
Deriving Specifications for Composite Web Services

George Baryannis
Department of Computer Science

University of Crete and
FORTH-ICS, Heraklion, Greece

Email: gmparg@csd.uoc.gr

Manuel Carro
School of Computer Science

Universidad Politécnica de Madrid (UPM) and
IMDEA Software Institute, Madrid, Spain

Email: manuel.carro@imdea.org

Dimitris Plexousakis
Department of Computer Science

University of Crete and
FORTH-ICS, Heraklion, Greece

Email: dp@csd.uoc.gr

Abstract—We address the problem of synthesizing specifi-
cations for composite Web services, starting from those of
their component services. Unlike related work in programming
languages, we assume the definition of the component services
(i.e. their code) to be unavailable — at best, they are known
by a specification which (safely) approximates their functional
behavior. Within this scenario, we deduce general formula
schemes to derive specifications for basic constructs such as
sequential, parallel compositions and conditionals and provide
details on how to handle the special cases of loops and
asynchronous execution. The resulting specifications facilitate
service verification and service evolution as well as auditing
processes, promoting trust between the involved partners.

Keywords-specification of service compositions, inference of
specifications, service composition

I. INTRODUCTION

Service composition enables service-based systems to be
built using accepted engineering principles, such as (service)
reusability and composability. Composite services provide
value-added services that achieve functionality otherwise
unattainable by atomic services. In order to achieve these
goals, composite services should be made available to con-
sumers in the same way as atomic services, abstracting away
complex implementation details. This can be accomplished
by providing formal specifications which present the min-
imum information required to understand the functionality
offered, often by describing the inputs, outputs, precondi-
tions and effects (known as IOPEs) of the composite service.

Formal specifications are indispensable in a variety of
service-related activities. Similarly to the case of program-
ming specifications, service specifications could be used as
a basis to construct a service based on a set of requirements
agreed upon by the parties involved, or to check that some
existing specification meets a set of requirements. Further-
more, they can assist in auditing processes that check third
party or legacy code conformance to specifications, promot-
ing trust between digital society partners, since specification
conformance is one step towards trustworthiness.

Specifications also play a major role in verification tech-
niques, as well as in the evaluation of the results of service
adaptation or service evolution. Verification involves check-
ing whether a system satisfies a property given the particular
property and a formal description (i.e. a specification) of the

system. Composite specifications are also beneficial when
one attempts to deduce whether a set of services can actually
be composed in a meaningful way, by detecting inconsisten-
cies between conditions while creating the specifications.

While existing service description frameworks attempt
to describe service compositions (including those for Web
services) using a variety of models ranging from orchestra-
tions to choreographies to Finite State Machines, no attempt
(to the best of our knowledge) has been made to handle
the problem of automatically producing specifications for
a composite service, based on the specifications of the
participating services.

Traditional tasks involving specifications, especially in the
field of programming languages, include generating code
out of specifications (using languages such as VDM [1] or
B [2]), and vice-versa or checking that a particular code
conforms to a specification. The case handled in this paper
is different: we aim at inferring specifications for a set of
individual components, functioning as a whole (based on a
composition schema), which are only known through their
specifications.

Our approach involves characterizing the semantics of
control structures assuming generic preconditions and post-
conditions of the involved basic services. From them we
synthesize the specification (or a safe approximation) of
the composite service. When applied to particular services,
the generic pre- and post-conditions are instantiated to the
actual ones; this can be used to further simplify the logical
expressions of the global specification.

The rest of this paper is organized as follows. Section II
offers a motivating example that illustrates the issues behind
creating a composite specification. Section III provides an
analytical description of the derivation process for most
fundamental control constructs while Section IV deals with
the cases of loops and asynchronous interaction. Section V
offers a brief description of related work and Section VI
concludes and points out topics for future work.

II. MOTIVATION

In this section, we present a motivating example to
illustrate the need for service composition specification in
a service evolution scenario, as well as the issues behind



S1 S2

Login

Check
Request

Check
Payment

Execute
Payment

Certification
Required?

Create
Uncertified

Create
Certified

0 1 2 3

No
5

Yes 4

6

Figure 1. Composite process of the motivating example

deriving a composite specification, given the specifications
of the participating services. The example is based on
the E-Government case study of the European Network of
Excellence S-Cube [3].

