
J. LOGIC PROGRAMMING XXXX:XX, XX:1{... 1

AUTOMATIC COMPILE{TIME

PARALLELIZATION OF LOGIC PROGRAMS

FOR RESTRICTED, GOAL{LEVEL,

INDEPENDENT AND{PARALLELISM

K. MUTHUKUMAR, F. BUENO,

M. GARC

�

IA DE LA BANDA, M. HERMENEGILDO

. A framework for the automati
 parallelization of (
onstraint) logi
 pro-

grams is proposed and proved
orre
t. Intuitively, the parallelization pro-

ess repla
es
onjun
tions of literals with parallel expressions. Su
h expres-

sions trigger at run-time the exploitation of restri
ted, goal{level, indepen-

dent and{parallelism. The parallelization pro
ess performs two steps. The

�rst one builds a
onditional dependen
y graph (whi
h
an be simpli�ed

using
ompile-time analysis information), while the se
ond transforms the

resulting graph into linear
onditional expressions, the parallel expressions

of the &-Prolog language. Several heuristi
 algorithms for the latter (\an-

notation") pro
ess are proposed and proved
orre
t. Algorithms are also

given whi
h determine if there is any loss of parallelism in the lineariza-

tion pro
ess with respe
t to a proposed notion of maximal parallelism.

Finally, a system is presented whi
h implements the proposed approa
h.

The performan
e of the di�erent annotation algorithms is
ompared exper-

imentally in this system by studying the time spent in parallelization and

the e�e
tiveness of the results in terms of speedups. /

Keywords: Automati
 Parallelization, Parallelizing Compilers, Conditional De-

penden
y Graphs, And-Parallelism, &-Prolog.

This paper is an extended and updated version of [58℄. It was to appear originally in the spe
ial

issue on High Performan
e Logi
 Programming Systems of the Journal of Logi
 Programming,

Vol 29, Nov. 1996.

Address
orresponden
e to M. Hermenegildo, F. Bueno, Universidad Polit�e
ni
a de

Madrid (UPM), Fa
ultad de Inform�ati
a, 28660-Boadilla del Monte, Madrid, SPAIN. email:

fbueno,hermeg�fi.upm.es; M. Gar
��a de la Banda, Dept. of Computer S
ien
e, Monash Uni-

versity, Clayton Vi
. 3168, Australia. email: mbanda�
s.monash.edu.au; K. Muthukumar,

Apple Computer In
., MS: 303-3D, 3 In�nite Loop, Cupertino, CA 95014, U.S.A. email:

muthu�apple.
om.

THE JOURNAL OF LOGIC PROGRAMMING

 Elsevier S
ien
e In
., XXXX

655 Avenue of the Ameri
as, New York, NY 10010 xxxx-xxxx/xx/$7.00

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 2

1. Introdu
tion

Parallel exe
ution (or- and and{parallelism [22, 19℄) has now been proved to be

an e�e
tive te
hnique for a
hieving improved performan
e in logi
 programming

systems. In general, in or{parallel models (see [55, 2, 81℄ and their referen
es)

all alternatives whi
h mat
h a given goal
an be safely run in parallel. However,

in and{parallel models goals in the body of a
lause
annot in general be freely

exe
uted in parallel, sin
e this
an result in in
orre
t and/or ineÆ
ient exe
utions.

There are several ways to solve the above mentioned problems. One, whi
h is
en-

tral to the work presented herein, is to allow parallel exe
ution only of goals whi
h

are independent (we will dis
uss other possible solutions later). Parallel exe
ution

models for logi
 programs whi
h adopt this solution are said to exploit independent

and{parallelism. Early notions of independen
e of goals were proposed by Conery

and DeGroot [22, 27℄. They provided suÆ
ient
onditions for ensuring that the

goals to be run in parallel would not produ
e \binding
on
i
ts". The la
k of su
h

binding
on
i
ts not only avoids erroneous results but it also simpli�es the imple-

mentation and redu
es the overhead of parallel exe
ution (for example, no lo
king

of variables is required). More re
ently, independen
e has been de�ned simply as a

ondition whi
h guarantees both
orre
tness and (time) eÆ
ien
y (by ensuring that

no \slow{down" will o

ur) with respe
t to the sequential exe
ution [44, 46℄. I.e.,

independen
e implies that parallel exe
ution preserves the \observables" in terms of

answers, side-e�e
ts, and
omputational
omplexity of the original program. Sev-

eral notions of independen
e, in
luding the traditional notions, have been proved to

be
orre
t and eÆ
ient in the above mentioned sense, by showing that the sear
h

spa
e of the sequential program is preserved (in addition to ensuring that there

will be no binding
on
i
ts). This view has also allowed proposing new, more lax

notions of independen
e [27, 83, 45, 46℄ whi
h allow more goals to be run in parallel,

and extending the notion of independen
e to
onstraint logi
 programming [24, 32℄.

In independen
e{based and{parallel models it is ne
essary to determine whi
h

goals are independent and therefore eligible for parallel exe
ution. Although this

an be done at run{time [22, 54℄, it
an imply signi�
ant overhead. It is thus

interesting to perform as mu
h of the work as possible at
ompile{time. Chang

[17℄ proposed an approa
h whi
h generated a single dependen
y graph for a
lause

from a worst
ase analysis. The approa
h was somewhat limited, mainly be
ause

of the global analysis te
hnology available at the time. DeGroot [27℄ proposed a

way of representing a �xed set of exe
ution graphs via an expression generated at

ompile{time,
hoosing among the alternatives at run{time through some
he
ks.

Hermenegildo [38℄ proposed an extension of Prolog, &-Prolog, whi
h allows writing

su
h
onditional parallel expressions within the sour
e (&-Prolog) language (they

are in this
ase referred to as \annotations"). This has the advantage that the par-

allelization
an be expressed at the user level, as a sour
e to sour
e transformation,

and that the user
an dire
tly write parallel programs if so desired (the
ompiler

then
he
king su
h
ode for
orre
tness). An eÆ
ient implementation of &-Prolog

was also proposed in the form of a parallel abstra
t ma
hine (the RAP-WAM) [39℄,

an extension of the Warren Abstra
t Ma
hine [80, 1℄.

DeGroot also proposed restri
ting the expressions generated to linear expres-

sions, i.e. parenthesized expressions without syn
hronization primitives. This re-

stri
tion basi
ally
orresponds to a
onditional \fork and join" paradigm, and the

type of and{parallelism generated is thus
alled \restri
ted". We argue with DeG-

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 3

root that the fork and join paradigm has
ertain advantages. First, the stru
ture

of the resulting parallelism is easier for the user to understand (for example, using

visualization tools [16℄). This allows programmers to more easily predi
t the e�e
-

tiveness of the parallelization of their programs. The parallelized program
onsists

only of parenthesized expressions using sequential or parallel
onjun
tion and
ondi-

tionals, whi
h is arguably easier to understand than programs whi
h use arbitrarily

syn
hronization primitives. The ba
ktra
king behavior of the parallel program is

also simpler and easier to understand [43℄. Finally, the restri
tions also simplify

the implementation of the parallel system (spe
ially the ba
ktra
king) somewhat,

and allow a number of optimizations [42℄.

For the reasons mentioned above, we argue that goal-level, restri
ted, indepen-

dent and{parallelism is, from a pra
ti
al point of view, a quite interesting model for

exploitation of and{parallelism in (
onstraint) logi
 programs. We address in this

paper an essential aspe
t of the problem of automati
 parallelization within this

model: the generation at
ompile{time of linear expressions, with minimal loss of

parallelism within the restri
tions imposed by the model. We use &-Prolog as the

target language for the sake of
on
reteness and be
ause of the
onvenien
e of its

Prolog{
ompatible syntax, whi
h makes it possible to des
ribe the parallelization

te
hniques as a sour
e to sour
e transformation of the original (
onstraint) logi

program.

1

However, we argue that our results are not only useful for the &-Prolog

run{time system itself, but also for other systems using similar annotations and/or

the same type of parallelism su
h as, for example, Kale's ROPM [64℄, the ACE and

&ACE systems [35, 62℄, the IAP subset of the DDAS model [72℄, et
.

Several alternative approa
hes to the one that we address have been proposed in

the
ontext of and{parallelism. These in
lude for example the interesting
lass of

the
ommitted{
hoi
e languages [20, 78, 77, 74, 71, 70, 76, 75, 66, 67℄, whi
h exploit

stream and{parallelism. Syn
hronization is in this
ase expressed dire
tly in the

language. Dependen
ies are taken
are of by in
rementally passing variable instan-

tiations as streams between pro
esses. Unfortunately, this
lass of languages does

not support \don't know" nondeterminism [53℄: on
e a bran
h has been
hosen, it is

never ba
ktra
ked. The model is very interesting from the point of view of
on
ur-

rent exe
ution, but not as appealing for general purpose logi
 programming where

ba
ktra
king is one of the most useful features. From the point of view of eÆ
ien
y,

interesting work is being done in the
on
urrent logi
 programming �eld in identi-

fying s
hedulings whi
h are both
orre
t and eÆ
ient, possibly sequentializing some

pro
esses [84, 52℄. A form of don't know non-determinism
an be implemented in

these languages by performing program transformations where the ba
ktra
king or

or{parallelism is folded into the and{parallelism [79, 70℄. This transformation has

been extended by Bansal [5℄ and used to parallelize logi
 programs by translating

them into
ommitted{
hoi
e programs, using global analysis [6℄. This work is inter-

esting and has many obje
tives in
ommon with ours. It provides for example quite

useful transformations for parallelizing exe
utions where a produ
er and a
onsumer

are deeply intertwined. On the other hand the approa
h di�ers from ours in several

key points. First, it does not fo
us on restri
ted and{parallelism, and thus, it does

not address the parti
ular and interesting problems that arise as a
onsequen
e of

1

Re
ently, an extension to &-Prolog with
onstraints, among other things, has been de�ned:

CIAO-Prolog [47, 41℄. We will
onsider this
onstraint version of &-Prolog as the target language

for our transformations, sin
e we will deal with generi

onstraint logi
 programs.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 4

using the fork and join paradigm. Also, it does not dire
tly address independen
e,

and thus it is un
lear whether it
an guarantee the
orre
tness and eÆ
ien
y of

the parallel exe
ution with respe
t to sequential exe
ution. The need to intertwine

the support for a \don't know" semanti
s in the transformation pro
ess makes the

presentation less a

essible in our view. Finally, although no performan
e �gures

are provided by Bansal, it appears that the �nal performan
e of this approa
h may

su�er from the fa
t that there is a
ertain level of meta-interpretation and also some

overhead (due to the support of general parallelism) in the underlying system.

Other interesting alternative models in
lude the PNU-Prolog approa
h of Naish

[61℄ and the Andorra model proposed by D.H.D. Warren [7, 65℄. In these approa
hes

only deterministi
 goals, or, more pre
isely, deterministi
 redu
tions, are allowed to

run in parallel. The advantage of these models is that they a
hieve essentially the

same results as the
ommitted-
hoi
e languages, while preserving non-deterministi

sear
h. However, they have the disadvantage of not being able to parallelize non-

deterministi

omputations that are independent, and also they involve a higher

run{time overhead than that involved in supporting goal-level, restri
ted, indepen-

dent and{parallelism. Another interesting approa
h has been proposed by Shen,

the DDAS model [72℄, whi
h essentially
ombines goal-level, restri
ted, independent

and{parallelism with a form of dependent and{parallelism. The main idea regard-

ing the exploitation of dependent and{parallelism is to allow dependent goals to

run in parallel, but marking their shared variables spe
ially. Syn
hronization is

a
hieved at the binding level through the dependent variables by using a left-to-

right binding priority s
heme implemented via token passing. The main drawba
k

of this approa
h is the overhead involved in the management of the dependent vari-

ables and the priority s
heme. In any
ase, and as mentioned above, the solutions

that we propose are dire
tly appli
able to the independent and-parallel subset of

DDAS.

The Extended Andorra Model of D.H.D. Warren [82℄ is aimed at enhan
ing the

basi
 Andorra model to also support independent and{parallelism. This model

opens interesting possibilities, but a number of issues are left open and need to be

resolved in a satisfa
tory way in an implementation. The Andorra Kernel Language

AKL [51℄ is a
on
urrent language based on this model, in whi
h syn
hronization is

partly
ontrolled by the programmer through guards and partly by the model, based

on determina
y and \stability"
onditions. Interestingly, stability has been found to

be dire
tly related to independen
e [47℄. However, AKL o�ers an expli
it
on
urrent

programming model whi
h is quite di�erent from that of logi
 programming, whi
h

is our target. IDIOM [37℄ is another model aimed at parallelizing both deterministi

and non-deterministi
 goals.

