each processor greatly helps in detecting such phenomena.

Figure 3.20 shows the visual representation of a somewhat intricate Aurora execu-

tion. Even without the actual program code, it is straightforward to realize that there

are three Or–parallel branches which dominate the execution. In this figure, a dashed

rectangle selects a part of the execution. This part is blown up in Figure 3.21. Slide bars,

which can be used to navigate through the execution, appear surrounding the execution.

Icons mark points where goals are made public for parallel execution, start and finish

with success.19

VisAndOr has been successfully interfaced with another tool based on the notion of

event: the Muse Trace Tool (MUST) [SS90]. MUST has been constructed along the

lines of the original WAM–Trace tool [DL87] developed at Argonne National Labs in the

19In fact, only success icons appear in Muse and Aurora traces, since the events are issued by the scheduler,

which is, due to its design, unaware of whether a given goal failed or succeeded.
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Figure 3.22: ViMust: Must and VisAndOr working together

context of Aurora. MUST shows snapshots of Muse executions as well as animations of

such executions. The tree shown by MUST corresponds to the actual path being explored

in parallel (thus it shows subgraphs of the whole graph represented by VisAndOr), and

contains information about the state of each worker. VisAndOr and MUST can work

together through a “standard input–output” based protocol which allows each one to

send messages to the other asynchronously. VisAndOr indicates the point displayed by

MUST with a horizontal line and answers to the messages sent by MUST to move the line.

Conversely, the bar can be moved from VisAndOr with the mouse, and MUST receives

the appropriate message to show a snapshot of the execution as required. Figure 3.22 is

a snapshot of the resulting tool which has shown to be of great use at SICS. The resulting

system has been given the name of ViMust. This is an example of how the use of events

as an interface effectively helps integration of tools and the study of remote systems:

Must traces were completely different from VisAndOr traces, and were translated to the

desired format by a simple program.

3.9.2 Showing And-parallelism

In Figure 3.23 simple traces of a predicate with a three–branched And FORK are shown.

The leftmost picture represents the predicate executed in one agent, but scheduled for
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⇒ ⇒

Figure 3.23: Restricted And–parallelism: sequential and parallel execution

parallel execution. Only one task is active at a time: there is only one solid line at each

vertical coordinate. The figure in the middle corresponds to the same program, but ex-

ecuted on three agents; the time scale of the leftmost picture has been retained, so that

the benefits of parallel execution in terms of time can be easily seen. Each task has a dif-

ferent scheduling time, as shown by the different length of the dotted vertical segments

right below the FORK segment. The rightmost figure represents an ideal execution of this

program, where scheduling delays have been dropped away to zero20 [FCH96].

Figure 3.24 shows a 4x4 matrix multiplication, in one agent (leftmost picture) and

four agents (middle and rightmost pictures). The recursive clauses with And–parallelism

of the actual &–Prolog code look like this:

matrixmatrix([Ve
tor1|Matrix1℄, Matrix2, [Ve
tor3|Matrix3℄):-

matrixve
tor(Matrix2, Ve
tor1, Ve
tor3) &

matrixmatrix(Matrix1, Matrix2, Matrix3).

matrixve
tor([Ve
tor1|Matrix1℄, Ve
tor2, [S
alar|Ve
tor3℄):-

ve
torve
tor(Ve
tor1, Ve
tor2, S
alar) &

20This trace was automatically obtained using the IDRA tool.
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⇒ ⇒

Figure 3.24: Restricted And–parallelism: nested structure and different scheduling poli-

cies

matrixve
tor(Matrix1, Ve
tor2, Ve
tor3).

The vector by vector scalar multiplication has been performed sequentially—a sort

of granularity control. This example will show how scheduling can be studied with

VisAndOr. The leftmost picture has been executed in only one agent; the structure is

clearly visible. The picture in the middle shows the same program, executed in four

agents. Since the matrix_ve
tor/3 goals are executed in a stack set different than the

one they were created in (matrix_ve
tor/3 goals are created from left to right, as recur-

sive goals are picked up), we can infer that recursion steps are, in this example, executed

by different agents. A better scheduling, in which the agent which is executing a clause

also picks up the recursive goal, is shown in the rightmost picture. This last execution

runs about three times as faster as the sequential one. An utopian execution would

achieve a speedup of four, but there are clearly visible sequential delays, imposed by

scheduling and recursion steps, which impede this performance. A programmer debug-

ging and tuning a scheduler would greatly appreciate this kind of feedback, which shows

a high–level intuitive view of the dynamic nature of scheduling, abstracting the concrete

algorithm to concentrate on its actual behavior.
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⇒ ⇒

Figure 3.25: Restricted And–parallelism visualization: granularity control

Figure 3.25 shows executions of the the well–known fibonacci program in three differ-

ent situations. From left to right, on only one agent, on eight agents without granularity

control, and on eight agents with granularity control. This figure shows the tremendous

impact of (a) parallel execution, and (b) granularity control. Whereas in the leftmost

figure there is only one sequential execution thread, the figure in the middle shows var-

ious (up to eight) parallel tasks, but the visualization is somewhat confuse, tending to

fractal21.

This sort of executions can be cleaned up by means of granularity analysis, which

tries to find out when parallel execution is not desirable, because scheduling costs would

be bigger than the performance gained. Granularity analysis’ target is to find the point

where sequential execution is cheaper. By adding granularity control, so that small tasks

are not scheduled for parallel execution, a remarkable speedup is obtained in Figure 3.25,

right, with respect to the naïve parallel execution. The structure of the granularity–

controlled program is much more clear than the previous one, and its execution is about

twice as fast. In more complicated examples, it is difficult to perceive the impact of

granularity parameters, and visualization is of much help to understand the interrela-

tions of the different parts of the programs and their actual relative weight in the whole

execution.

Figure 3.26 shows two executions of the quicksort program: on one processor, at left,

and on four processors, at right. Apart from the speedup obtained by parallel execution,

the fractal layout is evident in this example. It is interesting to compare the fibonacci and

quicksort executions. Both two have repetitive patterns, but the source is somewhat dif-

ferent. fibonacci executions show mainly the structure of the algorithm, which is similar

to quicksort in that a given problem is reduced to two simpler problems. But quicksort is

21The fractal layout is a characteristic of many RAP programs, due to the recursive character of Prolog

execution.
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⇒

Figure 3.26: Quicksort, on 1 and 4 processors

completely data–driven, and its trace really reflects the initial data distribution22.

Figure 3.27: Andorra–I trace

Figure 3.28: Time (left) versus events (right) in Andorra–I

22Of course, modulo scheduling—we can assume that an unbound number of processors are available.

76



3.9. From the Paradigm to the Tool

3.9.3 Showing Determinate Dependent And-parallelism

Figure 3.27 shows a simple Andorra–I trace. At the top the execution splits in two Or–

parallel branches; one of them has, in turn, Determinate Dependent And work and more

Or–parallelism after this work is finished. The other branch corresponds to a sequen-

tial execution. Or–parallel tasks’ birth is easy to appreciate, as well as waiting times

before actual work. As mentioned before, two–level scheduling in Andorra–I can be vi-

sualized with VisAndOr by the colors mechanism and slaves visualization paradigm. The

VisAndOr visualization paradigm can be used to understand intuitively the impact of

checking determinacy conditions at run–time (as Andorra–I does): events could be asso-

ciated with the start and end of this checking and signaled, for example, with icons. Its

relative importance (in terms of execution time) versus the parallelism achieved can be

evaluated by simply having a look at the pictures.

Figure 3.28 shows two views of the same execution. The leftmost one corresponds

to the vision in the time space, whereas the rightmost one corresponds to the same ex-

ecution in the events space. Valuable details about the structure of the execution which

were previously hidden appear now: short executions with high parallel activity are

now given more relevance than before, so allowing the perception of potential schedul-

ing/correctness problems which otherwise would be very difficult to appreciate.

The capability of VisAndOr of switching to an event space, in which every event in

the execution (say, the creation, the start, and the end of a task, among others) takes the

same amount of space is aimed at showing the structure of the execution: Note that in

this event-oriented view the structure of the execution is easier to see, but the notion of

time is lost—or, better, traded off for an alternate view. This event-oriented visualization

is the one usually portrayed in the tree-like representation for the execution of logic

programs: events are associated to the CALLs made in the program, and space is evenly

divided among those events. Thus, event- and time-based visualization are not exclusive,

but rather complementary to each other, and it is worth having both in a visualization

tool aimed at program debugging.

Additionally, as pointed out before, providing a time-aware visualization for sequen-

tial execution would provide valuable information about which parts of the program

are more eager—specially when using paradigms, such as CLP, where built-in operations

cannot be decomposed at user level.
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3.9.4 Implementation Details

VisAndOr is written in C and runs under the X–Window environment. It has been con-

structed using the Xt library and Athena Widgets. They have been found to be useful, but

sometimes the lack of flexibility when defining graphical objects became a problem. The

inner structure of the program is quite modular: each feature is accessed through a call

back routine activated by the corresponding button or menu item. The execution events

are internally stored in a virtual space which is mapped to the real screen when a change

of scale or representation units is requested. This can lead to problems when zooming

small regions, due to the lack of virtual memory in some old X–Window servers.

One problem which was identified in previous versions of VisAndOr was that the al-

gorithm to assign the space for the different branches exhausted the numerical accuracy

of the computer. Of course, this happened in branches that were already indistinguish-

able in the screen. But errors could in some cases be carried up to higher levels, giving

a wrong appearance to the whole picture. A possible solution could have been to give

up computing when the branches were too near to be separated in the screen. This was

not a good solution, since, on one hand, we wanted the algorithm to work in a virtual,

unlimited space, unaware of the screen resolution, and, on the other hand, this would fi-

nally fail if a zoom were requested. A solution based on infinite precision arithmetic was

discarded as too computationally expensive. Fortunately, a quick algorithm which did

not employ at all floating point arithmetic was devised and implemented, which allow

us to study traces much more complex than it had been possible previously, so assessing

the effectiveness of the tool in real cases.

The difficulty of adapting the emulators and schedulers to dump traces is not, in

general, very high in general, although in some systems, accurate measurements of time

became a problem. In particular the &–Prolog implementation on Sun Sparc posed a

problem which can also happen in other architectures. Time has to be consulted when

an event is to be recorded. Unlike machines like the Sequent Balance, in which the time

used to be stored in a memory position, so that consulting it was very quick, other OS

need a system call to be performed. This system call could take a sizable proportion of

the total process time, thus seriously impacting time stamps accuracy. This effect was

balanced by estimating how long each system call lasted and subtracting it from the

actual time. Time stamps always refer to “wall clock” time, since process time cannot be

used to establish a precedence among events generated by different parallel processes.
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3.10 A More General View of Events

We have reported on two tools aimed at showing the execution of sequential and parallel

logic programs. We have based their design in the notion of events, either generated by

a metainterpreter and saved incore (as in APT), or generated by the system being traced

and saved to a external file. Both approaches have some assumptions about the role of

events and what they are useful for, but these assumptions can be relaxed to expand the

use of events.

Time-space and Event-space: In the previous sections we have assumed the vertical

axis to represent time, which is useful for many purposes. However, we have also found

it very convenient to enumerate sequentially the events, respecting their precedence in

time, and use this number as the vertical coordinate. This gives a different, interesting

view, which is very helpful in the cases in which the structure of the execution is more

important than its duration, because in this view fragments of the execution which have

high activity in a short time are given more relevance that long periods of sequential

execution. This is the view which, by default, is provided by APT for sequential execu-

tions, and we can see here the usefulness of the ability to switch the view from being

time-based to be event-based.

In our experience, tree-based representations such as those of the TPM, APT, and

similar tools are certainly quite useful in education and for correctness and performance

debugging. In some cases, the shape of the search tree can help in tracking down sources

of unexpected low performance, showing, for example, which computation patterns have

been executed more often, or which parts dominate the execution. However, the lack of

a representation of time (or, in general, of resource consumption) greatly hinders the use

of simple search trees in performance debugging. And-Or trees, as those used in APT, do

not usually depict time (or in general, resource) consumption; they need to be adorned

with more information.

One approach in order to remedy this is to incorporate resource-related information

into the depiction itself, for example by making the distance between a node and its

children reflect the elapsed time (or amount of resource consumed). Such a representa-

tion in time space provides insight into the cost of different parts of the execution: in a

CLP language not all user-perceived steps have the same cost, and therefore they should

be represented with a different associated height. For example, constraint addition, re-

moval, unification, backtracking, etc. can have different associated penalties for different

programs, and, even for the same program, the very same operation can incur in differ-
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ent overheads at different points in the execution. Time-oriented views have been used

in several other (C)LP visualization tools.

Unifying Different Types of Events: In fact, had the sequential events defined in the

first part of the chapter had included parallelism-related informacion, the events for the

parallel execution could have been easily derived from them. For example, the CALLs be-

longing to parallel construction could have a PARALLEL(ID) information attached, where

ID is a unique identifier for the corresponding invocation to the parallel construction, and

the SUCCESSes corresponding to that CALLs should carry the same PARALLEL(ID) identifier.

Based on this information, a parallel execution tree could have been constructed, even

without the use of a parallel machine, by using an independent program. It is true, how-

ever, that this trace would lack the time information that a real machine would provide,

and which is priceless to tune, e.g., scheduling algorithms, agent suspend and wakeup

policies, etc. But, on the other hand, it opens new possibilities for the use of events:

events can be massaged and treated as any other kind of data to extract information.

Extending Further than Visualization: Visualization is not the only topic in which the

event driven scheme is useful. Dumping data tailored to different needs is a flexible way

of interfacing with different tools, each of them possibly assigning a different seman-

tics to the same set of events. The interface between the engine being traced and the

tool, dictated by the format of the events, allows event files to be generated remotely or

transformed to simulate special execution conditions.

As an example, the events currently recorded for VisAndOr can be directly used for

purposes other than visualization. IDRA (see [FCH96] and Chapter 6) uses the same

traces that VisAndOr does, but with a different purpose. IDRA finds out the optimal

agent allocation and the corresponding speedup for a given parallel execution and a

given number of agents. A new trace corresponding to that scheduling can be generated,

which can in turn be visualized with VisAndOr. The speedup obtained with this trace,

compared with the one obtained in a real parallel system, is a valuable indication of the

quality of the actual scheduling algorithm.

Other tools adopt a similar approach: generate a trace and then examine it to extract

characteristics of the execution. An example is the ParSee tool [PK96], which generates

static pictures of parallel execution, portraying different metrics which give a a high-level

view of the computation, such as processor occupation. These are aimed at helping the

programmer to diagnose the influence on the execution of annotations for parallelism.

APT, VisAndOr and IDRA are examples of a more general approach to the design of
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tools aimed at monitoring and tuning other systems. Usually the target system is not to

be monitored or tuned as a whole. The interesting subpart of the system under study

has to be precisely defined as a closed subsystem, and (an abstraction of) its behavior be

described in the form of observables. In order to design the observables, the following

dual view can be adopted: this collection of observables plus the associated information

can be taken as instructions for an abstract machine which models the system at the

desired level of abstraction. Different models are generated by giving different semantics

to these events, which give us different instances of the same concrete system.

Limits and Drawbacks of Monitoring a System: The sensitivity of the system to being

traced leads us to another topic: the general approaches for monitoring programs, such

as those proposed in [EJ99] and its references. That paper supports the use of a general,

high level primitive, whose implementation is system-independent, and which can be

used in many contexts and for a variety of goals—all of them being instances of the

common target of monitoring executions. When declarative properties are the ones to

be monitored, the use of this primitive poses, in principle, no problem. It has been

shown [DN00b] that this approach can compete with a low-level instrumentation while

giving more flexibility. However, when the main characteristic to be studied is time

(or any other characteristic actually connected with the external world), the mere use of

such a primitive can disturb the phenomena up to the point of rendering the observations

meaningless. Thus, we still advocate the use of a low-level instrumentation when dealing

with certain kind of properties. This problem will show up, although in a less acute form,

when trying to investigate the performance of CLP solvers (Sections 3.12 and 3.13.3).

To Trace or Not To Trace: In practical terms, the use of traces has, in general, a draw-

back: the interaction with the tool is quite limited. The information gathered should

include all the relevant data which could possibly be needed for a faithful replay. This

aproach makes trial and error (e.g., let the user change some parameter and foresee how

the execution would continue) impossible to implement in general. The only way to

allow the user to interact with an execution is by generating the events (or whichever

communication means is used) on-the-fly. This is the approach we have followed in the

next visualization tool.

As mentioned previously, program visualization has focused classically on the repre-

sentation of program flow or on the data manipulated by the program and its evolution

as the program is executed.23 We have so far explored how logic-based programs can
23The representation of this data usually takes advantage of invariants in the data structure (e.g., the data
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be visualized, both in the control part and in the data representation part. Regarding

data, we have restricted ourselves to the case of Herbrand terms, due to their ubiquity

in the (cosntraint) logic programming paradigm, but we tried to make it clear that vi-

sualizations for other types of data should be possible. In particular, when tackling CLP

visualization, the control part remains basically the same as in LP, but the properties of

the data may very well be very different. Two key properties of the Herbrand domain

which help to have a straightforward visualization are (i) that herbrand constraints can

always be put in solved normal form24, and (ii) that the terms in the Herbrand domain

have no implicit meaning, so that a textual representation can, in principle, perfectly

acceptable.25

In this last part we will focus on methods for displaying the contents of constrained

variables, the constraints among such variables, the evolution of such contents and con-

straints, and abstractions of the proposed depictions. For simplicity, and because of their

relevance in practice, in what follows we will discuss mainly the representation of finite

domain (FD) constraints and variables, although we will also mention other constraint

domains and consider how the visualizations designed herein can be applied to them.

3.11 Displaying Constrained Variables

In imperative and functional programming there is a clear notion of the values that vari-

ables are bound to (although it is indeed more complex in the case of higher-order func-

tional variables). The concept of variable binding in LP is somewhat more complex,

due to the variable sharing which may occur among Herbrand terms. The problem is

even more complex in the case of CLP, where such sharing is generalized to the form of

equations relating variables. As a result, the value of C(L)P variables often is actually a

complex object representing the fact that each variable can take a (potentially infinite)

set of values, and that there are constraints attached to such variables which relate them

and which restrict the values they can take simultaneously.

Textual representations of the variables in the store are usually not very informative

and difficult to interpret and understand.26 A graphical depiction of the values of the

is sorted), relationships among the basic data items, or properties of abstract models the data structure tries

to replicate.
24Assuming that circular terms, created without occurs check, are forbidden; we will come back to this

point later.
25This last point actually opens an interesting possibility: give the user the possibility of selecting terms in

the program and tailor a special visualization, i.e., give visual semantics to designed terms.
26Also note that some solvers maintain, for efficiency or accuracy reasons, only an approximation of the

values the variables can take. However, in the Herbrand domain, the equations can always be represented in
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1 4 6532

X

Figure 3.29: Depiction of a finite

domain variable

Figure 3.30: Shades representing age of dis-

carded values

variables can offer a view of computation states that is easier to grasp. Also, if we wish

to follow the history of the program (which is another way of understanding the program

behavior, but focusing on the data evolution), it is desirable that the graphical represen-

tation be either animated (i.e., time in the program is depicted in the visualization also

as time) or laid out spatially as a succession of pictures. The latter allows comparing

different behaviors easily, trading time for space.

Since different constraint domains have different properties and characteristics, dif-

ferent representations for variables may be needed for them. In what follows we will

sketch some ideas focusing on the representation of variables in Finite Domains, but we

will also refer briefly to the depiction of other commonly used domains.

3.11.1 Depicting Finite Domain Variables

As mentioned before, Finite Domains (FD) are one of the most popular constraint do-

mains. FD variables take values over finite sets of integers which are the domains of

such variables. The operations allowed among FD variables are pointwise extensions of

common integer arithmetic operations, and the allowed constraints are the pointwise

variants of arithmetic constraints. At any state in the execution, each FD variable has

an active domain (the set of allowed values for it) which is usually accessible by using

primitives of the language. For efficiency reasons, in practical systems this domain is usu-

ally an upper approximation of the actual set of values that the variable can theoretically

take. We will return to this characteristic later, and we will see how taking it into account

is necessary in order to obtain correct depictions of values of variables.

A possible graphical representation for the state of FD variables is to assign a dot (or,

depending on the visualization desired, a square) to every possible value the variable can

take; therefore the whole domain is a line (respectively, a rectangle). Values belonging to

the current domain at every moment are highlighted. An example of the representation

of a variable X with current domain {1, 2, 4, 5} from an initial domain {1 . . . 6} is shown

in Figure 3.29. More possibilities include using different colors / shades / textures to

solved form, which makes the source language feasible to represent the store equations. This is not always

possible in other domains, where a finding solved form is, in fact, one of the most difficult parts of the

execution.
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represent more information about the values, as in Figure 3.30 (this is done also, for

example, in the GRACE visualizer [Mei96]).

Looking at the static values of variables at only one point in the execution (for exam-

ple, the final state) obviously does not provide much information on how the execution

has actually progressed. However, the idea is that such a representation can be associ-

ated with each of the nodes of the control tree, as suggested previously, i.e., the window

that is opened upon clicking on a node in the search tree contains a graphical visualiza-

tion for each of the variables that are relevant to that node. The variables involved can

be represented in principle simply side to side as in Figure 3.37 (we will discuss how to

represent the relations between variables, i.e., constraints, in Section 3.12).

Note that each node of the search tree often represents several internal steps in the

solver (e.g., propagation is not seen by the user, or reflected in user code). The visualiza-

tion associated to a node can thus represent either the final state of the solver operations

that correspond to that search tree node, or the history of the involved variables through

all the internal solver (or enumeration) steps corresponding to that node.

Also, in some cases, it may be useful to follow the evolution of a set of program

variables throughout the program execution, independently of what node in the search

tree they correspond to (this is done, for example, in some of the visualization tools for

CHIP [SA00]). This also requires a depiction of the values of a set of variables over time,

and the same solutions used for the previous case can be used.

Thus, it is interesting to have some way of depicting the evolution in time of the

values of several variables. A number of approaches can be used to achieve this:

• An animated display which follows the update of the (selected) variables step by

step as it happens; in this case, time is represented as time. This makes the imme-

diate comparison of two different stages of the execution difficult, since it requires

repeatedly going back and forth in time. However, the advantage is that the repre-

sentation is compact and can be useful for understanding how the domains of the

variables are narrowed. We will return to this approach later.

• Different shadings (or hues of color) can be used in the boxes corresponding to

the values, representing in some way how long ago that value has been removed

from the domain of the variable (see Figure 3.30, where darker squares represent

values removed longer ago). Unfortunately, comparing shades accurately is not

easy for the human eye, although it may give a rough and very compact indication

of the changes in the history of the variable. An easier to interpret representation

would probably involve adjusting the shades so that the human brain interprets
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Figure 3.31: History of a single variable (same as in Figure 3.30)

:- use_module(library(
lpfd)).

:- use_module(library(tra
ing_library)).

program:-

Variables = .... ,

Names = .... ,

open_log(name_of_log, Variables, Names, Handle), %% Added


onstrain_values(Variables, Handle),

log_state(Handle), %% Added

visual_labeling(Variables, Handle),


lose_log(Handle). %% Added

Figure 3.32: An annotated program skeleton

them correctly when squares of different shades surround it.

• A third solution is to simply stack the different state representations, as in Fig-

ure 3.31. This depiction can be easily shrunk/scrolled if needed to accommodate

the whole variable history in a given space. It can represent time accurately (for ex-

ample, by reflecting it in the height between changes) or ignore it, working then in

events space, by simply stacking a new line of a constant height every time a variable

domain changes, or every time an enumeration step is performed. This represen-

tation allows the user to perform an easier comparison between states and has the

additional advantage of allowing more time-related information to be added to the

display.

The last approach is one of the visualizations available in the VIFID visualizer and

which, given a set of variables in a FD program, generates windows which display states
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visual_labeling([℄, _Handle).

visual_labeling([Q|Qs℄, Handle):-

labeling([Q℄),

log_state(Handle),

visual_labeling(Qs, Handle).

Figure 3.33: The visual_labeling/2 library predicate

(or sets of states) for those variables. VIFID can be used as a visualizer of the state in

nodes of the search tree, or standalone, as a user library, in which case the display is

triggered by spy-points introduced by the user in the program. Figure 3.32 shows an

skeleton example of such an annotated program. The open_log/4 primitive initializes

the Handle data structure which contains the Variables to be observed, their Names

and the name of the log (this can be used to save to a file, for example, or to maintain

at the same time visualizations of different sets of variables and identify them using

a global name). The whole domain for each variable (which is needed in later steps

of the visualization) is initialized to be the domain at the time open_log/4 is called.


lose_log/1 takes the necessary actions in order to finish the visualization (e.g., closing

a file, sending appropriate messages to the windows, etc.).

The actual step-by-step depiction of the current state is made by the log_state/1

primitive. It acts as a spypoint which is placed at the points the user deems useful, and

contacts with the visual side of the tool in order to communicate the current state of the

variables. An important part of the CLP execution is the labeling phase, which tries to

assign values to the variables compatible with the constraints put before. This labeling is

usually performed by a CLP primitive, which receives a list of variables and, usually, an

indication of the labeling strategy. We want, of course, to visualize the evolution of the

variables during labeling. We can do this by coding this primitive so that the state of the

variables is logged after each labeling step. Figure 3.33 shows an example implementa-

tion, which receives the list of variables to label and the Handle to the visualization and

performs a tailored labeling. It is an oversimplified code for illustration purposes (we

have not taken into account important issues such as the selection of variables and the

labeling strategy), but it clarifies how this (and other primitives) can be interfaced with

the visual tools without too much effort.

Figure 3.34 shows an annotated FD queens program, following the guidelines afore-

mentioned, and Figure 3.35 shows a screen dump of a window generated by VIFID

presenting the evolution of the (selected) program variables when solving the queens
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:- use_module(library(
lpfd)).

:- use_module(library(vifid)).

queens(N, Qs):-

list_of_var_names(N, Qs, Names, 1, N), %% Added

open_log(queens, Qs, Names, Handle), %% Added


onstrain_values(N, N, Qs, Handle),

log_state(Handle), %% Added

all_different(Qs),

log_state(Handle), %% Added

visual_labeling(Qs, Handle),


lose_log(Handle). %% Added


onstrain_values(0, _N, [℄, _Handle).


onstrain_values(N, Range, [X|Xs℄, Handle):-

N > 0,

X in 1 .. Range,

N1 is N - 1,


onstrain_values(N1, Range, Xs, Handle),

log_state(Handle), %% Added

no_atta
k(Xs, X, 1).

no_atta
k([℄, _Queen, _Nb).

no_atta
k([Y|Ys℄, Queen, Nb):-

Queen #\= Y + Nb,

Queen #\= Y - Nb,

Nb1 is Nb + 1,

no_atta
k(Ys, Queen, Nb1).

Figure 3.34: The annotated queens FD program.

problem for a board of size 10. Each column in the display corresponds to one program

variable, and it is labeled with the name of the variables on top. In this case the possible

values are the row numbers in which a queen can be placed. Lighter squares represent

values still in the domain, and darker squares represent discarded values. Each row in
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Figure 3.35: Evolution of FD variables for a 10-queens problem

the display corresponds to a spy-point in the source program, which caused VIFID to

consult the store and update the visualization. Points where backtracking took place are

marked with small curved arrows pointing upwards. It is quite easy to see that very

little backtracking was necessary, and that variables are highly constrained, so that enu-

meration (proceeding left to right) quite quickly discarded initial values. VIFID supports

several other visualizations, some of which will be presented later.

Some of the problems which appear in a display of this type are the possibly large

number of variables to be represented and the size of the domain of each variable. Note

that the first problem is under control to some extent in the approach proposed: if the

visualization is simply triggered from a selected node in the search tree, the display can

be forced to present only the relevant variables (e.g., the ones in the clause corresponding

to that node). In the case of triggering the visualization through spy-points in the user

program, the number of variables is under user control, since they are selected explicitly

when starting the trace (i.e., by the open_log call). The size of the domains of variables

is more difficult to control (we return to this issue in Section 3.13.1). However, note that,

without loss of generality, programs using FD variables can be assumed to initialize the

variables to an integer range which includes all the possible values allowable in the state

corresponding to the beginning of the program.27 However, being able to deduce a small

initial domain for a variable allows starting from a more compact initial representation

for that variable. This in turn will allow a more compact depiction of the narrowing

of the range of the variable, and of how values are discarded as the execution proceeds.

Other abstraction means for coping with large executions are discussed in Section 3.13.1.