In this case study, citizens submit applications to re-
quest some government-related service, such as obtaining
government-issued documents, as illustrated in Figure 1.
Users log into the system and fill in forms regarding their
request as well as payment details, which are then simul-
taneously processed before the payment process can begin.
If users demand authentication for their documents, then a
certification process is executed, resulting in the delivery of
a certified document to the user. Otherwise, an uncertified
document is delivered. For reasons that will be clarified
later, we have labeled the states before and after particular
points in the process. For instance, state 1 is the state after
the completion of Login and before beginning execution of
services CheckRequest and CheckPayment.

Let us assume that the individual tasks described in
Figure 1 are implemented as Web services. Table I offers a
possible specification of the services involved in the process,
in terms of their preconditions and postconditions, expressed
in first-order logic. si and so denote the states before
and after execution of the particular service respectively.
Suppose that, initially, we have a composite service S1
that is implemented according to a specification T1 in
order to handle the document purchase process excluding
certification, as shown in Figure 1. Then, it is decided that
some documents should be certified with a digital signature,
so the initial specification is augmented to T2. In order to
meet the new requirements, service S1 needs to be evolved
into a new composite service S2. We need to check if
the evolved service S2 meets the new specification T2. A
composite specification I(S2) can be derived based only on
the information at hand (the orchestration definition of S2
and the specifications of the participating services, including
that of S1) and check if I(S2) subsumes T2.

The composite specification should explicitly state all con-
ditions that must be true before the execution of the whole
composite service, as well as all conditions that are true
after a successful execution. While we have preconditions

Service Preconditions
Login V alid(user, si) ∧ ¬LoggedIn(user, si)

CheckRequest FilledIn(request, si) ∧ LoggedIn(user, si)
CheckPayment FilledIn(payForm, si) ∧ LoggedIn(user, si)

ExecutePayment V alid(payForm, si)
CreateCertified PayCompleted(doc, user, si)

CreateUncertified PayCompleted(doc, user, si)
Service Postconditions
Login LoggedIn(user, so)

CheckRequest V alid(request, so)
CheckPayment V alid(payForm, so)

ExecutePayment PayCompleted(doc, user, so)
CreateCertified CertifCompleted(doc, user, so)∧

Delivered(certifDoc, so)
CreateUncertified Delivered(doc, so)

Table I
ATOMIC SERVICE SPECIFICATIONS

and postconditions for each participating service, there is no
obvious way of deciding which part of them will be included
in the composite specification.

We propose a derivation process to construct the com-
posite specification using a bottom-up approach that is
based on structural induction. The approach is applicable
to any block-structured process, as well as graph-based
ones, provided they can be transformed to block-structured
equivalents [4]. The approach is based on the availability
of the composition schema, which can be obtained, for
instance, from the BPEL document of the composite service.
In the following section, we formulate the derivation for
some fundamental control constructs.

III. CALCULATING PRE- AND POST-CONDITIONS

Formal specifications have been extensively used in com-
puter science in order to rigorously describe what a system
should do and can also similarly be used to offer a formal
presentation of what a Web service provides and under
which circumstances. A traditional format for a specification
contains the conditions that should be met prior to execution
(called preconditions, which we will denote by P ) and the
conditions that result after a successful execution of the
program (called postconditions or results, denoted by Q).

In contrast to program specifications where preconditions
are usually the weakest possible ones (and postconditions the



strongest), in the case of services, P and Q can be expected
to be safe approximations, e.g., P can be stronger than the
weakest possible precondition for that particular service. P
can therefore disallow invocations in cases where the actual
code would work, but it would not allow invocations in a
state not entailed by the weakest precondition (similarly for
the postcondition Q). Note that if the approximation were
done in the opposite direction, i.e., with P being weaker than
the weakest precondition, executions allowed by P could be
erroneous.

A. Specification Semantics

A FOL semantics for a service specification with regard
to its preconditions and postconditions is:

∀x · (P (x, si)⇒ ∃y ·Q(x, y, so))

P (x, si) and Q(x, y, so) are the (approximations of) pre-
conditions and postconditions, respectively, using predicates,
where x and y are vector variables that represent accordingly
the input fed to the service and the returned output. si and
so are fixed for a given composition schema and denote ex-
ecution points. The reason for using such state identifiers as
additional arguments to the predicates is to differentiate the
truth value of predicates based on when they are evaluated,
without having to carry around a usually cumbersome notion
of state of the world. This allows us to express fluency in
predicate values in a lean way. We choose FOL instead of
other formalisms such as the situation or fluent calculi, to
employ a widely known formalism with equal expressive
power, as well as base our proofs in automated theorem
provers such as Prover9 [5], which are mature enough to
provide high performance in practice.

