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Abstract. This work addresses the problem of energy efficient schedul-
ing and allocation of tasks in multicore environments, where the tasks
can permit certain loss in accuracy of either final or intermediate results,
while still providing proper functionality. Loss in accuracy is usually
obtained with techniques that decrease computational load, which can
result in significant energy savings. To this end, in this work we use
the loop perforation technique that transforms loops to execute a subset
of their iterations, and integrate it in our existing optimisation tool for
energy efficient scheduling in multicore environments based on evolution-
ary algorithms and static analysis for estimating energy consumption of
different schedules. The approach is designed for multicore XMOS chips,
but it can be adapted to any multicore environment with slight changes.
The experiments conducted on a case study in different scenarios show
that our new scheduler enhanced with loop perforation improves the
previous one, achieving significant energy savings (31 % on average) for
acceptable levels of accuracy loss.

1 Introduction

Task scheduling and allocation for energy efficiency in multicore environments
is a well-known NP -hard problem which can be efficiently solved with heuristic
algorithms, such as evolutionary algorithms. One example is our approach for
scheduling and allocation, which is based on evolutionary algorithms (EAs) [1].
The algorithm was shaped for its application to XMOS multicore chips, which
give support for dynamic voltage and frequency scaling (DVFS) at chip level,
i.e., all cores have the same voltage and frequency. However, the approach can
be adapted to any multicore environment with slight modifications. In this work
we want to deal with optimally scheduling tasks which can permit certain accu-
racy loss.

As a matter of fact, the great majority of today’s processors are designed in
a way that can provide a high level of accuracy. However, there are numerous
applications that allow certain accuracy loss, which still permits them to function
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properly, such as video streaming, machine learning, etc. Since decreasing the
accuracy is usually achieved by reducing the computational load, this can lead
to both increase in performance and decrease in energy consumption, so here
we deal with a trade-off between accuracy on one side and performance and/or
energy on the other. One technique that achieves this is loop perforation [7],
which in essence consists in skipping every n-th loop iteration, for a given n.
Broadly speaking, accuracy can be considered as one aspect of quality of service
(QoS), so we can say that in this work we deal with the QoS/energy trade-off.

Thus, in this work we solve the following scheduling problem: given a set of
tasks with known release time and number of cycles to compute them, find proper
allocation and scheduling of the tasks, as well as a (V, f) assignment (i.e., voltage
and frequency pair) to the cores in a way the total energy is minimised, while
accuracy is maximised, meeting a minimal acceptable level of accuracy. Different
levels of accuracy are achieved by applying the loop perforation technique with
different n, where every n-th loop iteration is skipped.

Hence, we deal with two objectives: accuracy and energy. Accuracy is defined
in terms of deviations of the output signal after applying the loop perforation,
while in order to estimate energy consumption, we use an existing static analysis
which, at compile time, with no need of executing the programs, and in a matter
of seconds, gives a safe estimation of the energy consumed by programs. The
energy consumption often depends on (the size of) input data, which is not
known at compile time. For this reason, the static analysis provides the energy
as a function of the input parameters, which is evaluated when input values
are known at runtime. The energy consumption estimated by using the static
analysis for a given scheduling is calculated as the sum of energies of the tasks
running on different cores. This gives a safe upper bound on the total energy
consumption, which is good enough for deciding which schedule consumes less
energy, and can provide acceptable estimations of energy savings.

The rest of the paper is organised as follows. Section 2 gives more details
of our proposed approach. Section 3 presents an experimental evaluation of it.
Some related work is discussed in Sect. 4 and finally, some conclusions are drawn
in Sect. 5.

2 Proposed Approach

2.1 Loop Perforation

The loop perforation technique consists in skipping some loop iterations, for
example skipping every n-th iteration [7], where n can be varied in order to
trade accuracy with energy, i.e., for higher n, less instructions are skipped, so the
accuracy is higher, while more energy is saved for lower values of n. This trade-off
between accuracy and energy consumption justifies the usage of a multiobjective
algorithm. As we will see in the following, in this work the loop perforation
technique is implemented as one possibility for the mutation operator.
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2.2 Evolutionary Algorithm (EA)

The work presented in this paper is an extension of our previous work where we
developed a custom algorithm based on an NSGA-II multiobjective evolutionary
algorithm [1]. The conflicting objectives are accuracy and energy consumption,
since we want to decrease the energy consumption, while maintaining the accu-
racy level as high as possible (always above a given threshold).