27In the default case, variables can be assumed to be initialized to the whole domain.
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X = f(Y,Z),

X Yf Z

Y = a,

X f Za

W = Z,

X f Za W

W = g(K),

X f Za W g K

X = f(a,g(b)).

X f Za W g b

Figure 3.36: Alternative depiction of the creation of a Herbrand term

3.11.2 Depicting Herbrand Terms

Herbrand terms can always be written textually, or with a slightly enhanced textual rep-

resentation. An example is the depiction of nodes in the APT tool. They can also be

represented graphically, typically as trees. A term whose main functor is of arity n is then

represented as a tree in which the root is the name of this functor, and the n subtrees are

the trees corresponding to its arguments. This representation is well suited for ground

terms. However, free variables, which may be shared by different terms, need to be rep-

resented in a special way. A possibility is to represent this sharing as just another edge

(thus transforming the tree into an acyclic graph), and even, taking an approach closer to

usual implementation designs, having a free variable to point to itself. This corresponds

to a view of Herbrand terms as complex data structures with single assignment point-

ers. Figure 3.36 shows a representation using this view of the step by step creation of a

complex Herbrand term by a succession of Herbrand constraints. Rational trees, which

strictly speaking are not Herbrand terms, can also be represented in a similar way—but

in this case the graph can contain cycles, although it cannot be a general graph. Systems

which fully support Herbrand terms them (e.g., Prolog II, III, IV) have adopted a special

textual representation for them. Other systems which feature unifications which gener-

ate rational trees do not provide a sound textual representation for them, giving up its

printing when reaching a given depth in the term traversal. This can cause the user to be

mislead when trying to print a term which is simply too deep.
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1 4 6532

X

Y

Z

Figure 3.37: Several variables side to side

1 4 6532

X

Y

Z

Figure 3.38: Changing a domain

3.11.3 Depicting Real Intervals

In a broad sense, intervals resemble finite domains: the constraints and operations al-

lowed in them are analogous (pointwise extensions of arithmetic operations), but the

(theoretical) set of values allowed is continuous, which means that an infinite set of

values are possible, even within a finite range. Despite these differences, visual repre-

sentations similar to those proposed for finite domains can be easily used for interval

variables, using a continuous line instead of a discrete set of squares. An important dif-

ference between intervals and finite domains is that intervals usually allow non-linear

arithmetic operations for which a solution procedure is not known, which forces the

solvers to be incomplete. Thus, the visualization of the actual domain28 will in general

be an upper approximation of the actual (mathematical) domain. As a result, an exact

display of the intervals is not possible in practice. But the approach for showing the evo-

lution in time (Figure 3.35) and for representing the constraints (Section 3.12) is still

valid, although in the former case some means for dealing with phenomena inherent to

solving in real-valued intervals (e.g., slow convergence of algorithms) should be taken.

3.12 Representing Constraints

In the previous section we have dealt with representations of the values of individual

variables. It is obviously also interesting to represent the relationships among several

variables as imposed by the constraints affecting them. This can sometimes be done

textually by simply dumping the constraints and the variables involved in the source code

representation. Unfortunately, this is often not straightforward (or even possible in some

constraint domains), can be computationally expensive, and provides too much level

of detail for an intuitive understanding. Additionaly, constraints are a highly abstract

28Not only the representation, but also the internal storage, from which the graphical depiction is drawn.
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53 61 42
Z

Y

X

Figure 3.39: Enumerating Y, representing

solver domains for X and Z

53 61 42
Z

Y

X

Figure 3.40: Enumerating Y, representing

also the enumerated domains for X and Z

concept which only check whether it is satisfied or not, and this satisfaction is hardly

understood without the constrained object or a representation thereof, i.e., a variable in

a programming language. Moreover, in general there are multiple states of the variables

which meet the restrictions imposed by the constraints.

Constraint visualization can be used alternatively to provide information about which

variables are interrelated by constraints, and how these interrelations make those vari-

ables affect each other. Obviously, classical geometric representations are a possible so-

lution: for example, linear constraints can be represented geometrically with dots, lines,

planes, etc., and nonlinear ones by curves, surfaces, volumes, etc. Standard mathe-

matical packages can be used for this purpose. However, these representations are not

without problems: working out the representation can be computationally expensive,

and, due to the large number of variables involved the representations can easily be

n-dimensional, with n ≫ 3.

A general solution which takes advantage of the representation of the actual values of

a variable (and which is independent of how this representation is actually performed)

is to use projections to present the data piecemeal and to allow the user to update the

values of the variables that have been projected out, while observing how the variables
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being represented are affected by such changes. This can often provide the user with an

intuition of the relationships linking the variables (and detect, for example, the presence

of erroneous constraints). The update of these variables can be performed interactively

by using the graphical interface (e.g., via a sliding bar), or adding manually a constraint,

using the source CLP language.

We will use the constraint C1, below, in the examples which follow:

C1 : X ∈ {1..6} ∧ X 6= 6 ∧ X 6= 3 ∧ Z ∈ {1..6} ∧ Z = 2X − Y ∧ Y ∈ {1..6} (3.1)

Figure 3.37 shows the actual domains of FD variables X, Y, and Z subject to the con-

straint C1. As before, lighter boxes represent points inside the domain of the variable,

and darker boxes stand for values not compatible with the constraint(s). This representa-

tion allows the programmer to explore how changes in the domain of one variable affect

the others: an update of the domain of a variable should indicate changes in the domains

of other variables related to it. For example, we may discard the values 1, 5, and 6 from

the domain of Y, which boils down to representing the constraint C2:

C2 : C1 ∧ Y 6= 1 ∧ Y < 5 (3.2)

654321

1

2

3

4

5

6

X

Y

Figure 3.41: X against Y

654321

1

2

3

4

5

6

X

Z

Figure 3.42: X against Z

654321

1

2

3

4

5

6

Z

Y

Figure 3.43: Y against Z

Figure 3.38 represents the new domains of the variables. Values directly disallowed

by the user are shown as crossed boxes; values discarded by the effect of this constraint

are shown in a lighter shade. In this example the domains of both X and Z are affected by

this change, and so they depend on Y. This type of visualization (with the two enumera-

tion variants which we will comment on in the following paragraphs) is also available in

the VIFID tool.

Within this same visualization, a more detailed inspection can be done by leaving just

one element in the domain of Y, and watching how the domains of X and Z are updated.
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Figure 3.44: Relating variables in VIFID

In Figures 3.39 and 3.40 Y is given a definite value from 1 (in the topmost rectangle) to

6 (in the bottommost one). This allows the programmer to check that simple constraints

hold among variables, or that more complex properties (e.g., that a variable is made

definite by the definiteness of another one) are met.

The difference between the two figures lies in how values are determined to belong

to the domain of the variable. In Figure 3.39, the values for X and Z are those kept

internally by the solver, and are thus probably a safe approximation. In Figure 3.40,

the corresponding values were obtained by enumerating X and Z, and the domains are

smaller. Both figures were obtained using the same constraint solver, and comparing

them gives an idea of how accurately the solver keeps the values of the variables. For

several reasons (limitation of internal representation, speed of addition/removal of con-

straints, etc), quite often solvers do not keep the domains of the variables as accurately

as it is possible. Overconstraining a problem may then help in causing an earlier failure.

On the other hand, overconstraining increments the number of constraints to be pro-

cessed and the time associated to this processing. Comparing the solver-based against

the enumeration-based representation of variables helps in deciding whether there is

room for improvement by adding redundant constraints.

A static version of this view can be obtained by plotting values of pairs of variables

93



Chapter 3. Visualization of Sequential, Constraint, and Parallel Logical Programs

in a 2-D grid, which is equivalent to choosing values for one of them and looking at the

allowed values for the other. This is schematically shown in Figures 3.41, 3.42, and 3.43,

where the variables are subject to the constraint C2. In each of these three figures we

have represented a different pair of variables. From these representations we can deduce

that the values X = 3 and X = 6 are not feasible, regardless the values of Y and Z. It turns

out also that the plots of X against Y and X against Z (Figures 3.41 and 3.42) are identical.

From this, one might guess that perhaps Y and Z have necessarily the same value, i.e., that

the constraint Z = Y is enforced by the store. This possibility is discarded by Figure 3.43,

in which we see that there are values of Z and Y which are not the same, and which in

fact correspond to different values of X. Furthermore, the slope of the highlighted squares

on the grid suggests that there is an inverse relationship between Z and Y: incrementing

one of them would presumably decrement the other—and this is actually the case, from

constraint C1. A VIFID window showing a 2-D plot appears in Figure 3.44; the check

buttons at the bottom allow the user to select the variables to depict.

Note that, in principle, more than two variables could be depicted at the same time:

for example, for three variables a 3-D depiction of a “Lego object” made out of cubes

could be used. Navigating through such a representation (for example, by means of

rotations and virtual tours), does not pose big implementation problems on the graphical

side, but it may not necessarily give information as intuitively as the 2-D representation.

The usefulness of such a 3-D (or n-D) representation is still a topic of further research—

but 3-D portraits of other representations are possible; see Section 3.13.2. On the other

hand, we have found very useful the possibility of changing the value of one (or several)

variables not plotted in the 2-D grid, and examine how this affects the values of the

current domains of the plotted variables.

3.13 Abstraction for Constraint Visualization

While representations which reflect all the data available in an execution can be accept-

able (and even didactic) for “toy programs,” it is often the case that they result in too

much data being displayed for larger programs. Even if an easy-to-understand depic-

tion is provided, the amount of data can overwhelm the user with an unwanted level of

detail, and with the burden of having to navigate through it. This can be alleviated by

abstracting the information presented. Different abstraction levels and/or techniques can

in principle be applied to any of the aforementioned graphical depictions, depending on

which property is to be highlighted.

Note that the depictions presented so far already incorporate some degree of abstrac-
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tion: when using VIFID, the user selects the interesting variables and program points via

the spy-points and the window controls. If it is interfaced with a tree representation tool

(as, for example, the one presented in this chapter), the variables to visualize come natu-

rally from those in the selected nodes. In what follows we will present several other ideas

for performing abstraction, applied to the graphical representations we have discussed so

far. Also, some new representations, which are not directly based on a refinement of oth-

ers already presented, but which can be thought of as abstracting constrained variables,

will be discussed.

3.13.1 Abstracting Values

While the problem of the presence of a large number of variables can be solved, at least

in part, by the selection of interesting variables (a task that is difficult in itself), another

problem remains: in the case of variables with a large number of possible values, repre-

sentations such as those proposed in Section 3.11.1 can convey information too detailed

to be really useful. At the limit, the screen resolution may be insufficient to assign a

pixel to every single value in the domain, thus imposing an aliasing effect which would

prevent reflecting faithfully the structure of the domain of the variable. This is easily

solved by using standard techniques such as a canvas that is larger than the window,

and scrollbars, providing means for zooming in and out, etc. A “fish-eye” technique can

also be of help, giving the user the possibility of zooming precisely those parts which are

more interesting, while at the same time trying to keep as much information as possible

condensed in a limited space. However, these methods are more “physical” approaches

than true conceptual abstractions of the information, which are richer and more flexible.

An alternative is to perform a more semantic “compaction” of parts of the domain.

As an example of such a compaction, which can be performed automatically, consider

associating consecutive values in the domain of a variable to an interval (the smallest one

enclosing those values) and representing this interval by a reduced number of points. A

coarser-level solution, complementary to the graphical representation, is to present the

domain of a variable simply as a number, denoting how many values remain in its current

domain, thus providing an indication of its “degree of freedom”. A similar approach

can be applied to interval variables, using the difference between the maximum and

minimum values in their domains, or the total length of the intervals in their domains.

Another alternative for abstraction is to use an application-oriented filtering of the

variable domains. For example, if some parts of the program are trusted to be correct,

their effects in the constraint store can be masked out by removing the values already

discarded from the representation of the variables, thus leaving less values to be depicted.

95



Chapter 3. Visualization of Sequential, Constraint, and Parallel Logical Programs

E.g., if a variable is known to take only odd values, the even values are simply not shown

in the representation. This filtering can be specified using the source language—in fact,

the constraint which is to be abstracted should be the filter of the domain of the displayed

variables.

Note that this transformation of the domain cannot be completely automated easily:

the debugger may not have any way of knowing which parts of the program are trusted

and which are not, or which abstraction should be applied to a given problem. Thus, the

user should indicate, with annotations in the program [CLI97, BDM97] or interactively,

which constraints should be used to abstract the variable values. Given this information,

the actual reduction of the representation can be accomplished automatically. Warnings

could be issued by the debugger if the values discarded by the program do not corre-

spond to those that the user (or the annotations in the program) want to remove: if this

happens, a sort of “out of domain” condition can be raised. This condition does not mean

necessarily that there is an error: the user may choose not to show uninteresting values

which were not (yet) removed by the program.

3.13.2 Domain Compaction and New Dimensions

Besides the problems in applications with large domains, the static representations of

the history of the execution (Figure 3.35) can also fall short in showing intuitively how

variables converge towards their final values, again because of the excess of points in the

domains, or because an execution shows a “chaotic” profile. The previously proposed so-

lution of using the domain size as an abstraction can be applied here too. However, using

raw numbers directly in order to represent this abstraction to the user is not very useful

because it is not easy for humans to visualize arrays of numbers. A possible solution is to

resort to shades of gray, but this may once again not work too well in practice: deducing a

structure from a picture composed of different levels of brightness is not straightforward,

and the situation may get even worse if colors are added.

A better option is to use the number of active values in the domain as coordinates in

an additional dimension, thus leading to a 3-D visualization. A possible meaning of each

of the dimensions in such a representation appears in Figure 3.45. As in Figure 3.35,

two axes correspond to time and selected variables: time runs along the Z direction,

and every row along this dimension corresponds to a snapshot of the set of FD variables

which have been selected for visualization. In each of these rows, the size of the domain

of the variable (according to the internal representation of the solver) is depicted as the

dimension Y.

Figure 3.46 shows a CLP(FD) program for the DONALD + GERALD = ROBERT puzzle;
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Z

Y

X

X The CLP(FD) variables.

Y An abstraction of the variable: the size of its domain.

Z Time.

Figure 3.45: Meaning of the dimensions in the 3-D representation.

:- use_module(library(
lpfd)).

:- use_module(library(trifid)).

dgr(Whi
hOrder, ListOfVars):-

ListOfVars = [D,O,N,A,L,G,E,R,B,T℄,

order(Whi
hOrder, ListOfVars, OrderedVars), %% Added

open_log(dgr, ListOfVars, Handle), %% Added

domain(OrderedVars, 0, 9),

log_state(Handle), %% Added

D #> 0,

log_state(Handle), %% Added

G #> 0,

log_state(Handle), %% Added

all_different(OrderedVars),

log_state(Handle), %% Added

100000*D + 10000*O + 1000*N + 100*A + 10*L + D +

100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=

100000*R + 10000*O + 1000*B + 100*E + 10*R + T,

log_state(Handle), %% Added

visual_labeling(OrderedVars, Handle),


lose_log(Handle).

order(1, [D,O,N,A,L,G,E,R,B,T℄, [D,G,R,O,E,N,B,A,L,T℄).

order(2, [D,O,N,A,L,G,E,R,B,T℄, [G,O,B,N,E,A,R,L,T,D℄).

Figure 3.46: The annotated DONALD + GERALD = ROBERT FD program.
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Figure 3.47: Execution of the DONALD + GERALD = ROBERT program, first ordering.

we will inspect the behavior of this program using two different orderings, defined by

the order/3 predicate. A different series of choices concerning variables and values

(and, thus, a different search tree) will be generated by using each of these options.

The program (including the labeling routines) was annotated with calls to predicates

which act as spy-points, and log the sizes of the domains of each variable (and, maybe,

other information pertaining to the state of the program) at the time of each call. This

information is unaffected by backtracking, and thus it can also keep information about

the choices made during the execution. The Handle used to log the data may point

to an internal database, an external file, or even a socket-based connection for on-line

visualization or even remote debugging.

Figure 3.47 is an execution of the program in Figure 3.46, using the first ordering

of the variables. The variables closer to the origin (the ones which were labeled first)

are assigned values quite soon in the execution and they remain fixed. But there are

backtracking points scattered along the execution, which appear as blocks of variables

protruding out of the picture. There is also a variable (which can be viewed as a white

strip in the middle of the picture) which appears to be highly constrained, so that its

domain is reduced right from the beginning. That variable is probably a good candi-

date to be labeled soon in the execution. Some other variables apparently have a high

interdependence (at least, from the point of view of the solver), because in case of back-

tracking, the change of one of them affects the others. This suggests that the behavior
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Figure 3.48: Execution of the DONALD + GERALD = ROBERT program, second ordering

of the variables in this program can be classified into two categories: one with highly

related variables (those whose domains change at once in the case of backtracking) and

a second one which contains variables relatively independent from those in the first set.

Another execution of the same program, using the second ordering, yields the profile

shown in Figure 3.48. Compared to the first one, there are fewer execution steps, but,

of course, the classification of the variables is the same: the whole picture has the same

general layout, and backtracking takes place in blocks of variables.

These figures have been generated by a tool, TRIFID, integrated into the VIFID envi-

ronment. They were produced by processing a log created at run-time to create a VRML

depiction with the ProVRML package [SCH99], which allows reading and writing VRML

code from Prolog, with a similar approach to the one used by PiLLoW [CH97]. One

advantage of using VRML is that sophisticated VRML viewers are readily available for

most platforms. The resulting VRML file can be loaded into such a viewer and rotated,

zoomed in and out, etc. Additionally, the log file is amenable to be post-processed using

a variety of tools to analyze and discover characteristics of the execution, in a similar way

as in [FCH96]. Another reason to use VRML is the possibility of using hyper-references

to add information to the depiction of the execution without cluttering the display. In

the examples shown, every variable can be assigned a hyperlink pointing to a description

of the variable. This description may contain pieces of information such as the source

name of the variable, the actual size of its domain at that time, a profile of the changes
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Figure 3.49: Constraints represented as a

graph
Figure 3.50: Bold frames represent definite

values

undergone by that particular variable during the execution, the number of times its do-

main has been updated, the number of times backtracking has changed its domain, etc.

Using the capability of VRML for sending and receiving messages, and for acting upon

the receipt of a message, it is possible to encode in the VRML scene an abstraction of the

propagation of constraints as it takes place in the constraint solver, in a similar way as

the variable interactions depicted by VIFID.

3.13.3 Abstracting Constraints

As the number and complexity of constraints in programs grow, if we resort to visualizing

them as relationships among variables (e.g., 2-D or 3-D grids plus sliding bars to assign

values for other variables, as suggested in Section 3.12), we may end up with the same

problems we faced when trying to represent values of variables, since we are building

on top of the corresponding representations. The solutions suggested for the case of rep-

resentation of values are still valid (fish-eye view, abstraction of domains, . . . ), and can

give an intuition of how a given variable relates to others. However, it is not always easy

to deduce from them how variables are related to each other, due to the lack of accuracy

(inherent to the abstraction process) in the representation of the variables themselves.

A different approach to abstracting the constraints in the store is to show them as a

graph (see, e.g., [MR91] for a formal presentation of such a graph), where variables are

represented as nodes, and nodes are linked iff the corresponding variables are related

by a constraint (Figure 3.49)29. This representation provides the programmer with an

approximate understanding of the constraints that are present in the solver (but not

29This particular figure is only appropriate for binary relationships; constraints of higher arity would need

hypergraphs.

100



3.13. Abstraction for Constraint Visualization

exactly which constraints they are), after the possible partial solving and propagations

performed up to that point. Moreover, since different solvers behave in different ways,

this can provide hints about better ways of setting up constraints for a given program

and constraint solver.

The topology of the graph can be used to decide whether a reorganization of the

program is advantageous; for example, if there are subsets of nodes in the graph with a

high degree of connectivity, but those subsets are loosely connected among them, it may

be worth to set up the tightly connected sections and making a (partial) enumeration

early, to favor more local constraint propagation, and then link (i.e., set up constraints)

the different regions, thus solving first locally as many constraints as possible. In fact,

identifying sparsely connected regions can be made in an almost automatic fashion by

means of clustering algorithms. For this to be useful, a means of accessing the location

in the program of the variables which appears depicted in the graph is needed. This can

as well help discover unwanted constraints among variables—or the lack of them.

More information can be embedded in this graph representation. For example,

weights in the links can represent various metrics related to aspects of the constraint

store such as the number of times there has been propagation between two variables or

the number of constraints relating them. The weights themselves need not be expressed

as numbers attached to the edges, but can take instead a visual form: they can be shown,

for example, as different degrees of thickness or shades of color. Variables can also have

a tag attached which gives visual feedback about interesting features, namely the actual

range of the variable, or the number of constraints (if it is not clear from the number of

edges departing from it) it is involved in, or the number of times its domain has been

updated.

The picture displayed can be animated and change as the solver proceeds. This can

reflect, for example, propagation taking place between variables, or how the variables

lose their links (constraints) with other variables as they acquire a definite value. In

Figure 3.50 some variables became definite, and as a result the constraints between them

are not shown any more. The reason for doing so is that those constraints are not useful

any longer: this reflects the idea of a system being progressively simplified. It may also

help to visualize how backtracking is performed: when backtracking happens, either the

links reappear (when a point where a variable became definite is backtracked over and

a constraint is active again in the store), or they disappear (when the system backtracks

past a point where a constraint was created).

Further filtering can be accomplished by selecting which types of constraints are to be

represented (e.g, represent only “greater than” constraints, or certain constraints flagged
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in the program through annotations). This is quite similar to the domain filtering pro-

posed in Section 3.13.1.

3.14 Implementation Details

VIFID and TRIFID are implemented as Prolog libraries which provide primitives for open-

ing a log, logging a state, and closing a log. They are implemented in Prolog and Tcl/Tk,

and rely on a few primitives to open socket connections and to spawn and communicate

with other processes (primarily for the Tcl/Tk part).

VIFID is completely interactive, and the library is aware of the changes to the selected

variables by having the program variables accessible from the Handle which materializes

the communication on the Prolog side. Calls to log_state inspect the domain of these

variables in order to draw the depictions. Since the library has direct access to the same

variables the program uder study is manipulating, the user can update (monotonically)

the domain of the variables being selected from the graphical interface.30 The execution

can continue after updating, but the user does not have to commit to this update: a

RESET button forces the program to go back to the point where the update was made. To

implement this, the tool pushes a named choicepoint (i.e., a choicepoint whose address

is accesible from the Prolog implementation, a very useful characteristic found in several

Prolog implementations) and later, if needed, backtracks to it, or discards it.

The visualization part of VIFID is completely written in Tcl/Tk, and the commands

were issued by the Prolog library. Only a few rutines commonly used throughout the

execution were written directly in Tcl/Tk and called from Prolog. The flexibility of Tcl/Tk

was enough, since most of the windows have a simple layout. The speed of Tcl/Tk was

not much of a problem, except when the number of objects in the window became very

large (e.g., several thousand, which is possible when the variable history visualization is

selected). The 2-D visualization was computationally expensive, as it has to enumerate

the pairs of variables and check for satisfiability. Overall, the tool was strong enough to

be used routinely, and the visualization was found to be useful and easy to understand.

TRIFID shares many ideas with VIFID : it is also a Prolog library which scans the

variables it has access to. But instead of starting an interactive visualization, we decided

to take advantage of a Prolog to VRML interface build for Ciao Prolog and generate VRML

for the visualization. Gathering the data was not a computational problem; instead,

we found troubles related with the size of the files being generated31, and with the

30Actually, the user is able to call any Prolog goal from VIFID.
31More precisely, the VRML visualizers had problems with that!
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speed of the VRML visualizers (freely) available at the time. Thus, we were not able to

analyze executions as big as we had desired, but the pictures we obtained are intuitively

understandable.

3.15 Related Work

The work in visualization in Computer Science is very ample, even if we restrict to work

directly related to Logic Programming. Thus, we will mention only the work directly re-

lated to performance and correctness debugging. Visuazations tools aimed at achieving,

e.g., more friendly development environments, visualization aimed at teaching, will not

be mentioned, unless an important part of them tackles directly debugging matters.

3.15.1 APT and other Work in Visualization of Sequential Execution

The paradigmatic example of visualization of sequential execution is the Transparent

Prolog Machine [EB88], developed at the Open University with educational aims. It

displays the execution of a Prolog program using AORTA trees and shows the input and

output modes of the arguments to the call.

Color Prolog [NKD97, KP96], also with an educational focus, displays the whole ex-

ecution tree and traces the history of the variables, assigning a different color to each

variable. Conflicts during unification was solved using the so-called “color unification”.

The Mozart Oz system includes a visualizer for searth trees which allows expanding

and collapsing subtrees [Sch97]. The search rules are not fixed: some are provided by

the system, and users can write their own search rules. As it focuses mainly on the

control part, it does not provide an explicit means for displaying different types of data

(e.g., constraints, constrained variables, propagation steps).

Search tree views have been studied and implemented in [DA00]. The tool is geared

towards facilitating the understanding of the behavior of programs, especially in the case

of complex combinatorial systems. The originality lies in its generality: the computation

space can be analyzed with several views which are separately specified in the same lan-

guae as the program. The abstractions are specified using program predicate properties,

as suggested in Section 3.13.1.

The Prolog IV [PRO] development system has a visual debugger [Bou00] based upon

the Byrd Box model which dispatches information to several viewers, which are comple-

mentary of each other. The Execution Tree Viewer gives different capabilities within a

search tree, namely a full view of the execution tree, the view of a particular proof, and

the replay of the execution to a given point in the search tree.
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3.15.2 VisAndOr and Other Related Visualization Tools for Parallel Programming

The ParaGraph tool32 by Aikawa et al. [AKK+92] is aimed at tuning the Parallel Inference

Machine (PIM) [GSN+88]. It is aimed to perform low–level (processor–oriented) and

high–level (goal–oriented) profiling. ParaGraph gathers data during program execution

using primitives of the KL1 [UC91] language. It is not a general purpose tool, but rather

a highly machine and language dependent tool.

The WAMTrace tool [DL87] is a visualization tool for Or parallel full Prolog, origi-

nally written for ANLWAM, and later used for Aurora. This tool shows an animation of

the parallel search tree, with different icons being extensively used to reflect different

worker states and node types. The main difference with VisAndOr is that VisAndOr of-

fers a static and much more schematic view, conveying the whole execution. A similar

viewpoint is offered by MUST. The extensive use of animated icons provide a dynamic

stream information; this approach could be of interest to represent suspension in DAP

and in Constraint Logic Languages.

The VISTA tool [Tic92] intends to give effective visual feedback to a programmer

tuning concurrent logic programs. Procedure invocations are displayed radially from the

root with explicit condensation at the leaves (if this is needed). The drawings obtained

with VISTA have the peculiar shape of a snail shell, due to the mapping of the (parallel)

search tree into a polar coordinate system. This system, which represents Deterministic

Dependent And–parallelism, is, in some ways, similar to VisAndOr ’s forerunner, Visi-

Pal [HN90].

VACE [VPG97] is a tool developed in the context of the ACE project [PGH95,

GHPSC94], which offers a visualization of And/Or parallelism based on recomputation

trees, designed to distinguish clearly the And- and the Or-parallel branches. Or-parallel

alternatives within an And-parallel call are shown as leaves of a book from which other

(possibibly parallel) computations start. It is also based on analyzing a post-mortem trace

generated by the system under study. The trace is a superset of that used by VisAndOr,

and thus VACE is able to display VisAndOr traces.

The VisAll tool [FIVC98] tries to unify the different formats and views of other pre-

vious tools. A modular design allows havingtranslators for different trace formats (in-

cluding those of VACE and VisAndOr). The traces are used to construct an execution

graph, and several output components give different portrays of the execution, includ-

ing processor occupation graphs and other statistics. It is probably the most mature and

32There are two different visualization tools with the same name: the one we are currently referring to

and the ParaGraph tool by Heath and Etheridge, described in [HE91], which are very different and must not

be confused.
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complete tool for parallel logic program visualization.

Finally, in the realm of the LOGFLOW project [Kac93, Kac92, Kac97, Kac94], some

graphical monitoring tools have been implemented [KZP97]. These are aim mainly at

tuning parameteres related to distributed scheduling, token passing, and granularity con-

trol, than to a depiction of the search tree. This is, of course, due to the very nature of

the LOGFLOW system.

3.15.3 Related Work in Contraint Visualization

Early work in constraint visualization was made in the realm of the Eclipse [ECR93]

system; the GRACE system[Mei96] represented the values of constrained variables as we

did in Section 3.11.1. The representation was connected to a Byrd box model for program

debugging, and it was used to show values of variables. Additional information, such as

how long ago values were removed from the domain of a variable, was encoded using

different color shades.