Given similar specifications for the services participating
in a composition, we want to construct a specification for the
composite service c, which essentially involves calculating a
set Pc of preconditions and a set Qc of postconditions such
that the following holds:

∀x · (Pc(x, si)⇒ ∃y ·Qc(x, y, so))

where Pc(x, si) and Qc(x, y, so) are built using the precon-
ditions and postconditions of the component services.

We insist that the derived specifications maintain the
approximation that we mentioned earlier: preconditions for
c derived from preconditions that are not the weakest them-
selves should be stronger than (or at least as strong as) the
weakest possible precondition for the composition. We will
return to this issue in Section V. In the rest of this section we
will show how to calculate preconditions and postconditions
for fundamental control constructs [6]. In all cases, and
without loss of generailty, we consider compositions of two
services.

B. Sequence

We denote sequential invocation by A(x, z);B(z, y),
where all variables z that constitute the input of service
B are produced as an output of service A. This includes

x
a A

z

b B

y

c

Figure 2. Sequential composition of services A and B. Information routed
inside A and B is explicitly represented.

variables which are input for B and which do not result from
the execution of A, but come directly from sources external
to the sequence. For the purposes of the specification we
consider them to be routed untouched through A. a, b, and
c respectively denote the state before the execution of A,
after A and before B, and after the execution of B (Fig. 2).
The semantics of the sequential composition would be:

∀x∃z · ((PA(x, a)⇒ QA(x, z, b)) ∧
(PB(z, b)⇒ ∃y ·QB(z, y, c))) (1)

From Formula (1) we can deduce:

∀x∃z · (PA(x, a) ∧ PB(z, b)⇒
∃y · (QA(x, z, b) ∧QB(z, y, c))) (2)

However, Formula (2) exposes internal variable z to
the precondition. This is not desirable, since preconditions
should be externally checkable and depend only on the input
data to the composition. We can use the postcondition of A
to eliminate this shortcoming:

∀x∃z · (PA(x, a) ∧QA(x, z, b) ∧ PB(z, b)⇒
∃y · (QA(x, z, b) ∧QB(z, y, c))) (3)

In Formula (3) the precondition can be checked exclu-
sively based on x.1

The derived specification shows what conditions must
be met before executing the sequence A;B and which
conditions will hold after a successful execution. However,
it does not state clearly which conditions must hold for
the composition to be valid. For a sequential composition
to be valid there should be at least one case where it is
applicable: the precondition of the first service should hold
and the precondition of the second one should be true when
applied to the result of the first service. Expressed in FOL,
this validity condition is as follows:

∃x, z, y · (PA(x) ∧QA(x, z, b)⇒ PB(z, b)) (4)

Note that there is a close connection with Hoare’s
triples [7] (more on that in Section V): the notion of an non-
valid precondition (an empty domain for the composition)
would correspond to inferring a false precondition for a piece
of code in Hoare’s logic.

1More details on this work, including Prover9 proofs for all derivation
steps can be found online at http://www.csd.uoc.gr/ ˜gmparg/specs



< x,w >

x
a A

z
c

w

b B

y

d

< z, y >

Figure 3. Parallel composition of services A and B

C. Parallel Composition

Parallel composition follows the pattern shown in Fig. 3,
but there are different variations that depend mainly on what
is considered successful completion:

• AND-Split/AND-Join (A(x, z) ∧ B(w, y)): there are
two (or more) diverging branches of activities that are
executed concurrently, which eventually converge after
all activities have completed successfully.

• OR-Split/OR-Join (A(x, z) ∨ B(w, y)): not all of the
diverging branches are necessarily activated. Instead, a
mechanism selects one or more of them to be executed
each time. Also, at the merging stage there is no need
for synchronization between the converging branches.

• XOR-Split/XOR-Join (A(x, z)⊕B(w, y)): only one of
the diverging branches is allowed to be executed and is
expected to provide results at the end.