The non-dominated solutions are generated using the well-known NSGA-II
algorithm [2], while the EA follows the standard steps of evolutionary algorithms:
initialisation, evolution, where the selection process is implemented as standard
tournament selection, and our custom-made crossover and mutation operators
are applied. In the following we give more detail on the particular improvements
carried out in this work.

Individual. A solution to the problem we are solving has to contain information
about scheduling and allocation of each task, how many cycles of each task
are executed in the current run (since we support task migration), and voltage
and frequency levels of the core at each moment. In this work we add a new
dimension to the problem, which is the possibility to decrease accuracy through
loop perforation and thus it also has to be encoded in the individual. For this
reason, we add one more field after each task, which encodes n, i.e., the iterations
which can be skipped in one or more loops previously identified in each task.
An example of a part of an individual is given in Fig. 1, and can be read in the
following way: on core 1 in state 2 we execute in this order,

– 48 cycles of task 1, without performing loop perforation on it, and
– 77 cycles of task 5, where we skip every 4th iteration in the loop previously

defined.

Fig. 1. Representation of an individual

Population Initialisation. Individuals in the initial population are created by
randomly assigning tasks to random cores in random (V, f) settings with equal
probability. However, in order to provide a load balanced solution (as much as
possible), the probability of choosing a core decreases as its load increases. The
number of cycles of a task executed in each run, as well as the loop iterations to
be skipped are also randomly chosen.

The Crossover Operator. Our custom crossover operator is designed in the
following way:
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– Each child preserves the order of appearance of the tasks, as well as their
allocation from one of the parents,

– But, can take the distribution of the number of cycles, as well as the number
of loop iterations to be skipped of one of them with equal probability.

The Mutation Operator. The mutation operator can perform different oper-
ations involving one or two tasks (designated as i and t in the following text).
In each generation we perform one of the following operations with the same
probability:

– Swapping: i and t, together with their corresponding number of cycles and
loop iterations to be skipped, change their positions in the solution. However,
in order to avoid creating solutions which are not viable, i and t have to belong
to the cores which are executed in parallel.

– Moving : move i to a random position j. For the same reason as before, the
position j has to belong to a core being executed in the same state as i’s
original state.

– Changing the Cycle Distribution: Randomly change distribution of the cycles
of task i between its appearances on different cores.

– Loop Perforation: For a random task i, assign randomly the number of loop
iterations to be skipped, update the total number of cycles, i.e., decrease
the total number of cycles for the amount corresponding to the cycles of the
skipped loops, and share them randomly between the existing appearances of
the task i in the solution.

These operators are depicted in Fig. 2:

– Swapping: Tasks 1 and 2 are swapped between cores 1 and 2 while both in
state 1.

– Moving : First part of task 1 (40 cycles) are moved to core 2 before task 2.
– Changing the Number of Cycles: Task 1 now executes 25 cycles on core 1 in

state 1 and 45 cycles on core 2 and state 2.
– Loop Perforation: Task 1, where loop perforation has not been performed, now

skips every 20th task in the defined loop, which results in decreased number
of cycles, i.e., it has 60 cycles, where the first 35 cycles are executed in the
first appearance of the task 1, while the remaining 25 cycles are executed in
its second appearance.

Objective Functions: Energy Consumption. This objective represents the
total energy consumption of the given schedule, and it should be minimised. It
is given with the following formula:

E =
∑

1≤i≤n

(Pst,i · T +
∑

1≤j≤k

(xi,j · pi,j · τi,j)) (1)

where Pst,i is the static power of the core i, T is the total execution time of
the schedule, i.e., the moment when the last task finishes its execution, τi,j is
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Fig. 2. Different possibilities for mutation

the execution time of task j on core i, xi,j is a binary value, xi,j ∈ {0, 1},
that represents whether the task j is executed on the core i (xi,j = 1) or not
(xi,j = 0), and pi,j is the power of task j when executed on core i.

Objective Functions: Accuracy. In this work accuracy is defined as an aver-
age error of the output after applying loop perforation, and it should be min-
imised. If a task performs some sort of signal processing, where the output is
a digital signal consisting of a number of samples, the error is calculated as
the Euclidean distance between the outputs obtained with and without loop
perforation.