Finally, [47℄ studies the relation between the previously proposed models and

proposes a unifying view. The observation is made that most of the models proposed

for exploiting parallelism in logi
 programs (in
luding all those mentioned above)

an be explained and re
onstru
ted by starting from a general model and applying

a few basi
 parallelization
onditions (su
h as, for example, \independen
e" or

\determina
y") at di�erent levels of granularity (su
h as, for example, the \goal"

level or the \binding" level). Based on these ideas, a formal model
apable of

exploiting as mu
h parallelism as any previously proposed model, and at a very

�ne level of granularity, was proposed in [11, 13, 12, 63℄.

The fork and join model for parallel exe
ution has also been found interesting

and studied in the
ontext of fun
tional languages. For example, in the
ontext of

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 5

fun
tional programming, Sarkar [68, 69℄ de�nes an algorithm for �nding optimal

linearizations of a graph into fork and join non{nested expressions, based on avail-

able information on granularity. However, the approa
h is not in general appli
able

to the problem at hand, sin
e it
onsiders neither nested nor
onditional expres-

sions. Algorithms proposed in the
ontext of imperative languages either do not

deal with
onditional parallelism or are not fo
used on the fork and join paradigm

[29, 4, 34℄. We argue that the results presented herein (parallelization framework

using
onditional dependen
y graphs and algorithms for linearizing su
h graphs into

parallel
onditional parallel expressions, as well as their
orre
tness proofs)
an be

easily applied to other programming paradigms and
an help deal with diÆ
ult

problems su
h as dealing with irregular
omputations (see [40℄ for more details on

this interesting issue).

Guidelines for
onstru
ting
orre
t annotations at
ompile{time for goal-level,

restri
ted, independent and{parallelism were to the best of our knowledge �rst pro-

posed in [38℄. DeGroot [28℄ proposed a te
hnique for generating graph expressions

using a simple heuristi
. However, the expressions generated with this method tend

to be rather large, with a signi�
ant number of
he
ks. Furthermore, the method

has no provision for
onjun
tions of
he
ks, be
ause DeGroot's original expressions

did not in
lude this possibility. However,
onjun
tions of
he
ks appear to be quite

useful in pra
ti
e and are supported by the &-Prolog language [38℄. Ja
obs and

Langen [49℄ des
ribe a quite interesting framework for
ompiling logi
 programs to

an extension of DeGroot's graph expressions equivalent to that introdu
ed in [38℄.

They propose two rules (SPLIT and IF rules) for transforming a dependen
y graph

(su
h as those used in [54, 22, 17℄) into graph expressions. Interesting groundwork

is set by des
ribing su
h rules, but no algorithm or set of heuristi
s is given that

would suggest how and when to use su
h rules in a parallelization pro
ess. The

approa
h therefore doesn't represent a
omplete algorithm for our purposes. Com-

plete algorithms in this sense were �rst given to the best of our knowledge in [58℄,

of whi
h this paper is an extension.

In general, the task of parallelizing a given program through
ompile{time anal-

ysis
an be
on
eptually viewed in our framework as
omprising two steps: (1) a

lo
al or global analysis of the program in order to gather as mu
h information as

possible regarding the terms to whi
h program variables will be bound, and (2)

given that information, a rewriting of the program into another one whi
h
ontains

expressions whi
h will
ause the parallel exe
ution of some goals, perhaps under

ertain run{time
onditions. Elaborating on the work presented in [58℄, we present

(a) a methodology for automati
ally extra
ting parallelism at
ompile{time with

the aid of program analysis, (b) algorithms whi
h determine if a given
lause
an

be
ompiled into an &-Prolog parallel expression without loss of parallelism (within

the model exploited, i.e. restri
ted, goal{level, independent and{parallelism), and

(
) algorithms for
ompiling (rewriting) logi
 programming
lauses into &-Prolog

lauses
ontaining parallel expressions. The methodology is generi
 in the sense of

being able to deal with several di�erent notions of independen
e, and in
orporating

the role of program analysis information independently of the domain used. The

algorithms are
omplete in the sense of in
orporating not only rules for the transfor-

mation, as in previous approa
hes, but also heuristi
s to de
ide when to apply the

rules. Essentially, the heuristi
s seek to lose as little parallelism as possible (hen
e,

the motivation of (b)), while, at the same time, keeping the overhead asso
iated

with su
h parallelism low. The rest of the paper pro
eeds as follows: after ini-

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 6

tial preliminaries in Se
tion 2, we present the methodology based on
ompile{time

analysis and transformation in Se
tion 3. In Se
tion 4 we present the
ompilation

pro
ess for un
onditional parallelism. We �rst deal with the important problem of

hara
terizing in whi
h
ases a
lause
an be
ompiled into linear parallel expres-

sions without loss of parallelism in the linearization pro
ess, and then present an

algorithm to a
tually perform the
ompilation. We also present an extension to

the algorithm for the
ase when the requirement of not loosing parallelism in the

linearization pro
ess is relaxed. A similar s
heme is followed in Se
tion 5 for the

ase of
onditional parallelism. Se
tion 6 then dis
usses pra
ti
al issues, in
luding

two new algorithms based on simpler heuristi
s. Se
tions 7 and 8 present a
ompre-

hensive pra
ti
al study based on an implementation of these algorithms. Finally,

Se
tion 9 presents our
on
lusions.

2. Notation and Preliminaries

Throughout the paper, we will use the
onvention that sets of atomi
 formulae are

interpreted as the
onjun
tive formula of the atomi
 ones. Sometimes, we will also

write an equivalent formula instead of the set; thus true for the empty set, and false

for the inexisting set. Set di�eren
e will be denoted by A n B = fx 2 Ajx 62 Bg,

and the powerset of a set A by }(A). The quanti�
ation 9! will be used for \there

exists pre
isely one". A graph will be denoted as the pair (V;E), where V is the

set of verti
es or nodes, and E is the set of edges representing a binary relation

on V (possibly in
luding also a label). We will use E

�

for the transitive
losure

of relation E, and G as a name for a graph. Given a graph G = (V;E), Gj

P

will

denote the subgraph (P;Ej

P

) of G indu
ed by edges
onne
ting only verti
es in

P � V . The syntax, and semanti
s, of the languages we use are introdu
ed in

the following. Sometimes, (meta-)expressions of these languages will be en
losed

between angle bra
kets \h: : :i" to separate them from plain text.

2.1. Language Syntax and Semanti
s

Our starting point will be a Prolog or Constraint Logi
 (CLP) program: a logi

program, for short. The
lassi
al left{to{right operational semanti
s of Prolog and

CLP will be
onsidered (see e.g. [50℄). We will denote the
omputation states in

this semanti
s by a goal and a (
onstraint) store, as in hg;
i, where g is the goal

and
 the store.

De�nition 2.1. [(Constraint) logi
 program℄ Let

~

t be a tuple of terms,
 a
onstraint

predi
ate symbol, and p a non{
onstraint predi
ate symbol. The following (sim-

pli�ed) grammar de�nes the syntax of logi
 programs:

Program ::= Clause : P rogram j �

Clause ::= Atom j Atom :- Body

Body ::= Literal j Literal, Body

Literal ::= Atom j Constraint

Atom ::= p(

~

t)

Constraint ::=
(

~

t)

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 7

Our target language will be (the
onstraint version of) &-Prolog. We
on-

sider the &-Prolog language as a vehi
le for expressing goal{level, restri
ted, in-

dependent and{parallelism.

2

For our purposes, &-Prolog is essentially Prolog (or

CLP), with the addition of the parallel
onjun
tion operator \&" (used in pla
e

of \," |
omma | when goals are to be exe
uted in parallel), and a set of

parallelism{related built{ins, whi
h in
ludes suitable run{time
he
ks for the notion

of independen
e under whi
h parallelism is to be exploited. For synta
ti

onve-

nien
e an additional
onstru
t is also provided: the Conditional Graph Expression

(CGE). A CGE has the general form (
ond => goal

1

& goal

2

& : : : & goal

N

)

and
an be regarded as synta
ti
 sugar for the if-then-else expression (
ond ->

goal

1

& goal

2

& : : : & goal

N

; goal

1

, goal

2

, ..., goal

N

). &-Prolog if-then-

else expressions and CGEs
an be nested in order to
reate ri
her exe
ution graphs.

De�nition 2.2. [Restri
ted &-Prolog program℄ Let

~

t be a tuple of terms,
 a
on-

straint predi
ate symbol, and p a non{
onstraint predi
ate symbol. The following

(simpli�ed) grammar de�nes the syntax of &-Prolog programs:

Program ::= Clause : P rogram j �

Clause ::= Atom j Atom :- Body

Body ::= Literal j Literal, Body

Literal ::= Atom j Constraint j Body -> Body ;Body

j Body => ParExp j ParExp

ParExp ::= Body & Body

Atom ::= p(

~

t)

Constraint ::=
(

~

t)

Note from the above grammar that \&" binds stronger than \=>", and this one

in turn binds stronger than \,". The semanti
s of \&" is de�ned as follows. Given

a state of the
omputation h(g

1

& : : : & g

n

):s;
i, its operational behavior is given

by the parallel
omputation of the states hg

1

;
i, . . . , hg

n

;
i, giving h�;
 ^

1

i, . . . ,

h�;
^

n

i, respe
tively, and the sequential exe
ution of the
ontinuation hs;
^

1

^

: : : ^

n

i. See [46℄ for details.

By linear expression we will refer to an expression built a

ording to the synta
ti

rules given above for the Body of a restri
ted &-Prolog
lause, in
luding if-then-elses

and CGEs. Note that we do not
onsider if-then-elses in the sour
e languages. This

is no restri
tion, sin
e a well known transformation
an be done from programs with

if-then-else to plain syntax by folding them into new predi
ates. Also,
ut (\!") is

not
onsidered in the syntax. It will be regarded, for our purposes, as a side{e�e
t

built{in. Constraints will be also regarded as built{ins. Negation by failure will be

regarded as a meta{
all. The treatment of built{ins, meta{
alls, and side{e�e
ts

will be
onsidered later.

2.2. Independen
e in Logi
 Programs

As mentioned in the introdu
tion, independen
e refers to the
onditions that the

run{time behavior of the goals to be run in parallel must satisfy in order to guar-

2

Note that the &-Prolog language is ri
h enough to express unrestri
ted and{parallelism

through the use of wait primitives [57℄, and at levels of granularity other than the goal level.

However, as mentioned before, there is an eÆ
ien
y penalty asso
iated with this.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 8

antee the
orre
tness and (time) eÆ
ien
y of the parallelization with respe
t to the

sequential exe
ution. Corre
tness is guaranteed if the answers obtained during the

parallel exe
ution are equivalent to those obtained during the sequential exe
ution.

EÆ
ien
y is guaranteed if the no \slow-down" property holds, i.e., if the (idealized)

parallel exe
ution time is guaranteed to be shorter or equal than the sequential exe-

ution time. Though and{parallel exe
ution of goals
an generate spe
ulative work

in the
ase of failure, it has been proven in [46℄ that when goals are independent

no slow{down o

urs even in this
ase. Informally, the general, intuitive notion of

independen
e that we want to
hara
terize
an be expressed as follows: a goal q is

independent of a goal p if the exe
ution of p does not \a�e
t" q.

De�nition 2.3. [Independent goals℄ Goal g

2

is independent of goal g

1

for store
 i�

the exe
ution of hg

2

;
i does not
hange the number of
omputation steps, nor

their
ost, nor their answers, w.r.t. the exe
ution of hg

2

;

0

i, for every store

0

resulting from the exe
ution of hg

1

;
i. Goals g

1

and g

2

are independent for
 i�

g

1

is independent of g

2

for
, and vi
e versa. Goals in the set I = fg

1

; : : : ; g

n

g

are pairwise independent for
 i� for every g

i

2 I , g

j

2 I , i 6= j, g

i

and g

j

are

independent for
.

The
onditions for ensuring independen
e
an be divided into two main groups:

a priori and a posteriori
onditions. An a priori
ondition is one that
an be
he
ked

prior to the exe
ution of the goals involved, and thus
an be used as run{time test.

For this to be possible, this
ondition must only be based on the
hara
teristi
s of

the
urrent store and the variables belonging to the goals to be run in parallel. As a

result, a priori
onditions are restri
tive in the sense that they
an miss independent

goals, due to the la
k of information regarding their run{time behavior. On the

other hand a posteriori
onditions
an be based on the a
tual behavior of the goals

to be run in parallel. This has the advantage that the
onditions
an be de�ned

in su
h a way that fewer independent goals are missed. In fa
t, it is possible

to de�ne
onditions whi
h are not only suÆ
ient but also ne
essary for ensuring

independen
e, thus dete
ting all independent goals. The problem of
ourse is that it

might not be possible to
he
k su
h
onditions without a
tually running the goals.