More recently, the DisCiPl project [DHM00] fostered the use of visualization and

assertion-based debugging tools. Within this effort, several visualization tools (some of

them already mentioned) were developed.

The Search Tree Visualization tool [SA00] built for the CHIP FD programming sys-

tem focuses on displaying the search tree created when labeling finite domain variables,

despite its name. It is heavily influenced by the capabilities of the Oz Explorer [Sch97]

(e.g., ability to choose the search strategy), but tries to add facilities not present in Oz

(e.g., representation of contraint propagation steps). The Search Tree visualizer is able to

represent the history of the variables under a number of different views, and to replay the

execution as needed. A recomputation-based technique is used to perform that: when

the execution is performed information about the shape of the tree (but not about the

domain of the variables) is kept. When the user selects a node, the execution is replayed

up to that point by taking the right branches at the choicepoints. The trace is generated

by special labeling predicates the program is instrumented with.

Some constraint applications need to set up complex relationships among the vari-

ables which express, e.g., precedence among events or constraints on the placement of

a set of items33. In those cases a visualization which mimics the initial problem setting

helps in mapping performance/debugging problems in the constraint solving to the orig-

inal problem and to the code. The Global Constraint visualization tool [SABB00] does

precisely this, by incorporating special visualizations tailored to some of the complex
33Sometimes this is not the natural way of expressing the original problem, but a transformation allow

this modelling.
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constraints available in the CHIP system. Although this gives an intuitive representation,

it needs the user to map the problem to one of these standard complex constraint tem-

plates, and the implementor to provide the necessary hooks in the constraint solving.

This visualization can be classified as a application-oriented abstraction.

The visualization of constraint networks, proposed here as an cosntraint abstraction

amenable of being treated and studied, was implemented in the Constraint Investiga-

tor [TM99], interfaced with the Oz Explorer [Sch97]. This proposal visualizes a graph

which is close to the implementation, since the nodes of the graph can be propagators,

variables, and events (which trigger the action of propagators). The ability to expand

and collapse the constraint net, and to filter the variables about which we wish to display

information, incrfeses the tool usefulness in the case of big executions. Overall, it gives a

good representation of the store, but probably needs some further structure to represent

complex problems. Besides, the store represented is intimately tied to the Oz constraint

solver.

Another graph-based visualization of constraints is [Tak00], which builds a 3-D graph

to debug the constraints used by a tool aimed at placing geometric objects with placement

constraints. Unlike in our approach (Section 3.13.3), nodes represent both constraints

and objects (thus removing the need of hypergraphs). Nodes representing constraints

are boxes, and nodes representing objects are spheres. The type of constraint and ob-

ject decides the color of the object. The freedom degree of an object (i.e., whether its

value/placement is or not completely fixed) can be determined by animating the picture:

the object is pulled by the system by solving the constraint system after changing the

value of the associated variable. The solution is compared with that obtained previously,

and the difference shown graphically.

3.16 Conclusions

We have presented some design considerations regarding the depiction of search trees

resulting from the sequential execution of constraint logic programs. We have argued

that these depictions are applicable to the programmed search part and to the enumer-

ation parts of such executions. We have also presented a concrete tool, APT, based on

these ideas. Two interesting characteristics of this tool are, first, the decoupling of the

representation of control from the constraint domain used in the program (and from

the representation of the store), and, second, the recording of the point in which every

variable is created and assigned a value. The former allows visualizers for variables and

constraints in different domains (such as those presented in Section 3.11) to be plugged
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in and used when necessary. The latter allows tracking the source of unexpected values

and failures, and so is of use for correctness debugging. APT has served mainly as an

experimentation prototype for, on one hand, studying the viability of some of the depic-

tions proposed, and, on the other hand, as a skeleton on which the constraint-level views

can be attached.

We have also reported on several visualization paradigms to represent the execution

of logic programs. These depictions are devised to summarize and give an intuitive view

of different characteristics of the programs being executed. A set of tools which imple-

ment these paradigms have been developed and tested. The visualizations developed

focus on the parallel execution of logic programs, the representation of the sequential,

and the evolution of variables in constraint logic programs.

Parallel execution of logic programs is displayed by VisAndOr. The visualization

paradigm of the tool has been developed following a methodology which starts by deter-

mining at what level we want to visualize the model, what are the basic elements at this

level, and which dependencies hold among them. The tool has been interfaced with a

few implementations of parallel logic processing paradigms, currently &-Prolog, Aurora,

Muse, Andorra-I, and SICStus, and has been actively used at Bristol, SICS and Madrid.

Its usefulness as debugging and tuning tool for paral1el logic systems has been reported

and assessed through practical applications. The top-down approach followed in the de-

sign of the visualization paradigm makes the tool homogeneous in the representation

and in the user interface, and the event-based interface has been used in other tools.

The interface with the execution platform is formally defined up to the point of being

comparable to an abstract machine language, so that different semantics can be used to

highlight different characteristics or to transform the execution skeleton to simulate dif-

ferent environments. This allows to easily extend and adapt the tool to visualize different

paradigms and to easily interface it with other tools designed under similar principIes.

This has been done, and the resulting tools improved their usefulness (see Chapter 6).

The work in VisAndOr is being currently extended [Mar00] to add new additional

features in the style of the ParaGraph tool [HE91] which do not require designing new

paradigms (i.e., processor utilization, real parallelism achieved versus potential paral-

lelism present. . . ). Future work includes new conceptual representations to support sev-

eral other forms of parallelism and their combinations: among them we may cite the

representation of suspension needed for Dependent And-parallel and concurrent execu-

tion models.

Last, we have discussed techniques for visualizing data evolution in CLP. The graph-

ical representations have been chosen based on the perceived needs of a programmer
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trying to analyze the behavior and characteristics of an execution. We have proposed so-

lutions for the representation of the run-time values of the variables and of the run-time

constraints among them. In order to be able to deal with large executions, we have also

discussed some abstraction techniques, including the 3-D rendition of the evolution of the

domain size of the variables. The proposed visualizations for variables and constraints

have been tested using two prototype too1s: VIFID and TRIFID. These visualizations can

be easily related, so that tools based on them can be used in a complementary way, or

integrated in a larger environment. In particular, in the environment that we have de-

veloped, each tool can be used independently or they can all be triggered from a search

tree visualization (e.g., APT).

VIFID (and, to a lesser extent, TRIFID which is less mature) has evolved into a prac-

tical tool and is quite usable by itself as a library which can be loaded into a number of

CLP systems. Also, some of the views and ideas proposed have since made their way to

other tools, such as those developed by Cosytec for the CHIP system [SA00].

Abstractions for all the aforementioned visualizations have been proposed. This aims

at alleviating the task of understanding the interesting characteristics of the execution of

programs when many details are available in the raw pictorial depiction.

Each of these tools uses a different approach to monitoring executions. APT is built

around a metainterpreter; VisAndOr reads events generated by an engine modified at

low-level; and VIFID/TRIFID use a spypoint approach. Every tool has a reason for that:

• APT recorded the history of the unifications; doing this is in principle possible by

a careful instrumentation of the program which increments the number of argu-

ments in each predicate in order to carry the information ([Duc92a, Duc91] are

good examples of a similar approach), and saving the collected information to be

used in case of branch failure. Unfortunately executing metacalls is much more dif-

ficult, since (part of) the rewriting program must be present and used at runtime

to rewrite the terms to be called. Similarly, if dynamic modification of the program

is used, the assert and retract calls have to be catched and the terms rewritten. The

execution of metacalls within a metainterpreter is much easier, since most of the

machinery needed is already present.

• VisAndOr needed the traces to be generated with as little disturb to the execution

as possible. Thus metainterpreting was completely dicarded, and the use of spy-

points would probably not provide results accurate enough. On the other hand, the

modifications to the parallel engine to generate traces were minimal.

• VIFID and TRIFID did not keep a history of the variables, and so unification (i.e.,
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constraint solving) could be left to the CLP system. This means that a metain-

terpreter was not needed, and, although this approach could have been followed,

previous experience with APT taught us that it could be too slow to tackle medium-

sized executions. Moreover, the information about control flow needed to imple-

ment VIFID could be gathered at the Prolog level, so no low-level changes had to

be done. The primitives available for exploring CLP variables were enough for our

aims, and so we did not have to tackle the task of chaging the core of the CLP solver

(which, on the other hand, would have probably been a quite hard task).

In retrospect, we feel that the metainterpreter approach is the more error-prone and

long-lasting one, and the results in terms of speed are superseded by the others. On the

other hand, if the metainterpreter is self-contained and uses basic capabilities common

to many CLP systems, its portability makes it a valuable tool. This portability can in any

case be partially recovered by the use of a clear, simple, well-defined set of events. This

allowed, for example, to make VisAndOr traces understandable by many other systems.
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Chapter 4

Optimizing Executions with Data

Parallelism

Chapter Summary

Much work has been done in the areas of and–parallelism and data parallelism in Logic

Programs. Such work has proceeded to a certain extent in an independent fashion.

Both types of parallelism offer advantages and disadvantages. Traditional (and–) paral-

lel models offer generality, being able to exploit parallelism in a large class of programs

(including that exploited by data parallelism techniques). Data parallelism techniques

on the other hand offer increased performance for a restricted class of programs. The

thesis of this paper is that these two forms of parallelism are not fundamentally different

and that relating them opens the possibility of obtaining the advantages of both within

the same system. Some relevant issues are discussed and solutions proposed. The dis-

cussion is illustrated through visualizations of actual parallel executions implementing

the ideas proposed.

4.1 Introduction

The term data parallelism is generally used to refer to a parallel semantics for (definite)

iteration in a programming language such that all iterations are performed simultane-

ously, synchronizing before any event that directly or indirectly involves communication

among iterations. It is often also allowed that the results of the iterations be combined by

reduction with an associative operator. In this context a definite iteration as an iteration

where the number of repetitions is known before the iteration is initiated.

Data parallelism has been exploited in many languages, including Fortran–90

[MR90], C* [Thi90], Data Parallel C [HQ91], *LISP [Thi86], etc. Recently, much

progress has been reported in the application of concepts from data–parallelism to logic

programming, both from the theoretical and practical points of view, including the design
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of programming constructs and the development of many implementation techniques

[Vor92, NT88, BM88, Bla92, Kac90, Wis86, Mil90, Bar90, BLM93a, BLM93b].

On the other hand, much progress has also been made (and continues to be made)

in the exploitation of parallelism in logic programs based on control–derived notions

such as and–parallelism and or–parallelism [Con83, DeG84, DeG87, HG90, KK84, LK88,

War87b, Lus90, Ali88, AK90b, GJ89, GSCYH91, GHPSC94, Fag87, Kal87b, She92a,

War88, SCWY91a]. It appears interesting to explore, even if only informally, the relation

between these two at first sight different approaches to the exploitation of parallelism in

logic programs. This informal exploration is one of the purposes of this paper (the other

being to explore the intimately related issue of fast task startup).

4.1.1 Data Parallelism and And–Parallelism

It is generally accepted that data parallelism is a restricted form of and–parallelism: 1

the threads being parallelized in data–parallelism are usually the iterations of a recur-

sion, a type of parallelism which is obviously also supported in and–parallel systems.

All and–parallel systems impose certain restrictions on the goals or threads which can

be executed in parallel (such as independence and/or determinacy, applied at different

granularity levels [HR95, Nai88, SCWY91a, GHM93, HC93]) which are generally the

minimal ones needed in order to ensure vital desired properties such as correctness of re-

sults or “no–slowdown”, i.e. that parallel execution be guaranteed to take no more time

than sequential execution. Data–parallel programs, since they are after all and–parallel

programs, have to meet the same restrictions from this point of view. This is generally

referred to as the “safeness” conditions in the context of data parallelism. Such condi-

tions are imposed among the iterations being parallelized (examples are requiring them

to be deterministic, to have only one alternative, and/or to be independent).

However, one of the central ideas in data–parallelism, as presented in many pro-

posals, is to impose additional restrictions to the parallelism allowed, in order to make

possible further optimizations in some important cases, in return for a certain loss of

parallelism due to not being able to deal with the general case. I.e., the additional re-

strictions imposed have the obvious drawback that they limit the amount of parallelism

which can be obtained with respect to a more general purpose and–parallel implemen-

tation. On the other hand, when the restrictions are met, many optimizations can be

performed with respect to an unoptimized general purpose and–parallel model, in which

the implementation perhaps has to deal with backtracking, synchronization, dynamic

1Note, however, that data parallelism can also be exploited as or parallelism [Pre94, CDO88].
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scheduling, locking, etc. A number of implementations have been built which are capa-

ble of exploiting such special cases in an efficient way (e.g. [BLM93a, BLM93b]). The

particular restrictions imposed over general purpose and–parallelism vary slightly from

one proposal to another. In general, only recursions of a certain type are allowed to be

executed in parallel. Also, limitations are posed on the level of nesting of these recursions

(e.g. sometimes no nesting is allowed). Often, a priori knowledge of the sizes of the lists

(or arrays) being operated on is required (but this data is also obtained dynamically in

other cases).

In a way, one would like to have the best of both worlds: an implementation capable

of supporting general forms of and (and also or) parallelism, so that speedups can be

exploited in as many programs as possible, and at the same time have the implementation

be able to take advantage of the optimizations present in data–parallel implementations

when the conditions are met.

4.1.2 Compile–time and Run–time Techniques

In order to achieve the above mentioned goal of a “best of both worlds” system, there

are two classes of techniques which have to studied. The first class is related to detecting

when the particular properties to be used to perform the optimizations hold. However,

this problem is common to both control– and data–parallel systems. The concept of “data

parallelism” does not in any way make the task of the compiler or the implementation

simpler in this regard. The solution of allowing the programmer to explicitly declare such

properties or use special constructs (such as “parallel map,” “bounded quantifications”

[ABB93], etc.) which have built–in syntactic restrictions may help, but it is also true that

this solution can be applied indistinctly in both of the approaches under consideration.

Thus, we will not deal herein with how the special cases are detected.

The second class of techniques are those related to the actual optimizations realized

in the abstract machine to exploit the special cases. Given, as we have argued before,

that data–parallelism constitutes a special case of and–parallelism, one would in principle

expect the abstract machine used in data–parallelism to be a “pared down” version of the

more general machines. We believe that this is in general the case, but it is also true that

the data–parallel machines also bring some new and interesting techniques.

For the sake of discussion, we will concentrate on the abstract machine of Reform

Prolog [BLM93a, BLM93b]. In many aspects, the Reform Prolog abstract machine can

in fact be viewed as a “pared–down” version of a general–purpose and–parallel abstract

machine such as the RAP–WAM/PWAM [Her86b, HG90], the DASWAM [She92a], or the

Andorra-I engine [SCWY91b]. For example, there are a number of agents or workers
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which are each essentially a WAM. Also, the dynamic scheduling techniques are very

similar to the goal stealing method used in the RAP–WAM.

Understandably, there are also some major differences. A first class of such differ-

ences is related to the optimizations in memory management which are possible with

respect to general purpose abstract machines due to the special case of and–parallelism

being dealt with. For example, because of the restrictions posed on backtracking among

parallel goals, structures like the “markers” of the RAP–WAM, which delimit stack sec-

tions corresponding to different goals and to different backtracking points, are not

necessary (Chapter 5). However, it should be noted that the same optimizations can

also be done in general–purpose abstract machines supporting and–parallelism, such as

the RAP–WAM, if the particular case is identified, and without losing the general case

[Her86a, TPGC94, PGH95, SH94]. Both dynamic and static detection of such special

cases has been studied. A similar argument can be made regarding some other minor

optimizations that, for lack of space, will not be addressed explicitly.

On the other hand, a number of optimizations, generally related to the “Reform Com-

pilation” done in Reform Prolog [Mil91], are more fundamental. We find these optimiza-

tions particularly interesting because they bring attention upon a very important issue

regarding the performance of and–parallel systems: that of the speed in the creation and

joining of tasks. We will essentially devote the rest of the paper to this issue, because

of the special interest of this subject, and given that, as pointed out before, the other

intervening issues have already been addressed to some extent in the literature.2

4.2 The Task Startup and Synchronization Time Problems

The problem in hand can be illustrated with the following simple program:

vpro
([℄,[℄).

vpro
([H|T℄,[HR|TR℄) :-

pro
ess_element(H,HR),

vpro
(T,TR).

which relates all the elements of two lists. Throughout the discussion we will assume

that the vpro
/2 predicate is going to be used in the “forwards” way, i.e. a ground list of
2Improving the performance of and–parallel systems in the presence of fine-grained computations can

also be addressed by performing “granularity control”, where goals that could have been run in parallel but

are too small grain are sequentialized. This is usually done by determining (statically or dynamically) the

cost of goals and sequentializing them or grouping them when such cost falls below a given threshold. This

very interesting issue can be treated orthogonally to the techniques that we discuss in this paper. Relevant

work can be found in [DLH90, KS90, LGHD94, ZTD+92] and their references.
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values and a free variable will be supplied as arguments (in that order), expecting as a

result a ground list.

4.2.1 The Naive Approach

This program can be naively parallelized as follows using “control–parallelism” (we will

use throughout &–Prolog [HG91] syntax, where the “&” operator represents a potentially

parallel conjunction):

vpro
([℄,[℄).

vpro
([H|T℄,[HR|TR℄) :-

pro
ess_element(H,HR) & vpro
(T,TR).

This will allow the parallel execution of all iterations. Note that the parallelization is

safe, since all iterations are independent. The program can be parallelized using “data–

parallelism” in a similar way.

However, it is interesting to study the differences in how the tasks are started in

both approaches, due to the textual ordering of the goals. In a system like &–Prolog,

using one of the the standard schedulers (we will assume this scheduler throughout

the examples), the initial agent, running the call to vpro
/2, would create a process

corresponding to the recursion, i.e. vpro
(T,TR), make it available on its goal stack,

and then take on the execution of pro
ess_element(H,HR). Another agent might pick

the created process, creating in turn another process for the recursion and taking on a

new iteration of pro
ess_element(H,HR), and so on. In the end, parallel processes are

created for each iteration. Note that all process creation has been a simple consequence

of the application of the parallel conjunction operator semantics. This is very attractive

in that the same operator which allows parallelism among two goals in any general case,

also yields in this particular case the desired result of parallelizing all the iterations of a

“loop”. However, the approach or, at least, the naive program presented above, also has

some drawbacks.

In order to illustrate this, we perform the experiment of running the previous program

in the following context. We assume a query “?- makeve
tor(10,V), main(V,VR).”,

where makeve
tor(N,L) simply instantiates L to a list of integers from 1 to N. Thus, we

have a list of 10 elements. We use as pro
ess_element/2 a small–grained numerical

operation, which serves to illustrate the issue:

pro
ess_element(H,HR) :-

HR is ((((H * 2) / 5)^2)+(((H * 6) / 2)^3))/2.
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Figure 4.1: Vector operation (10

el./1 proc.)

Figure 4.2: Vector operation, giving

away recursion (10 el./8 proc.)

Finally, in order to observe the phenomenon, we run the program in &–Prolog on 8

processors on a Sequent Symmetry and generate a trace file, using the following predi-

cate:

main(V,VR) :-

start_event_tra
e,

vpro
(V,VR),

stop_event_tra
e,

save_tra
e('Eventfile').

The trace is then visualized with VisAndOr [CGH93]. In VisAndOr graphs, time goes

from top to bottom. Vertical solid lines denote actual execution, whereas vertical dashed

lines represent waits due to scheduling or dependencies, and horizontal dashed lines

represent forks and joins. Figure 4.1 represents the execution of the benchmark in one

processor, and serves as scale reference.

The result of running the benchmark in 8 processors is depicted in Figure 4.2. As

can be seen, the initial task forks into two. One is performed locally whereas the other

one, corresponding to the recursion, is taken by another agent and split again into two.

In the end, the process is inverted to perform the joins. A certain amount of speedup is

obtained; this can be observed by comparing to Figure 4.1 — the total amount of time

is less. However, the speedup obtained is in fact quite small for a program such as this

with obvious parallelism. This low speedup is in part due to the small granularity of the

parallel tasks, and also to the slow generation of the tasks which results from giving out

the recursion [CGH93].
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4.2.2 Keeping the Recursion Local

One simple transformation can greatly alleviate the problem mentioned above — revers-

ing the order of the goals in the parallel conjunction, so that the recursive goal is kept

local, and not even pushed on to the goal stack:

vpro
([℄,[℄).

vpro
([H|T℄,[HR|TR℄) :-

vpro
(T,TR) & pro
ess_element(H,HR).

Figure 4.3: Vector operation, keeping recursion (10 el./8 proc.)

The result of running this program is depicted in Figure 4.3, which uses the same

scale as Figures 4.1 and 4.2. The first process can now be observed to keep the recursion

local and thus create the tasks much faster, resulting in substantially more speedup. It

should be noted that this transformation is in fact in most cases done automatically by the

&–Prolog parallelizing compiler. However, the compiler leaves hand–parallelized code as

is and this has allowed us before to write and run the program that hands out the goals

in the “wrong” way.

Keeping recursions local can speed up the process of task creation, and in most appli-

cations, which in general show much larger granularity than this example, task creation

speed is not a problem. On the other hand, in numerical applications such as those tar-

geted in data–parallelism, task creation using linear recursion will still be a problem: the

speed of the process creating the tasks will become a bottleneck.
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4.2.3 The “Data–Parallel” Approach

At this point it is interesting to return to the data–parallel approach and, in particular, to

Reform Prolog. The way this system tackles the problem (we assume that it has already

been identified that the recursion is suitable for this technique) is by first converting the

list into a vector (and noting the length on the way) and then creating in a tight, low level

loop the corresponding tasks, which are simply represented by a pointer to the element

of the vector which the task should operate on. The following program allows us to both

illustrate this process without resorting to low level instructions and measure inside &–

Prolog the benefit that this type of task creation can bring (once the parallel conjunction

is set up, each task creation in and–prolog in fact corresponds to pushing two pointers

on to a goal stack — the overhead in the previous cases was coming from the recursion

and the setup time for each parallel conjunction):

vpro
([H1,H2,H3,H4,H5,H6,H7,H8,H9,H10℄,

[HR1,HR2,HR3,HR4,HR5,HR6,HR7,HR8,HR9,HR10℄) :-

pro
ess_element(H1,HR1) &

pro
ess_element(H2,HR2) &

pro
ess_element(H3,HR3) &

pro
ess_element(H4,HR4) &

pro
ess_element(H5,HR5) &

pro
ess_element(H6,HR6) &

pro
ess_element(H7,HR7) &

pro
ess_element(H8,HR8) &

pro
ess_element(H9,HR9) &

pro
ess_element(H10,HR10).

Figure 4.4 represents the same execution as Figure 4.3, but at a slightly enlarged

scale; this scale will be retained throughout the rest of the paper, to allow easy compar-

isons of the pictures.

The result of the execution of this “data–parallel” program is depicted in Figure 4.5,

which uses the same scale as Figure 4.4. The improvement is clear and due to the much

faster task creation and joining (and also to having only one synchronization structure

for all tasks). Note, however, that the creation of the first task is slightly delayed due

to the need for unifying the whole list before creating any tasks and for setting up the

tasks themselves. This small delay is compensated by the faster task creation, but can

eventually be a bottleneck for very large vectors. Eventually, in a big computation with a

large enough number of processors, the head unification will tend to dominate the whole
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Figure 4.4: Vector operation, keep-

ing recursion (10 el./8 proc.)

Figure 4.5: Vector operation, flat-

tened for 10 elements (10 el./8

proc.)

computation (c.f. Amdahl’s law). In this case, unification parallelism can be worthwhile

[Bar90].

In our quest for merging the techniques of the data–parallel and and–parallel ap-

proaches, one obvious solution would be to incorporate the techniques of the Reform

Prolog engine into the PWAM abstract machine for the cases when it is applicable. In

fact, we believe that very little modification to the PWAM would is necessary, as shown

in [HC96]. On the other hand, it is also interesting to study how far one can go with no

modifications (or minimal modifications) to the machinery.

The last program studied is in fact a straightforward unfolding of the original recur-

sion. Note that such unfoldings can always be performed at compile–time, provided that

the depth of the recursion is known. In fact, knowing recursion bounds may actually

be frequent in traditional data–parallel applications, (and is often the case when paral-

lelizing bounded quantifications [ABB93]). On the other hand it is not really the case in

general and thus some other solution must be explored.

4.2.4 A More Dynamic Unfolding

If the depth of the recursion is not known at compile time the previous scheme cannot

be used. But instead of resorting directly to the naive approach, we can try to perform a

more flexible task startup. The following program is an attempt at making the unfolding

more dynamic, while still staying within the source–to–source program transformation
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approach:

vpro
([H1,H2,H3,H4|T℄,[HR1,HR2,HR3,HR4|TR℄) :-

!,

vpro
(T,TR) &

pro
ess_element(H1,HR1) &

pro
ess_element(H2,HR2) &

pro
ess_element(H3,HR3) &

pro
ess_element(H4,HR4).

vpro
([H1,H2,H3|T℄,[HR1,HR2,HR3|TR℄) :-

!,

vpro
(T,TR) &

pro
ess_element(H1,HR1) &

pro
ess_element(H2,HR2) &

pro
ess_element(H3,HR3).

vpro
([H1,H2|T℄,[HR1,HR2|TR℄) :-

!,

vpro
(T,TR) &

pro
ess_element(H1,HR1) &

pro
ess_element(H2,HR2).

vpro
([H|T℄,[HR|TR℄) :-

!,

vpro
(T,TR) &

pro
ess_element(H,HR).

vpro
([℄,[℄).

The results are shown in Figure 4.6, which has the same scale as Figures 4.4 and 4.5.

A group of four tasks is created; one of these tasks creates, in turn, another group of four.

The two remaining tasks are created inside the latter group. The speed is not quite as

good as when the 10 tasks are created at the same time, but the results are close.

This “flattening” approach has been studied formally by Millroth 3 [Mil90], which has

given sufficient conditions for performing these transformations for particular cases such

as linear recursion.

There are still two problems with this approach, however. The first one is how to

chose the “reformant level”, i.e. the maximum degree of unfolding used, which with this
3And has been used in &–Prolog compilation informally (see e.g. [WH87] and some of the standard

&–Prolog benchmarks).
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Figure 4.6: Vector operation with

fixed list flattening (10 el./8 proc.)

Figure 4.7: Vector operation with

flexible list flattening (10 el./8

proc.)

technique is fixed at compile–time. In the previous example the unfolding was stopped at

level 4, but could have gone on to a higher level. The ideal unfolding level depends both

on the number of processors and the size of lists. For large lists a large unfolding may

be desirable. However, the program size also grows, as well as the chain of intermediate

unifications made by the last iterations. The other problem, which was pointed out

before, is the fact that the initial matching of the list (or the conversion to a vector) is

a sequential step which can become a bottleneck for large data sets. A solution is to

increase the speed of creation of tasks, but that has a limit. In fact, it will also eventually

become a bottleneck, even if low level instructions are used. Another solution is to use

from the start, and instead of lists, more parallel data structures, such as vectors (we will

return to this in Section 4.3).

4.2.5 Dynamic Unfolding In Parallel

We now propose a different solution which tries to address at the same time the two

problems above. We give the solution for lists. The transformation has two objectives:

speeding up the creation of tasks by performing it in parallel, and allowing a form of

“flexible flattening”. The basic idea is depicted in Figure 4.8. Instead of simply perform-

ing a unification of a fixed length as encoded at compile–time, a builtin, skip/4, is used

which will allow performing unifications of different lengths.

The predicate skip(L,N,LS,NS) relates a list L and an “unfolding increment” N with a
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Figure 4.8: “Skip” operation, 10 elements in 4

sublist LS of L which is placed at most at N positions from the starting of L. NS contains the

actual number of elements in LS, in case that N is less than the length of L (in which case

LS = [℄). The utility of skip(L,N,LS,NS) is that several calls to it using the output list

LS as input list L in each call will return pointers to equally–spaced sublists of L, until no

sufficient elements remain. Figure 4.8 depicts the pointers returned by skip(L,N,LS,NS)

to a 10 elements list, with an “unfolding level” N = 4. This builtin can be defined in

Prolog as follows (but can, of course, be implemented more efficiently at a low level):

skip(L,N,LS,NS) :- skip(L,N,LS,NS,0).

skip(LS,0,LS,NS,NS) :- !.

skip([℄,_,[℄,NS,NS).

skip([_|Ls℄,N,LRs,Ns0,Ns) :-

N1 is N-1,

Ns1 is Ns+1,

skip(Ls,N1,LRs,Ns0,Ns1).