2.3 Energy Static Analysis as Input

In order to statically estimate the energy consumed by programs we use an
existing static analysis. It is a specialization of the generic resource analysis pre-
sented in [8] for programs written in a high-level C-based programming language,
XC [9], running on the XMOS XS1-L architecture, that uses the instruction-
level energy cost models described in [3]. The analysis is general enough to be
applied to other programming languages and architectures (see [4,5] for details).
It enables a programmer to symbolically bound the energy consumption of a
program P on input data x̄ without actually running P (x̄). It is based on set-
ting up a system of recursive cost equations over a program P that capture its
cost (energy consumption) as a function of the sizes of its input arguments x̄.
Consider for example the following program written in XC:

i n t f a c t ( i n t N) {
i f (N <= 0) return 1 ;
re turn N ∗ f a c t (N − 1 ) ;

}



Trading-off Accuracy vs Energy in Multicore Processors 695

The transformation based analysis framework of [4,5] would transform the
assembly (or LLVM IR) representation of the program into an intermediate
semantic program representation (HC IR), that the analysis operates on, which
is a series of connected code blocks, represented as Horn Clauses. The analyzer
deals with this HC IR always in the same way, independent of where it originates
from, setting up cost equations for all code blocks (predicates).

facte(N) = fact ife(0 ≤ N,N) + centsp + cstw + cldw + cldc + clss + cbf

fact ife(B,N) =

⎧
⎨

⎩

facte(N − 1) + cbu + 2 cldw + csub +
+ cbl + cmul + cretsp if B is true

cmkmsk + cretsp if B is false

The cost of the function fact is captured by the equation facte which in
turn depends on the equation fact ife, that captures the cost of the two clauses
representing the two branches of the if statement, and a sequence of low-level
instructions. The cost of low-level instructions, which constitute an energy cost
model, is represented by ci where i ∈ {entsp, stw, ldw, ...} is an assembly instruc-
tion. Such costs are supplied by means of assertions that associate basic cost
functions with elementary operations.

If we assume (for simplicity of exposition) that each instruction has unitary
cost in terms of energy consumption, i.e., ci = 1 for all i, we obtain the energy
consumed by fact as a function of its input data size (N): facte(N) = 13 N +8.

3 Experimental Evaluation

3.1 Testing Environment

XMOS Chips. In this work we target the XS1-L architecture of the XMOS
chips as a proof of concept. Although these chips are multicore and multi-
threaded, in this work we assume a single core architecture with 8 threads,
which is the architecture for which we have an available energy model. All
threads have their own register set and up to 4 instructions per thread can
be buffered, which are scheduled in a way to minimize simultaneous memory
accesses by consecutive threads. The threads enter a 4-stage pipeline, meaning
that only one instruction from a different thread is executed at each pipeline
stage. If the pipeline is not full, the empty stages are filled with NOPs (no
operation). Effectively, this means that we can assume that the threads are run-
ning in parallel, with frequency F/N , where F is the frequency of the chip, and
N = max(4, numberOfThreads).

DVFS is implemented at the chip level, which means that all the threads
have the same voltage and frequency at the same time. All XMOS chips support
frequency scaling. However, only the XS1-SU01A-FB96 [6] chip provides the
possibility of voltage scaling enabled by two DC-DC converters whose output
voltage belongs to the range (0.6V, 1.3V). In order to apply DVFS, we need list of
Voltage-Frequency (V,f) pairs or ranges that provide a correct chip functioning.
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Table 1. Viable (V, f) pairs for XMOS chips.

V oltage(V ) 0.95 0.87 0.8 0.8 0.75 0.7

frequency(MHz) 500 400 300 150 100 50

We have experimentally concluded that the XMOS chips can function properly
with the voltage and frequency levels given in Table 1.

Task Set. We use two real world programs for testing:

– fir(N): Finite Impulse Response (FIR) filter. In essence, it computes the
inner-product of two vectors: a vector of input samples, and a vector of coef-
ficients.

– biquad(N): Part of an equaliser implementation, which uses a cascade of
Biquad filters. The energy consumed depends on the number of filters in the
cascade, also known as banks N.