Example 2.1. In the
ontext of LP, the �rst notion of independen
e was proposed in

[22, 27℄ and formally de�ned and proved
orre
t in [44, 46℄. This
ondition (referred

to as stri
t independen
e) states that two goals g

1

, g

2

are independent w.r.t. a

given substitution � if they do not share variables, i.e. if vars(g

1

�) \ vars(g

2

�) = ;,

where vars(t) is the set of variables in term t. For example, while goals g

1

(x) and

g

2

(x) are independent w.r.t. substitution � = fx=1g they are not w.r.t. the empty

substitution. Note that stri
t independen
e is an a priori
ondition.

Stri
t independen
e was later generalized in [27, 83, 45, 46℄ to di�erent
on
epts

of non{stri
t independen
e. The intuition behind su
h generalizations is that goals

sharing variables
an still be run in parallel, provided the bindings established for

those shared variables satisfy
ertain
hara
teristi
s. In parti
ular, non{stri
t in-

dependen
e in [45, 46℄ requires that at most one goal further instantiate a shared

variable, and that no aliasing (of di�erent shared variables) be
reated during the

exe
ution of one of the parallel goals whi
h might a�e
t goals to the right. Obvi-

ously, this is an a posteriori
ondition sin
e the behavior of the goals is taken into

a

ount.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 9

Consider the goals p(X,Y), q(Y), and the program:

p(X,Y) :- X = Y.

q(X) :- X = a.

It is easy to
he
k that p(X,Y) and q(Y) are non{stri
tly independent for the

empty substitution, sin
e only q(X) further instantiates X, and the aliasing
reated

by p(X,Y) does not a�e
t two variables shared by p(X,Y) and q(X) (only X is

shared). 2

Example 2.2. In the
ontext of CLP, several a priori and a posteriori
onditions

have been de�ned in [24, 32℄, showing also that the LP notions
an not in general

be applied in this
ontext. The most general a posteriori
ondition proposed in

this work (referred to as sear
h independen
e) states that two goals g

1

, g

2

are

independent from a given
onstraint store
, if for any partial answer p

1

of g

1

for

and any partial answer p

2

of g

2

for
, p

1

and p

2

are
onsistent. In fa
t, this
ondition

is not only suÆ
ient but also ne
essary. Note also that the
ondition relies heavily

on the run{time behavior of the goals.

The most general a priori
ondition proposed therein (referred to as proje
tion

independen
e) states that goals g

1

and g

2

are independent for
onstraint
 if for

any variable x 2 vars(g

1

) \ vars(g

2

), x is uniquely de�ned by
 (ground in the

LP
ontext), and the
onstraint obtained by
onjoining the proje
tion of
 over

vars(g

1

) and the proje
tion of
 over vars(g

2

) entails (i.e. logi
ally implies) the

onstraint obtained by proje
ting
 over vars(g

1

)[vars(g

2

). For example,
onsider

the goals g

1

(y); g

2

(z) and
onstraint
 � fy > x; z > xg. The proje
tion of
 over

fyg is the empty
onstraint true. The proje
tion of
 over fzg is also true. Sin
e

the proje
tion of
 over fy; zg is also true, the
ondition is satis�ed and we
an

ensure that g

1

(y); g

2

(z) are sear
h independent for
.

Unfortunately, the
ost of performing a pre
ise proje
tion at run-time may be too

high. A pragmati
 solution [24℄ is to simplify the run-time tests by just
he
king

if the variables involved are \linked" through the
onstraints in the store, thus

sa
ri�
ing a

ura
y in favor of simpli
ity. In parti
ular, for the previous example,

y and z are linked (through x) in the store, and therefore g

1

(y); g

2

(z) would not

run in parallel. 2

In our
ontext, the parallelization pro
ess is parameterized by a parti
ular notion

of independen
e. For our purposes, the only requirements are that the independen
e

ondition
hosen guarantee
orre
tness and eÆ
ien
y of the parallel exe
ution of

the goals involved, that it
an be used as a run{time test (i.e., is a priori), and that

it satis�es what we
all the grouping property. If the
ondition is not a priori, the

solution is to �rst use
ompile{time analysis to infer as mu
h information about the

run{time behavior of the goals as possible. If su
h information is enough to ensure

that the a posteriori
onditions are satis�ed (i.e. that the goals are independent),

no run{time tests will be needed. Otherwise, an a priori
ondition will then be used

for the parallelization of the goals.

De�nition 2.4. [Corre
t and eÆ
ient a priori
ondition (i
ond)℄ A set of
onditions

asso
iated to a pair of goals g

1

and g

2

, is an i
ond i� it
an be evaluated for

any
onstraint store and if ea
h
ondition evaluates to true for a given
onstraint

store
 then g

1

and g

2

are independent for
.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 10

The importan
e of the a priori notions of stri
t and link independen
e for auto-

mati
 parallelization does not only
ome from their run{time eÆ
ien
y. It is also

due to the fa
t that they satisfy the \grouping" property. This property is impor-

tant in that it will allow us to
onsider
onditions between goals pairwise, rather

than in sets, thus greatly simplifying our framework.

De�nition 2.5. [Grouping set of
onditions℄ Consider the goal g, the set of goals

S = fg

1

; : : : ; g

n

g, and the set I = fi
ond(g

i

; g) j i 2 f1; � � � ; ngg. The set I is

grouping i� if ea
h
ondition evaluates to true for a given
onstraint store
, then

for any sequen
e G built from the goals in S, g and G are independent for
. In

other words, if for any su
h G, i
ond(G; g) is equivalent to the
onjun
tion of

the
onditions i
ond(g

i

; g) for ea
h g

i

in G.

Example 2.3. Although
onditions based on stri
t and link independen
e are group-

ing,
onditions based on proje
tion independen
e do not always satisfy the grouping

property. For example, for the arithmeti
 linear
onstraint x+y = z, although p(x)

is proje
tion independent of p(y) and of p(z), p(x) is not proje
tion independent of

the sequen
e p(y); p(z). 2

When sets of
onditions are grouping, the
ondition between a goal and a set

of goals is simply built from the
onjun
tion of the i
onds of the goal with ea
h

of the goals in the set. When sets of
onditions are not grouping, a mu
h more

expensive
ondition has to be built and tested at run{time. Basi
ally, for ea
h goal

whi
h
ould run in parallel, a set of
onditions on this goal w.r.t. all other goals

whi
h
an run in parallel with it should be tested. Su
h set, although obviously

di�erent from the simple
onjun
tion of the i
onds,
an generally be easily built

from them. However, the extensions to the framework in the
ase of a posteriori or

non{grouping
onditions are beyond the s
ope of this paper.

A priori
onditions also enjoy an important property, whi
h is formalized in the

following proposition.

Proposition 2.1. If g

1

and g

2

are a priori independent for
, they are also a priori

independent for any
onstraint

0

de�ned as
 ^

1

^

2

, where

1

and

2

are

onstraints satisfying vars(

1

) � vars(g

1

) and vars(

2

) � vars(g

2

).

Proving the above proposition is straightforward given the fa
t that (a) pro-

je
tion independen
e is not only suÆ
ient but also ne
essary for ensuring a priori

independen
e, and (b) if g

1

and g

2

are proje
tion independent for
, they are also

proje
tion independent for any su
h

0

.

Note that the above proposition does not imply that if a parti
ular i
ond is

satis�ed in
 it will also be satis�ed in

0

. Consider, for example, the
ondition

i
ond(p(x); q(y)) de�ned as \x and y are stri
t independent for store
 and x =

f(a)". Although p(x) and q(y) are a priori independent for both
 � true and

0

� x = b, i
ond(p(x); q(y)) holds for
 but not for

0

. More general independen
e

onditions, as those based on stri
t, link and proje
tion independen
e notions,

satisfy the above proposition. We
all these
onditions reasonably general. We will

use this
on
ept to simplify the proof of
orre
tness of the method proposed in the

next se
tion. Note, however, that the
ru
ial point is that Proposition 2.1 holds,

and thus the method is still
orre
t for \non-reasonably general"
onditions.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 11

3. Compiling Logi
 Programs into &-Prolog: General Approa
h

An (&-)annotation is a transformation of a program into a parallel version of it.

Assuming an appropriate
ondition and run{time
he
ks, the result of an annotation

will then be an &-Prolog program with parallel expressions ea
h annotated with an

appropriate test made out of su
h
he
ks.

Consider a set Cond of �rst order formulae

3

in whi
h the suÆ
ient
onditions

for independen
e on the goals of ea
h
lause
an be expressed. Also, any relevant

information on those goals
an be
aptured by formulae of Cond. The mapping

i
ond : }(Literal)! }(Cond)[ffalseg provides the required
ondition for a given

set of literals in the form of a set of atomi
 formulae, interpreted as their
onjun
tion

(the
he
ks), or false. A
hara
teristi
 of our framework, thanks to the grouping

property, is that algorithms only need to inspe
t
onditions between two given

goals. For this reason, we restri
t the above fun
tion to i
ond : Literal�Literal!

}(Cond) [ffalseg.

Example 3.1. Consider stri
t independen
e as de�ned in the previous se
tion.

In the Herbrand domain, indep(x; y) is true if x and y do not share variables.

SuÆ
ient independen
e
onditions for goals g

1

and g

2

an then be de�ned as

i
ond(g

1

; g

2

) = findep(x; y) j x 2 vars(g

1

); y 2 vars(g

2

); x 6= yg [fground(x) j

x 2 vars(g

1

) \ vars(g

2

)g, where ground(x) is introdu
ed as an eÆ
ient run{time

test for indep(x; x). Note that, in a pra
ti
al implementation, these
onditions
an

be redu
ed further, sin
e for example indep(x; y) and indep(y; x) need not both be

onsidered. 2

For the sake of
on
reteness, our examples and performan
e study will fo
us

on stri
t independen
e for the Herbrand domain, using the
he
ks de�ned in the

previous example.

3.1. Dependen
y Graphs

The �rst step in the annotation is
on
erned with identifying the dependen
ies be-

tween ea
h two goals in a
lause and the minimum number of tests for ensuring

their independen
e, based on the suÆ
ient
onditions appli
able. This step
an be

viewed as a
ompilation of programs into (
onditional) dependen
y graphs. Con-

sider a relation pre
 � Literal � Literal whi
h
aptures, in the
ase of sequential

logi
 programs, the left{to{right pre
eden
e relation. A de�nition of
onditional

dependen
y graphs, whi
h additionally provides a method for the �rst step in the

ompilation, follows.

De�nition 3.1. [Conditional dependen
y graph℄ A
onditional dependen
y graph

(V;E) for a given sequen
e of literals g

1

: : : g

n

is given by V = fg

1

; : : : ; g

n

g, and

E = f(g

i

; g

j

; i
ond(g

i

; g

j

)) j fg

i

; g

j

g � V; pre
(g

i

; g

j

); i
ond(g

i

; g

j

) 6= ;g.

Conditional dependen
y graphs (CDGs) are labeled dire
ted a
y
li
 graphs

(DAGs). A
y
li
ity is guaranteed by the pre
eden
e relation pre
. The label of

3

Though Cond is here de�ned over a �rst order language, its variables are the program
lause

variables, whi
h
an be regarded as
onstants. If this is done, the \�rst order" formulation is mere

synta
ti
 sugar for a truly propositional language.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 12

an edge states the independen
e
ondition for the two goals
onne
ted by the edge.

If the
ondition is satis�ed, the two goals are independent. If the i
ond fails, the

two goals are dependent and must be run sequentially. The dire
tion of the edge

indi
ates the proper order in whi
h the goals have to be exe
uted. Note that, sin
e

i
ond in
ludes sets of atomi
 formulae or false, either of these
an be a label.

For the sake of
on
iseness, we will sometimes regard edges labeled false as unla-

beled. Also, sin
e the empty set of formulae is equivalent to true, we will talk of

true instead. Note however that from the de�nition of CDGs, edges labeled true

are dropped. This is be
ause while for a false
ondition the edge is still needed

for indi
ating the order of the
orresponding sequential exe
ution, for a su

essful

ondition the edge is not needed anymore. An important spe
ial
ase of CDGs

are graphs where
onditions are always false, i.e. dependen
ies always hold. In

this
ase we will talk of Un
onditional Dependen
y Graphs (UDGs). This
lass of

CDGs is very interesting, sin
e it allows to exploit only un
onditional parallelism,

thus avoiding any overhead involved in the run{time
he
ks.

Example 3.2. Consider the
lause of the familiar program to solve the Towers of

Hanoi problem given below. Assume for simpli
ity that its CDG has edges labeled

false from the two built{ins to any other literal on their right (see Se
tion 3.2).