We now return to our original program and make use of the proposed builtin (note

that the “flattening parameter” N can be now chosen dynamically):

vpro
_opt([℄,[℄,0).

vpro
_opt(L,LR,N) :-

N > 0,

skip(L,N,LS,NS),

skip(LR,NS,LRS,NS),

vpro
_opt(LS,LRS,NS) & vpro
_opt_n(NS,L,LR).
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vpro
_opt_n(0,_,_).

vpro
_opt_n(N,[L|Ls℄,[LR|LRs℄) :-

N > 0,

N1 is N-1,

vpro
_opt_n(N1,Ls,LRs) & pro
ess_element(L,LR).

We have included the skip/4 predicate as a C builtin in the &–Prolog system and run

the above program. The result is shown in Figure 4.7. The large delays are due to the

traversal of the list made by skip/4. Note, however, how the tasks are created in groups

of four corresponding to the dynamically selected increment, which can now be made

arbitrarily large. We believe that this idea would also be useful when implemented at an

even lower level [HC96].

It is worth noting that, in this case, the predicate skip/4 not only returns pointers to

sublists of a given list, but is also able to construct a new list composed with free vari-

ables. This allows spawning independent parallel processes, each one of them working in

separate segments of a list. This, in some sense, mimics the so–called poslist and neglist

identified in the Reform Compilation at run–time. Though this solution gives, obviously,

poorer performance than a compile–time approach.

Note also that other builtins similar to skip could be proposed for other types of data

structures and for each type of traversal allowed by each of those data structures.

Figure 4.9: Vector operation, list prebuilt (10 el./8 proc.)

As an example, we may want the splitting of the list to be used afterwards (for ex-

ample, because it is needed in some further similar processing). We can use the skip/4

predicate to build a skiplist/3 predicate as follows:
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skiplist([℄, _N, [℄):- !.

skiplist(L, N, [L|LSs℄):-

skip(L, N, LS, _M),

skiplist(LS, N, LSs).

Figure 4.10: “Skiplist” operation, 10 elements in 4

A typical call to skiplist/3 would be done with the two first arguments instantiated;

the third argument would return pointers to sublists of the first argument or, under a

more logical point of view, the third argument describes a set of sublists of the first

argument by means of difference lists. Figure 4.10 depicts this situation, and Figure 4.9

shows the result of an execution where the input and output data has been pre-processed

using this predicate. This list preprocessing does not appear in Figure 4.9, as an example

of the reuse of a previously traversed list.

4.2.6 Performance Evaluation

In order to assess the relative performance of the various techniques discussed, we have

run the examples on a larger (240 elements) list. The results presented in Table 4.1 show

the corresponding execution times. The column Relative Speedup refers to the speedup

with respect to the parallel execution in one processor, and the column Absolute Speedup

measures the execution speed with respect to the sequential execution. The numbers

between parentheses to the right of some benchmark names represent the skipping factor

chosen.

Overheads associated with scheduling, preparing tasks for parallel execution, etc.

make the parallel execution in one processor be slower than the sequential execution.

This difference is more acute in very small grained benchmarks, as the one we are dealing

with.
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The speedups suggested by Figures 4.4 to 4.9 may not correspond with those in the

table — the length of benchmark run and the skip/unfolding increment chosen in the

two cases is different, and so is the distribution of the tasks (the skip increment for the

benchmarks in Table 4.1 is given between parentheses). In fact, some figures suggest

a slowdown where the table shows a speedup. On the other hand, this indicates that

processing larger lists can take more advantage from the proposed techniques, because

the relative overhead from traversing the list is comparatively less.

Method Time (ms) Relative Speedup Absolute Speedup

Sequential 127 — 1

Parallel, 1 processor 153 1 0.83

Giving away recursion 134 1.14 0.94

Keeping recursion 41 3.73 3.09

Skipping (8) 30 5.1 4.23

Skipping (30) 28.5 5.36 4.45

Pre–built skipping list (8) 28 5.4 4.53

Pre–built skipping list (30) 26.5 5.77 4.79

Reform Compilation (8) 27 5.6 4.7

Data Parallel 26 5.88 4.88

Table 4.1: Times and speedups for different list access, 8 processors.

It can also be noted how a pre–built skipping list with a properly chosen increment

beats the reformed program. Of course a reformed program with the same unfolding

level would, in principle, at least equal the program with the pre–built list. But the point

is that the reformed program was statically transformed, whereas the skiplist version can

change dynamically, and be useful in cases where the same data is used several times in

the same program.

4.3 Constant Time Access Arrays in Prolog?

Finally, and for the sake of argument, we propose a simple-minded approach to the orig-

inal problem using the real “arrays” in standard Prolog, i.e. terms. Of course the use of

this technique is limited by the fact that term arity is limited in many Prolog implementa-

tions, but this could be very easily cured. In the query we create a vector of length N using

fun
tor/3, initialize it, and then pass it on to a “vector” version of vpro
 (we could, of
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Figure 4.11: Vector operation, constant access arrays (10 el./8 proc.)

course, also start with a list, as in previous examples, and convert it into a vector before

calling the parallelized “vector” version of vpro
):

vpro
(0,_,_).

vpro
(_,V,VR) :-

I>0,

I1 is I-1,

vpro
(I1,V,VR) & pro
ess_element(I,V,VR).

Element access is done in constant time using arg/3:

pro
ess_element(I,V,VR) :-

arg(I,V,H),

HR is ((((H * 2) / 5)^2)+(((H * 6) / 2)^3))/2,

arg(I,VR,HR).

The results are presented in Figure 4.11. In this example we are using a simple

minded loop which creates tasks recursively, but the same techniques illustrated in pre-

vious examples could be applied to this “real array” version: it is easy now to modify the

above program as in the previous examples in order to create the tasks in groups of N,

but now without having to previously traverse the data structure, as was the case when

using the skip builtin.

The result appears in Figure 4.12. From this figure it may seem that there is no

performance improvement derived from using this strategy. This is due to the fact that
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the execution depicted is very small, and the added overhead of calculating the “splitting

point” becomes a sizeable part of the whole execution. As in Table 4.1, in Table 4.2 larger

lists and skipping factors were chosen, achieving better speedups than the simple parallel

scheme. Since no real traversal is needed using this representation, the amount of items

traversed can be dynamically adjusted with no extra cost.

Method Time (ms) Relative Speedup Absolute Speedup

Sequential 149 — 1

Parallel, 1 processor 174 1 0.85

Keeping recursion 45 3.8 3.31

Binary startup 38 4.5 3.92

Skipping (8) 31.2 5.57 4.77

Skipping (30) 29.5 5.89 5.05

Table 4.2: Times and speedups for vector accesses

A more even load distribution than that obtained with the simple recursion scheme

can be achieved by using a binary split. This is equivalent to dynamically choosing the

splitting step to be half the length of the sub–vector assigned to the task. Figure 4.13

depicts this scheme. As in Figure 4.12, the comparatively large overhead associated with

the determination of the splitting point makes this execution appear larger than that

corresponding to the simple recursive case. But again, Table 4.2 reflects that for large

enough executions, its performance can be placed between the simple recursion scheme

and a carefully chosen skipping scheme.

It is clearly also trivial to convert from a list representation to a “vector representa-

tion” — e.g. for the one dimension case:

ve
torize(L,V) :- ve
torize(L,0,V) .

ve
torize([℄,N,V) :-

fun
tor(V,storage,N).

ve
torize([H|T℄,N,V) :-

N1 is N+1,

ve
torize(T,N1,V),

arg(N1,V,H).

Comparing Tables 4.1 and 4.2 some conclusions can be drawn. First, the structure–

based programs are slightly slower than their list–based counterparts. This is understand-
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Figure 4.12: Vector operation, con-

stant time access arrays, skipping,

10 el./8 proc.

Figure 4.13: Vector operation, con-

stant time access arrays, binary

startup, 10 el./8 proc.

able in that using structures as arrays involves an index handling that is less efficient (or,

rather, that has been less optimized) than in the case of lists. But the fact that accessing

any element in a structure is, in principle, a constant–time operation, allows a compara-

tively efficient implementation of the dynamic skip strategy. This is apparent in that the

speedups attained with the arrays version of the skipping technique are better than those

corresponding to the list–based programs. The absolute speed is less; this can be at-

tributed to the fact that the &–Prolog version with which these times were taken has the

arg/3 builtin written in C, with the associated overhead of calling and returning from a

C function. This could be improved making arg/3 (or a similar primitive) a faster, WAM–

level instruction. Again, if we want (or have to) use lists, a low–level ve
torize/2 builtin

could be fast enough to translate a list into a structure and still save time with respect to

a list–based implementation processing the resulting structure in a divide–and–conquer

fashion.

Finally, following on on this idea, we illustrate how one could even build a quite

general purpose “FORTRAN-like” constant access array library without ever departing

from standard Prolog or, eliminating the use of “setarg”, even from “clean” Prolog. It

is not that we are supporting the use of these data structures, but rather we are simply

trying to make the point that if one really, really, wants them, then the arrays are there.

The solution we propose is related to the standard “logarithmic access time” extensible

array library written by D.H.D.Warren. In this case, we obtain constant (rather than

logarithmic) access time, with the drawback that arrays are, at least in principle, fixed
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size.

We begin by defining the “type” array. Essentially, an array is a term of arity two

which contains as its first argument a list of integers which correspond to the dimensions

of the array (thus we can have arrays of arbitrary dimensions) and as its second argument

a term whose arity is the total number of cells in the array (and thus represents the total

amount of storage needed by the array):

is_array(matrix(D,S)) :-

fun
tor(S,storage,L),

multiply_list(D,L).

multiply_list([℄,1).

multiply_list([I|Is℄,N) :-

multiply_list(Is,N1),

N is N1 * I.

Arrays can be created, in full FORTRAN tradition, by performing a call to

dimension/2, where the first argument is a list with the dimensions of the array and

the second argument returns the array:

dimension(D,matrix(D,S)) :-

multiply_list(D,Nelements),

fun
tor(S,storage,Nelements).

Note, however, that with judicious use of delays (or in a CLP language) one can also

create arrays through a simple call to the type definition predicate.

All elements of the “storage” part are accessible as arguments of a structure in time

proportional to the number of dimensions of the matrix:

a

ess(matrix(D,S),I,X) :-


ompute_offset(I,D,Offset),

arg(Offset,S,X).


ompute_offset([I℄,[D℄,I) :-

I>0, I=<D, !.


ompute_offset([I|Is℄,[D|Ds℄,Offset) :-

I>0, I=<D, !,


ompute_offset(Is,Ds,Offset1),

I1 is I-1,

129



Chapter 4. Optimizing Executions with Data Parallelism

Offset is D * I1 + Offset1.


ompute_offset(_,_,_) :-

format("Warning: a

ess out of bounds in array.",[℄).

Finally, if one really, really wants to have everything one has in FORTRAN, then even

destructive assignment is available:

setel(matrix(D,S),I,X) :-


ompute_offset(I,D,Offset),

setarg(Offset,S,X).

However, one would hope that compilation technology would make the need for

resorting to these extremes unnecessary.

The definitions above are meant as a description of the logical meaning of the opera-

tions on arrays (except for the destructive assignment, of course). From a practical point

of view, these definitions should at least be changed to compute with an accumulating

parameter. Also, use of delay (or CLP) can make them fully reversible. More realistically,

all these operations should be builtins (or, even better, native instructions) for perfor-

mance reasons. Note that calls to dimension, access, set, etc. could in any case often be

very efficiently compiled in-line to a specialized call to fun
tor, arg, etc.

4.4 A Transformation to Obtain More Parallelism

Section 4.3 introduced and evaluated a scheme for the parallel execution of data-parallel

programs, in which the splitting point of the computation was set dynamically according

to the size of the data. This splitting point was chosen aiming at a better balance of the

work to be performed (including the creation of parallel tasks) between the two branches

of parallel computation. In this section we will explore this issue more in depth, and we

will develop a transformation, improving that in [DJ94], to cope with the cases where

the amount of work needed to find the size of a data structure increases with this size.

We will also discuss when this transformation can be applied, based on the properties of

the operations to be performed on the components of the data structure.

The transformations we will propose are not likely to be fully automatic at the present

stage of compilation techniques; however, we want to formalize a little bit the techniques

we have evaluated experimentally so far in this chapter, and identify where they can be

applied.
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4.4.1 The Basic Binary Transformation

Some computations frequently found in data-parallel algorithms can be described as a

transformation of an input x, consisting of one or several actual arguments, which can

be expressed as follows:

p(x) = d(e0(x)) ⊕ d(e1(x)) ⊕ d(e2(x)) ⊕ · · · d(en−1(x)) ⊕ b(en(x)) (4.1)

ei(x) obtains from the input data x the item needed in the ith step of the computation; e

should meet the property ei+1(x) = ei(e(x)). The ith item is transformed by the function

d, and the result of these expressions are combined using the operator ⊕. The base case

of the computation is given by the function b. The number n stands for the size ρ(x)

of x [LGH95, BK96, DL90], and is non-negative for any x. As an example, the factorial

function

n! = n ∗ (n − 1) ∗ (n − 2) ∗ · · · ∗ 2 ∗ 1

can be easily expressed as

n! = d(e0(n)) ⊕ d(e1(n)) ⊕ d(e2(n)) ⊕ · · · d(e(n−1)(n)) ⊕ b(en(n))

with ⊕ ≡ ∗, e(x) = x − 1, d(x) = x, and b(x) = 1.

Throughout the remaining of this section we will assume that the input arguments are

ground (as usually needed by data-parallel computations) and that the output arguments

are free variables. In fact, this latter requirement is not needed: calls can be made with

the arguments in output positions (partially) instantiated, as long as these calls do not

fail.

Using a mixture of logic and functional notation, a skeleton of a generic predicate

which performs this computation can be written (Figure 4.14) [DJ94]. The functions ⊕,

d, e, and b are supposed to be appropriately evaluated.

p(x, y) :− a(x), p(e(x), y1), y = d(x) ⊕ y1.

p(x, y) :− ¬a(x), y = b(x).

Figure 4.14: A recursion scheme

a(x) determines whether the base case has been reached or not, and behaves as if defined

by

a(x) ↔ ρ(x) > 0
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p(x, y) :− a(x), q(x, 1, ρ(x), y1), y = y1 ⊕ b(eρ(x)(x)).

p(x, y) :− ¬a(x), y = b(x).

q(x,m,m, y) :− y = d(em−1(x)).

q(x,m, n, y) :− m < n, m′ = ⌊m+n
2 ⌋, q(x,m,m′, y1), q(x,m′ + 1, n, y2), y =

y1 ⊕ y2.

Figure 4.15: A transformation to improve parallelism

The procedure shown in Figure 4.14 has data dependencies among the recursive

calls: for the result y to be worked out, the rest of the calls in the body must have been

finished, which prevents its parallelization (as done in [BLM93b]). In [DJ94] a simple

transformation (Figure 4.15) is shown which improves the independence of the compu-

tation, provided that the operator ⊕ is associative. The idea is to split the computation

in halves and combine the result of each half; this needs the associativity of ⊕. In that

case, the two calls to q/4 can be computed in separate branches (probably in parallel)

and combined afterwards. The program in Figure 4.15 carries two counters, m and n,

which locate exactly which part of the computation is being worked out. When a leaf of

the binary tree is reached, a partial result is evaluated from the input data. This result is

recursively propagated upwards, and combined with other results obtained in the same

way.

For an input of size n, the simple recursive scheme applies n times the function d and

n + 1 times the function e. The binary scheme applies n times the function d, but e is

applied
∑n

i=1 i = n(n+1)
2 times. This difference comes from the fact that in the simple

recursive case the output of en(x) is used to calculate en+1(x), and these partial results

are handed down in successive invocations of the predicate. In the doubly recursive pro-

gram, the leaves of the tree receive the initial input argument and apply e the necessary

number of times. If applying e is costly, it might not even be worthwhile to execute in

parallel the transformed program. Numerical loops do not suffer usually from this draw-

back, but, as we will see, algorithms using more complex data structures can be affected

by it.

For example, the following simple recursive program accepts a list of numbers as

input and returns as output another list composed by applying a (unevaluated) function

f to each of them:

apply([℄, [℄).

apply([I|Is℄, [O|Os℄):-
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O = f(I),

apply(Is, Os).

This predicate can be transformed using the scheme in Figure 4.14 by establishing

the following mapping:

Schematic operation Concrete operation

ρ(x) = n length(X, N)

a(x) X = [_|_℄

e(x) = y X = [_|Y℄

em(x) = y nthtail(M, X, Y)

d(x) = y X = [W|_℄, Y = [f(W)℄

x ⊕ y = z append(X, Y, Z)

b(x) = y Y = [℄

The append/3 predicate is associative if it is viewed as a function with the first and second

arguments as input. Since the type of associative operators is the same for both input

and output, the function d has to return a list. The transformed program is as follows:

apply(X, Y):- \+ X = [_|_℄, Y = [℄.

apply(X, Y):-

X = [_|_℄,

X = [_|X1℄,

apply(X1, Y1),

X = [W|_℄,

Y2 = [f(W)℄,

append(Y2, Y1, Y).

which, after some sensible local rewriting (which may be performed by partial evaluators

[DGT96, PH95, Sah90]), yields the following Prolog program:

apply([℄, [℄).

apply([X|Xs℄, Y):-

apply(Xs, Ys),

append([f(X)℄, Ys, Y).

The binary transformation applied to this program produces (again, after some sen-

sible rewriting which groups and reorders the unifications) the following code:
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apply_bin([℄, [℄).

apply_bin([X|Xs℄, Y):-

length([X|Xs℄, L),

apply_q([X|Xs℄, 1, L, Y).

apply_q(X, M, M, [f(W)℄):-

M1 is M - 1,

nthtail(M1, X, [W|_℄).

apply_q(X, M, N, Y):-

M < N,

Mp is (M + N) // 2,

apply_q(X, M, Mp, Y1),

M1 is Mp + 1,

apply_q(X, M1, N, Y2),

append(Y1, Y2, Y).

nthtail/3 is supposed to return in the third argument the nth tail of a given list

(being the 0-th tail the initial list itself; thus, nthtail/3 meets the conditions needed

to model correctly e). It is possible to make append/3 in the last clause to execute

in constant time by using difference lists, but unfortunately length/2 and nthtail/3

cannot be changed in a similar way. It is clear that much of the advantage of the parallel

execution can be lost in traversing lists; but if d is costly to execute, this traversal might

be worthwhile.

The bottom line is that if evaluating en+1 is harder than evaluating en, as in this case,

the doubly recursive program has a higher complexity than the original program, which,

depending on how difficult is the evaluation of d compared with that of e, can render

parallel execution worthless. On the other hand, programs where en has a constant cost

regardless of the value of n clearly benefit from this transformation, as shown in [DJ94].

4.4.2 An alternative transformation

The overhead of the repeated calls to e can be reduced by passing down partial results of

the application of the function e to x, as in Figure 4.16.

The main difference with the scheme in Figure 4.15 is that the function e is applied

incrementally to the branches of the computation, instead of being called only at the

leaves. Since the basic case function b is applied to the value eρ(x)(x), and this value is

incrementally calculated along the branches, we need to distinguish the left and right
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p(x, y) :− a(x), qr(x, ρ(x), y).

p(x, y) :− ¬a(x), y = b(x).

qr(x, n, y) :− n = 1, y = d(x) ⊕ b(e(x)).

qr(x, n, y) :− n > 1, m = ⌊n
2 ⌋, ql(x,m, y1), qr(e

m(x), n − m, y2), y = y1 ⊕ y2.

ql(x, n, y) :− n = 1, y = d(x).

ql(x, n, y) :− n > 1, m = ⌊n
2 ⌋, ql(x,m, y1), ql(e

m(x), n − m, y2), y = y1 ⊕ y2.

Figure 4.16: Handing down applications in a binarized function

branches of the computation, being the rightmost branch the one which eventually ap-

plies b. The transformation in Figure 4.16 can be applied to the apply/2 program to yield

the following code (again, after some sensible rewriting):

apply_bin_pd([℄, [℄).

apply_bin_pd(X, Y):-

length(X, Lx),

apply_bin_pd_r(X, Lx, Y).

apply_bin_pd_r([X℄, 1, [f(X)℄).

apply_bin_pd_r(X, N, Y):-

N > 1,

M is N // 2,

apply_bin_pd_l(X, M, Y1),

nthtail(M, X, Xm),

M1 is N - M,

apply_bin_pd_r(Xm, M1, Y2),

append(Y1, Y2, Y).

apply_bin_pd_l([X|_℄, 1, [f(X)℄).

apply_bin_pd_l(X, N, Y):-

N > 1,

M is N // 2,

apply_bin_pd_l(X, M, Y1),

nthtail(M, X, Xm),

M1 is N - M,

apply_bin_pd_l(Xm, M1, Y2),
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append(Y1, Y2, Y).

The function d is applied the same number of times as in the scheme of Figure 4.15,

but e is called less times. The number of applications of e is given by f(ρ(x)), where f is

defined as

f(n) =







0 if n = 0

g(n) + 1 if n > 0

g(n) =







0 if n = 1

⌊n
2 ⌋ + g(⌊n

2 ⌋) + g(n − ⌊n
2 ⌋) if n > 1

This can be approximated by the upper bound Θf (n) = ⌊n log2 n
2 ⌋, which is accurate when

n is a power of two.

4.4.3 A More General Transformation

The previous transformations rely on having an (associative) operation which combines

the different partial results to yield the final result. Knowing that the operator was meant

to be a function made it easy to distinguish which arguments were “input” and which

were “output”.

Some programs are difficult, or at least unnatural, to fit in the function-based scheme.

This is the case of programs using partially instantiated structures, or with several output

arguments. For this type of programs, the requirement of having an associative function

combining partial results can be translated into having a predicate meeting certain prop-

erties, which will allow the transformation into the doubly recursive form.

There are other problems related with the use of certain data structures: indexed data

structures are specially useful in data-parallel programs, and mapping those structures

to the templates shown before yields programs with an odd appearance. Figure 4.17

presents one example: every nth element in the input structure is mapped onto the

nth argument of the output structure (the application of the function f to an element N

of the input vector I is, for clarity, encapsulated inside the predicate set_element/3).

Since any element in the structure can be accessed in constant time and each of these

elements is transformed independently of the rest, the use of data parallelism and of

the proposed transformation techniques is appealing. But every application of f (the
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corresponding to d) is performed on a different element of the input structure, while

in previous examples the element to which d should be applied was generated directly

by transforming the initial argument. In the current case, the input argument needs to

identify which element in the structure has to be accessed: this can be accomplished,

for example, by augmenting this argument to be a tuple 〈index, structure〉, so that the

index of the argument being accessed at every computation step is encapsulated with

the data. Since the left and right operands of an associative operator have the same

type, the output argument must be a similar tuple. In Figure 4.18 the arguments have

been explicitly grouped in tuples; the following table shows how each part of the Prolog

program is mapped onto the translation scheme:

Abstract Operation Concrete Operation

ρ(x) = n X = (_, V), length(V, N)

a(x) X = (N, V), N > 0

e(x) = y (N, X) = (N-1, Y)

em(x) = y (N, X) = (N-M, Y)

d(x) = y apply_to_element(X, Y)

x ⊕ y = z X = Y, X = Z

b(x) = y Y = _

The composition of partial results using ⊕ needs to work on independent

data structures (otherwise, the parallelization would not be possible). This forces

apply_to_element/2 to create a new output argument—which, in this case, is a whole

new vector with only an argument instantiated. The ⊕-composition of the intermediate

results boils down to unification. This is not what one usually wants: the standard ap-

proach of the programmer would be to have just one output argument and instantiate its

contents during the computation. But this would, in principle, break the conditions for

strict independence, since free variables would be shared by parallel goals—although no

two parallel goals would try to instantiate the same variable.

The introduction of indices into the simple recursive scheme, and the presence of

shared logical variables will force us to consider the next and, for now, last scheme for

predicate binarization.

4.4.4 Indices Made Explicit

Figure 4.18 shows a program which recursively splits a vector-to-vector computation in

halves, so that the overhead of starting up parallel tasks is distributed among processors.
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ar_apply(I, O):-

fun
tor(I, Name, N),

fun
tor(O, Name, N),

ar_apply(N, I, O).

ar_apply(0, _, _).

ar_apply(N, I, O):-

N > 0,

N1 is N - 1,

set_element(N, I, O),

ar_apply(N1, I, O).

set_element(N, I, O):-

arg(N, I, ArgN),

arg(N, O, f(ArgN)).

Figure 4.17: apply program with

structures

ar_apply(I, O):-

fun
tor(I, Name, N),

fun
tor(O, Name, N),

ar_apply_tu((N, I), (N, O)).

ar_apply_tu(X, _Y):-

X = (N, _V), N = 0.

ar_apply_tu(X, Y):-

X = (Ni, I), Ni > 0,

Ni1 is Ni - 1,

apply_to_element(X, Xap),

Xnew = (Ni1, I),

ar_apply_tu(Xnew, Ynew),


ompose(Xap, Ynew, Y).

apply_to_element((Nx,X), (_Ny,Y)):-

fun
tor(X, Name, Ar),

fun
tor(Y, Name, Ar),

arg(Nx, X, H),

NewH = f(H),

arg(Nx, Y, NewH).


ompose(X, X, X).

Figure 4.18: apply program with struc-

tures and I/O arguments

A problem in this code is the replication of the index in the input and output arguments

and the creation of a new vector for each element, when only an element of this new

vector is bound. Many mapping operations use the same index for input and output

arguments, which means that in similar data structures, an information item in the input

structure is transformed into another information item in the corresponding position of

the output structure, and so there is no need to have separate input and output indices.

It is even possible that the index for the output argument can be computed on the fly, if
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a different location is required4. It may be then a good idea to make an index explicit in

the translation scheme, which can be accomplished by augmenting the expression 4.1 to

become

p(x) = d(e0(x), 0) ⊕ d(e1(x), 1) ⊕ d(e2(x), 2) ⊕ · · · d(en−1(x), n − 1) ⊕ b(en(x), n) (4.2)

where d has now an additional argument stating which iteration step it belongs to. Fol-

lowing on with the naming convention we have been using so far, we can develop a

variant (Figure 4.19) of the recursion scheme in 4.14 which implements the above com-

putation.

p(x, y) :− a(x), y = b(x).

p(x, y) :− ¬a(x), q(x, 1, y).

q(x,m, y) :− m = ρ(x), y = d(x,m) ⊕ b(e(x),m + 1).

q(x,m, y) :− m < ρ(x), q(e(x),m + 1, y1), y = d(x,m) ⊕ y1.

Figure 4.19: A recursion scheme including indices

p(x, y) :− ¬a(x), y = b(x).

p(x, y) :− a(x), qr(x, 1, ρ(x), y).

qr(x,m,m, y) :− y = d(x,m) ⊕ b(e(x)).

qr(x,m, n, y) :− m < n, n1 = ⌊m+n
2 ⌋, ql(x,m, n1, y1),

m1 = n1 + 1, qr(e
m1−m(x),m1, n, y2), y = y1 ⊕ y2.

ql(x,m,m, y) :− y = d(x,m).

ql(x,m, n, y) :− m < n, n1 = ⌊m+n
2 ⌋, ql(x,m, n1, y1),

m1 = n1 + 1, ql(e
m1−m(x),m1, n, y2), y = y1 ⊕ y2.

Figure 4.20: Handing down applications with explicit indices

Using a scheme similar to that of Figure 4.16 a recursion pattern can be written which

takes explicitly into account the presence of indices pointing to items in data structures

(Figure 4.20). In this code, the two indices represent the window each subcomputation

is in charge of. When both are equal, there is only one element in the window to be

processed, and its index is readily available.

4But we will not take this possibility into account in the transformation we will develop now, for the sake

of clarity.
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Scheme Concrete

a(x) atom(X)

b(x, y) Y = 0

d(x,m, y) arg(M, X, Y)

em(x, y) X = Y

⊕(y1, y2, y) Y is Y1 + Y2

ρ(x, l) fun
tor(X, _, L)

Table 4.3: Adding elements

Scheme Concrete

a(x) atom(X)

b(x, y) Y = [℄

d(x,m, y) arg(M, X, A), Y = [A℄

em(x, y) X = Y

⊕(y1, y2, y) append(Y1, Y2, Y)

ρ(x, l) fun
tor(X, _, L)

Table 4.4: Mapping a structure onto a

list

Figures 4.21 and 4.22 show two examples of the application of this skeleton to two

programs: the first one adds the (numerical) arguments of a structure, and the second

one creates a list containing all the elements in a structure (similar to the =../2 Prolog

predicate, but without including the functor name). They where written by applying

the definitions in Tables 4.3 and 4.4 to the skeleton in Figure 4.20, and performing (by

hand) some code cleaning (inlining the definition of the predicates, propagating the local

unifications, and simplifying obvious arithmetical operations). It is to be noted that, in

the case of Table 4.4, the list-related operations could have used difference lists to achieve

a better performance.