These filters are often used in signal processing, where some certain level of accu-
racy loss can be permitted. This makes them good candidates for experimenting
with the accuracy/energy trade-off. We have used four different FIR implementa-
tions, with different number of coefficients: 85, 97, 109 and 121. Furthermore, we
have used four implementations of the biquad program, with different number of
banks: 5, 7, 10 and 14. We have tested our approach in scenarios with 32 tasks,
each one corresponding to one of the above mentioned implementations. The
tasks corresponding to the same implementation have different release times.

The energy consumed by the programs is inferred at compile time by the
static analysis described in Sect. 2.3. This energy is expressed as a function of an
input parameter N , which is known at run time only. In the case of FIR, N is the
number of coefficients, while in the case of the Biquad cascade, N is the number
of banks. These functions are given in Table 2. The analysis assumes that a single
program is running on one thread on the XMOS chip, while all other threads
are inactive. This means that only the first stage of the pipeline is occupied
with an instruction, while the rest are empty, i.e., occupied with NOPs. In this
implementation, the EA algorithm approximates the total energy of a schedule
taking the sum of the energies of all the tasks running on different cores, i.e.,
threads, as we have seen in Sect. 2.2. However, in reality if all the threads are
active and execute a program, each pipeline stage will contain an instruction from
a different thread. For this reason, we can say that the estimation produced by
the static analysis of the energy consumed by a set of tasks is an upper bound
on the actual energy consumption. However, this estimation provides precise
enough information for the EA to decide which schedule is better.

3.2 Testing Scenario

We have tested our approach on a scenario of 32 tasks, where each task imple-
ments either an FIR or a Biquad cascade previously described. For the case of
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Table 2. Energy functions for 3 different pairs of voltage (V) / frequency (F, in MHz)

V = 0.70 V = 0.75 V = 0.80

F = 50 F = 100 F = 150

fir(N) 74.93 N + 124.5 43.36 N + 71.9 33.41 N + 55.2

biquad(N) 386 N + 128 223.6 N + 74.2 172.5 N + 57.2

V = 0.80 V =0.87 V = 0.95

F = 300 F = 400 F = 500

fir(N) 20.14 N + 33.2 18.95 N + 31.09 19.15 N + 31.3

biquad(N) 104.3 N + 34.4 98.31 N + 32.4 99.48 N + 32.7

FIR, loop perforation takes out a few coefficients, while in the case of Biquad
cascade, it takes out a few banks. All tasks have different release time. Task
deadlines do not exist. However, we should bear in mind that in the case of
DVFS it is not beneficial to scale down voltage and frequency indefinitely, since
at some point static power consumption becomes more significant than dynamic
power consumption. Thus, if we keep decreasing the dynamic power, the static
power is increased at the same time, and as a result, the total energy consump-
tion increases. The input signal to all tasks is a standardised set of input samples
for testing in signal processing.

3.3 Obtained Results and Discussion

The EA has been trained with the following parameters: population of 200 indi-
viduals, evolved for 150 generations, crossover rate: 0.9, and mutation rate: 0.9
- since mutation introduces loop perforation, a high rate is needed.

In order to illustrate the energy savings provided by loop perforation (referred
to as Case 1 in the following text), we have trained another EA, where the
objectives are to minimize energy and execution time, without the possibility
of loop perforation (referred to as Case 2 in the following). This algorithm has
been trained with the same parameters given above. Since both algorithms are
multiobjective, the result of the training of both is a Pareto front of possible
solutions with different trade-off between the objectives. Examples of Pareto
fronts obtained in Case 1 and Case 2 are given in Figs. 3 and 4 respectively.
In Case 1 we have picked a solution with the smallest energy objective value,
whose maximal deviation from the final result (accuracy) is below (above) a given
threshold, while in Case 2 we have chosen a solution with the smallest energy
objective. The results are presented in Table 3, with the following columns:

– Column 1: Maximal acceptable average error (or equivalently, minimal accept-
able level of accuracy) of the final result.

– Column 2: Average energy of the final schedule obtained in a set of experi-
ments of Case 1 estimated by static analysis given in mJ (mili Joules).
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Fig. 3. Pareto front for Energy/Accuracy trade-off EA (Case 1)

Fig. 4. Pareto front for Energy/Time trade-off EA (Case 2)

Table 3. Obtained savings with different levels of minimal acceptable accuracy.