The rest of the graph is shown in the �gure below. For brevity in the �gure, for any

two terms s and t we write ist for indep(s; t), and is for indep(s; s). Note that

for non{variable terms s and t, evaluating indep(s; t) requires pairwise evaluation

of the
ondition for the variables in ea
h term. Thus, given s = f(X,Y) and t =

g(Z,W), the test ist is equivalent to the test i(X,Y)(Z,W) and also to the set of

tests fiXZ, iXW, iYZ, iYWg.

shanoi(N0,A,B,C,M) :-

N0 > 1,

N is N0 - 1,

shanoi(N,A,C,B,R),

shanoi(N,B,A,C,S),

append(R,[mv(A,C)℄,T),

append(T,S,M).

shanoi(N,A,C,B,R)

iA iB iC iN iRS

iA iC iR
iNT iBT

shanoi(N,B,A,C,S)

iS
i(A,B,C,N)(M,T)

append(T,S,M)append(R,[mv(A,C)],T)

i(N,A,C,B,R)(T,S,M)

iA iC i(B,N)(R,T)

iT i(R,A,C)(S,M)

Conditional dependen
y graphs, as de�ned, give a parallel exe
ution model

for the bodies of the program
lauses, i.e. for and{parallelism. This model has

been de�ned in [60℄ as Maximal EÆ
ient Goal{level Restri
ted Independent And{

Parallelism, whi
h we will
all \�-parallelism". It is maximal within the limits of

being both independent and goal{level at the same time, sin
e goals are exe
uted

as soon as they be
ome independent. Be
ause it is independen
e{based, it is also

orre
t and eÆ
ient. The MEIAP model
an be identi�ed with the following oper-

ational semanti
s for dependen
y graphs. Let a node be ready if it has no in
oming

edges.

De�nition 3.2. [CDG operational semanti
s℄ Given a
onditional dependen
y

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 13

graph (V;E), parallel exe
ution of the goals to whi
h nodes in V
orrespond

is a
hieved by repeated appli
ation of the following rules:

� Goal initiation: Consider nodes whose in
oming edges have sour
e nodes

whi
h are ready. If the
onditions labeling all these edges are satis�ed for the

urrent store
, remove them all. Repeat until no edges are removed. Initiate

all goals g in ready nodes by exe
uting hg;
i in di�erent environments.

� Node removal: Remove all nodes whose
orresponding goals have �nished

exe
uting, and their out
oming edges. Add the asso
iated answers to the

urrent store
.

Note that, given the form in whi
h CDGs are
onstru
ted, there is always at least

one node whi
h is ready: that whi
h
orresponds to the leftmost goal. Therefore, the

exe
ution model
an always be initiated. The model is also
orre
t w.r.t. sequential

exe
ution.

The proof of
orre
tness is based on the spe
ial properties of a priori, grouping

independen
e
onditions and, in parti
ular, on the
hara
teristi
s of the
onstraints

that
an be added to the store by goals whi
h are independent under su
h notions.

Given a set of
onditions I whi
h is grouping for a goal g and a set of goals S =

fg

1

; : : : ; g

n

g the following result ensures that if ea
h i
ond(g

i

; g) in I is satis�ed

in store
, they will also be satis�ed in any subsequent store

0

resulting from the

exe
ution in
 of some of the goals in S. This will later allow us to prove that, at

any point in the exe
ution, the independen
e
onditions between ea
h two ready

goals are satis�ed for the
urrent store.

Lemma 3.1. Consider g, the set of goals S = fg

1

; : : : ; g

n

g, and the grouping set

I of
orre
t, eÆ
ient and reasonably general a priori
onditions fi
ond(g

i

; g) j

g

i

2 Sg. If every
ondition in I is satis�ed in store
, then for every sequen
e

G built from the goals in S, and for every store

0

obtained by the exe
ution of

hG;
i, ea
h
ondition in I is still satis�ed in

0

.

Proof. Sin
e the set I is grouping, the
ondition i
ond(g

1

: : : g

n

; g), is equivalent

to the
onjun
tion of the
onditions in I , and thus it is satis�ed in store
. Sin
e

the
onditions are reasonably general, i
ond(g

1

: : : g

n

; g) is also satis�ed in any

0

obtained by exe
uting any goal de�ned over a subset of variables in either g

1

: : : g

n

or g, and in parti
ular, in the store

0

obtained by the exe
ution of hG;
i. Thus,

every
ondition in I is also satis�ed in su
h

0

. 2

Given the above result, it is straightforward to prove that if the
onditions for

the pairwise independen
e of a set of goals S are satis�ed in store
, the
onditions

are also satis�ed in any store obtained by exe
uting in
 some goals in S.

Corollary 3.1. Consider the set of goals S = fg

1

; : : : ; g

n

g, and the grouping set I

of
orre
t, eÆ
ient and reasonably general a priori
onditions fi
ond(g

i

; g

j

) j

g

i

; g

j

2 S; i 6= jg. If ea
h
ondition in I is satis�ed in store
, then for any

sequen
e G built from goals in S, ea
h
ondition in I is satis�ed in any store

0

obtained from the exe
ution of hG;
i.

Let us now prove that, at any point in the exe
ution, the independen
e
onditions

between ea
h two goals determined as ready by the model are satis�ed in the
urrent

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 14

onstraint store

0

.

Lemma 3.2. Consider a CDG obtained by applying an a priori, reasonably general,

grouping notion of independen
e to the sequen
e g

1

: : : g

n

. Let

0

be the
urrent

onstraint store obtained during the exe
ution of the graph following the CDG

operational semanti
s. For every two ready goals g

i

and g

j

, 1 � i < j � n,

i
ond(g

i

; g

j

) is satis�ed in

0

.

Proof. Let us prove this by indu
tion.

� Base
ase: Let

0

be the initial store
. By de�nition of the model, for ea
h

ready goal g

j

and ea
h goal g

i

, 1 � i < j, i
ond(g

i

; g

j

) is satis�ed for
.

� Indu
tion step: assume that at some point of the exe
ution the
urrent

store is

0

, and the set of ready goals is R

old

. By hypothesis of indu
tion, the

independen
e
onditions between ea
h two ready nodes in R

old

are satis�ed

in

0

. If (a) a goal initiation step is then performed, a new (possibly empty)

set of ready goals R

new

will be found. By de�nition of the model, for ea
h

ready goal g

j

2 R

new

and ea
h goal g

i

, i < j, i
ond(g

i

; g

j

) is satis�ed

for

0

. Thus, the independen
e
onditions between ea
h two goals in R

new

are satis�ed for

0

. Furthermore, sin
e for every g

i

2 R

old

and every g

j

2

R

new

we have that i < j, then every i
ond(g

i

; g

j

) is also satis�ed in

0

.

Thus, all independen
e
onditions between ea
h two ready goals in R

old

[

R

new

are satis�ed for

0

. If (b) a node removal step is performed, then the

answers
orresponding to some goals in R

old

whi
h have �nished are added

to

0

obtaining the store

00

, and the asso
iated ready nodes eliminated. By

Corollary 3.1, the independen
e
onditions between ea
h two ready goals

whi
h have not been eliminated are still satis�ed in

00

. 2

We
an now prove the main
orre
tness result.

Theorem 3.1 Corre
tness of the CDG operational semanti
s. Consider the CDG

obtained by applying an a priori, reasonably general, grouping notion of indepen-

den
e to the sequen
e g

1

: : : g

n

. Any exe
ution obtained by applying the CDG

operational semanti
s to the graph with initial store
 is
orre
t and eÆ
ient

w.r.t. the sequential exe
ution of hg

1

: : : g

n

;
i.

Proof. Let us prove it by indu
tion on the number of goals in the sequen
e

g

1

: : : g

n

:

� Base
ase: By de�nition of the model g

1

is ready and will be exe
uted in

store
. This exe
ution is obviously identi
al to the sequential one.

� Indu
tion step: assume that the CDG operational semanti
s is
orre
t for

the sequen
e g

1

: : : g

n�1

. Let

0

be the store in whi
h goal g

n

is exe
uted,

a

ording to the CDG operational semanti
s. By de�nition of the model,

g

n

has be
ome ready in

0

and thus all goals in the sequen
e g

1

: : : g

n�1

must be either already initiated, or ready to be initiated in

0

. Therefore,

the exe
ution of goals in the sequen
e g

1

: : : g

n�1

annot be a�e
ted by the

exe
ution of g

n

and thus, by indu
tion hypothesis, it is identi
al to the

sequential exe
ution. By Lemma 3.2 the set of independen
e
onditions

between ea
h two ready goals is satis�ed in

0

. Sin
e the set of
onditions is

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 15

grouping, by de�nition of independen
e, the exe
ution of hg

n

;

0

i is identi
al

to that of hg

n

; s

0

i where s

0

is obtained from the exe
ution in

0

of any goal

in fg

1

; : : : ; g

n�1

g whi
h have not �nished yet. Sin
e

0

has been obtained by

adding to
 the answers to the goals in fg

1

; : : : ; g

n�1

g whi
h have already

�nished, and we have already proved that su
h answers are identi
al to those

in the sequential exe
ution, s

0

is equivalent to s and the indu
tion is proved.

2

The CDG model is \maximal" in the sense that goals are run in parallel as soon

as they be
ome independent. However, this requirement
an be dropped, allowing

a more general model in whi
h ready goals are ensured to be independent if run

in parallel, but they are not a
tually required to be run in parallel. In fa
t, any

possible
orre
t goal{level parallel (or even sequential) exe
ution is allowed. In

parti
ular, given a non{simpli�ed graph, a parallel expression simply
orresponds

to a parti
ular exe
ution of the graph in the above model: that whi
h is obtained

following the parti
ular heuristi
 of the annotator being used to build the parallel

expression.

Proving the
orre
tness of a non-maximal model is straightforward sin
e, given

the above two lemmas, and the fa
t that they hold even if the model is not maximal,

we
an
on
lude that, on
e a goal g has been determined ready for store

0

, its

exe
ution in

0

is identi
al to its exe
ution in any subsequent store obtained by the

model while g is still ready.

Note that CDGs
an also represent &-Prolog
lauses that are already annotated.

Sin
e any goals joined by \&"
an be run in parallel, the i
ond for these is true, and

therefore no edge exists in the
orresponding CDG. If the parallel expressions are

embedded in either a CGE or an if-then-else, the i
ond labeling the
orresponding

edge is pre
isely the
ondition in that
onditional stru
ture. It is easy to see that

su
h a CDG is equivalent to the (parallel) operational semanti
s of the given
lause.

Also,
onsider a CDG for a given
lause, and another one whi
h has either more

edges or larger labels in some edges (a label l

0

is larger than another one l, l � l

0

,

i� l

0

! l). We
all su
h a CDG a super{CDG of the original one. It is obvious that

super{CDGs are
orre
t, as long as the original ones are.

De�nition 3.3. [Super{CDG℄ The CDG (V;E

0

) is a super{CDG of the CDG (V;E)

i� (1) all edges in E are in E

0

, modulo labels, and (2) for all edges in E with

label l the
orresponding edge in E

0

with label l

0

is su
h that l � l

0

.

3.2. Dealing with Non{pure Features and Built-ins

It must be taken into a

ount that, in general, side{e�e
ts
annot be allowed to

exe
ute freely in parallel with other goals. In order to avoid their parallelization,

the annotation
an use the information derived by an analyzer whi
h propagates

the side{e�e
t
hara
teristi
 of built{ins yielding side{e�e
t pro
edures (see e.g.

[57℄). Quite powerful solutions exist for dealing with side{e�e
t built{ins and pro-

edures (e.g. [18, 57, 36℄). In our framework, there is an elegant solution whi
h
an

be de�ned in terms also of a notion of independen
e. Note that some side{e�e
ts

are themselves independent (for example, writing to di�erent �les) and
ould be

onsidered for parallel exe
ution. A suitable analysis for these
ases, as well as

de�ning a set of
onditions whi
h allow
apturing them, will make our framework

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 16

readily appli
able also to the parallelization of side{e�e
ts. For simpli
ity, how-

ever, the (instan
es of the) algorithms we have studied sequentialize side{e�e
ts.

Sequentialization
an be a
hieved by slightly modifying the building pro
ess of the

CDG asso
iated to a
lause, so that every edge
onne
ting a side{e�e
t literal is

labeled with false.

De�nition 3.4. [Annotation front{end℄ The CDG (V;E)
orresponding to a

given sequen
e of literals g

1

: : : g

n

is given by V = fg

1

; : : : ; g

n

g, and E =

f(g

i

; g

j

; label(g

i

; g

j

)) j fg

i

; g

j

g � V; pre
(g

i

; g

j

); label(g

i

; g

j

) 6= ;g, and

label(g

i

; g

j

)=

�

false if g

i

or g

j

is a goal with side{e�e
ts

i
ond(g

i

; g

j

) otherwise

In the following we will denote by
dg(Lit) the fun
tion whi
h
omputes the CDG

orresponding to the sequen
e of literals Lit a

ording to the above de�nition. Note

that the above de�nition is just a modi�
ation of De�nition 1 for the
ase in whi
h

side-e�e
ts are allowed.