This transformation, applied to the program in Figure 4.18 which maps a Prolog struc-

ture into another structure, yields a code (Figure 4.23) similar to that used in Section 4.3

to evaluate the doubly-recursive parallel version whose execution was depicted in Fig-

ure 4.13. The ⊕/3 predicate performs just unification, but the application of d(x,m)

creates a new data structure on the fly, with the associated overhead, even if only a

single element of this data structure is actually accessed. This program can be systemat-

ically simplified by inlining the definition of ⊕/3 and by lifting the calls to fun
tor/3 in

apply_to_element/3 to the toplevel predicate; this is possible because, after the propa-

gation of the unifications performed by ⊕/3, all the calls to fun
tor/3 can be shown to

be applied to the same parameters.

The safeness of the parallel execution with this last (logically correct) simplification

is challenged. When every recursive call returned a new data structure with fresh vari-

ables, which was combined afterwards, the independence of the computations was en-

sured; however, when the calls to be executed in parallel share variables, they can be,

at most, non strictly independent. This means that no two parallel goals should bind

the same variable, although they have access to it. Our transformation ensures that dif-
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p(I, 0):-

atom(I).

p(I, O):-

\+ atom(I),

fun
tor(I, _Name, Length),

q_r(I, 1, Length, O).

q_r(Base, Indx, Indx, Element):-

arg(Indx, Base, Element).

q_r(I, M, N, O):-

M < N,

N1 is (M + N) // 2,

M1 is N1 + 1,

q_l(I, M, N1, Ol),

q_r(I, M1, N, Or),

O is Ol + Or.

q_l(Base, Indx, Indx, Element):-

arg(Indx, Base, Element).

q_l(I, M, N, O):-

M < N,

N1 is (M + N) // 2,

M1 is N1 + 1,

q_l(I, M, N1, Ol),

q_l(I, M1, N, Or),

O is Ol + Or.

Figure 4.21: Adding elements of a struc-

ture

p(I, [℄):-

atom(I).

p(I, O):-

\+ atom(I),

fun
tor(I, _Name, Length),

q_r(I, 1, Length, O).

q_r(Base, Indx, Indx, ResOp):-

arg(Indx, Base, Element),

append([Element℄, [℄, ResOp).

q_r(I, M, N, O):-

M < N,

N1 is (M + N) // 2,

M1 is N1 + 1,

q_l(I, M, N1, Ol),

q_r(I, M1, N, Or),

append(Ol, Or, O).

q_l(Base, Indx, Indx, [ResOp℄):-

arg(Indx, Base, ResOp).

q_l(I, M, N, O):-

M < N,

N1 is (M + N) // 2,

M1 is N1 + 1,

q_l(I, M, N1, Ol),

q_l(I, M1, N, Or),

append(Ol, Or, O).

Figure 4.22: Mapping a structure onto a

list

ferent calls to d are addressed to different indices in the data structure. Since different

indices correspond to actual different elements, the non-strict independence is met, and

the simplifications performed are safe with respect to correct parallel execution.

A last step in simplification comes from the observation that in Figure 4.24 the clauses
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ar_apply_bin(X, Y):-

atom(X),

X = Y.

ar_apply_bin(X, Y):-

\+ atom(X),

fun
tor(X, _Name, N),

ar_apply_tu_r(X, 1, N, Y).

ar_apply_tu_r(X, M, M, Y):-

apply_to_element(X, M, Y1),


ompose(Y1, _, Y).

ar_apply_tu_r(X, M, N, Y):-

M < N,

N1 is (M + N) // 2,

ar_apply_tu_l(X, M, N1, Y1),

M1 is N1 + 1,

ar_apply_tu_r(X, M1, N, Y2),


ompose(Y1, Y2, Y).

ar_apply_tu_l(X, M, M, Y):-

apply_to_element(X, M, Y).

ar_apply_tu_l(X, M, N, Y):-

M < N,

N1 is (M + N) // 2,

ar_apply_tu_l(X, M, N1, Y1),

M1 is N1 + 1,

ar_apply_tu_l(X, M1, N, Y2),


ompose(Y1, Y2, Y).

apply_to_element(X, N, Y):-

fun
tor(X, Name, Arity),

fun
tor(Y, Name, Arity),

arg(N, X, H),

NewH = f(H),

arg(N, Y, NewH).


ompose(X, X, X).

Figure 4.23: A doubly recursive predi-

cate

ar_apply_bin(X, Y):-

atom(X),

X = Y.

ar_apply_bin(X, Y):-

\+ atom(X),

fun
tor(X, Name, N),

fun
tor(Y, Name, N),

ar_apply_tu_r(X, 1, N, Y).

ar_apply_tu_r(X, M, M, Y):-

apply_to_element(X, M, Y).

ar_apply_tu_r(X, M, N, Y):-

M < N,

N1 is (M + N) // 2,

ar_apply_tu_l(X, M, N1, Y),

M1 is N1 + 1,

ar_apply_tu_r(X, M1, N, Y).

ar_apply_tu_l(X, M, M, Y):-

apply_to_element(X, M, Y).

ar_apply_tu_l(X, M, N, Y):-

M < N,

N1 is (M + N) // 2,

ar_apply_tu_l(X, M, N1, Y),

M1 is N1 + 1,

ar_apply_tu_l(X, M1, N, Y).

apply_to_element(X, N, Y):-

arg(N, X, H),

arg(N, Y, f(H)).

Figure 4.24: After further simplification

142



4.5. Conclusions

ar_apply_bin(X, Y):-

atom(X),

X = Y.

ar_apply_bin(X, Y):-

\+ atom(X),

fun
tor(X, Name, N),

fun
tor(Y, Name, N),

ar_apply_tu(X, 1, N, Y).

ar_apply_tu(X, M, M, Y):-

apply_to_element(X, M, Y).

ar_apply_tu(X, M, N, Y):-

M < N,

N1 is (M + N) // 2,

ar_apply_tu(X, M, N1, Y),

M1 is N1 + 1,

ar_apply_tu(X, M1, N, Y).

apply_to_element(X, N, Y):-

arg(N, X, H),

arg(N, Y, f(H)).

Figure 4.25: Identical clauses can be collapsed

corresponding to the predicates arr_apply_tu_r/4 and arr_apply_tu_l/4 are identical,

and can thus be collapsed into a single predicate. Figure 4.25 shows the result of this

simplification, which is exactly the code which was used to generate the trace depicted

in Figure 4.13 and the data in Table 4.2.

4.5 Conclusions

We have argued that data–parallelism and and–parallelism are not fundamentally differ-

ent and that the advantages of both can be obtained within the same system. We have

argued that the difference lies in two main issues: memory management and fast task

startup. Having pointed to recent progress in memory management techniques in and–
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p(x, y) :− ¬a(x), b(x, y).

p(x, y) :− a(x), ρ(x, l), qr(x, 1, l, y).

qr(x,m,m, y) :− d(x,m, y1), e(x, 1, x1), b(x1, y2), ⊕(y1, y2, y).

qr(x,m, n, y) :− m > n, n1 = ⌊m+n
2 ⌋, ql(x,m, n1, y1),

m1 = n1 + 1, e(x,m1 − m,x1), qr(x1,m1, n, y2), ⊕(y1, y2, y).

ql(x,m,m, y) :− y = d(x,m).

ql(x,m, n, y) :− m > n, n1 = ⌊m+n
2 ⌋, ql(x,m, n1, y1),

m1 = n1 + 1, e(x,m1 − m,x1), ql(x1,m1, n, y2), ⊕(y1, y2, y).

Figure 4.26: Explicit indices and logical variables

parallelism we have concentrated on the topic of fast task startup, discussing the relevant

issues, and proposed a number of solutions, illustrating the point made through visual-

izations of actual parallel executions implementing the ideas proposed. In summary, we

argue that both approaches can be easily reconciled, resulting in more powerful systems

which can bring the performance benefits of data–parallelism with the generality of tra-

ditional and–parallel systems.

The examples shown focused on a type of computations characterized by iterations

over data structures which, in our case, are lists or arrays; we argue that these cases

are very frequent, and that paying attention to them would improve the performance

of many programs. We have shown some transformation techniques leading to a better

dynamic load distribution that can improve the speedups obtained in parallel executions.

However, the overhead associated with this dynamic distribution is large in the case of

lists; better speedups can be obtained using data structures with constant access time, in

which choosing arbitrarily the splitting point does not impose any additional overhead.

In other computation schemata the iteration is performed over a numerical parame-

ter; while not directly characterizable (or usually seen) as “data–parallelism”, this type

of iteration can also benefit from fast task startup techniques. This very interesting issue

has been discussed by Debray and Jain [DJ94], and shown also to achieve significant

speedups for that class of problems. The transformation proposed by them, while ad-

equate for numerical computations, adds a significant overhead when applied to com-

putations dealing with other data structures. We have extended this transformation to

improve its performance in the cases where the cost of computating intermediate argu-

ments is not independent of their sizes, and to the cases where the data structures are

indexed. The simply recursive programs, once transformed, are identical to those used
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in the examples of data-parallel computations; thus, the transformations proposed can

be used to effectively change the initial programs into doubly recursive ones.
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Chapter 5

Some Optimizations for Independent

And-parallel Systems

Chapter Summary

There are a series of sources of overhead in the And-parallel execution of Prolog pro-

grams. Many of them are due to the need of maintaining a backtracking semantics

compatible with that existing in the sequential execution. There are, however, many

situations in which it is unnecessary to preserve this behavior, and therefore it becames

possible to avoid the associated overhead. We present the design and evaluation of

some low level optimizations for and-parallel executions in this chapter. These op-

timizations are aimed at removing the need of taking into account the possibility of

backtracking which is finally not needed.

5.1 Introduction

The high-level description given in Chapter 2 may suggest that building a RAP system is

relatively straightforward. This is however not true in the least: the design and imple-

mentation of correct and efficient mechanismos for such a system is not without concep-

tual and technical challenges:

Logical vs. Physical: the Warren Abstract Machine has been carefully crafted to sup-

port efficient sequential execution of logic programs. In its design the WAM takes

full advantage of the direct correspondence between logical structure of the execu-

tion and its physical layout in the abstract machine’s data areas, as well of as the

ordering in memory of these areas. This allows a considerably simpler execution of

very complex operations—e.g. backtracking becomes very efficient, since a choice

point on the stack is capable of completely identifying the execution state existing

at its creation time.
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This is not anymore true when dealing with unrestricted scheduling of goals1

[SH94]: the computation can be arbitrarily spread on the stacks of different agents,

and the physical order of computations on each stack can be completely different

from the logical one (e.g. a subgoal A which appears to the right of a subgoal B
may appear on the stack in the opposite order [Her86a]).

This lack of matching between logical and physical view of the execution creates

considerable difficulties. Positioning on a choice point is not sufficient anymore to

get a view of a state of the execution (as in the case of sequential computations).

This correspondence has to be explicitly recreated, using additional data structures

(in our case, the information contained in the markers).

Backtracking Policy: the backtracking semantics described earlier specifies what (and

when) has to be done, but does not hints how backtracking on distributed compu-

tations can be implemented. Two approaches are feasible:

1. Private Backtracking: each agent is allowed to backtrack only over parts of

the computation that are lying in its own stacks. This simplifies the memory

management, but requires implementation of synchronization mechanisms to

transfer the backtracking activity between agents.

2. Public Backtracking: each agent is allowed to backtrack on the stacks of other

agents. This avoids the additional costs of communication between agents,

but makes garbage collection and the overall memory organization more com-

plex.

Both approaches are difficult to implement, and add an additional overload to the

system, which has either to send appropriate messages in order to communicate

the need of backtracking or split memory stacks in order to let other processor to

use them.

Trail Management: one of the main problems in managing backtracking in an and-

parallel system is detecting the parts of the trail stack that need to be unwound

(i.e., detecting bindings that have to be removed to restore the proper computation

state). A popular model used by, e.g., ACE [PGH95], is based on a segmented view

of the stack, where a segment is defined by a section of the stack between two

consecutive choicepoints. This makes trail management slightly less efficient than

1We use the term unrestricted scheduling to specify that no restrictions are imposed during scheduling on

the selection of the next piece of work.
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in traditional sequential implementations (two pointers, instead of one, pointing

to the beginning and end of the relevant section of the trail, need to be saved in

each choicepoint), but considerably simplifies both backtracking and management

of or-parallelism.

Garbage Collection: the use of private backtracking allows recovery of a considerable

amount of garbage “on-the-fly” during execution. Nevertheless, garbage collection

remains more complicated, due to the lack of correspondence between logical order

of backtracking and physical distribution of the computation. Parts of computation

which are not on the top of the stack may be backtracked over first, leaving behind

holes in the stacks (this is the so–called “garbage slot” problem) that need to be

properly tagged and eventually recovered.

From the previous points we can conclude that a sizeable part of And-parallel exe-

cution will finally be devoted to consult and manage information related with goal/task

synchronization and with the (internal) state of the execution, penalizing the execution

of the user code. The main associated problems are, besides the difficulty of the im-

plementation in itself, the waste of time (which diminishes the system efficiency) and

of memory, needed in order to maintain data-structures to guarantee a correct parallel

execution. A great deal of this overhead comes from having the execution segments in-

terspread through several physical stacks, which forces traversing several memory zones

in order to generate a comprehensive view of the execution structure, and to know where

and to where backtracking must be performed.

The schemata seen so far are however designed for the most general case, and follow

an approach which can satisfy all possible situations. Unsurprisingly, this “most general

approach” is also very costly. Special properties of particular executions can be taken

advantage of in order to simpilify the execution profile.

The code transformations proposed in Chapter 4, which help in obtaining more effi-

ciency, do not change the number of parallel user goals generated.2 Techniques such as

granularity analysis, applicable at the Prolog code level, do reduce clearly this number

(see, e.g., Figure 3.25). It possible to go to a lower implementation level and use proper-

ties such as determinism in order to allow partially the use of additional memory without

reducing the number of parallel tasks. We will perform this by identifying and taking ad-

vantage of some program properties which allow reducing the overhead imposed by the

general case of parallel execution, but without forgetting that this simplification must
2I.e., the number of parallel goals which perform work explicitly expressed by the programmer remains

the same. More control tasks, aiming at a better load distribution, can however appear.
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not invalidae the general case.

In this chapter we will describe two low level optimizatins which need some changes

in the WAM implementation, and we will study its impact in the quality of the execution:

the last parallel call optimization (LPCO) and the backtracking families optimization. The

first one is completely based on the run time behavior of the program, while the second

requires some informacion which, as goal independence, should be statically gathered

before the execution.

5.2 Last Parallel Call Optimization

Last Parallel Call Optimization (LPCO) is a generalization of the Last Call Optimiza-

tion [War80]—adopted in most sequential implementations—to the case of parallel calls.

Its intent is to merge, whenever possible, distinct parallel conjunctions. Last Parallel Call

Optimization can lead to a number of advantages (discussed later). The advantages of

LPCO are very similar to those for last call optimization [War80] in the WAM. The con-

ditions under which the LPCO applies are also very similar to those under which last call

optimization is applicable in sequential systems.

Consider first the following example:

?- p & q.

p:- r & s.

q:- t & u.

The and-tree constructed is shown in Figure 5.1(i). One can reduce the number of

parcall nodes, at least for this example, by rewriting the query3 as

?- r & s & t & u.

Figure 5.1(ii) shows the and-tree that will be created if we apply this optimization.

Note that executing the and-tree shown in Figure 5.1(ii) will require less space because

the parcall frames for r & s and t & u will not be allocated. The single parcall frame

allocated will have two extra goal slots compared to the parcall frame allocated for p &

q in Figure 5.1(i). It is possible to detect cases such as the one above at compile time.

However, our aim is to accomplish this saving in time and space at runtime. Thus, for

the example above, our scheme will work as follows. When the parallel calls r & s and
3Under the assumption that the two clauses are the only matching ones.
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t & u are made, the runtime system will recognize that they are the last parallel calls in

their respective clauses and that the parallel call p & q is immediately above. Instead of

allocating a new parcall frame some extra information will be added to the parcall frame

of p & q and allocation of a new parcall frame avoided. Note that this is only possible

if both p and q are determinate, i.e. they have at most one matching clause. The extra

information added will consist of adding slots for the goals r, s, etc. In particular, no

new control information needs to be recorded in the parcall frame of p & q. However,

some control information, such as the number of slots, etc., need to be modified in the

parcall frame of p & q. It is also necessary to slightly modify the structure of a slot in

order to adapt it to the new pattern of execution.4

r & s & t & u
r s t u

fig(ii)

p & q

r & s t & u

p q

r s t u

fig (i)

f1

f2 f3

Figure 5.1: Optimization Schemes

It is important to observe that, if the goal r is to fail in inside mode, then in case (ii)

(see Figure 5.1(ii)) killing of computation in sibling and-branches will be considerably

simplified. In case (i) the failure will have to be propagated from parcall frame f2 to

parcall frame f1. From f1 a kill message will have to be sent out to parcall frame f3. In

case (ii) a linear scan of only one goal list is sufficient.

One could argue, as mentioned earlier, that the improved scheme described above

can be accomplished simply through compile time transformations. However, in many

cases this may not be possible. For example, if p and q are dynamic predicates or if there

is not sufficient static information to detect the determinacy of p and q, then the compile-

time analysis will not be able to detect the eventual applicability of the optimization. Our

scheme will work even if p and q are dynamic or if determinacy information cannot be

statically detected (because it is triggered only at runtime). Also, even more relevant, for

many programs the number of parallel conjunctions that can be combined into one will

only be determined at run-time [TPG94].

4For example, it is necessary to keep in each slot a pointer to the environment in which the execution of

the corresponding subgoal will start.
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In general, application of LPCO requires two conditions to be satisfied:

• determinacy of the computation between two nested parallel calls;

• non-existence of any continuation after the nested parallel calls (i.e., only the top-

most parcall can have a continuation).

These conditions are satisfied by a large number of programs (e.g., tail-recursive

programs) [GP95]. Work is in progress to generalize this optimization, so that it applies

to a wider range of programs [PG94, PG95b]. It is important to observe that the cost of

verifying applicability of LPCO at run-time is absolutely negligible (comparison of two

pointers). This is a further justification for keeping the optimization as a pure run-time

operation.

Executed LPCO execution

goal fw/without lpco fw/with lpco bw/without lpco bw/with lpco

bt_cluster 890 843 (5%) 929 853 (8%)

deriv(0) 94 34 (64%) 131 38 (71%)

poccur(5) 3216 3063 (5%) 3352 3226 (4%)

annotator(5) 1327 1282 (3%) 1334 1281 (4%)

matrix_mult(20) 1724 1649 (4%) 1905 1696 (11%)

search(1500) 2354 1952 (17%) 8370 2154 (74%)

Table 5.1: Timings with and without lpco (single processor)

Table 5.1 illustrates the results obtained executing some of the benchmarks using

LPCO. The results are extremely good for programs with a certain structure. In particu-

lar, programs of the form p(. . .) :- q(. . .) & p(. . .), where q(. . .) gives rise to a deter-

ministic computation with a sufficiently deep level of recursion, will offer considerable

improvement in performance.

Interesting results are also seen by examining the effect of inside failures during ex-

ecution: the use of LPCO allows further improvement. The presence of a single parcall

frame considerably reduces the delay of propagating kill signals (kill signals are sent to

sibling and-branches by a failed subgoal in a parallel conjunction to remove them from

the computation). Speedups of up to a 42% have been observed in a matrix multiplica-

tion.
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5.3 Backtracking Families Optimization

LPCO uses characteristics of the program found out at run-time. However, it is interesting

to explore whether similar ideas can be extended to cover more cases if some compile-

time analysis information is available. In particular, we concentrate on the following

types of information: knowledge that a goal (and its whole subtree) is deterministic, and

knowledge that a goal has a single solution. In addition, knowledge that a goal will not

fail is also quite useful [HR95]. It is beyond the scope of this paper to address how this

information is gathered—the reader is referred to related work in the area of abstract

interpretation based global analysis [JM94, BdlBH94c, SCWY91c, VD92, DLGH94]. We

will address instead how such information can be exploited at the parallel abstract ma-

chine level.

We start by considering the case in which several parallel goals, perhaps not contigu-

ous in the program text, but which are known to be deterministic, end up being executed

on the same processor. As an example, consider the parallel call a & b & 
, where a,

b and 
 are known to be deterministic. If a and b are executed on the same processor,

the situation is as in the previous section and clearly no markers need to be allocated

between the two goals. But if a and 
 are executed on the same processor, one after the

other, since they are known to be deterministic, no markers need to be allocated between

them either. This is based on the fact that if a, b, 
 are known to be deterministic and in-

dependent a & b & 
 is equivalent to a & 
 & b, and to any other permutation, modulo

side effects.5 The advantage is clearly that the input marker of a can be simply shared by


.

The optimization can also be applied in cases where whole collections of related

deterministic goals are created in loops, as in

p1:- a & b & p.

p2.

We assume that a, b, p are known to be deterministic. An execution of p would

generate goals of the form

a & b & a' & b' & a� & b� ... & p2

Since all these goals are independent and deterministic, no intermediate marker is

needed whenever they stack one over the other in a given processor, i.e., only one marker
5Note that side effects would have been taken into account beforehand by the parallelizer by imposing a

synchronization among them — which, in the worst case, can lead to the sequentialization of the goals.
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would be needed per processor (assuming there are no other parallel conjunctions). Note

that when p is to be backtracked from outside, all the goals a, b, a', b'... have to be

backtracked over. However, the order in which this is done is not important. Thus, every

segment formed by consecutively stacked goals can be backtracked (only untrailing is

really required) in one step by simply unwinding down to the sole input marker. This

saves time and space in forward execution, since fewer markers are needed, and time

in backward execution, since fewer intermediate steps and messages are needed. We

will call the set of parallel goals a, b, a', b', a�, b�... a backtracking family: a set

of independent parallel goals, such that all of them are backtracked over in the same

backtracking step in the sequential execution. The fundamental characteristic of the

members of a backtracking family is that they have a “common choice point” which they

backtrack to in case of failure.

q

a
1

a’
1

b
1

a’
2

b
2

a’’
2

a
2

P
1

P
2

Figure 5.2: Backtracking families

a a

b

P P

Figure 5.3: Eliminated choice

points

As mentioned before, unlike those proposed previously, this technique requires

knowledge regarding goal determinism beforehand. In order to illustrate this, consider

the situation in which, for a & b & 
, a is executed on processor P1, and b in P2. P1

(which is deterministic) finishes first with a and picks up the goal corresponding to 


(also deterministic). If b is deterministic, then there is no need for any marker between

a and 
 (or saving the trail segment in the slot) since no intermediate backtracking is

possible. This may be determined once b finishes, but then P1 would have to wait for P2,

which is undesirable. On the other hand, if P2 had finished before, then it could have

stolen b, and the determinate processor optimization could have been applied.

Each backtracking family is given a unique identifier (e.g., the address of the “com-
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mon choice point” that they would backtrack to). This identifier is also associated with

each goal belonging to the family and stored in the input marker when the first goal of

a family is picked up by a processor. When a goal is picked up by a processor, if it has

a family identifier attached and it is the same as that of the current input marker in the

processor, no new input marker needs to be allocated. It is clear that this has an implica-

tion on scheduling in the sense that picking up goals belonging to the same backtracking

family as the last goal executed in a given processor is always preferable.

Markers are still necessary in principle between deterministic and non–deterministic

goals, and between goals that do not belong to the same backtracking family. If we have

p1 & q & p2, where p is defined as above, and q generates non–deterministic computa-

tions, then the goals generated by p1 can be stacked one over the other without markers.

However, markers are needed to separate goals generated by p1 and q, p2 and q, and p1

and p2 (this is illustrated in Figure 5.2, where segments marked with ′, ′′. . . correspond to

different activations of the same goal, and goals marked with a subindex are offsprings

of the corresponding initial call, p1 or p2).

However, note that the optimization is not necessarily restricted to deterministic

goals, as might be implied by the discussion above. In fact, the fundamental characteristic

of the goals of a backtracking family is that they have a “common choice point” that they

backtrack to in case of failure of one of such goals. Thus, if a goal is deterministic in the

end (i.e., it produces only one solution) it can also benefit from the proposed technique,

even if it does create choice points and backtrack internally along the way, provided that

it can be determined that such choice points will not provide additional solutions or that

they will be discarded upon termination (for example, by executing a “cut”). In summary,

goals which can be determined to have a single solution, independently of whether they

create choice points during their execution and perform backtracking internally, are also

eligible for forming a backtracking family with other such goals or with deterministic

goals. Simple examples are (a, !) & (b, !), or even (a & b), !, where a and b may

have non–determinism inside, but are made single solution by the presence of the cut

(see Figure 5.3). As another, more elaborate example, consider sorting a list of complex

items (i.e., not simple numbers) with quick-sort, where the tests performed in the par-

titioning predicate could be arbitrarily complex, leaving intermediate choice points and

backtracking internally, but finally yielding only one solution. We believe it is possible to

detect this “single solution” status in many cases through existing compile-time analysis

techniques, even if this cannot be determined locally, as in the simple examples above.

In order to implement the proposed optimization the determinism information is

passed to the low-level compiler through source program annotations. In the same way
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as we have assumed for the “&” annotations, these determinacy annotations can be pro-

vided by the user or generated by an automatic analyzer. Note that, while the annotation

is static, its effect has a dynamic nature in general in the sense that, for a given program,

the actual performance increase may differ from execution to execution due to different

schedulings, which would result in different relative stackings of members of different

families, and thus different actual numbers of markers allocated.

Regarding the benefits obtainable from the optimization proposed, it can clearly pro-

vide considerable savings in memory consumption, and, as a side effect of this, time

savings due to the smaller number of markers which have to be initialized. In an ideal

situation, in which all goals picked up by each processor belong to the same backtracking

family only one marker would be allocated per processor (even while choice points in-

ternal to a parallel goal are allocated, used, and eventually discarded before the parallel

goal finishes). Furthermore, and as mentioned before, backtracking is potentially also

greatly sped up.

Clearly, the practical advantages which can be obtained automatically with the back-

tracking families optimization strongly depend on the quality of the compile-time analy-

sis performed or, if done manually, of the annotations provided by the user. The general

issue of static analysis of determinism is beyond the scope of this paper. However, the

potential of the optimization can still be assessed by making reasonable assumptions re-

garding the information that could be obtained based on the current state of the art in

global analysis, and annotating the programs to encode this information. We have done

this for a number of benchmarks and the results are shown in Table 5.2, which shows the

number of markers allocated (without and with the optimization) when executing on 10

processors.

As expected, the number of markers in the optimized version actually differs much

from run to run – a range over a large number of runs is given in this case. It can be

observed that, as expected, the reduction in the number of markers allocated is quite

significant, and larger than with the dynamic methods studied previously (which have

the obvious advantage on the other hand of not requiring analysis). The results are

graphically compared in figure 5.4.

As mentioned before, the advantage comes either from the knowledge that parallel

calls that do create choice-points (and thus are not eligible for the shallow backtracking

optimization dynamically) are in fact deterministic, or from the knowledge that goals

that are not deterministic and are picked up by a processor out of contiguous order

(and thus are not eligible for the determinate processor optimization) are in the same

backtracking family. For example, it is quite simple to determine by global analysis (using
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Executed

goal Unoptimized Optimized

deriv(1) 261 [9]

deriv(2) 2109 [11]

deriv(3) 16893 [11]

deriv(4) 135165 [11]

boyer(0) 24 [3 – 8]

boyer(1) 747 [111 – 153]

boyer(2) 7290 [543 – 745]

boyer(3) 282168 [4770 – 6500]

quick_sort(50) 150 [13 – 15]

quick_sort(100) 300 [14 – 16]

quick_sort(150) 450 [15 – 17]

quick_sort(200) 600 [15 – 16]

poccur(1) 30 [9 – 10]

poccur(2) 60 [11 – 12]

poccur(3) 90 [11 – 13]

poccur(4) 120 [12 – 13]

poccur(5) 150 [12 – 13]

takeuchi(13) 1412 [19 – 23]

takeuchi(14) 4744 [21 – 29]

takeuchi(15) 10736 [21 – 30]

takeuchi(16) 21236 [23 – 28]

Table 5.2: Backtracking families optimization (memory consumption, 10 proc.)

the same information that the parallelizing compiler uses to parallelize the benchmark)

that the matrix benchmark is completely deterministic. This is the case also with most of

the other examples in Table 5.2. However, the issue of determining precisely the exact

extent to which this optimization is applicable in large programs using state of the art

analysis technology remains a topic for future work.