For the composite service of Fig. 3, if we consider the
AND-Split/AND-Join case, the following holds:

∀x · (PA(x, a)⇒ ∃z ·QA(x, z, c)) ∧
∀w · (PB(w, b)⇒ ∃y ·QB(w, y, d)) (5)

Note that it is possible for states a and b (and for states
c and d as well) to be equivalent, but we leave equations in
their general form. In a similar way to the sequential case,
we can deduce from Formula (5) the following:

∀x∀w · (PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c) ∧QB(w, y, d))) (6)

In this case, there is no need for further steps, as all
input and output variables should be externally visible.
Following similar steps, we can derive the specifications
shown in Table II for the cases of OR-Split/OR-Join and
XOR-Split/XOR-Join. As far as the validity condition is
concerned, for all parallel composition patterns, we only
need to ensure that there is a case where the preconditions
of both services are true:

∃x,w · (PA(x, a) ∧ PB(w, b)) (7)

D. Conditional Constructs

Conditional constructs, such as if-then-else or switch
statements, evaluate a condition in order to decide which
branch will be executed. Similarly to the XOR-Split/XOR-
Join pattern, only one of the branches is selected, based on
the truth value of the condition.

x x
e C

True

False

x
a A

y

c

x

b B

y

d

y

Figure 4. Conditional composition of services A and B

In an if-then-else composition of the form IF C(x) THEN
A(x, y) ELSE B(x, y), as seen in Figure 4, if the condition C is
true, A is executed; if it is false, B is executed. Input variable
x refers to either of the two services since the branches
are exclusive and the same is true for output variable y. x
also contains the terms that are involved in the condition C.
Hence, the following should hold:

∀x∃y·
([(C(x, e) ∧ PA(x, a)) ∨ (¬C(x, e) ∧ PB(x, b))]⇒
([(C(x, e) ∧QA(x, y, c)) ∨ (¬C(x, e) ∧QB(x, y, d))]))

(8)

Determining whether a conditional composition is valid
depends on finding a case where the precondition derived
above is valid, resulting in the following validity check:

∃x · ((C(x, e) ∧ PA(x, a)) ∨ (¬C(x, e) ∧ PB(x, b))) (9)

Table II shows the derived preconditions and postcondi-
tions for the constructs that we examined in this Section.
We can now return to the motivating example and apply the
results for the patterns of sequence, AND-Split/AND-Join
and conditional execution in order to derive the following
complete specification for the composite service:

∀request, payForm, doc, user, ∃certifDoc·
(V alid(user, 0) ∧ ¬LoggedIn(user, 0)
∧FilledIn(request, 1) ∧ FilledIn(payForm, 1)

∧LoggedIn(user, 1) ∧ V alid(payForm, 2) ∧
[(ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 4)) ∨
(¬ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 5))]

⇒ (LoggedIn(user, 1) ∧ V alid(request, 2)

∧V alid(payForm, 2) ∧ PayCompleted(doc, user, 3)

∧[(ReqCertif(doc, user, 3) ∧
CertifCompleted(doc, user, 6)

∧Delivered(certifDoc, user, 6)) ∨
(¬ReqCertif(doc, user, 3) ∧Delivered(doc, user, 6))]))

(10)



Construct Precondition
Sequence PA(x, a) ∧QA(x, z, b) ∧ PB(z, b)

AND-Split/Join PA(x, a) ∧ PB(w, b)
OR-Split/Join PA(x, a) ∧ PB(w, b)

XOR-Split/Join PA(x, a) ∧ PB(w, b)
Conditional (C(u, e) ∧ PA(x, a)) ∨ (¬C(u, e) ∧ PB(x, b))
Construct Postcondition
Sequence QA(x, z, b) ∧QB(z, y, c)

AND-Split/Join QA(x, z, c) ∧QB(w, y, d)
OR-Split/Join QA(x, z, c) ∨QB(w, y, d)

XOR-Split/Join QA(x, z, c)⊕QB(w, y, d)
Conditional (C(u, e) ∧QA(x, y, c))∨

(¬C(u, e) ∧QB(x, y, d))

Table II
DERIVED PRECONDITIONS AND POSTCONDITIONS

Note that LoggedIn(user, 1) and V alid(payForm, 2)
appear on both sides of the implication, and therefore can
be removed from the right hand side without changing the
meaning of the formula. This is an example of specification
simplification, which becomes more crucial as compositions
become larger and more complicated. Simplification actions
range from dealing with duplicate predicates to applying
known equivalences, to tasks that depend on specific knowl-
edge on the particular composite service.