Some limited knowledge regarding the granularity of the goals, in parti
ular the

built{ins, is used in the parallelization task. Built-ins whi
h are known to have

enough size to be worth forking in parallel are
onsidered for parallelization. Those

whi
h are known to be \small" are not. Meta{
alls are sequentialized unless the

alled goal is available in the program text or their independen
e
an be otherwise

determined.

3.3. Linearization of a Dependen
y Graph

The se
ond step of the transformation will
ompile a CDG into a linear expression

whi
h will then be used as the
orresponding restri
ted &-Prolog
lause body. In

doing this, dependen
ies represented in the CDG must be satis�ed. This step is

in general non{deterministi
: several di�erent annotations are possible. Given a

lause, its CDG is deterministi
ally built, and from it, the
orresponding &-Prolog

lause is re
onstru
ted. Di�erent heuristi
 algorithms implement di�erent strategies

to sele
t among all possible parallel expressions for a given
lause.

The ba
k{end of the transformation is parameterized by a fun
tion exp. The

fun
tion exp
an be instantiated to a parti
ular algorithm for annotation, su
h as

one of those des
ribed in the following se
tions.

De�nition 3.5. [Annotation℄ Given a program
lause C, an annota-

tion of it yields an &-Prolog
lause C

0

= annotate(C), where

annotate(h) = h, annotate(h:- g) = h:- g, and annotate(h:- g

1

; : : : ; g

n

) =

h:- exp(
dg(hg

1

; : : : ; g

n

i)).

The algorithms we present are fo
ussed on preserving all the available �-

parallelism in the input graph. It is
lear that in order to a
hieve this, a goal

should be initiated as soon as all goals on whi
h it depends have �nished exe
uting.

All dependen
ies are
aptured in the dependen
y graphs, therefore a desirable ob-

je
tive in the annotation pro
ess would be to linearize a graph in su
h a way that

no independent goals are exe
uted sequentially. Graphs whi
h
an be linearized

without loss of �-parallelism will be
alled �-graphs. Algorithms whi
h de
ide if

this is possible for the
ase of UDGs and CDGs will also be presented.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 17

3.4. The Role of Program Analysis

In general, the independen
e
onditions (as de�ned by i
ond) are generated in

su
h a way that for any substitution, if those
onditions are satis�ed, the literals

are independent. However, when
onsidering the literals in the
ontext of a
lause

and within a program, the
ondition
an be simpli�ed sin
e independen
e then

only needs to be ensured for those substitutions that
an appear during exe
ution

of that program. Furthermore, if the
lass of admissible queries to the program

is spe
i�ed in some way, then only the substitutions whi
h might appear in the

exe
ution of those queries need be
onsidered. This observation is the basis of the

role of program analysis within the transformation pro
ess.

The independen
e
onditions
an thus be simpli�ed, or eliminated altogether,

by using
ompile{time information provided either by the user or by an analyzer.

Labels in the CDG
an be simpli�ed based on this information: if a
ondition is

ensured to su

eed, it is removed from the label; if a
ondition is ensured to fail, the

label
an be redu
ed to false. If the label be
omes the empty set (i.e. it is redu
ed

to true), the edge
an be removed. On the
ontrary, if it is redu
ed to false, the

edge be
omes un
onditional.

In the algorithms that we will propose, whether the CDG is already simpli�ed

or not is immaterial. Given a
onditional graph for (part of) a
lause C, its la-

bels
an be simpli�ed based on the available information, prior to its linearization.

However, it is worth noting that
onditions
an also be improved further in the

ba
k{end of the parallelization pro
ess: after a linear expression is built, the
on-

dition
an possibly be redu
ed again. Both simpli�
ations are parameterized by a

fun
tion improve. Consider a propositional logi
 language in whi
h the
onditions

an be expressed (e.g., the set Cond of Se
tion 3). The
ompile-time information

is translated into su
h language,
apturing the subset of the
ompile-time infor-

mation whi
h is relevant for independen
e dete
tion. In this
ontext, we say that

improve(
; i) =

0

if the simpli�
ation of
ondition
 with (translated) information

i yields the new
ondition

0

. The only
orre
tness requirement on the fun
tion

improve, is that the propositional formula

an be proved from

0

^ i (see [9, 13℄).

The updating of a set of edges of a CDG (V;E), identi�ed by their sour
e verti
es

V

1

� V , w.r.t. some information (
ondition)
 is given by a fun
tion update:

update((V;E); V

1

;
) = (V; (E n f(g

1

; g; l)jg

1

2 V

1

g)[

f(g

1

; g; l

0

) j g

1

2 V

1

; (g

1

; g; l) 2 E; l

0

= improve(l;
) 6= trueg)

We assume that the available information is valid before exe
uting ea
h goal g

in the program, and denote it by K(g). Therefore, the
orre
tness requirement

over improve is also enough for update, as long as the information
 is valid for

all g

1

2 V

1

. This requirement is also appli
able to the initial simpli�
ation of a

CDG (V;E) w.r.t. the information available, sin
e it is just the result of applying

update((V;E); fgg;K(g)) for all g 2 V .

Example 3.3. Consider the
lause in Example 3.2 and its CDG. Lo
al analysis

an infer that N is a ground variable, and that R, S, and T are not aliased to any

other variable until the point of their �rst o

urren
es. Moreover, global analysis

an infer from other
lauses in the program that A, B, and C are ground variables.

The CDG after simpli�
ation is shown below.

Note that, of the original edges, three of them have been dropped, and the rest

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 18

shanoi(N,A,C,B,R) shanoi(N,B,A,C,S)

false false

append(R,[mv(A,C)],T) append(T,S,M)

false

have be
ome un
onditional. 2

For non-grouping
onditions the simpli�
ation pro
ess is di�erent. Although

onditions
an be redu
ed to false before a parti
ular annotation of the
lause has

been
hosen, no
ondition
an be redu
ed to true until the linear expression is built.

This is be
ause, in order to build the �nal
onditions that will appear in the linear

expression, we must �rst know whi
h goals are possibly going to be run in parallel.

4. Un
onditional Parallelism: Compiling UDGs

UDGs allow exploiting un
onditional parallelism. Note that, even if the result of

the front{end des
ribed before is not a UDG, it
an be turned into a UDG on

purpose with the aim of only exploiting un
onditional parallelism. The rationale

behind this is to avoid the overhead introdu
ed by the run{time
he
ks. We �rst

turn our attention to this
lass of CDGs. We will �rst des
ribe an algorithm whi
h

he
ks if a UDG is a �-graph. Then, for UDGs whi
h are known to be �-graphs,

we de�ne an algorithm to a
tually do the
ompilation, whi
h we
all the UDG

algorithm. Finally, for UDGs whi
h are not �-graphs we also present extensions

to the UDG algorithm whi
h allow to
ompile them. For
larity, the label false

present in all edges of a UDG will be dropped, all edges thus now being unlabeled.

4.1. De
iding whether a UDG is a �-graph

The basi
 idea behind the de
ision algorithm is as follows. Let UDG G = (V;E)

be
losed under transitivity (i.e. E = E

�

), let P be the set of ready nodes in G,

and Q = V n P . Investigate whether the subgoals in Q
an be exe
uted in parallel

with or should sequentially follow the subgoals in P . As a result, the set Q
an

be partitioned so that for ea
h partition there is only a subset of P on whi
h the

elements of the partition depend. This indu
es another (pseudo-)partition in P :

that of the
orresponding subsets (whi
h may not be disjoint). For the UDG to be

a �-graph, these sets have to be either pairwise disjoint or subsets of one another.

If this is so,
he
k if the sub{UDGs indu
ed by the partition of Q satisfy these

onditions again. All the sub{UDGs should satisfy these
onditions so that the

given UDG is a �-graph. Note that the following results hold for transitively
losed

UDGs.

We �rst de�ne the partitioning of the UDG, and dis
uss its
hara
teristi
s. Let

P be the set of ready literals
omputed by the fun
tion ready(G) = fp 2 V j 8x 2

V (x; p) 62 Eg. Consider the set Q = V n P of dependent goals. For ea
h q

i

2 Q,

the set E(q

i

) = fp 2 P j(p; q

i

) 2 E)g is not empty. Let Cover(P) = fE(q

i

) 2

2

P

jq

i

2 Qg = fP

1

; : : : ; P

n

g, i.e., there is at least one literal in Q for ea
h of these

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 19

P

i

whi
h depends on all elements of P

i

. These literals are grouped together so

that 8P

i

2 Cover(P), Dep(P

i

) = fq 2 QjE(q) = P

i

g, i.e. Dep(P

i

) is the set of all

verti
es in Q that must wait for all verti
es in P

i

(and only those, out of the verti
es

in P) to �nish exe
uting before their exe
ution
an be initiated.

The following results hold dire
tly from the de�nition of Cover(P) and Dep(P

i

)

for P

i

2 Cover(P). They are instrumental in determining if the given UDG is a

�-graph.

Lemma 4.1. For any P

i

, P

j

in Cover(P), (i 6= j) Dep(P

i

) \Dep(P

j

) = ;).

Proof. Consider fP

i

; P

j

g � Cover(P) s.t. Dep(P

i

) \Dep(P

j

) 6= ;. This means

that 9q 2 Q, q 2 Dep(P

i

) \ Dep(P

j

), and therefore E(q) = P

i

and E(q) = P

j

.

Hen
e, P

i

= P

j

, whi
h is a
ontradi
tion. 2

Lemma 4.2. For ea
h non{interse
ting pair of sets P

i

, P

j

in Cover(P), there are

no edges between a vertex in Dep(P

i

) and a vertex in Dep(P

j

).

Proof. Consider two disjoint sets P

i

, P

j

in Cover(P), and assume that there

exist two verti
es u 2 Dep(P

i

), v 2 Dep(P

j

) s.t. (u; v) 2 E. Sin
e there exists

w 2 P

i

s.t. (w; u) 2 E, then by virtue of transitivity, (w; v) 2 E, and therefore

v 2 Dep(P

i

). But this
ontradi
ts the fa
t that Dep(P

i

) \Dep(P

j

) = ;. 2

In this
ontext, no loss of �-parallelism
an o

ur when
onverting the graph

into a linear (parallel) expression, if and only if the following
onditions hold. Ba-

si
ally, for ea
h P

i

2 Cover(P), the linear expression should satisfy the following

requirements:

� There should be \&" operators between all the elements of P

i

so that they

an be run in parallel.

Additionally, all elements of P should exe
ute in parallel as well.

� The subexpressions involving elements of Dep(P

i

) should sequentially follow

the subexpressions involving elements of P

i

, and not of P n P

i

.

Also, they should sequentially follow the subexpressions of Dep(P

j

) for ea
h

P

j

� P

i

.

Let us now informally dis
uss how to determine if a UDG satis�es these require-

ments. From the de�nition of the elements of Cover(P), it always holds that for

all P

1

, P

2

in Cover(P), P

1

6= P

2

and either:

1. P

1

\ P

2

= ;, or

2. P

1

\ P

2

= P

1

, or P

1

\ P

2

= P

2

, or

3. P

1

\ P

2

= P s.t. P 6= ;; P 6= P

1

; P 6= P

2

Consider a UDG with Cover(P) = fP

1

; P

2

g. If these sets are in the �rst
ase,

it is obvious that the subexpressions for P

1

[Dep(P

1

) and P

2

[Dep(P

2

)
an be

parallelized, thanks to the above two lemmas. No loss of �-parallelism o

urs in this

ase if it does not o

ur for the two subexpressions, i.e. if the UDGs for Dep(P

1

)

and Dep(P

2

) are also �-graphs. In the se
ond
ase, let P

1

\ P

2

= P

1

. Sin
e the

elements of Dep(P

1

) should not wait for elements in P

2

n P

1

and all elements in

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 20

P

2

n P

1

must run in parallel with those in P

1

, there should be a subexpression for

P

1

[Dep(P

1

) in parallel with that for P

2

n P

1

. Call this (partial) expression Exp.

Sin
e the elements in Dep(P

2

) have to wait for all elements in P

2

(whi
h in
ludes

P

1

), the subexpression for Dep(P

2

)
an only sequentially follow Exp. This does not

lead to a loss of �-parallelism i� ea
h element of Dep(P

2

) depends on all elements

of Dep(P

1

) (and, as before, the UDGs for Dep(P

1

) and Dep(P

2

) are also �-graphs).