5.4 Low Level Optimizations and Data-Parallelism

Low level optimizations (i.e., those close to the abstract machine implementation), as

those proposed and evaluated in Chapter 5 can be applied to many common cases, the
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Figure 5.4: Improvements using Backtracking Families

more frequent being possibly those implementing simple loops. These are quite often

deterministic (or, at least, they yield a single solution) needed to apply the optimizations

proposed in that chapter.

Interestingly, these loops are also the simplest way to express computations with

data-parallelism in a logic language (Chapter 4). Let us remember that one of the char-

acteristics of data parallel computations is the determinism. There is, therefore, a clear

possibility of positive interaction between data parallelism and the proposed low level op-

timizations: LPCO and backtracking families are applicable to the typical data-parallelism

cases.

Additionally, the proposed data-parallelism transformations aimed at speeding up

task creation also respect these conditions. The transformed programs in Sections 4.2.3

to 4.3 are, as the original programs, completely deterministic, so that backtracking fam-

ilies and LPCO can be exploited. In fact, a great deal of the test programs in Table 5.2

(in particular, deriv, boyer, quick_sort, and takeuchi) have a divide and conquer struc-

ture similar to what would be obtained after a binarization. Therefore, a performance

improvement similar to that obtained in this table is to be expected.

A faster task startup for data parallel programs can be obtained by introducing lower-

level mechanism for the specific compilation of data parallel programs. Without copying
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a data-parallel system, which includes these apparatus as basic pieces, it is possible to

use the blocks already present in many systems featuring conjunctive parallelism in order

to simulate these mechanisms. In particular, a proposal in order to modify the structure

of the goal stack of a RAP system is presented in [HC96]; it is based on specifying the

fast creation of several goals, and on assigning a part of a data structure to each of them.
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Chapter 6

Realistic Simulation of Paralelism in

Logic Programs

Chapter Summary

We present a technique to estimate accurate speedups for parallel logic programs with

relative independence from characteristics of a given implementation or underlying par-

allel hardware. The proposed technique is based on gathering accurate data describing

one execution at run–time, which is fed to a simulator. Alternative schedulings are then

simulated and estimates computed for the the corresponding speedups. Such speedups

can be used to compare different parallelizations of a program or to evaluate the per-

formance of parallel systems. A tool implementing the aforementioned techniques is

presented, and its predictions are compared to the performance of real systems, show-

ing good correlation.

6.1 Introduction

In recent years a number of parallel implementations of logic programming languages,

and, in particular, of Prolog, have been proposed (some examples are [HG91, AK90b,

SCWY91a, She92a, Lus90]). Relatively extensive studies have been performed regarding

the performance of these systems. However, these studies generally report only the abso-

lute data obtained in the experiments, including at most a comparison with other actual

systems implementing the same paradigm. This is understandable and appropriate in

that usually what these studies try to asses is the effectiveness of a given implementation

against state–of–the–art sequential Prolog implementations or against similar parallel

systems.

In this paper, and in line with [SH91], we try to find techniques to answer a different

question: given a (parallel) execution paradigm, what is the maximum benefit that can

161



Chapter 6. Realistic Simulation of Paralelism in Logic Programs

be obtained from executing a program in parallel in a system designed according to that

paradigm? (we will refer to this as “maximum parallelism”). What are the resources (for

example, processors) needed to exploit all parallelism available in a program? How much

parallelism can be ideally exploited for a given set of resources (e.g. a fixed number of

processors)? (we will refer to this as “ideal parallelism”). The answers to these questions

can be very useful in order to evaluate actual implementations, or even parts of them,

such as, for example, parallelizing compilers. However, such answers cannot be obtained

from an actual implementation, either because of limitations of the implementation itself

or because of limitations of the underlying machinery, such as the number of processors

or the available memory. It appears that any approach for obtaining such answers has to

resort to a greater or lesser extent to simulations.

There has been some previous work in the area of ideal parallel performance deter-

mination through simulation in logic programs, in particular the work of Shen [SH91]

and Sehr [SK92]. These approaches are similar in spirit and objective to ours, but differ

in the approach (and the results).

In [SH91] a method is proposed for the evaluation of potential parallelism. The

program is executed by a high–level meta-interpreter/simulator which computes ideal

speedups for independent and–parallelism, or–parallelism, and combinations thereof

(see [Con83] and Section 6.3 for a description of different types of parallelism in logic

programs). Such speedups can be obtained for different numbers of processors.

This work is interesting, firstly in that it proposed the idea of obtaining ideal per-

formance data through simulations in order to be able to evaluate the performance of

actual systems by contrasting them with this ideal and, second, because it provides ideal

speedup data for a good number of programs. However, the simulator proposed does

suffer from some drawbacks. The first one is that all calculations are performed using as

time unit a resolution step – i.e. all resolution steps are approximated as taking the same

amount of time. This makes the simulation either conservative or optimistic in programs

with (respectively) small or large head unifications. To somewhat compensate for this,

and to simulate actual overheads in the machine, extra time can be added at the start

and end of each task. The second drawback is that the meta-interpretive method used

for running the programs limits the size of the executions which can be studied due to

the time and memory consumption implied.

In [SK92] a different approach was used, in order to overcome the limitations of the

method presented above. The Prolog program is instrumented to count the number of

WAM [War83, AK91] instructions executed at each point, assuming a constant cost for

each WAM instruction. Only “maximal” speedup is provided. Or–parallel execution is
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simulated by detecting the critical (longest) path and comparing the length of this path

with the sequential execution length. Independent and-parallel execution is handled in

a similar way by explicitly taking care of the dependencies in the program. Although this

method can be more accurate than that of [SH91] it also has some drawbacks. One is

the fact mentioned above that only maximal speedups are computed, although this could

presumably be solved with a back-end implementing scheduling algorithms such as the

ones that we will present. Another is that the type of instrumentation performed on the

code does not allow taking control instructions into account. Also, a good knowledge of

the particular compiler being used is needed in order to mimic its encoding of clauses.

Furthermore, many WAM instructions take different amounts of time depending on the

actual variable bindings appearing at run-time, and this would be costly and complicated

to take into account. Finally, the problem of being able to simulate large problems is only

solved in part by this approach, since running the transformed programs involves non-

trivial overheads over the original ones.

The approach that we propose tries to overcome the precission and execution size

limitations of previous approaches by using precise timing information. Also, it allows

gathering information for much larger executions. We do that by placing the splitting

point between actual execution and simulation at a different location: sequential tasks

are not simulated or transformed but executed directly in real systems.

Although the techniques we present have been designed within the area of paral-

lel logic programming, we believe that the core idea can be applied to any execution

paradigm, and that the techniques (and tools) developed can be applied directly to those

paradigms conforming to the initial assumptions.

The paper is structured as follows: Section 6.2 sketches our objectives. Section 6.3

describes more in depth our approach and the techniques used in its implementation.

Section 6.4 relates the traces obtained at run–time with the graphs used to simulate

alternative schedulings. Sections 6.5 and 6.6, respectively, show how the maximum and

ideal parallelism are calculated. In Section 6.7 an overview of IDRA, the actual tool, is

given. Section 6.8 contains examples of simulations made using IDRA and comparisons

of actual implementations with the results of the simulation.

6.2 Objectives

Our objective is to perform speedup analysis of executions of parallel logic programs,

in a relatively independent way from the characteristics (such as number of processors,

absolute speed, etc.) of the platform in which they have been executed. Given a (parallel)
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program and a number (which may be unbound) of processors, different schedulings can

(and do) greatly affect the total execution time.1

Among the information we can extract from alternative schedulings, the following

may be of interest:

• Maximum parallelism: this corresponds to the parallelism obtained with an un-

bound number of processors, assuming no scheduling overheads.

• Ideal parallelism: this corresponds to the speedup ideally attainable with a fixed

number of processors. The tasks–processors mapping here decides the actual

speedups attained. Optimal scheduling algorithms and currently implemented al-

gorithms are clear candidates to be studied.

Maximum parallelism is useful in order to determine the absolute maximum perfor-

mance of a program, i.e., the minimum time in which it could have been executed while

respecting the dependencies among tasks. This is used, for example, for comparing dif-

ferent parallelizations/sequentializations of a given program (e.g., if different domains or

annotators for parallelism are being evaluated, see for example [BdlBH94a, BdlBH94b])

or different parallel algorithms proposed for a given problem (e.g. [DJ94]). In the sim-

ulation we know that the speedup obtained has not been limited by the machine itself

(e.g., number of processors, bus contention, etc.)

Ideal parallelism can be used to test the absolute performance of a given scheduling

algorithm in a fixed number of processors, by comparing the speedup obtained in the

machine with the maximum speedup attainable using that number of processors. The ef-

ficiency of an implementation can also be studied by testing the actual speedups against

those predicted by the simulator using the same scheduling algorithm as the implemen-

tation. Also, how the performance of a program evolves for a number of processors as

large as desired can be studied; this gives interesting information about the potential

parallelism in a program.

We want our simulation to be useful for medium size applications, and the results to

be as accurate as possible. That is why the simulation takes place at the scheduling level,

the sequential task timing being (preferably) obtained using real executions.

1Of course, faster processors will affect the absolute execution time as well, but since ideally this speed

scales to the whole execution, the speedup obtained with respect to sequential executions should not change.

This, in practice, is not true, since, for example, bus bandwidth limits the attainable speedup in memory–

intensive applications. This is, precisely, one example of the limitations we want to overcome.
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6.3 Parallelism and Trace Files

To simulate an alternative scheduling of a parallel execution we need a certain descrip-

tion of that execution. This description must contain, at least, the relationships and

dependencies which hold among the tasks (used to simulate new correct schedulings,

i.e., executions where the precedence relationships are met), and the length (in time)

of each task. Such a description can be produced by executing programs in actual im-

plementations (not necessarily parallel ones: only the description of the concurrency in

the execution and each task’s length must appear, the parallelism among tasks being in-

troduced by means of the simulation) augmented to generate execution logs, or even

using other high–level simulators able to produce information about dependencies in the

program and an estimation of the (relative) cost of executing each sequential task. This

considerably widens the applicability of the developed tool because it allows studying

the (expected) performance of parallel programs and scheduling algorithms without the

need of an actual parallel machine or in non–realistic conditions (for example, unbound

number of processors).

The format and components of the traces, as well as the way they are generated and

stored, are the same as those used in VisAndOr (Section 3.8). Events (Table 3.2) reflect

observable in the execution, and each even carries information enough as to establish

dependencies with other events in the same execution. In our case the timing data has

been obtained from a modified Prolog implementation which ensures that the simulation

is realistic. The simulation concerns generating different schedulings of the sequential

tasks which respect their precedences.

It should be noted that, in parallel dialects of Prolog, collecting traces is easy from

the user point of view. The structure of the Prolog language and its implicit control

helps to automatically identify the “interesting places” (for example, where a sequential

task starts or finishes) in the execution. The parallel execution models which we will

deal with in this paper stem naturally from the view of logic programming as a process–

oriented computation. The two main types of parallelism available in a logic program are

And–parallelism and Or–parallelism, which have already been reviewed in Chapter 2.

6.4 From Traces to Graphs

From a practical point of view, the format of the traces may depend on the system that

created them: traces may have information that is not necessary, or be structured in
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an undesirable way, perhaps because they may serve to other purposes as well.2 On the

other hand, scheduling algorithms are usually formulated in terms of the well–known job

graphs (see, e.g., [MC69, LL74, Hu61, HB88]). However, in job graphs only tasks and

relationships are reflected: scheduling delays do not appear—or are assumed to be a part

of the tasks themselves. To be able to change the delays introduced by the scheduling

algorithms, and to somewhat separate the traces from the internal structures, we will

2This is the case for the actual parallel systems that we study—see Section 6.7—where traces originally

designed for visualization are used by our simulation.
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use execution graphs as an intermediate object that abstracts the trace containing only

the information needed to simulate new schedulings.

6.4.1 The Execution Graph

An execution graph translates the idea of events and their dependencies into a math-

ematical object. An execution graph is a directed acyclic weighted graph G(X,U, T )

where:

X = {x0, x1, . . . , xn−1} is a set of nodes,

U = {ui,j , 0 ≤ i < j < n} is the set of edges connecting node xi to node xj , and

T = {ti,j , 0 ≤ i < j < n} is the set of weights labeling each ui,j .

In the execution graph each node corresponds to an event, and has associated a type

(the same of the event—see Table 3.2) and the point in time in which the corresponding

event has occured. Each edge reflects a dependency between events, and its associated

weight represents the time elapsed between them. We distinguish two types of edges:

those which represent the sequential execution of a task and those which represent delays

introduced by scheduling. The edges fall, thus, in one of the following two categories:

Scheduling Edges: FORK to START_GOAL, FINISH_GOAL to JOIN.

Execution Edges: START_GOAL to FINISH_GOAL, START_GOAL to FORK, JOIN to FIN-

ISH_GOAL, JOIN to FORK.

Figures 6.3 and 6.4 show, respectively, the structure of the execution graphs corre-

sponding to the traces depicted in Figures 6.1 and 6.2 (the weights have been omitted

for simplicity). The execution graphs is a formal, intermediate representation for event

traces. This representation is transformed into a job graph, wich is in turn used to simu-

late the schedulings.

6.4.2 The Job Graph

A job graph G(X,U) consists of a set of nodes X = {x0, . . . , xn−1} and a set of edges

U = {ui,j , 0 ≤ i < j < n}, where each ui,j represents an edge from node xi to xj.

The graph contains a node for each sequential task in the execution and an edge for

each dependency between tasks. Each node xi has information related to the task it

represents, such as its length l(xi) and its starting time t(xi). There is a partial ordering
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Figure 6.3: Execution graph, and–parallelism

Figure 6.4: Execution graph, or–parallelism

≺ among the tasks in X given by the dependencies present in the execution. We will say

that xi ≺ xj iff ui,j ∈ U . Figures 6.5 and 6.6 show job graphs for the and– and or–parallel

examples we have been using throughout the paper.

Job graphs are obtained from execution graphs by eliminating the scheduling times

(represented by scheduling edges) and transforming the execution edges (which rep-

resent actual sequential tasks) into nodes. The dependencies in the job graph and the

length of each task are inherited from the execution graph. This transformation can,

of course, be parameterized to take into account actual or minimal scheduling delays,
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Figure 6.5: Job graph for and–parallelism

Figure 6.6: Job graph for or–parallelism

incrementing the usefulness of the tool.

6.4.3 Scheduling in Job Graphs

A scheduling for a given execution G(X,U) can be formally viewed as a function σ : X →
Z+ that assigns a starting time to each task, the task’s length remaining unchanged. In

order for σ to represent a correct scheduling, no task can start before all its predecessors

have finished:

∀xi, xj ∈ X : xi ≺ xj → σ(xi) + l(xi) ≤ σ(xj) (6.1)

A scheduling σ that minimizes the time spent in the execution has to meet the fol-

lowing condition:
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Let Lσ′ = max
x∈X

(σ′(x) + l(x)) for a σ′ ∈ {X → Z+}.
Then σ is such that Lσ = min

σ′∈{X→Z+}
(Lσ′) (6.2)

Scheduling algorithms can be classified depending on whether they are deterministic

(used when all data pertaining the execution is available [MC69, LL74, Hu61]) or non

deterministic (in which random variables with known characteristic functions are used

to model non available data [HB88]). Since we are doing “post–mortem” scheduling

simulations, our case is the former.

6.5 Maximum Parallelism

As mentioned in Section 6.2, maximum parallelism assumes a null scheduling time and

an infinite number of processors, so that newly generated tasks can be started without

any delay at all. A scheduling with these conditions can be modeled as a function σ, as

described in Section 6.4.3 and which meets conditions 6.1 and 6.2.

Two interesting results we can obtain from a simulation with these characteristics

are the maximum speedup attainable and the minimum number of processors needed to

achieve it. Obtaining both these numbers is an NP–complete problem [GJ79]; however,

the exact maximum speedup and an upper bound on the number of processors is easy

to obtain. This is still useful, because it gives an estimation of the best performance that

can be expected from the program(s) under study. It can serve to compare alternative

parallelizations of a program, without the possible biases and limitations that actual

executions impose, but still retaining the accuracy in the timing of the tasks.

We can recalculate the starting time t(x) assigned to each node x ∈ X, starting at

0 for the first node in the execution, so that the starting time in each task corresponds

to the maximum of the ending time of its predecessors. Then, assuming that xn−1 is

the node corresponding to the last task in the execution, the minimum time that the

execution can take is t(xn−1) + l(xn−1). From this, speedups with respect to sequential

executions are straightforward to obtain, the sequential execution time being the sum of

the lengths of all the tasks.

The maximum number of tasks simultaneously active is an upper bound on the min-

imum number of processors needed to achieve this execution time. Let N(t) be defined

as

N(t) = |{x ∈ X|t(x) ≤ t ≤ t(x) + l(x)}| (6.3)
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i.e., N(T ) is the number of tasks active at time t. The minimum number p of processors

needed to execute without delays is

p = max
0≤t<t(xn−1)+l(xn−1)

N(t)

assuming again that the program execution starts at time 0.

Note that high speedups do not necessarily mean that the program is a good can-

didate for parallel execution: this depends, of course, on the number of processors at

which this maximum parallelism is achieved. We will see examples illustrating this in

Section 6.8.2.

6.6 Ideal Parallelism

By ideal parallelism we refer to the situation in which, for a given number m of proces-

sors, a perfect scheduling has been performed, in the sense that the minimum execution

time possible (with that number of processors) was achieved. A scheduling algorithm

that performs ideal parallelism can be modeled by a mapping σ as defined in 6.4.3, to

which the following restriction has been added:

∀t, 0 ≤ t < t(xn−1) + l(xn−1), N(t) ≤ m (6.4)

where N(t) is as defined in equation 6.3, i.e., the number of tasks simultaneously active

is less than or equal to m.

Such σ gives the optimum starting time for each task. From it, a processor–task

mapping is straightforward, since it is required that no more than m tasks be active at a

time. When a task is finished, the processor that executed it can be assigned to the task

with the nearest starting time.3

It would be interesting to find out the speedups achievable using a perfect schedul-

ing. Unfortunately, obtaining an optimal task/processor allocation is, in general, an NP–

complete problem [GJ79]. Since we want to deal with sizeable, non trivial, programs,

this option is too computationally expensive to be used. Instead, we will employ non

optimal scheduling algorithms which give an adequate (able to compute a reasonable an-

swer for a typical input), but not appropriate (every processor is attached to a sequential

task until this task is finished) scheduling.

From a high level point of view, the ideal parallelism simulation takes a description

of the execution, a scheduling algorithm A, and a number of processors N , and returns

3Under the implicit assumption that any processor is able to execute any task.
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the maximum speedup attainable in the form of a function t : X → Z+ that reflects the

calculated starting time for each task.

The algorithm we implemented to find out quasi–optimal schedulings is the so–called

subsets [HB88] algorithm, which in fact gives optimal results under certain conditions

(that are however not always met in our more general case).

Testing the quality of an existing scheduler against an idealized one is also interest-

ing, because that comparison would give an idea of how good is the implementation of

the scheduling algorithm. Following that idea, we also implemented a version of the

scheduling scheme found in the &–Prolog system [HG91, Her87]. We expect the com-

parison of the actual &–Prolog system speedups and the results obtained from IDRA to

serve as an assessment of the accuracy of our technique, whereas the comparison among

a (quasi–)optimal scheduling and a real one would serve to estimate the performance of

the actual system.

The variation of the inherent parallelism with the problem size is also a topic of

interest. Frequently one wants more performance not only to solve existing problems

faster, but also to be able to tackle larger problems in a reasonable amount of time.

In simple problems the number of parallel tasks and the expected attainable speedups

can be calculated, but in non–trivial examples it may not be so easy to estimate that.

Problems in which available parallelism does not increase with the size of the problem

would not benefit from a larger machine. In Section 6.8 examples illustrating this are

given.

In the next two sections we will describe the two scheduling algorithms currently

implemented in the simulation tool.

6.6.1 The Subsets Scheduling Algorithm

The subsets [HB88] algorithm avoids performing a global scheduling by splitting the

nodes (tasks) in the job graph into disjoint subsets (those inside dashed rectangles in

Figure 6.5). The nodes in each subset represent tasks that are independent among them,

and so they are candidates for parallel execution.

Each processor j, 0 ≤ j < p, is modeled as a number Tj which represents the moment

from which it is free to execute new work. The set P = {T0, . . . , Tp−1} contains the

availability times of the processors in the system. At any given time, no task can be

scheduled before minT∈P (T ).

The initial subset is a singleton containing only the first task: S0 = {x0}, and for each

subset Si, Si+1 is the set of nodes which can start once all the nodes in Si have finished.

If all the tasks in subset Si+1 started after the last task in Si finish, the subsets could
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have been scheduled independently. Since a given task in Si+1 may depend only on some

of the tasks in Si, the starting time of each task in Si+1 is set to the time in which all

their predecessor tasks in Si have finished. In each subset Si = {t1, . . .}, the scheduling

algorithm assigns one task tj to one processor from P . For each subset S 6= S0, the

algorithm performs as follows:

For each task tj ∈ S do:

Step 1 Let T imej = maxx∈X,x≺tj(t(x)). This is the earliest time in which tj can start.

Step 2 If there is any processor p such that Tp ≤ T imej, assign processor p to task tj,

and set Tp = Tp + l(tj) and t(tj) = T imej.

Step 3 Otherwise, find Tq = minT∈P (T ). Assign task tj to processor q and set Tq =

Tq + l(tj).

Tasks are assigned to free processors. If no free processor exists at a given moment,

the first processor to become idle is chosen. The need to make a choice in the non–

deterministic Step 2 is one of the sources of the non optimality of the algorithm. In

Step 3, Tq is chosen using a heuristic that tries to increase the occupation time of the

processors.

6.6.2 The Andp Scheduling Algorithm

The andp scheduling algorithm [Her87] mimics the behavior of one of the &–Prolog

schedulers. For each processor, &–Prolog has the notion of local and non local work:

local work is the work generated by a given processor, and it is preferably assigned to it.

To keep track of the local work, each processor is modeled as a couple 〈T,L〉 where T

is as before, and L is the list of tasks generated by the processor. Roughly speaking, the

scheduling algorithm tries first to execute tasks locally; if this is not possible, a task is

stolen from another processor’s list.

The andp scheduling algorithm can be split into two different parts: the first one

takes care of obtaining work available in the system, and the second one generates new

work and stores it in the processor’s local stack.

Processor 0 is selected as having the initial task; thus at the beginning L0 = {x0}.

The rest of the processors have empty stacks: Li = ∅, 0 < i < p, and all of them are free:

Ti = 0, 0 ≤ i < p. The part of the scheduling algorithm that is in charge of getting work

is as follows:

Step 1 If ∀〈Ti, Li〉 ∈ P, Li = ∅, finish. Otherwise select the processor p such that

Tp = min〈Ti,Li〉∈P (Ti)
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Step 2 If Lp 6= ∅ assign the first task x ∈ Lp to processor p and go to Step 1.

Step 3 If Lp = ∅, find the processor q such that Tq = min〈Ti,Li〉∈N,Li 6=∅(Ti). Assign the

first task x ∈ Lq to processor p and go to Step 2.

The generation of new work, after task x from the list of tasks Lq is assigned to

processor p, is as follows:

Step 1 Set Lq = Lq − {x}.

Step 2 Set Tp = Tp + l(x).

Step 3 Set Lp = Lp ∪ {xi ∈ X s.t. x ≺ xi}.

6.7 Overview of the Tool

A tool, named IDRA (IDeal Resource Allocation), has been implemented using the ideas

and algorithms shown before. The traces used by IDRA are the same as those used by the

visualization tool VisAndOr [CGH93]. Thus, IDRA can calculate speedups for the systems

VisAndOr can visualize (namely, the independent and–parallel system &–Prolog and the

or–parallel systems Muse and Aurora — the deterministic dependent and–parallel system

Andorra–I is not supported yet — as well as others which implement parallelism of a

similar structure) using directly the trace files that VisAndOr accepts, without the need

of any further processing.

The tool itself has been completely implemented in Prolog. Besides the computation

of maximum and ideal speedups, IDRA can generate new trace files for ideal parallelism,

which can in turn be visualized using VisAndOr and compared to the original one. IDRA

can also be instructed to generate automatically speedup data for a range of processors.

This data is dumped in a format suitable for a tool like xgraph to read.

The traces used with IDRA (and with VisAndOr), need not be generated by a real

parallel system. This is a very interesting feature, in that it is possible to generate them

with a sequential system augmented to dump information about concurrency. The only

requirement is that the dependencies among tasks be properly reflected, and that the

timings be accurate.

In some platforms accuracy in the timings has not been straightforward to obtain.

Somo usual UNIX environments do not provide good access to the system clock: calls to

standard OS routines to find out the current time either were not accurate enough for

our purposes, or the time employed in such calls were a significant portion of the total

execution time of the benchmark, thus leading to incorrect results (sequential tasks being
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traced were noticeably longer than without tracing). To obtain accurate timings we used

the microsecond resolution clock available in some Sequent multiprocessors [Seq87],

which is not only very precise, but also memory mapped and can thus be read in the

time corresponding to one memory access, with negligible effect on performance. For

platforms in which the clock has a high but predictable access time, we had to develop a

technique based on subtracting the accumulated clock access time from the timings.

The overhead of gathering the traces depends ultimately on the system executing the

program being traced. For the &–Prolog/Muse systems, it typically falls in the range 0%

– 30% — usually less than 20% — of the total execution time.

The time that a simulation takes depends, of course, on the trace being inspected. It

can be substantially larger than the execution itself if the program executes many small

tasks, and can be shorter than executing the actual program in the opposite case: few,

large tasks.

6.8 Using IDRA

In this section we will show examples of the use of IDRA on real execution traces. The

traces we will use have been generated by the &–Prolog system for and–parallelism, and

by &–Prolog and Muse for or–parallelism. The generation of the traces corresponding

to or–parallelism needed of a slight modification of &–Prolog to make it issue an event

each time a choice-point is created.

The reason to generate or–parallel traces using &–Prolog was that or–parallel sched-

ulers (and that of Muse in particular) usually make work available to parallel execution

only for some choicepoints. This, in our approach, would not allow us to find out the

maximum or ideal parallelism hidden in the program, since opportunities for perform-

ing work in parallel would be lost. This is why &–Prolog-generated or–parallel traces

achieve better speedups than the corresponding ones generated by Muse: more tasks can

be scheduled for parallel execution. On the other hand, the reason why the Muse sched-

uler does not schedule all possible tasks for parallel execution is that the added overhead

would possibly result in poorer speedups.

6.8.1 Description of the Programs

We include a brief description of the programs used to test the tool, in order to help in

understanding their behavior, both in simulation and in execution. The sequential exe-

cution time and the number of tasks generated by each benchmark program are shown

in Table 6.1, as an indication of the program size. The figures that appear next to some
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Program Time (ms) Number of tasks generated

deriv 240 2109

occur 1750 126

tak 610 4744

boyer 110 747

matrix–10 170 321

matrix–15 550 726

matrix–20 1270 1270

matrix–25 2460 2047

quicksort–400 590 1230

quicksort–600 1070 1500

quicksort–750 1500 1700

bpebpf–30 220 1395

bpesf–30 180 90

pesf–30 200 93

&–Prolog or traces Muse traces

domino 130 1002 340

queens 70 458 176

witt 5090 1878 230

lanford1 160 458 130

lanford2 2090 2047 832

Table 6.1: Some information about each benchmark program

of the benchmark names represent the size of the input data: for matrix, the number of

rows and columns of the matrix to be multiplied; for quicksort, the length of the list to

be sorted, and for bpebpf, bpesf and pesf, the number of factors in the series.

• Programs with and–parallelism

deriv performs symbolic derivation.

occur counts occurrences in lists.

tak computes the Takeuchi function.

boyer adaptation of the Boyer–Moore theorem prover.

matrix square matrix multiplications (the vector times vector multiplications are

sequential tasks).

quicksort standard quicksort program, using append/3 instead of difference lists.

bpebpf calculates the number e, using the series e = 1
0! + 1

1! + 1
2! + · · · A divide–

and–conquer scheme is used both for the series and for each of the factorial
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Program Speedup Processors Efficiency

deriv 100.97 378 0.26

occur 31.65 49 0.64

tak 44.16 315 0.14

boyer 3.49 11 0.31

matrix–10 26.86 80 0.33

matrix–15 58.70 170 0.34

matrix–20 101.91 286 0.35

matrix–25 161.68 462 0.34

quicksort–400 3.93 15 0.26

quicksort–600 4.07 17 0.23

quicksort–750 4.28 19 0.22

bpebpf–30 23.21 260 0.08

bpesf–30 10.11 31 0.32

pesf–30 2.59 25 0.10

Table 6.2: Estimated maximum and–parallelism

calculations. This causes the generation of a very large number of tasks.

bpesf is similar to above, but each factorial is computed sequentially. The number

of tasks is much smaller than above.

pesf also calculates e using the same series, but here each factor is computed in

parallel with the rest of the series, from left to right.