IV. SPECIAL CASES

A. Loops

The loop structure was excluded from the discussion in
Section III. Loops allow for the repeated execution of a task
or a process until a condition (the loop guard) ceases to hold.
This poses a significant challenge as there is no a priori
knowledge of how many iterations will be performed, thus
the state identifiers that we used in all other constructs to
differentiate predicate evaluations are rendered inapplicable.

Without knowledge of its precondition and postcondition,
a possible way to specify a loop is either based on an upper
limit on the number of iterations or through its invariant. The
former relies on limits that can’t be expected to be always
available and results in recursive specifications which are
difficult to work with. A loop invariant I is a statement that
is true before and after each iteration of the loop, thus it
stays unaffected by the loop execution. By definition, the
loop invariant is a loop precondition (I ⇒ P ). Moreover,
a loop postcondition can be derived through the following
implication: I ∧ ¬C ⇒ Q, where C is the loop guard, the
condition that must be true for the iteration to continue [8].

Several issues are raised in the discussion of using invari-
ants to generate loop specifications. We once again have to
consider the special characteristics of services, meaning we
can expect that a generated invariant is an approximation, as
are preconditions and postconditions. The correct direction
of the approximation needs to be determined. It can be
deduced that we need a stronger approximation of the in-
variant in order to derive a useful precondition, and a weaker
approximation in order to derive a useful postcondition.

Another issue concerns the invariant generation process
itself. While, in general, invariant generation is based on
a set of commands (the loop program), in our case we
only have an approximate specification of the commands
of the loop, so the generation process must be based on this
information. Essentially, the invariant generator must take
into account the preconditions of the looped commands,
so that the resulting invariant at least implies these pre-
conditions, as mentioned at the beginning of this section.
Furia and Meyer [9] provide a concise summary on the
different methods that have been proposed in literature to
generate loop invariants. Of the works mentioned, only static
methods such as abstract interpretation and constraint-based
techniques, that do not depend on executing the program and
do not rely on existing program annotations can be applied
in our case since we actually need the invariant as a means
to specify the loop and not the other way round.

B. Specifying Asynchronous Services

So far, we have made the implicit assumption that all
service executions are synchronous: a service receives a
request, the client waits for the service to handle the request
and the service returns a response. However, it is very com-
mon in Service-Oriented Computing to employ services that
interact in an asynchronous manner: the client invokes the
service but does not block waiting for the response, Instead,
the composition can carry on tasks independenttly from the
invoked service. This affects the evaluation of postconditions
because in the asynchronous case the response is received in
a state which may differ from that in which the invocation
was performed. Our proposal is to evaluate the postcondition
for the asynchronous call in the same environment in which
the invocation was made by referring to the values of the
original variables at the point in which the invocation was
made.

V. RELATED WORK

Formal specifications have been used in computer science
to describe what a system should do. Hoare [7] introduced
the well-known triple notation P{S}Q which expresses that
if preconditions P are met before initiating execution of pro-
gram S, then when the execution completes postconditions
Q will be true. Dijkstra [10] expanded on this by focusing
on necessary and sufficient (called weakest) preconditions,
that guarantee the desired result. The notation he introduced,
wp(S,Q) denotes the weakest precondition for program S,
which is “the set of all states such that execution of S begun
in anyone of them is guaranteed to terminate in a finite
amount of time in a state satisfying Q” [8].

Our work attempts to bring the style of Dijkstra’s deriva-
tion of program specifications to the field of Service-
Oriented Computing, but differing in some relevant points:
Dijkstra’s derivation process is driven by the program im-



plementation, specifications are not approximations, and all
interactions are synchronous.

Despite these differences, it is important to make sure
that our approach does not contradict Dijkstra’s. In other
words, we need to ensure that our approach does not infer a
precondition that is weaker than the one calculated by the wp
operator. Let us reason by contradiction and assume that the
precondition P produced by our approach for a sequential
composition A;B is not stronger or as strong as the weakest
precondition Pwp: ¬(P ⇒ Pwp) — or, equivalently, P ∧
¬Pwp. Then PA ∧ PB ∧ ¬Pwp must also be true. From the
discussion at the beginning of Section III, we know that the
approximated preconditions PA and PB are stronger than or
equivalent to the corresponding weakest preconditions PwpA

and PwpB
, i.e., PA ⇒ PwpA

and PB ⇒ PwpB
. With that

into account, we need PwpA
∧ PwpB

∧ ¬Pwp to be true.
The result is contradictory since we want at the same time

the precondition of a composite service to be false and the
preconditions of the services it contains to be true. Hence
our assumption was incorrect, meaning that our approach
will never produce a precondition that is weakest than the
one derived by the wp operator. Similarly, we can prove
that our result holds for all control constructs handled in this
work, since in almost all of them, P contains the conjunction
of PA and PB . The only exception is the conditional case,
however the contradiction we have proven still holds, since
in any case either PA or PB will have to be true.