In the third
ase, the expression should allow P , P

2

nP , and P

1

nP to run in parallel.

Also it should guarantee that Dep(P

1

) does not wait for P

2

nP , and Dep(P

2

) does

not wait for P

1

n P . There is no expression whi
h satis�es this.

We now formalize the above reasoning. First, if the UDG is a �-graph, then the

third
ase above
annot o

ur. This is stated in the following result.

Lemma 4.3. If the given UDG is a �-graph, then for ea
h P

i

, P

j

in Cover(P),

either

� P

i

\ P

j

= ;, or

� P

i

� P

j

, or P

j

� P

i

.

Proof. Assume that there exist distin
t sets P

i

, P

j

that do not satisfy the

ondition stated. Thus, they are not a subset one of the other, and P

i

\ P

j

6= ;. If

both P

i

and P

j

are singleton distin
t sets, it
an only be that P

i

\ P

j

= ;, whi
h

is a
ontradi
tion. If one of them is a singleton set, say P

i

, but not the other

one, sin
e P

i

\ P

j

6= ;, then P

i

� P

j

, whi
h is also a
ontradi
tion. If none is a

singleton set, let without loss of generality, P

i

� fp

1

; p

2

g, P

j

� fp

2

; p

3

g, E(q

1

) = P

i

and E(q

2

) = P

j

. If the UDG is a �-graph, its linear expression should allow (a)

p

1

, p

2

, and p

3

to run in parallel, while (b) q

1

waits only for p

1

and p

2

, and (
) q

2

only for p

2

and p

3

. Therefore the expression should
ontain as subexpressions (a)

p

1

&p

2

&p

3

, (b) h(p

1

&p

2

); q

1

i, and (
) h(p

2

&p

3

); q

2

i, but no other one. To a
hieve

this,
onsider introdu
ing expressions (b) and (
) within (a). In (a) q

1

should

sequentially follow (p

1

&p

2

) (but not p

3

) while q

2

sequentially follows (p

2

&p

3

) (but

not p

1

). No parentherization (of any permutation) of (a) is possible whi
h a
hieves

this. 2

Also, if the UDG is a �-graph, and some elements P

1

and P

2

of Cover(P) are

in the se
ond
ase above, all elements of Dep(P

2

) must depend on all elements of

Dep(P

1

), as stated below.

Lemma 4.4. If the given UDG is a �-graph, then ea
h pair P

i

, P

j

in Cover(P),

su
h that P

i

� P

j

, satis�es the following
ondition: 8uv(u 2 Dep(P

i

) ^ v 2

Dep(P

j

))) ((u; v) 2 E).

Proof. Assume that there exist P

i

, P

j

in Cover(P) that violate the above
on-

dition. Without loss of generality, let P

i

� fp

1

g, P

j

� fp

1

; p

2

g, E(q

1

) = P

i

and

E(q

2

) = P

j

. Sin
e P

i

, P

j

do not satisfy the
ondition, the edge (q

1

; q

2

) does not

exist in the given UDG, i.e. a

ording to it, q

1

and q

2

an exe
ute in parallel.

Also, q

1

should sequentially follow only p

1

, but q

2

both p

1

and p

2

. This means

that hp

1

; (q

1

&q

2

)i and hp

2

; q

2

i must be subexpressions of the resulting expression.

There are only two ways in whi
h the se
ond one
an be folded into the �rst one:

either p

2

is atta
hed to q

2

, or to p

1

. In the �rst
ase,
onsider the linear expression

hp

1

; q

1

&(p

2

; q

2

)i. It makes p

2

sequentially follow p

1

, whi
h
ontradi
ts the
ondi-

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 21

tions in the UDG. In the se
ond
ase,
onsider the linear expression hp

1

&p

2

; q

1

&q

2

i.

It makes q

1

sequentially follow p

2

, whi
h is also in
ontradi
tion. 2

Finally, the above
onditions are not only ne
essary, but also suÆ
ient for a

UDG to be a �-graph, as stated below.

Lemma 4.5. If the
onditions in lemmas 4.3 and 4.4 hold for a given UDG, and its

sub{UDGs, then it is a �-graph.

Proof. The result is shown to hold by
onstru
ting the linear expression. Con-

sider the UDG G = (V;E) with asso
iated P and Q. From Lemma 4.3, every two

sets in Cover(P) are either disjoint or one a subset of the other. Therefore we

an partition Cover(P) into maximal subsets, ea
h one
ontaining the elements of

Cover(P) whi
h are not disjoint:

Partition(Cover(P)) = f Pt � Cover(P) j 8P

i

2 Pt it holds that

8P

k

2 Cover(P) (P

k

62 Pt! P

k

\ P

i

= ;) and

8P

j

2 Pt (j 6= i! P

j

� P

i

_ P

j

� P

i

_ 9P

k

2 Pt (P

i

[P

j

� P

k

)) g

For every Pt 2 Partition(Cover(P)), let Dep(Pt) =

S

P2Pt

Dep(P). Sin
e

for any two elements Pt

1

; P t

2

2 Partition(Cover(P)), Dep(Pt

1

) \ Dep(Pt

2

) =

;, by Lemma 4.2 no dependen
ies exist for Dep(Pt

1

) on Dep(Pt

2

). Let

Partition(Cover(P)) = fPt

1

; � � �Pt

n

g. Then, it is
orre
t to
onvert G into the

linear expression:

h exp(Gj

Pt

1

[Dep(Pt

1

)

) & � � � & exp(Gj

Pt

n

[Dep(Pt

n

)

) i

and no loss of �-parallelism o

urs if no loss o

urs for ea
h exp(Gj

Pt

i

[Dep(Pt

i

)

).

Now, for ea
h Pt = fP

1

; : : : ; P

m

g in Partition(Cover(P)), either (a) P

1

� : : : � P

m

or (b) 9P

k

2 Pt su
h that 8P

j

2 Pt; j 6= k; P

j

� P

k

. In
ase (a), by Lemma 4.4, it

is
orre
t to
onvert Gj

Pt

i

[Dep(Pt

i

)

into the linear expression:

h (� � � (&

p2P

1

p, exp(Gj

Dep(P

1

)

)) & � � � &

p2(P

m

nP

m�1

)

p), exp(Gj

Dep(P

m

)

) i

and no loss of �-parallelism o

urs. In
ase (b), let P

m

be the superset (i.e.,

we, partially, order Pt by in
lusion). Let also P =

S

i2[1;m�1℄

P

i

and D =

S

i2[1;m�1℄

Dep(P

i

). Then the linear expression:

h exp(Gj

P[D

) &

p2(P

m

nP)

p, exp(Gj

Dep(P

m

)

) i

is
orre
t, and no loss of �-parallelism o

urs if no loss o

urs for exp(Gj

P[D

). The

same reasoning applies to the indu
ed sub{UDGs, whi
h are guaranteed to at some

point be partitioned in sets whi
h satisfy
ase (a) above. 2

The
ompilability de
ision algorithm re
ursively
he
ks the
onditions in lemmas

4.3 and 4.4 for the subgraphs indu
ed by the partitions in Cover(P).

Algorithm 4.1 Che
king UDG
ompilability. The algorithm to
he
k if a given UDG

G = (V;E) is a �-graph is as follows:

fun
tion udg is �-graph(G): boolean

begin

Let P = ready(G) and Q = V n P;

If Q = ; then return true;

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 22

Let Cover = Cover(P) = fP

1

; : : : ; P

n

g;

For i := 1 to n-1 do

For j := i+1 to n do

If P

i

\ P

j

= P s.t. P 6= ;; P 6= P

i

; P 6= P

j

return false;

If 9u 2 Dep(P

i

) 9v 2 Dep(P

j

) (u; v) 62 E return false;

od;

od;

Answer := true;

i := 1;

Repeat

Answer := Answer AND udg is �-graph(Gj

Dep(P

i

)

);

i := i+1;

until (Answer = false) OR (i > n);

return Answer;

end.

Theorem 4.1 Corre
tness of udg is �-graph. The algorithm returns the answer true

i� the given UDG is a �-graph and the answer false i� it is not.

Proof. If the algorithm returns true, then
onditions in lemmas 4.3 and 4.4 hold

for the UDG and its sub{UDGs. Then from Lemma 4.5, it is a �-graph. If it

returns false, then some
ondition in lemma 4.3 or 4.4 does not hold, and hen
e

the UDG is not a �-graph. 2

A B

C D

(a)

A B

C D

(b)

A B

C D

E

(
)

FIGURE 4.1. Example UDGs.

Example 4.1. Consider the UDG shown in Figure 4.1(a). We have V =

fA;B;C;Dg and P = fA;Bg. Hen
e, Q = fC;Dg, with E(C) = fAg, and

E(D) = fA;Bg. Hen
e Cover(P) = ffAg; fA;Bgg. Sin
e E(C) � E(D) and

(C;D) is an edge of the given UDG, the
onditions in lemmas 4.3 and 4.4 are

satis�ed.

We remove A, B and their edges from the graph. We have now V

0

= fC;Dg

and the edge (C;D), with P

0

= fCg, and Q

0

= fDg, and E(D) = fCg. Hen
e,

Cover(P

0

) = ffCgg. Sin
e Cover(P

0

) is a singleton set, the
onditions in the

lemmas are trivially satis�ed. We remove C and its edge from the graph. Now

V

00

= P

00

= fDg, and Q

00

= ;, and the UDG is found to be a �-graph. The

orresponding expression will be given in Example 4.4. 2

Example 4.2. Consider now the UDG in Figure 4.1(b), similar to the previous one.

We have V = fA;B;C;Dg and P = fA;Bg. Hen
e, Q = fC;Dg, with E(C) = fAg

and E(D) = fA;Bg. Hen
e, Cover(P) = ffAg; fA;Bgg.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 23

Cover(P) satis�es the
ondition in Lemma 4.3. We have Dep(fAg) = fC;Dg

and Dep(fA;Bg) = fDg. Sin
e fAg � fA;Bg, and C 2 Dep(fAg) and D 2

Dep(fA;Bg), but (C;D) is not an edge in the given graph, the
ondition in Lemma

4.4 is violated. Hen
e, this UDG
annot be a �-graph. 2

Example 4.3. Finally,
onsider the UDG in Figure 4.1(
). We have V =

fA;B;C;D;Eg and P = fA;B;Dg. Hen
e, Q = fC;Eg. Also, E(C) = fA;Bg, and

E(E) = fB;Dg. Hen
e Cover(P) = ffA;Bg; fB;Dgg. The elements in Cover(P)

do not satisfy the
ondition in Lemma 4.3. Therefore, this UDG
annot be a

�-graph. 2

4.2. The UDG Algorithm for �-graphs

This algorithm
ompiles a UDG whi
h is a �-graph, into a linear expression in su
h

a way that all the parallelism present in the UDG is preserved. To do this, we

will just follow the steps indi
ated by the proof of Lemma 4.5 and make use of the

fun
tion Partition de�ned within su
h proof.

Algorithm 4.2 UDG annotation. The expression built by the UDG algorithm from

a transitively
losed UDG G = (V;E) whi
h is �-graphs, is given by exp(G) as

follows.

fun
tion exp

UDG

(G): expression

begin

Let P = ready(G) and Q = V n P;

If Q = ; then return h &

p2P

p i;

Let Partition = Partition(Cover(P)) = fPart

1

; : : : ; Part

n

g;

For i := 1 to n do

Let Part

i

= fP

1

; � � � ; P

m

g s.t. 8P

k

; P

l

2 Part

i

(P

k

� P

l

! k < l);

If P

1

� : : : � P

m

then

Answer

i

:= h &

p2P

1

p, exp

UDG

(Gj

Dep(P

1

)

) i;

For j := 2 to m do

Answer

i

:= h Answer

i

&

p2(P

j

nP

j�1

)

p, exp

UDG

(Gj

Dep(P

j

)

) i;

od;

else

Let P =

S

i2f1::m�1g

P

i

and D =

S

i2f1::m�1g

Dep(P

i

);

Answer

i

:= h exp

UDG

(Gj

P[D

) &

p2(P

m

nP)

p, exp

UDG

(Gj

Dep(P

m

)

) i;

fi;

od;

return h &

i2[1;n℄

Answer

i

i;

end.

Theorem 4.2 Corre
tness of UDG annotations. The exe
ution of the expressions

obtained by the UDG algorithm is
orre
t w.r.t. their sequential semanti
s.