• Programs with or–parallelism:

domino calculates all the legal sequences of 7 dominoes.

queens computes all the solutions to the 5 queens problem.

witt is a conceptual clustering program.

lanford1 determines some elements needed to complete a Lanford sequence.

lanford2 similar to lanford1, but with different data structures.

6.8.2 Maximum Parallelism Performance

Tables 6.2 and 6.3 show the maximum speedup attainable according to the simulation,

the number of processors at which this speedup is achieved, and the relative efficiency

with respect to a linear speedup, i.e., efficiency = speedup
processors for the programs mentioned

above.
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Program Speedup Processors Efficiency

domino 32.01 59 0.54

queens 18.14 40 0.45

witt 1.12 25 0.04

lanford1 19.72 44 0.44

lanford2 114.87 475 0.24

Table 6.3: Estimated maximum or–parallelism
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Figure 6.7: Computation of e

Programs which require a large number of processors despite the problem to be

solved not being very big are usually those where tasks are small. This would suggest

that a parallel system would need some sort of granularity control to execute them effi-

ciently. This turns out not to be always the case for real executions on shared memory

multiprocessors with a small number of processors,4 as we will see in Section 6.8.3 and

Table 6.4, but will certainly be an issue in larger or distributed memory machines.

In programs with a regular structure, such as matrix, potential speedups grow ac-

cordingly with the size of the problem, which in turn determines the number of tasks

available. However, in programs where the length of the tasks is variable and the exe-
4In addition, &–Prolog concept of local work allows to speed up programs with small granularity, since

stealing local tasks is much cheaper than stealing foreign tasks
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X Graph
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Figure 6.8: 25×25 matrix multiplication

cution structure is not homogeneous (i.e., quicksort), the expected maximum speedup

achievable grows very slowly with the size of the problem. In the case of quicksort, the

sequential parts caused by the partitioning and appending of the list to be sorted finally

dominate the whole execution, preventing further speedups and giving an example that

confirms once again Amhdal’s law.

6.8.3 Ideal Parallelism Performance

For each benchmark we have determined the ideal parallelism and the actual speedups

on one to nine processors (Table 6.4 and 6.5). For each benchmark, the rows marked real

correspond to actual executions in real systems (&–Prolog for the and–parallel bench-

marks, and Muse for the or–parallel ones). The rows marked subsets and andp correspond

to simulations performed using those algorithms. There are two additonal subdivisions

for each benchmark in the or–parallel case, under the column “Tracing System”, which

reflect in which system were gathered the traces.

The data obtained for and–parallelism with &–Prolog was gathered using a version of

the scheduler with reduced capabilities (for example, no parallel backtracking was sup-

ported) and a very low overhead, so that the andp simulation and the actual execution

be as close as possible. In general the results from the simulation are remarkably close
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to those obtained from the actual execution, which seems to imply that the simulation

results are quite accurate and useful. Usually, the results with the subsets scheduling

algorithm are slightly better, but due to its non optimality, it is surpassed sometimes by

the andp algorithm and by &–Prolog itself (see, for example, the row corresponding to

the quicksort–750 benchmark). With respect to the relationship between the speedups

obtained by the andp algorithm and the actual &–Prolog speedups, sometimes the ac-

tual speedups are slightly better than the simulation and sometimes they are not, but in

general they are quite close. This is understandable, given the heuristic nature of these

algorithms.

Benchmarks that show good performance in Tables 6.2 and 6.3 have good speedups

here also. But the inverse is not true: benchmarks with low performance in maximum

parallelism can perform very well in actual executions (see, for example, the data for

bpebpf). Figure 6.7 shows the simulated speedups for the benchmark bpebpf; Figure 6.8

shows a similar figure for matrix multiplication. The speedup in the first one, although

showing a logarithmic behavior, is quite good for a reduced number of processors. The

second one has a larger granularity and shows almost linear speedups with respect to

the number of processors. When the number of processors increases beyond a limit, the

expected sawtooth effect appears due to the regularity of the tasks and their more or less

homogeneous distribution among the available processors.

Concerning the data for or–parallelism, Muse performs somewhat worse than the

prediction given by the simulation when &–Prolog or traces are used. This is not sur-

prising, since Muse has an overhead associated with task switching (due to copying) that

is not reflected in the traces. Moreover, the traces correspond to the case in which all

or branches are available for parallel execution, whereas the traces generated by Muse

only contain the branches that the Muse scheduler considered worthwhile for parallel

execution. Thus, in the case of the or traces generated by &–Prolog, more (and smaller)

parallel tasks (and potential parallelism) exist – thus the higher speedups predicted by

the tool, which largely surpass those obtained from real executions. In the case of sim-

ulations using Muse traces, the predictions are more accurate (but then, they do not

reflect the parallelism available in the benchmark, but rather that exploited by Muse).

In general, the results show the simulation to be highly accurate and reliable. In fact,

the system has been used successfully in several studies of parallelizing transformations

[DJ94] and parallelizing compilers [BdlBH94b].
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6.9 Conclusions and Future Work

We have reported on a technique and a tool to compute ideal speedups using simulations

which uses as input data information about executions gathered using real systems. We

have applied it to or– and independent and–parallel benchmarks, and compared the

results with those from actual executions. The results show that the simulation is quite

reliable and corresponds well with the results obtained from actual systems, in particular

with those obtained from the &–Prolog system. This corresponds with expectations, since

the particular version of the &–Prolog systems used has very little overhead associated

with parallel execution.

The technique can be extended for other classes of systems and execution models

(also beyond logic programming), provided that the data which models the executions

can be gathered with enough accuracy.

We plan to modify the simulator in order to support other execution paradigms, such

as Andorra–I [SCWY91a], ACE [GHPSC94], AKL [JH91], IDIOM [GSCYH91], etc. and to

study other scheduling algorithms. Finally, we believe the same approach can be used to

study issues other than ideal speedup, such as memory consumption, copying overhead,

etc.
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Program Scheduling Processors

Algorithm 1 2 3 4 5 6 7 8 9

subsets 1.00 1.99 2.99 3.97 4.95 5.93 6.90 7.86 8.82
deriv andp 1.00 1.99 2.97 3.94 4.86 5.77 6.79 7.56 8.40

real 1.00 2.00 3.00 4.00 4.80 4.80 6.00 8.00 8.00
subsets 1.00 1.99 2.97 3.97 4.49 5.14 5.96 7.10 8.73

occur andp 1.00 1.99 2.55 3.28 3.97 4.45 5.12 5.92 7.08
real 1.00 1.96 2.96 3.97 4.48 5.83 5.83 7.00 8.75
subsets 1.00 1.99 2.97 3.93 4.86 5.77 6.65 7.51 8.33

tak andp 1.00 1.97 2.95 3.91 4.85 5.76 6.57 7.54 8.30
real 1.00 1.90 2.65 3.58 4.35 5.08 5.54 6.09 6.77
subsets 1.00 1.78 2.34 2.65 2.84 2.94 3.05 3.09 3.13

boyer andp 1.00 1.79 2.37 2.76 3.02 3.15 3.25 3.30 3.31
real 1.00 1.57 1.83 2.20 2.20 2.20 2.20 2.20 2.20
subsets 1.00 1.98 2.91 3.86 4.74 5.57 6.41 7.26 8.02

matrix–10 andp 1.00 1.97 2.70 3.59 4.59 5.21 6.09 6.86 7.54
real 1.00 1.88 2.83 3.39 4.25 5.66 5.66 6.80 8.50
subsets 1.00 1.99 2.96 3.94 4.91 5.84 6.76 7.71 8.62

matrix–15 andp 1.00 1.97 2.85 3.51 4.40 5.36 6.37 7.15 7.84
real 1.00 1.96 2.89 3.92 4.58 5.50 6.87 7.85 7.85
subsets 1.00 1.99 2.98 3.97 4.94 5.92 6.88 7.85 8.80

matrix–20 andp 1.00 1.99 2.78 3.56 4.36 5.23 6.07 6.95 8.01
real 1.00 1.95 2.95 3.84 4.88 5.77 6.68 7.47 8.46
subsets 1.00 1.99 2.98 3.98 4.97 5.94 6.92 7.91 8.88

matrix–25 andp 1.00 1.97 2.73 3.51 4.44 5.54 6.41 7.34 7.98
real 1.00 1.98 2.96 3.96 4.91 5.85 6.83 7.93 8.78
subsets 1.00 1.76 2.32 2.69 2.95 3.15 3.28 3.35 3.40

quicksort–400 andp 1.00 1.76 2.26 2.66 3.00 3.23 3.68 3.60 3.60
real 1.00 1.73 2.26 2.68 3.10 3.27 3.47 3.47 3.47
subsets 1.00 1.80 2.41 2.84 3.15 3.38 3.53 3.64 3.71

quicksort–600 andp 1.00 1.75 2.25 2.75 3.20 3.34 3.79 3.97 4.00
real 1.00 1.72 2.37 2.74 3.14 3.45 3.68 3.82 3.96
subsets 1.00 1.78 2.36 2.75 3.04 3.25 3.38 3.47 3.53

quicksort–750 andp 1.00 1.71 2.42 2.60 3.13 3.55 3.66 3.75 3.67
real 1.00 1.82 2.41 2.88 3.40 3.65 3.94 4.05 4.16
subsets 1.00 1.96 2.88 3.74 4.60 5.41 5.41 5.41 5.41

bpebpf–30 andp 1.00 1.93 2.81 3.69 4.30 5.16 5.60 6.32 6.98
real 1.00 1.83 2.44 3.66 4.40 4.40 5.50 5.50 7.33
subsets 1.00 1.96 2.88 3.75 4.53 5.18 5.99 6.33 6.75

bpesf–30 andp 1.00 1.88 2.59 3.27 3.67 4.23 4.56 5.08 5.12
real 1.00 1.80 2.57 3.60 4.50 4.50 4.50 6.00 6.00
subsets 1.00 1.47 1.74 1.92 2.05 2.14 2.20 2.26 2.31

pesf–30 andp 1.00 1.41 1.65 1.83 1.95 2.02 2.10 2.18 2.26
real 1.00 1.33 1.66 1.81 1.81 1.81 2.00 2.00 2.22

Table 6.4: Ideal and–parallelism
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Program Tracing Scheduling Processors

System Algorithm 1 2 3 4 5 6 7 8 9

Muse
subsets 1.00 1.95 2.88 3.75 3.92 3.92 3.92 3.92 3.92
andp 1.00 1.89 2.74 3.56 3.92 3.92 3.92 3.92 3.92

domino
&–Prolog

subsets 1.00 1.98 2.94 3.86 4.75 5.61 6.42 7.20 7.97
andp 1.00 1.98 2.92 3.86 4.78 5.61 6.54 7.32 8.26

real 1.00 1.62 2.16 2.60 3.25 3.25 3.25 3.25 4.33

Muse
subsets 1.00 1.91 2.72 3.41 3.41 3.41 3.41 3.41 3.41
andp 1.00 1.87 2.54 3.41 3.41 3.41 3.41 3.41 3.41

queens
&–Prolog

subsets 1.00 1.97 2.92 3.82 4.70 5.48 6.22 6.93 7.55
andp 1.00 1.95 2.77 3.77 4.72 5.33 5.89 6.30 6.48

real 1.00 1.75 2.33 2.33 3.50 3.50 3.50 3.50 3.50

Muse
subsets 1.00 1.12 1.17 1.19 1.19 1.19 1.19 1.19 1.19
andp 1.00 1.08 1.12 1.12 1.12 1.12 1.12 1.12 1.12

witt
&–Prolog

subsets 1.00 1.05 1.07 1.08 1.09 1.09 1.09 1.09 1.09
andp 1.00 1.05 1.07 1.08 1.09 1.09 1.09 1.09 1.09

real 1.00 1.05 1.07 1.09 1.10 1.10 1.10 1.11 1.11

Muse
subsets 1.00 1.95 2.83 3.62 4.20 4.62 4.62 4.62 4.62
andp 1.00 1.89 2.67 3.37 4.32 4.62 4.62 4.62 4.62

lanford1
&–Prolog

subsets 1.00 1.98 2.91 3.79 4.59 5.34 6.04 6.67 7.45
andp 1.00 1.97 2.92 3.82 4.73 5.53 6.27 7.29 8.09

real 1.00 1.77 2.28 3.20 4.00 4.00 4.00 4.00 5.33

Muse
subsets 1.00 1.85 2.55 3.15 3.73 4.30 4.77 5.12 5.50
andp 1.00 1.91 2.50 2.94 4.02 4.51 5.51 5.85 5.88

lanford2
&–Prolog

subsets 1.00 1.99 2.99 3.98 4.97 5.95 6.92 7.88 8.85
andp 1.00 1.99 2.98 3.97 4.96 5.91 6.88 7.87 8.85

real 1.00 1.97 2.86 3.66 4.54 5.35 6.33 6.96 7.74

Table 6.5: Ideal or–parallelism
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Chapter 7

Concurrency in Prolog Using Threads

and a Shared Database

Chapter Summary

Concurrency in Logic Programming has received much attention in the past. One prob-

lem with many proposals, when applied to Prolog, is that they involve large modifica-

tions to the standard implementations, and/or the communication and synchronization

facilities provided do not fit as naturally within the language model as we feel is pos-

sible. In this chapter we propose a new mechanism for implementing synchronization

and communication for concurrency, based on atomic accesses to designated facts in

the (shared) database. We argue that this model is comparatively easy to implement

and harmonizes better than previous proposals within the Prolog control model and

standard set of built-ins. We show how in the proposed model it is easy to express clas-

sical concurrency algorithms and to subsume other mechanisms such as Linda, variable-

based communication, or classical parallelism-oriented primitives. We also report on

an implementation of the model and provide performance and resource consumption

data.

7.1 Introduction

Concurrency has been studied in the context of a wide range of programming paradigms,

and many different mechanisms have been devised for expressing concurrent computa-

tions in procedural programming languages [BA82, Han77]. In fact, concurrency has

also received much attention in the context of logic languages (see Chapter 2). However,

most previous proposals have the drawback that they either involve large modifications

to standard Prolog implementations, and/or the communication and synchronization fa-

cilities provided do not fit as naturally within the Prolog language model as we feel is

possible. Although the approaches proposed to date are undoubtedly interesting and use-
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ful, we feel that they either do not provide all the features we perceive as most interesting

in a practical concurrent Prolog system or they require complex implementations.

In this chapter we are interested in developing a model of concurrency for Prolog,

whose main novelty is that both communication and synchronization are based on con-

current, atomic accesses to the shared Prolog database, which we argue can be used

in the same way as a blackboard. We will show that, apart from the conceptual sim-

plification, this choice creates very useful synergies in the overall language design,

while remaining reasonably easy to implement. In our approach, an extension of the

assert/retra
t family of Prolog calls allows suspension on calls and redos. We show

that these primitives, when combined with the Prolog module system, have the same or

richer functionality than blackboard-based systems, while fitting well within the Prolog

model: they offer full unification instead of pattern matching on tuples and provide a

clean interaction with Prolog control, naturally supporting backtracking. The model, as

described in this paper, is available in the current distribution of CIAO (a next-generation,

public domain Prolog system—see https://
liplab.org/Software).

7.2 A First Level Interface

As mentioned before, the significant effort realized by the logic programming community

in building parallel Prolog systems has proven that it is possible to construct sophisticated

and very efficient multi-worker Prolog engines. However, it is also true that the inher-

ent complication of these systems has prevented their availability as part of mainstream

Prolog systems (with the possible exception of SICStus/MUSE, and, to a more limited ex-

tent, &-Prolog, Aurora, Andorra-I, and ACE). One of our main objectives in the design of

the proposed concurrency model has been to simplify the low-level implementation, i.e.,

the modifications to the Prolog engine required, in order to make it as easy as possible

to incorporate into an existing WAM-based Prolog system. Such simplicity should also

result in added robustness.

With this in mind, we start by defining a set of basic building blocks for concurrency

which we argue can be efficiently implemented with small effort. We will then stack

higher-level functionality as abstractions over these basic building blocks.

7.2.1 Basic Thread Creation and Management

A thread corresponds conceptually to an independent Prolog evaluator, capable of ex-

ecuting a Prolog goal to completion in a local environment, i.e., unaffected by other
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threads. It is related to the notion of agent [HG91] or worker [Lus90, AK90b] used in

parallel logic programming systems.

Thread creation is performed by calling eng_
all/2, which is similar in spirit to the

&/1 operators of &-Prolog, the spawn of MT-SICStus, or the new_engine of BinProlog. A

call to eng_
all(Goal, GoalHandle) first copies Goal and its arguments to the address

space of a new thread and returns a handle in GoalHandle which allows the creating

thread to have (restricted) control of and access to the state of the created thread.

Execution of Goal then proceeds in the new thread within an independent environ-

ment. An exception may be raised if the spawning itself is not successful, but other-

wise no further communication or synchronization with the caller occurs until a call to

join_goal(GoalHandle) is made, unless explicitly programmed using the synchroniza-

tion and communication primitives (Section 7.2.3).

A call to join_goal(GoalHandle) waits for the success or failure of the goal cor-

responding to GoalHandle. If a solution is found by the concurrent goal, this goal

can at a later time be forced to backtrack and produce another solution (or fail) us-

ing ba
ktra
k_goal(GoalHandle). When no more solutions are needed from a given

goal, the builtin release_goal(GoalHandle) must be called to release the correspond-

ing thread. This also frees the memory areas used during the execution of the goal, and

makes them available for other goals.

A number of specializations of eng_
all/2 are useful in practice. A simplified version

eng_
all(Goal) causes Goal to be executed to completion (first solution or failure) in

a new thread, which (conceptually) then dies silently. This behavior is useful when the

created thread is to run completely detached from its parent, or when all the communica-

tion is performed using the communication / synchronization primitives (Section 7.2.3).

There are also other primitives, such as kill_goal(GoalHandle), which kills the thread

executing that goal and releases the memory areas taken up by it, which are useful in

practice to handle exceptions and recover from errors.

7.2.2 Implementation Issues and Performance

The implementation requires the Prolog engine to be reentrant, i.e., several invocations

of the engine code must be able to proceed concurrently with separate states. The modi-

fications required are well understood from the parallel Prolog implementation work (we

follow [HG91]).

A concurrent goal is launched by copying it with fresh, new variables, to the storage
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areas of a separate engine, which has its own working storage (stack set1) and attaching

a thread (agent) to this stack set. The code area is shared and visible by all engines. Goal

copying ensures that execution is completely local to the receiving WAM. This avoids

many complications related to the concurrent binding and unbinding (on backtracking)

of shared variables, since bindings/trailing, backtracking, and garbage collection are al-

ways local to a WAM, and thus need no changes with respect to the original, single-

threaded implementation.

An important issue is how to handle goals which are suspended (e.g., are waiting at

a join, or have executed other primitives which may cause suspension, to be described

later) and goals which have returned a solution but are waiting to be joined. This issue

was studied in [Her87, SH96]. There are two basic solutions: one is to freeze the cor-

responding stack set, which then cannot be used until the goal is resumed. The same

occurs with a stack set containing the execution of a goal which has produced a solution

but has pending alternatives. When this stack set is asked for another alternative a thread

attaches to it and forces backtracking. This approach has the advantage of great simplic-

ity at the cost of some memory consumption: it causes memory areas of the WAM (the

upper parts of frozen stack sets) to be unused, since a new WAM is created for every new

goal if the other WAMs are frozen and cannot be reused. WAMs are reused when a goal

detaches after completion or when they are explicitly freed via a call to release_goal/1,

in which case they are left empty and ready to execute another goal. The alternative

is to reuse frozen stacks using markers to separate executions corresponding to different

concurrent goals [Her87, SH96]. This can be more efficient in memory consumption, but

is also more complicated to implement. We have implemented an intermediate approach

which is possible if the stacks in the engine can be resized dynamically. We start with

very small stacks which are expanded automatically as needed. This has allowed us to

run quite large benchmarks with a considerable number of threads without running into

memory exhaustion problems. It is also possible to shrink the stacks upon goal success,

so that no memory is wasted in exchange for a small overhead. This is planned for future

versions.

For our experiments we implemented the proposed primitives in the CIAO Prolog

engine (essentially a simplified version of the &-Prolog engine, itself an independent

evolution from SICStus 0.5-0.7, and whose performance is comparable to current SICStus

versions running emulated code). We have used a minimal set of the POSIX thread

primitives, in the hope of abstracting away the quite different management of threads

provided in different operating systems, and to favor porting among UNIX flavors. All

1The memory areas used by a WAM, which are usually managed using a stack policy.
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Thread creation Engine coupling Engine creation

2.03 ms / 702 LI 3.16 ms / 1091 LI 10.3 ms / 3579 LI

Table 7.1: Profile of engine and thread creation (average for 800 threads).

the experiments reported in this paper have been run on a SparcCenter 2000, with 10

55MHz processors, Solaris 2.5, CIAO-Prolog 0.9p75. All the measurements have been

made using walltime clock.

Table 7.1 provides figures for several operations involving threads. Since the over-

head per thread seems to remain fairly constant with the number of threads used, we

show the average behavior for 800 (simultaneous) threads. Measurements correspond

to the Prolog view of the execution: they reflect the time from a eng_
all(Goal) is is-

sued, to the time Goal is started. Times are given in ms. and, to abstract away from

the processor speed, in “number of naive-reverse Logical Inferences” (at the ratio of 345

logical inferences per millisecond, the result given by nrev in the machine used). Al-

though these numbers depend heavily on the implementation of O.S. primitives, we feel

that providing them is interesting, since they are real indications of the cost of thread

management.

The column labeled “Thread creation” reflects the time needed to start a thread,

including the time used in copying the goal. The column labelled “Engine coupling”

adds the time needed to locate an already created, free WAM, and to attach to it, and

includes the initialization of the WAM registers. The column “Engine creation” takes

into account the time used in actually creating a new engine (i.e., memory areas) and

attaching to it. The last one is, as expected, larger, and this supports the idea of not

disposing of the engines which are not being used. These figures are also useful in order

to determine the threshold which should be used to decide whether execution should

be sequential or parallel, based on granularity considerations [LGHD96]. Regarding

memory consumption, the addition of thread support increased only very marginally the

memory space needed per WAM.

A Note on Avoiding the Copy of the Calling Goal: Copying goals on launch, despite

its advantages, may be very expensive. We support an additional set of primitives which

perform sharing of arguments instead of copying.2 To simplify the implementation and

avoid a performance impact on sequential execution, concurrent accesses to the shared

variables are not protected. The programmer has to ensure correct, locked accesses to

them, including the effects of backtracking in other agents.
2That is, as long as the goals are being executed in the same machine (Section 7.3.5).
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More complex management of variables can be built on top of these primitives by

using, for example, attributed variables for automatic locking and publication of deter-

ministic bindings, with techniques similar to those in [HCC95], and incremental, on

demand copying of goal arguments, as shown in [CH96, LMSH97].

7.2.3 Synchronization and Communication Primitives

For the reasons argued previously, in this design we would like to use communication and

synchronization primitives simpler to implement than those based on shared-variable in-

stantiation. The use of the dynamic database that we propose as a concurrent shared

repository of terms for communication and synchronization requires some (local) mod-

ifications to the semantics of the accesses to the dynamic database, but also results in

some very interesting synergies.

7.2.4 Making the Database Concurrent

We start by assuming that we can mark certain dynamic predicates as concurrent by

using a 
on
urrent/1 declaration. The implication is that these predicates can be up-

dated concurrently and atomically by different threads. We also assume for simplicity

that these predicates will only contain facts, i.e., they are data/1 predicates in the sense

of [BCHP96] and Ciao (this makes them faster and helps global analysis). Finally, we

assume that if a concurrent predicate is called and no matching fact exists at that time in

the database, then the calling thread suspends and is resumed only when such a match-

ing fact appears (i.e., is asserted by a different thread, instead of failing). With these

assumptions, there is a relationship between the Linda primitives (Table 7.2, middle

column) and the Prolog assert/retract/call family of builtins in the context of concurrent

predicates (right column). The first three Linda operations, out/read/in, have now clear

counterparts in terms both of information sharing and synchronization. In the following

example,
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Operation Linda 
on
urrent/1 Facts

Put tuple out asserta/1, assertz/1

Wait, read tuple read 
all/1, simple call

Wait, read, delete tuple in retra
t/1

Read tuple or fail read_noblo
k 
all_nb/1 (+)

Read and delete or fail in_noblo
k retra
t_nb/1 (+)

No more tuples — 
lose_predi
ate/1

(More tuples may appear) — (open_predi
ate/1)

Table 7.2: Comparing Linda primitives and database-related Prolog primitives

:- 
on
urrent state/1.

p:-

eng_
all(q),

state(X),

!,

(

X = failed ->

...

;

...

).

q:-

<...produ
e Result...>,

!,

asserta(state(
orre
t(Result))).

q:- asserta(state(failed)).

p launches predicate q and waits for notification of its final state, which may be a Result

or a failed state (the use of the Prolog cuts will be clarified further later). Making the

dynamic predicate state/1 be 
on
urrent ensures atomic updates and the suspension

of the call to state(X) in p.

One interesting difference with Linda primitives appears at this point: it is clear that

we may want to be able to backtrack into a call to a concurrent predicate (such as the

one to state(X) above). The behavior on backtracking of calls to concurrent predicates

is as follows: if an alternative unifying fact exists in the database, then the call matches

with it and proceeds forward again. If no such fact exists, then execution suspends

until one is asserted. This is the natural extension of the behavior when the predicate is

called the first time, and makes sense in our concurrent environment where facts of this

predicate can be generated by another thread and may appear at any time. It allows, for

example, implementing producer-consumer relations using simple failure-driven loops.

In the following temperature example a thread accesses a device for making temperature
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readings, and asserts these, while a concurrent reader accesses them in a failure driven

loop as they become available.

:- 
on
urrent temp/1.

temperature:-

eng_
all(read_temp),

produ
e_temp.

produ
e_temp:-

(

read_temp_devi
e(Temp) ->

assertz(temp(Temp)),

produ
e_temp

;

assertz(temp(end))

).

read_temp:-

temp(Temp),

(

Temp = end ->

true

;

<...work with Temp...>,

fail

).

When no more temperature readings are possible, read_temp_devi
e/1 fails and the

end token, instead of a a temperature, is stored, which causes the reader to exit. Con-

ceptually, when backtracking is performed, the next clause pointer moves downwards in

the clauses of the temp/1 predicate until the last fact is reached. Then, the calling thread

waits for more facts to appear. Note that assertion is done using assertz/1, which adds

new clauses at the end of the predicate, so that they can be seen by the reader waiting

for them. If asserta/1 were used, newly added facts would not be visible, and thus the

reader would not wake up and read the new data available. Also, note that the data pro-

duced remains, so that other readers could process it as well by backtracking over it. For

example, assume the temperature asserted has the time of the reading associated with it.

Different readers can then to consult the temperature at a given time concurrently, sus-

pending if the temperature for the desired time has not been posted yet. Alternatively, if

the call to temp(Temp) above is replaced with a call to retra
t(temp(Temp)), then each

consumer will eliminate a piece of data which will then not be seen by the other con-

sumers. This is useful for example for implementing a task scheduler, where consumers

“steal” a task which will then not be performed by others.

The concurrent database thus allows representing a changing outside world in a way

that is similar to other recent proposals in computational logic, such as condition-action

rules [Kow96]. A sequence of external states can be represented by a predicate to which

a series of suitably timestamped facts are added monotonically, as in the temperature
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sensor example above. Processes can sense this state and react to it or suspend waiting

for a given outside event to happen.

One nice characteristic of the approach, apart from naturally supporting backtrack-

ing, is that many concurrent programs using shared facts are very similar to the non-

concurrent ones. There is, however, a subtle difference which must be taken into ac-

count: when calling standard, non-concurrent facts with alternatives, the choicepoint

disappears when the last fact is accessed. In the reader the “last fact” was assumed to

be that with the “end” token, but this did not make the choicepoint pushed in by the

access to the database go away. A failure at a later point of the reader would cause it to

backtrack to this choicepoint, and probably suspend — which may or may not be desired.