Another work related to specification derivation is that
of Ghezzi et al. [11], [12] which focuses on methods for
specification recovery. The authors propose a method to
infer algebraic specifications given the related class and its
methods and with no access to the source code. This work
relies on the run-time behavior of a component in order to
derive its specification, which is different from our approach,
which relies on the specifications of components and the
control flow between them.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach for inferring
composite service specifications given the specifications
of the services participating in the composition and the
composition schema, by constructing the specification using
structural induction based on derivation rules defined for
most fundamental control constructs. The nature of the
proposed approach facilitates a possible implementation:
structural induction lends itself to be written as a recursive
algorithm. Hence, it would be straightforward to create an
automated process that takes a set of service specifications
and a composition schema and produces the specification
for the composite service of the schema.

Future work includes implementing the proposed ap-
proach and evaluating it for compositions of varying com-
plexity. Concerning specification simplification, we plan to
look into the work of Douglas Smith [13] and determine
whether the actions he proposes may be applied in our

case. Finally, it would be interesting to explore whether the
resulting specifications suffer from the frame problem and
related issues as examined in [14].

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube). Manuel Carro has also been partially funded
by Spanish MICINN project TIN-2008-05624 DOVES and
CAM project S2009TIC-1465 PROMETIDOS.

REFERENCES

[1] C. B. Jones, Systematic Software Development Using VDM,
2nd ed., ser. International Series in Computer Science, 1991.

[2] J. R. Abrial, The B-book: assigning programs to meanings.
Cambridge University Press, 1996.

[3] E. D. Nitto, V. Mazza, and A. Mocci, “CD-IA-2.2.2: Collec-
tion of industrial best practices, scenarios and business cases,”
S-Cube Network of Excellence, Tech. Rep., May 2009.

[4] J. Mendling, K. B. Lasse, and U. Zdun, “On the transfor-
mation of control flow between block-oriented and graph-
oriented process modelling languages,” Int. J. of Bus. Proc.
Integration and Management, vol. 3, no. 2, pp. 96–108, 2008.

[5] W. McCune, “Prover9 and Mace4,” 2005–2010,
http://www.cs.unm.edu/˜mccune/prover9/.

[6] N. Russell, A. ter Hofstede, W. van der Aalst, and N. Mul-
yar, “Workflow control-flow patterns: A revised view,” BPM
Center, Tech. Rep. BPM-06-22, June 2006.

[7] C. A. R. Hoare, “An Axiomatic Basis for Computer Program-
ming,” Comm. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[8] D. Gries, The Science of Programming. Springer, 1981.

[9] C. Furia and B. Meyer, “Inferring Loop Invariants Using Post-
conditions,” in Fields of Logic and Computation, ser. LNCS,
A. Blass, N. Dershowitz, and W. Reisig, Eds. Springer
Verlag, 2010, vol. 6300, pp. 277–300.

[10] E. W. Dijkstra, “Guarded commands, nondeterminacy and
formal derivation of programs,” Communications of the ACM,
vol. Volume 18 , Issue 8, pp. 453–457, August 1975.

[11] C. Ghezzi, A. Mocci, and M. Monga, “Efficient recovery of
algebraic specifications for stateful components,” in IWPSE,
2007, pp. 98–105.

[12] ——, “Synthesizing intensional behavior models by graph
transformation,” in ICSE, 2009, pp. 430–440.

[13] D. R. Smith, “Derived preconditions and their use in program
synthesis.” in CADE, ser. LNCS, vol. 138, 1982, pp. 172–193.

[14] G. Baryannis and D. Plexousakis, “The frame problem in
web service specifications,” in Proc. 2009 ICSE Workshop
on Principles of Engineering Service Oriented Systems, ser.
PESOS ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 9–12.