Proof. We only need to prove that the UDG for the obtained expression is a

super{UDG of the original one. The proof of this is very similar to that of Lemma

4.5, sin
e the algorithm follows exa
tly the
onstru
tion steps in that proof. Sin
e

the linearizations at ea
h step are perfe
t, no additional edges exist in the resulting

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 24

UDG. In fa
t, the original UDG is exa
tly preserved. 2

Example 4.4. Consider a
lause h:- p(X), q(Y), r(X), s(X,Y) whose UDG

orresponds to that of Example 4.1 and Figure 4.1(a), with A = p(X), B = q(Y),

C = r(X), and D = s(X,Y). There are dependen
ies for C on A, and for D on A, C,

and B. There is no dependen
y for B on A. Algorithm 4.2 will
ompile this
lause

as follows. We have Cover(P) = ffAg; fA; Bgg, with Dep(P

1

) = Dep(fAg) = fCg

and Dep(P

2

) = Dep(fA; Bg) = fDg. Partition = fCover(P)g, and the outer loop

of the algorithm is performed only on
e for this single element. Sin
e fAg � fA; Bg,

Answer

1

is �rst initialised to e

1

= h A, exp

UDG

(Gj

Dep(P

1

)

) i. The inner loop is also

performed only on
e, for fA; Bg, giving Answer

1

= h e1 & B; exp

UDG

(Gj

Dep(P

2

)

) i.

Clearly, exp

UDG

(Gj

Dep(P

1

)

) = C, and exp

UDG

(Gj

Dep(P

2

)

) = D. Therefore, the �nal

expression is:

h :- (p(X), r(X)) & q(Y), s(X,Y). 2

4.3. Extensions to the UDG Algorithm

In real program
lauses, usually bodies are transformed to UDGs whi
h are not

transitively
losed. Although the de�nition of a CDG implies that it will be transi-

tively
losed (be
ause of the pre
 relation), if the
onditions labeling its edges
an

be found to be true, by simpli�
ation based on available information, these labels

will be
ome empty sets, and the
orresponding edges would then be dropped in the

orresponding UDG. The more a

urate the information is, the more this
ase
an

happen. We will
onsider extending the algorithm to these
ases.

Algorithm 4.2 �nds the best linearization of the dependen
y graph in su
h a way

that no loss of �-parallelism o

urs. For this to be possible, we have seen that the

body of a given
lause must satisfy
ertain
onditions, whi
h restri
t the
lass of

UDGs whi
h
an be handled by that algorithm. In order to extend the algorithm

to deal with all possible UDGs, the following possible graph linearizations have to

be
onsidered (as subexpressions of the �nal result exp(G)):

8P

1

P

2

2 Cover(P), if

1. P

1

\ P

2

= ;

exp(Gj

P

1

[Dep(P

1

)

) & exp(Gj

P

2

[Dep(P

2

)

)

2. P

1

\ P

2

= P

1

(a) 8q

1

2 Dep(P

1

)8q

2

2 Dep(P

2

)((q

1

; q

2

) 2 E)

exp(Gj

P

1

[Dep(P

1

)

) & exp(Gj

P

2

nP

1

); exp(Gj

Dep(P

2

)

)

(b) 8q

1

2 Dep(P

1

)8q

2

2 Dep(P

2

)((q

1

; q

2

) 62 E)

i. at the loss of parallelism between Dep(P

1

) and Dep(P

2

)

exp(Gj

P

1

[Dep(P

1

)

) & exp(Gj

P

2

nP

1

); exp(Gj

Dep(P

2

)

)

ii. at the loss of parallelism between Dep(P

1

) and P

2

n P

1

exp(Gj

P

2

); exp(Gj

Dep(P

1

)

) & exp(Gj

Dep(P

2

)

)

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 25

(
) 9q

1

2 Dep(P

1

)9q

2

2 Dep(P

2

)((q

1

; q

2

) 2 E) but 2a does not hold

i. at the loss of parallelism between q

2

2 Dep(P

2

) and q

1

2 Dep(P

1

)

s.t. (q

1

; q

2

) 62 E

exp(Gj

P

1

[Dep(P

1

)

) & exp(Gj

P

2

nP

1

); exp(Gj

Dep(P

2

)

)

ii. at the loss of parallelism between Dep(P

1

) and P

2

n P

1

exp(Gj

P

2

); exp(Gj

Dep(P

1

)[Dep(P

2

)

)

iii. for Q

12

= fq

1

2 Dep(P

1

) j 9q

2

2 Dep(P

2

)(q

1

; q

2

) 2 Eg and Q

11

=

Dep(P

1

) nQ

12

exp(Gj

P

1

[Q

12

) & exp(Gj

P

2

nP

1

); exp(Gj

Q

11

) & exp(Gj

Dep(P

2

)

)

at the loss of parallelism between Q

11

and P

2

nP

1

and also between

Q

12

and q

2

2 Dep(P

2

) s.t. 8q

1

2 Dep(P

1

)((q

1

; q

2

) 62 E)

3. P

1

\ P

2

= P j P 6= ;; P 6= P

1

; P 6= P

2

exp(Gj

P

1

[P

2

); exp(Gj

Dep(P

1

)[Dep(P

2

)

)

at the loss of parallelism between q

2

2 Dep(P

2

) and p

1

2 P

1

n P and also

q

1

2 Dep(P

1

) and p

2

2 P

2

n P

Algorithm 4.2 deals with
ases 1 and 2a. The natural extension of the algorithm

to be able to deal with the whole of Case 2 is to make it for
e the assumption that

the required
ondition in Case 2a holds and let it behave as in this
ase. This leads

the extended algorithm to follow the strategy of
ases 2(b)i and 2(
)i. To make the

extension
omplete, it also has to deal with Case 3, for whi
h the elements P

1

and

P

2

involved are
onsidered as a single one and repla
ed by P

1

[P

2

. Note that ea
h

of these extensions implies a loss of parallelism.

The extension proposed is the simplest one that allows the UDG algorithm to

deal with non-�-graphs. However, there are other possibilities. It is interesting to

reason about the exe
ution
ost of the parallel expressions that
an be obtained. It

then turns out that in general it may be more pro�table to perform the extension

in a di�erent way. This
an be seen with a simple experiment. Consider all the

possible parallel expressions listed above for a situation like Case 2. Let us
onstru
t

the minimum sets needed to
over all sub{
ases in that
ase. These are P

1

= fp

1

g,

P

2

= fp

1

; p

2

g, Dep(P

1

) = fq

1

g (Dep(P

1

) = fq

11

; q

12

g for Case 2
) and Dep(P

2

) =

fq

2

g. The
onditions in ea
h sub{
ase of Case 2 then yield the following expressions:

2(b)i (p

1

; q

1

) & p

2

; q

2

2(b)ii p

1

& p

2

; q

1

& q

2

2(
)i (p

1

; q

11

& q

12

) & p

2

; q

2

2(
)ii p

1

& p

2

; q

11

& (q

12

; q

2

)

2(
)iii (p

1

; q

12

) & p

2

; q

11

& q

2

We would like to evaluate the
ost of ea
h of these expressions. We assume that

there is an upper bound on the exe
ution
ost (i.e. the granularity) of all literals.

Sin
e we are only interested in the relative
omputational
ost of the goals (whatever

metri
 is used to measure it), we just assign arbitrary units of \size" to ea
h goal,

from 1 to the upper bound. We then
ompute the
ost for the expression for all

possible
ombinations of
osts of the single goals up to the upper bound. Note

that the exa
t value of the upper bound is not important, but rather expresses

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 26

the maximum di�eren
e in
ost among the goals. Table 4.1 shows, for ea
h parallel

expression, the per
entage of
ombinations where that expression gives the minimal

ost. The per
entage in
ludes situations where more than one expression is best,

and thus the total per
entage
an add up to more than 100%.

Max.G. % Best
ase

Grain 2(b)i 2(b)ii

1 0 100

2 18 100

3 22 97

4 23 95

5 24 94

6 24 93

7 24 92

8 24 92

9 24 91

10 24 91

Max.G. % Best
ase

Grain 2(
)i 2(
)ii 2(
)iii

1 100 100 100

2 78 78 78

3 72 71 70

4 70 67 66

5 68 65 64

6 67 63 62

7 66 62 61

8 65 61 60

9 65 60 59

10 65 60 59

TABLE 4.1. Performan
e test for possible parallel expressions.

From the table, our previous
hoi
e of strategy, 2(
)i, appears as the best par-

allelization strategy in Case 2
. However, in Case 2b, the se
ond option, 2(b)ii,

instead of the one we
hose previously, 2(b)i, behaves best. This is due to the

fa
t that this strategy performs a better load balan
ing of parallel tasks with goals

whi
h are already balan
ed (i.e. have almost the same granularity, as with maxi-

mum grain of 1 or 2) or for whi
h the di�eren
es in grain size are not high. When

a bigger di�eren
e is allowed (in
reasing the maximum permitted goal
ost) the

average eÆ
ien
y of 2(b)ii lowers a bit, while that of 2(b)i progressively behaves

better. Therefore, the best parallelization strategies in order to extend the UDG

algorithm seem to be those of
ases 2(b)ii and 2(
)i.

It is worth noting that this result points out the importan
e of having granularity

information on the literals being annotated, so that the annotators
ould take

granularity into
onsideration in the load balan
ing algorithms. Unfortunately,

having good measures for the granularity of literals is a diÆ
ult task.

4

Dealing fully

with annotation in the presen
e of granularity information is beyond the s
ope of

this paper: in the absen
e of information on granularity, the parallelization strategy

of 2(b)ii and 2(
)i should be pursued.

4.4. The UDG Algorithm for non-�-graphs

We will now propose an algorithm along the lines dis
ussed above. Note however

that, even if we assume the loss of parallelism whi
h o

urs when
onsidering sets of

Cover(P) pairwise, there
an be additional losses when
oupling expressions for any

two sets together. A radi
al solution to this is to
onsider literals pairwise, instead

of in sets. Dependen
ies are
onsidered in a literal{to{literal fashion, in
rementally

4

Although quite interesting progress has been made re
ently | see [25, 26, 84℄ and their

referen
es.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 27

reating the expression from the one already generated by introdu
ing a new literal

ea
h time (an algorithm in this style is presented in [14℄). We take a similar solution,

but applied to the sets of Cover(P). We �rst order Cover(P) so as to
onsider ea
h

set after its subsets have been
onsidered, in order to redu
e the loss of parallelism.

I.e. if Cover(P) � fP

1

; P

2

; P

3

g s.t. P

1

� P

2

� P

3

, we
onsider an expression for P

1

and P

2

and apply the
orresponding strategy; afterwards, we
onsider an expression

by adding P

3

to the previous one and building it by applying the strategy based on

the relations among P

2

and P

3

, thus ignoring those among P

1

and P

3

. To guarantee

that we will only �nd sets whi
h are either disjoint or subsets of one another, we will

modify Cover(P) in order to �rst deal with Case 3. The modi�
ation
onsists in

re
ursively sele
ting two sets P

i

; P

j

in Cover(P) whi
h are not disjoint nor subsets

of one another, and substituting them by their union, until no more su
h sets exists:

Modify(C)=

8

<

:

Modify(C n fP

i

; P

j

g [fP

i

[P

j

g)

if 9P

i

; P

j

2 C (P

i

\ P

j

= P ! P 6= ; ^ P 6= P

i

^ P 6= P

j

)

C otherwise

Note that the resulting C

0

might depend on the order in whi
h P

i

and P

j

are

sele
ted. For example,
onsider C = fP

1

; P

2

; P

3

g with P

1

= fp

1

; p

2

g, P

2

= fp

1

; p

3

g,

P

3

= fp

2

; p

3

; p

4

g. On the one hand, by sele
ting �rst P

2

and P

3

we obtain C

0

=

fP

1

; P

2

[P3g whi
h
annot be further modi�ed. On the other hand, by sele
ting

�rst P

1

and P

2

we obtain C

0

= fP

1

[P

2

; P

3

g whi
h must be further modi�ed,

resulting in fP

1

[P

2

[P

3

g. This suggests, in view of the dis
ussion of the previous

se
tion, that it is better to sele
t the biggest P

i

, P

j

satisfying the
ondition in order

to apply the modi�
ation. In our implementation, the elements of Cover(P) are

ordered by length, so that, in the previous example, the se
ond alternative will be

taken. Abstra
tion made of this issue, the algorithm is as follows.