Getting around this behavior is possible by simply putting an explicit cut at the point in

which we decide that no more facts are needed (i.e., the communication channel has

been conceptually closed), so that the dynamic concurrent choicepoint is removed. This

is the reason for the cut in the first example of synchronization: we just wanted to wait

for a fact to be present, and then we did not want to leave the choicepoint lying around.

7.2.5 Closing Concurrent Predicates

There are cases in which we prefer failure instead of suspension, if no matching is possi-

ble. This can be achieved in two ways. The first one is using non-blocking (_nb) versions

of the retract and call primitives (marked + in Table 7.2), which fail instead of suspend-

ing, while still ensuring atomic accesses and updates. The second, and more interesting

one, is explicitly closing the predicate using 
lose_predi
ate/1. This states that all al-

ternatives for the predicate have been produced, and any reader backtracking over the

last asserted fact will then fail rather than suspending. The example can now be coded

as:

:- 
on
urrent temp/1.

temperature:-

eng_
all(read_temp),

produ
e_temp.

193



Chapter 7. Concurrency in Prolog Using Threads and a Shared Database

produ
e_temp:-

(

read_temp_devi
e(Temp) ->

assertz(temp(Temp)),

produ
e_temp

;


lose_predi
ate(temp/1)

).

read_temp:-

temp(Temp),

<...work with Temp...>,

fail.

read_temp.

where the call to temp(Temp) eventually fails after the predicate is closed. This is useful

for example for marking that a stream modeled by a concurrent predicate is closed: all

the threads reading/consuming facts from this predicate will fail upon the end of the

data. For completeness, a symmetrical open_predi
ate/1 call is available in order to

make a closed predicate behave concurrently again (although it is arguably best practice

not to re-open closed predicates).

7.2.6 Local Concurrent Predicates

New, concurrent predicates can be created dynamically by calling the builtin


on
urrent/1. The argument to 
on
urrent/1 can be a new predicate. Also, if the

argument of the call to 
on
urrent/1 contains a variable in the predicate name, the sys-

tem will create dynamically a new, local predicate name. This allows encapsulating the

communication, which is now private to those threads having access to the variable:

temp:-


on
urrent(T/1),

eng_
all(read_temp(T)),

produ
e_temp(T).

produ
e_temp(T):-

(

read_temp_devi
e(Temp) ->

assertz(T(Temp)),

produ
e_temp

;


lose_predi
ate(T/1)

).

read_temp(T):-

T(Temp),

<...work with Temp...>,

fail.

read_temp(_).

where we could replace the higher-order syntax T(X) supported by CIAO Prolog with
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calls to =.. and 
all/n (e.g., 
all(T,Data)). Note that the functionality at this point is

not unlike that of a port, but with a richer backtracking behavior.

Another way of encapsulating communication stems from an interesting synergy be-

tween the concurrent database and the module system. Concurrent predicates are, as

usual, in principle local to the module in which they appear. If they are not exported,

they constitute is a channel which is local to the module and can only be used by the

predicates in it. The module-local database thus acts as a local blackboard. By exporting

and reexporting concurrent predicates between modules, separate, private blackboards,

can be easily created whose accessibility is restricted to those importing the correspond-

ing module. This is particularly useful when several instantiations (objects) are created

from a given module (class) – see [PH99].

7.2.7 Logical View vs. Immediate Update

A final difference between concurrent predicates and standard dynamic predicates is

that the logical view of database updates [LO87], while convenient for many reasons, is

not really appropriate for them. In fact, if this view were implemented then consumers

would not see the facts produced by sibling producers. Thus, an immediate update view

is implemented for concurrent predicates so that changes are immediately visible to all

threads.

7.2.8 Locks on Atoms/Predicate Names

A method for associating semaphores [BA82] to atoms / predicate names is available.

Mimicking those in procedural languages, a counter is associated with each atom which

can be tested or set atomically using atom_lo
k_state(+Atom, ?Value). It can be atom-

ically tested and decremented if its value is non-zero, or waited on if it is zero, using

lo
k_atom(+Atom), and incremented atomically using unlo
k_atom(+Atom). The imple-

mentation is very cheap, avoiding the overkill of simulating semaphores with concurrent

predicates, when only a simple means of synchronization is needed.

7.2.9 Implementation Issues and Performance

Concurrent accesses are made atomic by using internal, user-transparent locks, one per

predicate. Every call to a concurrent predicate creates a dynamic choicepoint with special

fields. In particular, its next alternative field points to the next clause to try on backtrack-

ing through an indirect pointer. All the indirect pointers from different choicepoints

leading to a given clause are linked together into a chain reachable from that clause, so
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A B

C D

root c1 c2
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D

root

B

C

c2 c3

Figure 7.1: Choicepoints and suspended calls before and after updating clauses

that any goal updating the predicate can access and relocate all of them atomically if

needed (for example, if the clause is removed). Calls which suspend do not have their

associated choicepoint removed, and the corresponding indirect pointers are linked in a

separate suspension chain (Figure 7.1, left). When a thread tries to access its next al-

ternative and no alternative matching clause exists, the thread waits on changes to that

indirect pointer instead of failing. This behavior ultimately depends on whether the call

was blocking or not, and on whether the predicate was closed or not at the time. We

discuss the interesting case of blocking calls on open predicates.

When a clause is removed, the chain of indirect pointers leading to it is checked:

some of the pointers might be moved forwards in the clause list to the next possibly

matching instance (as dictated by indexing), and in some cases it can be determined that

no matching clause exists. In the latter case, they are linked to the chain of suspended

calls. On the other hand, every time a new clause is appended, the list of suspended calls

is checked, and those which may match the new clause (again, according to indexing),

are made to point to that new clause. This is performed even if the affected goal is not

actively waiting on an update of the clause, but executing some other code.

Figure 7.1 depicts a possible state of the database before and after some clause up-

dates take place. On the left, choicepoints A and B point (indirectly) to clause 
1 as next

clause to try. Choicepoints C and D point to null clauses, and they are either suspended,

or they would suspend should they backtrack now. Let us remove 
1 and add 
3. The

thread which adds / removes clauses is in charge of updating the affected pointers, based

on indexing considerations. The call from A, which was pointing to 
1, does not match

neither 
2 nor 
3, so it points to the null clause now, and is enqueued in the list of calls

to suspend. The call from B may match 
3 but does not match 
2, and its indirect pointer

is set accordingly. The call from C does not match 
3 and so its state does not change.

And, finally, the call from D might match 
3, and it is updated to point to this clause.
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Primes Conc Data

5000 1511 1915

10000 2475 5204

15000 4775 9100

20000 6386 12560

25000 9061 17804

30000 11900 24298

35000 13252 29450

Table 7.3: Sieve of Erathostenes

Fact spec Memory bytes/fact bytes/arg

p/0 1264 21.57 —

p/1 1753 29.91 8.34

p/2 1871 31.93 5.18

p/4 2105 35.92 3.58

p/8 2571 43.87 2.78

p/16 3507 59.85 2.39

p(g/1) 1615 27.56 5.99

p(g/2) 1753 29.91 4.17

p(g/4) 1967 33.57 3.00

p(g/8) 2435 41.86 2.53

p(g/16) 3373 57.56 2.24

Table 7.4: Memory usage, 60000 facts

The cut needs some additional machinery to retain its semantics. Not only the (dy-

namic) choicepoints in the scope of a cut should be swept away (which boils down to

updating a pointer), but also the possibly suspended goals corresponding to the con-

current choicepoints must be removed. This is currently done by traversing part of the

choicepoint stack, following the links to suspended calls, and removing them.

The implementation of concurrent predicates is not trivial, but we argue that it is

much simpler than implementing variable-based communication that behaves well on

backtracking. Also, it affects only one part of the abstract machine, database access,

which is typically well isolated from the rest. In our experience, the changes to be per-

formed are fairly local. The resulting communication among threads based on access

to the database may be slower than communication using shared variables, although,

depending on the implementation, reading can be faster. However, note that in this de-

sign we are not primarily interested in speed, but rather in flexibility and robustness, for

which we believe the proposed solution is quite appealing. Also, in the proposed imple-

mentation the execution speed of sequential code which makes no use of concurrency is

not affected in any way, which is not as easy with a shared-variable approach. Further-

more, the fact that concurrent predicates should not meet the logical view of database

updates [LO87], eliminates the need to check whether a fact is alive or not within the

time window of a call, which makes, in some cases, the access and modification of con-

current predicates up to more than twice as fast as that of standard dynamic predicates.

As an example of the impact on speed of the immediate database updates, Table 7.3
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1 2 4 6 12

4327 2823 1687 1400 1625

Table 7.5: Adding and removing facts from a database, 10 processors available

shows timings (in milliseconds) for a database implementation of the well-known Sieve

of Erathostenes, using a failure loop to both traverse the table of live elements and to

remove multiples. The “Data” column corresponds to the version which uses the CIAO

data/1 declaration (which is faster than dynami
, and specialized for facts). The “Conc”

row uses the 
on
urrent/1 declaration. Clause liveness (i.e., whether a given clause

should or not be seen by a given call) must be tested quite often in this case, which

accounts for the performance jump. On the other hand, other patterns of accesses to

database perform this liveness test quite sparingly (if at all), and benefit less from the

immediate update, suffering instead from the mandatory lock of the predicates being

accessed. However, the factors seem to compensate even in the worst cases since we

have not been able to find noticeable slowdowns.

With respect to memory consumption, Table 7.4 lists average memory usage per fact

and per argument for the CIAO Prolog implementation in a benchmark which asserts

60000 facts to the database. A fact p with different arguments (integers) was asserted,

as well as a fact with a single argument, containing a functor with different numbers of

arguments (integers again). It is encouraging that these figures are well behaved, as we

may expect large numbers of facts asserted in the database.

Another interesting issue is the impact of contention in concurrent predicate accesses.

Our implementation ensures that concurrent accesses to different predicates will not in-

terfere with each other: Table 7.5 shows speeds for the access and removal of a total of

10000 facts using different numbers of threads. Each thread accesses a different pred-

icate name, which results in speedups until the number of threads is greater than the

number of available processors, when other contention factors appear. However, there is

obviously some interference in the concurrent accesses to the same predicate.

7.3 Some Applications and Examples

We now illustrate the use of the proposed concurrency scheme with some examples.
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7.3.1 Implementing Condition-Action Rules

The concurrent database also has the advantage that it allows representing a changing

outside world in a way that is similar to that of condition-action rules [Kow96]. A se-

quence of external states can be represented by an open predicate to which a series of

suitably timestamped facts are added monotonically, as for example data from a tem-

perature sensor. Processes can sense this state and react to it or suspend waiting for a

given outside event to happen. As an example, consider the implementation of condition-

action rules shown in Figure 7.2. On the left the original source code is shown, which

includes the library file 
_a_rules. This file adds, in Ciao Prolog style, local declarations

for operators and predicates to perform the translation. On the right a possible transla-

tion is shown. initialization/1 is an ISO directive that instructs the runtime system

to start the argument goal on startup. In this case, the monitor for the rule is started

as a (perpetual) daemon, and it checks two concurrent facts to decide wether or not to

turn off a heater—this is also represented as a concurrent fact, which might in turn be

consulted by another CA rule.

:- module(somea
tions,[℄).

:- use_module(htr
trl,[heater/1℄).

:- use_module(sensors,[temp/1℄).

:- use_pa
kage(
_a_rules).

{temp(X), heater(on)},

X > 5 => heater := off.

...

:- module(somea
tions,[℄).

:- use_module(htr
trl,[heater/1℄).

:- use_module(sensors,[temp/1℄).

:- initialization eng_
all(
ond_a
t_rule_1).


ond_a
t_rule_1:-


urrent_fa
t(temp(X)),


urrent_fa
t(heater(on)),

X > 5,

turnheater(off),


ond_a
t_rule_1.

turnheater(NewState) :-

retra
t_fa
t(heater(OldState)),

asserta_fa
t(heater(NewState)).

Figure 7.2: Compiling condition-action rules (left) to Ciao code (right)
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7.3.2 Semaphores

It should be noted that other abstractions, such as general semaphores, are also straight-

forward to implement. As an example, Figure 7.3 shows the implementation of a general

semaphore for concurrency. The state of the semaphore is determined by the number of

facts of the predicate. This example also hilights how a concurrent fact (in this case of

arity zero) can be created dynamically. This ability to create on-the-fly (the equivalent

of) dynamic semaphores is of great help, e.g., if database-based O’Ciao objects [PH99]

are to be extended to the concurrent case, a lock has to be created per object.3

init(Mutex, Value):-


on
urrent(Mutex/0),

forall(1, Value, asserta(Mutex)).

signal(Mutex):- asserta_fa
t(Mutex).

wait(Mutex):- retra
t_fa
t(Mutex).

Figure 7.3: A general semaphore using concurrent facts

7.3.3 The Five Dining Philosophers

Figure 7.4 presents the code for the problem of the Five Dining Philosophers, with the aim

of showing how a standard solution can be adapted to the concurrent database approach.

The code mimics the solution presented in [BA82]. Each philosopher is modeled as

a concurrent goal which receives its number as an argument. Fork-related actions are

modeled by accesses to a concurrent predicate fork/1. A global semaphore, associated

with the atom room, controls the maximum number of philosophers in the dining room,

and also makes sure that all philosophers start at once.4 No attempt is made to record

when a philosopher is thinking or eating, but this can be done by asserting a concurrent

predicate recording what every philosopher is doing at each time.

7.3.4 A Skeleton for a Server

A server is a perpetual process which receives requests from other programs (clients) and

attends them. Typically, the server should accept more queries while previous ones are

being serviced, since otherwise the service would stop temporarily. Therefore, servers
3Ciao Prolog has actually locks associated to atoms, which are presumably better suited for this task.

However, we want to note that the mechanisms seen so far are enough to achieve the results we seek.
4Actually, this is not strictly needed: letting philosophers think and eat as they become alive does not

change the behavior of the algorithm, but this decision illustrates the use of atom-based locks for global

synchronization.
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:- 
on
urrent fork/1.

philosophers:-

atom_lo
k_state(room, 0),

eng_
all(philosopher(1)),

eng_
all(philosopher(2)),

eng_
all(philosopher(3)),

eng_
all(philosopher(4)),

eng_
all(philosopher(5)),

atom_lo
k_state(room, 4).

eat:- ...

think:- ...

fork(1). fork(2).

fork(3). fork(4). fork(5).

philosopher(ForkLeft):-

ForkRight is (ForkLeft mod 5) + 1,

think,

lo
k_atom(room),

retra
t(fork(ForkLeft)),

retra
t(fork(ForkRight)), !,

eat,

assertz(fork(ForkLeft)),

assertz(fork(ForkRight)),

unlo
k_atom(room),

philosopher(ForkLeft).

Figure 7.4: Code for the Five Dining Philosophers

main:- 
at
h(server, _AnyError, halt).

server:-

wait_for_request(Query),

eng_
all(servi
e(Query)),

server.

Figure 7.5: A skeleton for a server

usually are multithreaded, and children fork from the parent in order to handle individ-

ual requests. A simple skeleton for a server is shown in Figure 7.5. The main thread

waits for a request and, when one arrives, launches a child thread to process it. The

server itself is started within the context of a catch/throw construction which will exit

the execution should the server receive any external signal.5

Possible internal errors of the server can be dealt with by the servi
e/1 predicate itself,

since each one of its invocations is detached from the main thread. The shared database
5Exceptions in CIAO Prolog are installed on a per-thread basis, so every concurrent goal can have its own

exception handlers without altering the behavior of the other threads.
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Start thread Gather bindings

No handle, local ..., G &, ... —

Handle, local ..., G &> H, ... H <&

Remotely concurrent (G &) � S —

Locally concurrent, remote execution (G � S) & —

Remote handle, remotely concurrent (G &> H) � S (H <&) � S

Local handle, remote execution (G � S) &> H H <&

Table 7.6: Starting concurrent / distributed goals and waiting for bindings

provides a communication means in case the children have to report any data to the dis-

patcher.

7.3.5 Implementing Higher-Level Concurrency Primitives

The interface offered by the primitives related to threads, locks, and database is sufficient

for building many different concurrent programs, but it is somewhat low-level. For ex-

ample, the number of simultaneous threads has to be controlled explicitly as part of the

application code. Similarly, waiting for completion of the computation of a thread and

accessing the bindings created by it need the execution of a (fixed) sequence of steps.

Also, implementing backtracking over concurrent goals requires some often repeated

coding sequences. Such sequences are clear candidates to be abstracted as higher-level

constructs.

Using the basic primitives, we have implemented the set of concurrency and dis-

tributed execution constructs proposed in [HCC95, CH96], some examples of which are

shown in table 7.6. Remote goals are executed in a server S, specified with the placement

operator �/2 (so that, for example, G � S means “execute G at S, wait for its comple-

tion, and import the bindings performed”). Handles (H) allow waiting for the (remote)

completion of the goal, and gathering the bindings. Lack of space prevents us from in-

cluding the actual implementation code, but it is easy to port the implementations given

in [HCC95, CH96]. Using concurrent predicates instead of the external blackboard used

there results in a simplification of the code. Significant simplifications also stem from the

fact that with the proposed primitives goals which have produced a solution can be left

frozen and then asked for additional solutions. Thus, concurrent and distributed goals

now need not be called in the context of findall.
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Processors Granularity level

17 18 19 20 21 22 23 24 25

1 1289 1253 1253 1287 1266 1264 1285 1305 1309

3 463 455 480 491 524 623 533 820 1309

5 287 290 312 312 376 319 510 818 1309

7 219 220 210 244 309 318 504 823 1309

9 178 178 197 220 213 330 519 836 1309

Table 7.7: Deterministic and-parallel scheduler: granularity against no. of processors

As a simple example, we discuss the implementation of a version of the traditional

&-Prolog &/2 operator, which, placed instead of a comma, specifies that the two adjacent

goals are to be executed in parallel and independently: GoalA & GoalB. This operator

was implemented at a very low-level (i.e., modifying the underlying abstract machine)

in the &-Prolog system [HG91] and in other systems [GHPSC94], which resulted in very

good performance, but at the cost of a non-trivial amount of implementation work. Fig-

ure 7.6 shows the code for our source-level implementation which assumes that the

goals to be executed are deterministic. Extending it for nondeterministic goals is easy,

but makes the code too long for our space limitations. However, we will compare per-

formance results for both the simple implementation and the one which fully supports

backtracking.

In this implementation, the parallel operator &/2 assigns a unique identifier to every

parallel conjunction. One of the parallel goals is executed locally, while the other is

stored in the database, together with its identifier, waiting for a scheduler to pick it up.

Such a scheduler is implemented by the predicate s
heduler/0. To use N processors of a

parallel machine, N − 1 threads should be created, all running initially s
heduler/0. As

soon as one goal is posted to the database, one of the threads running the scheduler grabs

and executes it, leaves the solution in the database, and fails in order to wait for another

goal. If no free schedulers are available, the main thread may find, upon completion of

the local goal, that the goal stored in the database is still there. Then, this local thread

picks it up and executes it locally. On the other hand, if the solution waited for is not

in the database, and the goal left there from the conjunction has been taken, the main

thread switches personality and tries to execute any other goals present in the database

while also checking whether the solution it requires for the original goal has been posted

or not.
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:- 
on
urrent goal_to_exe
ute/2.

:- 
on
urrent solution/3.

GoalA & GoalB :-

new_id(IdA),

assertz(goal_to_exe
ute(IdA, GoalA)),


all_with_result(GoalB, ResultB),

(

retra
t_nb(goal_to_exe
ute(IdA, GoalA)) ->


all_with_result(GoalA, ResultA)

;

repeat,

perform_some_other_work(IdA, GoalA, ResultA), !

),

ResultA = su

ess,

ResultB = su

ess.

perform_some_other_work(Id, Sol, Res):-

retra
t_nb(solution(Id, Sol, Res)).

perform_some_other_work(_Id, _Sols, _Result):-

retra
t_nb(goal_to_exe
ute(Id, Goal)), !,


all_with_result(Goal, Result),

assertz(solution(Id, Goal, Result)),

fail.

s
heduler:-

retra
t(goal_to_exe
ute(Id, Goal)),


all_with_result(Goal, Result),

assertz(solution(Id, Goal, Result)),

fail.


all_with_result( Goal, su

ess) :- 
all(Goal), !.


all_with_result(_Goal, failure).

Figure 7.6: Code for an and-parallel scheduler for deterministic goals
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Processors Granularity level

17 18 19 20 21 22 23 24 25

1 1621 1555 1530 1549 1541 1582 1584 1613 1325

3 571 570 570 588 611 746 635 1062 1332

5 367 363 380 392 453 411 617 1029 1332

7 286 290 266 299 378 393 628 1081 1332

9 246 229 247 256 262 403 633 1040 1332

Table 7.8: Non deterministic and-parallel scheduler: granularity against no. of processors

This very naive implementation cannot, of course, achieve the same performance as

&-Prolog (and this is obviously not the objective of the exercise). However, it is interest-

ing that a correct selection of the granularity level [LGHD96] does produce speedups due

to parallel execution on at least some benchmarks. Table 7.7 shows times (in millisec-

onds) for the parallel execution of the doubly recursive Fibonacci benchmark (computing

the 24th Fibonacci number) using the scheduler for deterministic goals. Each column is

labelled with a different granularity level, i.e., the column labeled “17” corresponds to

a call which stops spawning goals from the call to compute the 17th Fibonacci number

downwards. Table 7.8 shows results for the same benchmark using a scheduler which

supports non-deterministic goals. The lower the granularity level, the more goals are

executed in parallel, and the smaller they are. The speedups shown approach linearity

when execution is performed at a large enough granularity level. As expected, execu-

tion also speeds up as more parallel goals are available, until a turning point is reached

(at the level of granularity of 17). At this level of granularity the cost of accessing the

database for copying goals and recovering the solutions exceeds the speedup obtained

from parallel execution. The nondeterministic scheduler, additionally, adds an overhead

to the execution, which for this benchmark case ranges from 16% to 30%, with an iso-

lated peak of 39%—and therefore, has a higher granularity, with the “turning point” in

18.

7.4 Conclusions

We have proposed a new model to express concurrency, including communication and

synchronizations. It inherits, in some ways, from proposals like Linda, but it differs from

them in that the language semantics is widened to allow for the new synchronization

capabilities.
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The proposal is expressive enough as to base in it several well known synchronization

methods. The implementation of the thread creation, based on copying goals to a sepa-

rate environment, allows taking advantage of most of the already developed technology

for sequential execution.

As future work, besides improving the efficiency of the system, we plan to investigate

the use of the proposed low-level techniques as a basis for implementing higher-level

constructions. Along these lines, we are currently working on a library which implements

remote concurrent objects.
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Chapter 8

Conclusions

Since every chapter has its own conclusions, we will just summarize them here, and try

to make clear again the relationships among the goals achieved in the thesis.

8.1 Parallelism

The use of parallelism is one of the initial approaches aimed at improving the efficiency

in Logic Programming, as we commented in Chapter 2. Unfortunately, the associated

implementation techniques are notably complex, and adopting some optimizations is

more difficult than in the sequential case. Among the associated problems we can cite

the increased memory usage and some speed-down relative to an ideal parallel execution

due to the need of creating tasks with the proper format for parallel execution. We have

studied these two problems and worked on an implementation of a simulation tool to

analyze post-mortem the behavior of a parallel execution:

• We have studied how the memory usage associated to the parallel backtracking

can be diminished. We have found a method, based on a slight modification of the

RAP-WAM, which achieves substantial memory savings in the case of deterministic

predicates, and we have seen its usefulness in several test cases.

• We have also evaluated the speed-down for the parallel execution of a special class

of recursive predicates which transform a data structure into a similar one, or which

aggregate elements of a data structures. We have studied a solution based on

program rewriting which achieves important improvements in the speedup of the

programs while keeping their original semantics.

• The simulation tool allows comparing a real execution with an ideal execution on

a predetermined number of processors, or finding out the minimum number of

processors needed in order to obtain the maximum speedup in an execution. The
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first case is useful, e.g., to compare several scheduling algorithms, and the second

to verify whether an upgrade in machine hardware could result in increased speed,

as well as to study the change in the amount of parallelism actually exploited in

a program when the number of processors is increased. We have evaluated an

implementation of such a tool, and we have seen that their results are very similar

to those obtained by direct experimentation.

8.2 Visualization

A well-designed visualization gives an intuitive description of program executions, and

leads to a better understanding of this execution. This is specially relevant in parallel and

constraint programs, due to the complexity of their execution, which can be completely

understood only by knowing the details of the inner architecture of the system. In most

cases different code for a program can give very different execution times, although the

program semantics does not change. A number of visualization tools have been designed

and implemented:

• APT, a tool to visualize sequential execution which can be used to study behavior

patterns of small and medium sized executions, although its main application field

is probably education.

• VisAndOr, which focuses on performance study for parallel programs, featuring a

tailored depiction. Its usefulness has been shown in several cases, some of which

have been showcased in this thesis. VisAndOr and other related tools are instru-

mental in the optimization and debugging of parallel systems, and in the study of

the behavior of parallel logic programs.

• VIFID and TRIFID, which show a data-oriented view of the data in constraint logic

programming over finite domains. This is in contrast with the previous two tools,

which aim at representing control-related issues.

8.3 Concurrency

Concurrency, as a means to better use computer resources and to realize interactive and

reactive systems, is necessary in any current programming language. In this thesis, we

have put forward a new proposal of concurrency based on integrating into Prolog of

a programming style à la Linda by augmenting the semantics of a designated set of
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(dynamic) predicates. This proposal can be used as a base to implement and study other

types of constructs for concurrency and distribution at a higher level.

8.4 Future Work

We will point out here certain issues which remain open and which can continue the

work of the present thesis:

Integration of optimizations in parallel models: although several programming sys-

tems do have parallel programming capabilities, none of them incorporates the

different optimizations which have been proposed in several papers. Integrating

and implementing all of them is a non trivial pending work. Part of its difficulty

comes from the following reasons:

• The implementation in itself is complex and delicate.

• The interactions among the several types of optimizations is not well studied,

and the requirements of each of these optimizations can be not only different,

but incompatible.

We propose a study of the different optimizations for sequential and parallel pro-

gramming, and of the conditions needed for each of them. A similar study for

the sequential case has recently been initiated [DN00a], departing from previous

comparisons in using as base the same execution engine, therefore not contaminat-

ing the performance results for several optimizations with other design decisions

already been made.

Analysis environment addressed to the optimization of parallel implementations:

it seems there is a lack of practical results (in the sense of integrated programs)

in the wide and quite successful field of program analysis. One of the most promis-

ing systems was the &–Prolog compiler [MBdlBH99], able to extract independence

information in a user-transparent fashion. Meanwhile, other analysis for determin-

ism, granularity, etc. have been developed. Putting all of them together in a similar

environment (similar, e.g., to CiaoPP [HBPLG99]) would allow obtaining many in-

formation of outstanding importance for the optimization of parallel, distributed,

and sequential execution.

On-Line simulation: scheduling algorithms face a problem: very often its efficiency dif-

fers according to the goal / program being executed. Moreover, systems with and-
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and or-parallelism have different scheduling needs according to the type of paral-

lelism in each moment: it does not seem to be wise to use the same scheduling

strategy in both execution models. It would be possible to gather the information

pertaining the execution profile and perform an online simulation which helps to

create a better scheduling in new executions of the same program. A similar task

is already been performed by some constraint languages [COS96] in order to make

more intelligent decisions in the process of labeling.

Integrating debugging-oriented analysis with program visualization: there are cur-

rently analyzers able to test high-level specifications against a program, and which

generate code to check at run-time these properties which have not been proved

(or disproved) at compile-time. This code can be associated to calls/messages han-

dled by a visual debugger, which would be triggered at the moment a property is

violated.

Designing and implementing higher-level concurrency constructs: we want to con-

tinue with the study of explicit concurrency, and explore the possibilities of ex-

pressing creation and synchronization of tasks at a higher level, using the basic

building blocks shown here. These proposals are, as an important property, based

on separate computation spaces, which allow simplifying the implementation. The

absence of implicit communication allows unifying in the same proposal distributed

and concurrent execution.

Adapting analysis techniques to concurrency: the analysis of concurrent systems is dif-

ficult. However, the proposals of restricted concurrency (in the sense that there is

a lack of implicit communication) we have made, can lead to an easier analysis,

since the sequential parts and the synchronization points are implicit in the pro-

gram code. Studying whether these concurrency mechanism are advantageous or

not regarding analyses is future work.
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