Max. Case 1: Case 2: Savings(%)

Avg. Error Avg. En.(mJ) Avg. En.(mJ) Avg. CI0.05

10−6 0.487 0.721 16.18 0.93–31.42

2 · 10−6 0.461 0.597 18.21 3.54–32.87

3 · 10−6 0.434 0.666 31.04 13.72–48.37
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– Column 3: Average energy of the final schedule obtained in a set of experi-
ments of Case 2 estimated by static analysis given in mJ (mili Joules).

– Column 4: Obtained savings expressed as % and calculated as
Column3−Column2

Column3 · 100.
– Column 5 : Statistics of the experiments expressed as 0.05 confidence interval,

i.e., we can claim with 95% certainty that the final result will belong to this
interval.

Fig. 5. Energy savings for different accuracy levels

As we can observe, energy savings that can be obtained with loop perfora-
tion are significant and range from 3% to 40% in different experiments, even
with small permitted level of error. As we increase the accepted level of aver-
age error, the savings increase, as expected, which is clearly depicted in Fig. 5.
However, the relationship between the accuracy and the energy savings depends
on the application: some applications can preserve acceptable accuracy by skip-
ping more loop iterations (and hence achieve bigger energy savings) than others
that lose acceptable accuracy by skipping less loop iterations (and hence achieve
smaller energy savings).

Fluctuations in the final result in different experiments appear due to the
imprecision of the static analysis, since currently it gives an upper bound, rather
than a realistic estimation of energy consumption. This can explain the big
confidence intervals. Since the acceptable level of error is small, we could observe
that in the final result only tasks that perform FIR could skip a few iterations,
while some of the tasks that perform biquad could skip one iteration at most,
since the number of iterations is bigger in FIR than in the case of the biquad
cascade. In Table 4 we present an example of a part of an output containing tasks
where loop perforation was applied, where the maximal acceptable error is 10−6.
In the table, for each task, we show the original number of loop iterations, the
number of loop iterations after applying loop perforation, and N , where every
N -th loop is skipped. The actual error of this example is 7.8 · 10−7, but we still
achieve significant energy savings.
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Table 4. Result of an experiment: tasks whose final number of loop iterations has been
changed.

Task Original num. of loop iterations Final num. of loop iterations N

FIR97-1 97 87 9

FIR85-1 85 76 9

FIR121-1 121 108 9

FIR109-1 109 104 21

FIR97-2 97 96 96

FIR85-2 85 84 84

FIR121-2 121 120 120

FIR109-2 109 108 108

FIR97-3 97 87 9

FIR85-3 85 76 9

FIR121-3 121 108 9

FIR109-3 109 97 9

FIR85-4 85 84 1

FIR121-3 121 81 3

FIR109-3 109 97 9

4 Related Work

In the existing literature techniques that include QoS as an objective in schedul-
ing are mainly designed for Grid or Cloud Computing environments, where QoS
is measured as either execution time, cost, etc., which has to be provided accord-
ing to the signed Service Level Agreement (SLA) between the provider and the
customer [10–12]. Multiobjective genetic algorithms were used in [12] to mini-
mize cost and execution time, since they can be in conflict. A similar approach is
presented in [11]. However, in the recent past, energy consumption has become
a bottleneck, so it has become very important to reduce it. One such work is
given in [10], where the authors try to minimize energy and maximize QoS at the
same time in a Cloud Computing environment. The multiobjective optimisation
problem is solved using particle swarm optimisation.

However, as far as we know, none of the approaches in the literature propose
to trade-off QoS (accuracy in our case) with energy or performance in a schedul-
ing problem by transforming the code, in our case by using loop perforation.

5 Conclusions

In this work we have presented an approach for energy efficient scheduling in
multicore environments, adapted to multicore XMOS processors, where signif-
icant additional energy can be saved if a certain level of accuracy reduction
in final result is allowed. Accuracy reduction is performed by using the loop
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perforation technique. Our experimental results show that, even with small
acceptable levels of error in the result, significant energy savings can be obtained.

However, the energy estimation of different schedules is based on a static
analysis that can only provide an upper bound. Although it is still capable of
providing energy savings, better results could be achieved with more precise
energy estimations. For this reason, we are developing an energy analysis of
concurrent program, which is expected to provide additional savings.
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