Algorithm 4.3 Extended UDG annotation. The expression built by the extended

UDG algorithm from a UDG G = (V;E) is given by exp(G) as follows.

fun
tion exp

UDG

(G): expression

begin

Let P = ready(G) and Q = V n P;

If Q = ; then return h &

p2P

p i;

Let Partition = Partition(Modify(Cover(P))) = fPart

1

; : : : ; Part

n

g;

For i := 1 to n do

Let Part

i

= fP

1

; � � � ; P

m

g, m � n, 8P

k

; P

l

2 Part

i

(P

k

� P

l

! k < l);

If P

1

� : : : � P

m

then

Answer

i

:= h &

p2P

1

p i;

Qs := Dep(P

1

);

For ea
h j := 2 to m do

If P

j

and P

j�1

are in Case 2a or 2
 then

Answer

i

:= h (Answer

i

, exp

UDG

(Gj

Qs

)) &

p2(P

j

nP

j�1

)

p i;

Qs := Dep(P

j

);

else

Answer

i

:= h Answer

i

&

p2(P

j

nP

j�1

)

p i;

Qs := Qs[Dep(P

j

);

fi;

od;

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 28

Answer

i

:= h Answer

i

, exp

UDG

(Gj

Qs

) i;

else

Let P =

S

i2f1::m�1g

P

i

and D =

S

i2f1::m�1g

Dep(P

i

);

Answer

i

:= h exp

UDG

(Gj

P[D

) &

p2(P

m

nP)

p, exp

UDG

(Gj

Dep(P

m

)

) i;

fi;

od;

return h &

Part

i

2Partition

Answer

i

i;

end.

Theorem 4.3 Corre
tness of extended UDG annotations. The exe
ution of the ex-

pressions obtained by the extended UDG algorithm is
orre
t w.r.t. their sequen-

tial semanti
s.

Proof. We only need to prove that the UDG for the obtained expression is a

super{UDG of the original one. We �rst prove that it holds for the If statement

for Q = ;, then that it holds for the expressions in the If statement of the inner

For loop, then that it holds for those in the If statement of the outer loop, and

�nally that it holds for that in the return statement.

When Q = ; no edges exist in the original UDG; hen
e, the expression h &

p2P

p i

has the same UDG as the original one. In the inner loop, note that Qs always

ontains elements of Dep(P

k

) for some P

k

's s.t. P

k

� P

j

for the
urrent j. Answer

i

always
ontains an expression for su
h P

k

's and possibly some of the
orresponding

Dep(P

k

)'s. In the \then" part of the If statement P

j

n P

j�1

is allowed in parallel

with the goal formed by the sequential exe
ution of Answer

i

and an expression

for Qs. No edges will exist in the
orresponding UDG between P

j

n P

j�1

and the

elements of Answer

i

and Qs, whi
h is to say of P

k

's and Dep(P

k

)'s s.t. P

k

� P

j

. By

onstru
tion of Partition and the Dep(P

k

)'s, no edges exist between su
h elements

in the original UDG. For the same reason, the resulting UDG in the \else" part

does not lose any edges in the original one, either. In the outer loop, in the \then"

part, an expression for Qs sequentially follows Answer

i

. This
an only have the

e�e
t of adding edges whi
h were not in the original UDG from elements of some

P

j

's and Dep(P

j

)'s to some other Dep(P

i

)'s s.t. P

j

� P

i

. In the \else" part, the

only parallel expression is between P [D and P

m

n P . Sin
e P

m

� P , and no

edges originally exist between Dep(P

i

) 2 D and P

m

n P , this does not violate any

of the original edges, either. Finally, in the returned expression elements of ea
h

Answer

i

are allowed in parallel. Sin
e the set Partition is built in su
h a way that

ea
h of the elements of Part

i

is disjoint with ea
h of the elements of Part

j

, where

fPart

i

; Part

j

g � Partition, no edges exist in the original UDG between elements

of ea
h of the Answer

i

. Thus, the UDG of the resulting expression is a super{UDG

of the original one. 2

5. Conditional Parallelism: Compiling CDGs

Let us now turn our attention to the general
ase of CDGs. Sin
e we now have

onditions, the most ambitious strategy would be to try to exploit all the available

�-parallelism in ea
h of the situations determined by the
ombination of the
on-

ditions. Basi
ally, the idea is to
onvert the given CDG into a set of UDGs, ea
h

of whi
h is a dependen
y graph
orresponding to one
ombination of truth values

on the
onditions labeling the edges of the CDG. It is easy to prove that if there

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 29

is at least one feasible UDG whi
h is not a �-graph, then the given CDG is not a

�-graph either. Also, if the given CDG is a �-graph, then ea
h feasible UDG must

also be a �-graph.

a(X) b(Y)

c(X,Y)

iX iY

iXY

(a) CDG (Node 1)

1

2 3 4

5 6 7 8 9 10

(b) UDG{tree

a(X) b(Y)

c(X,Y)

iY

Node 2

a(X) b(Y)

c(X,Y)

iY

Node 3

a(X) b(Y)

c(X,Y)

iY

Node 4

a(X) b(Y)

c(X,Y)

Node 5

a(X) b(Y)

c(X,Y)

Node 6

a(X) b(Y)

c(X,Y)

Node 7

a(X) b(Y)

c(X,Y)

Node 8

a(X) b(Y)

c(X,Y)

Node 9

a(X) b(Y)

c(X,Y)

Node 10

FIGURE 5.1. CDG and the UDG{tree for a(X),b(Y),
(X,Y).

Example 5.1. Consider a
lause whose body is a(X),b(Y),
(X,Y). The CDG for

this
lause is given in Figure 5.1(a). Figure 5.1(b) shows the steps needed to derive

the set of feasible UDGs (leaves of the tree) from the original CDG (root of the

tree). The graphs
orresponding to nodes from 2 to 10 are given in the same �gure.

The
ombinations of the truth values of edges departing from the node a(X)

yield three possibilities: fiX;:iX ^ iXY;:iX ^ :iXYg (note that iX implies iXY).

Nodes 2, 3, and 4 are obtained by assuming one of the possibilities, respe
tively.

Nodes 5 and 6, 7 and 8, and 9 and 10, are then obtained by applying the same

pro
ess to the
onditions labeling the edges departing from node b(Y) in graphs 2,

3, and 4, respe
tively.

Although all the UDGs (the graphs
orresponding to nodes from 5 to 10) are

�-graphs, we
annot ensure that the initial CDG is a �-graph. 2

Sin
e the algorithm informally des
ribed above is only
omplete, it has a limited

interest. We will skip a formal de�nition of it and we will start with an annotation

algorithm whi
h deals with non{�-graphs dire
tly. Extensions to this algorithm are

also dis
ussed.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 30

5.1. The CDG Algorithm

The CDG algorithm produ
es the linear expression of a given CDG G = (V;E).

Following the ideas mentioned before, it
onsiders all possible states of
omputation

whi
h
an o

ur w.r.t. the
onditions in G, and annotates the body literals into the

best parallel expressions a
hievable under su
h
onditions. The algorithm starts

with the same set P of independent literals as in UDGs. The main di�eren
e

resides in that literals depending un
onditionally on literals in P are not
oupled to

them (i.e. the
lose relation upon ea
h P

i

and
orresponding Dep(P

i

) in the UDG

algorithm is not followed here). This is be
ause the CDG algorithm fo
uses on the

onditional dependen
ies present in the graph, rather than on edges labeled false

(or unlabeled).

Consider the CDG G = (V;E), with P = ready(G), and Q = V n P . We

denote by PConds(G;P;Q) the fun
tion whi
h
omputes the sets of
onditions

(other than false) in labels of edges between literals in P and literals in Q, i.e.,

PConds(G;P;Q) = fl 2 Cond j (p; x; l) 2 E ^ p 2 P ^ x 2 Q ^ l 6= falseg. Also,

we denote by QConds(G;Q) the fun
tion whi
h
omputes the sets of
onditions

in labels of edges among literals in Q, QConds(G;Q) = fl 2 Cond j (x; y; l) 2

E ^ fx; yg � Q ^ l 6= falseg. The algorithm pro
eeds by in
rementally building

up the parallel expression exp(G) as follows; let P = fp

1

; : : : ; p

n

g, PConds =

PConds(G;P;Q), QConds = QCons(G;Q):

� if Q = ; then exp(G) = hp

1

& : : : & p

n

i

� if Q 6= ;, PConds = QConds = ; then exp(G) = exp

UDG

(G)

� if Q 6= ;, PConds = ;, QConds 6= ;

then exp(G) = hp

1

& : : : & p

n

; exp(Gj

Q

)i

� if Q 6= ;, PConds 6= ; then exp(G) is re
ursively built up from the boolean

ombinations of the elements of PConds as des
ribed below.

Let BoolComb(Conds) be the fun
tion whi
h returns the set of simpli�ed

boolean
ombinations of the
onditions in Conds whi
h are di�erent from false. Let

Bool = BoolComb(PConds). For ea
h boolean
ombination b 2 Bool the graph G

is updated as if the
onditions in b hold by means of the fun
tion update(G;P; b).

Note that this is similar to the update performed in Example 5.1, but
onsidering

the set of edges with sour
e in P . However, spe
ialized versions of update for the

notion of independen
e under
onsideration
an be de�ned. In [58℄ an instan
e

of this fun
tion for the parti
ular
ase of stri
t independen
e in the Herbrand do-

main is presented. The parallel expressions resulting from re
ursively applying the

CDG algorithm after this updating are annotated as if-then-elses and
ombined in

a simpli�ed form.

Example 5.2. Consider a
lause p(W,X,Y,Z):- W is X+1,a(W),b(X,Y),
(Y,Z).

Given the information inferred from the built{in, its CDG
orresponds to that of

Node 2 of Figure 5.1 (modulo the arities of the predi
ates). The algorithm will

onsider all possible alternatives (nodes 5 and 6) and yield the following
lause:

p(W,X,Y,Z) :- W is X+1,

(ground(Y) -> a(W) & b(X,Y) &
(Y,Z)

; a(W) & (b(X,Y),
(Y,Z))).

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 31

whereas the UDG algorithm will yield:

p(W,X,Y,Z) :- W is X+1, a(W) & (b(X,Y),
(Y,Z)).

whi
h is the worst
ase subexpression of the expression above. 2

The simpli�ed form of the resulting expression is formally de�ned by a

fun
tion simplify. Let Bool = fb

1

; : : : ; b

n

g be the result of the fun
tion

BoolComb(PConds) and fe

1

; : : : ; e

n

g be their
orresponding expressions, we de�ne

simplify(b

1

! e

1

; : : : ; b

n

! e

n

) as follows:

� If a partition of Bool = fb

i

1

; : : : ; b

i

M

g[fb

j

i

; : : : ; b

j

N

g,
an be done su
h that

for some
ond, 8k 2 [1;M ℄ (b

i

k

=
ond^s

i

k

) and 8k 2 [1; N ℄ (b

j

k

= :
ond^

s

j

k

), then simplify(b

1

! e

1

; : : : ; b

n

! e

n

) = hgoal(
ond)! D1;D2i where

D1 = simplify(s

i

1

! e

i

1

; : : : ; s

i

M

! e

i

M

), and D2 = simplify(s

j

1

!

e

j

1

; : : : ; s

j

N

! e

j

N

)

� If su
h partition
annot be done,
onditions are all atomi
, and therefore

simplify(b

1

! e

1

; : : : ; b

n

! e

n

) = hgoal(b

1

)! e

1

; : : : ; goal(b

n

)! e

n

i

where goal(
ond) maps
ondition
ond into a suitable &-Prolog goal, after possibly

simplifying it again with the same improve fun
tion as in the simpli�
ation phase

of the graph. This simpli�
ation must be done only based on the information valid

for the leftmost literal of e

1

; : : : ; e

n

. Note that this literal is the same for all the

e

i

's, sin
e they are obtained from the same graph in the following algorithm.

Algorithm 5.1 CDG annotation. The expression built by the CDG algorithm from

a CDG G is given by exp(G) as follows.

fun
tion exp

CDG

(G): expression

begin

Let P = ready(G) and Q = V n P;

If Q = ; then return h &

p2P

p i;

Let PConds = PConds(G;P;Q) and QConds = QConds(G;Q);

If PConds = QConds = ; then return exp

UDG

(G);

If PConds = ; then return h p

1

& : : : & p

n

, exp

CDG

(Gj

Q

) i;

Let Bool = BoolComb(PConds) = fb

1

; : : : ; b

n

g;

For i := 1 to n do

e

i

= exp

CDG

(update(G;P; b

i

))

od;

return simplify(b

1

! e

1

; : : : ; b

n

! e

n

);

end.

Theorem 5.1 Corre
tness of CDG annotations. The exe
ution of the expressions

obtained by the CDG algorithm is
orre
t w.r.t. their sequential semanti
s.

Proof. We prove by indu
tion that the CDG for the obtained expression is

a super{CDG of the original one. First we reason for the base
ase. If Q = ;

the original CDG has no edges, and the same happens for that of the expression

returned: hp

1

& : : : & p

n

i. If PConds = QConds = ; then the original CDG

has no
onditional edges, and the graph is then a UDG. Corre
tness is guaranteed

be
ause the expression returned is exp

UDG

(G) whi
h is
orre
t by Theorem 4.2.

Now we reason for the indu
tion step. The indu
tion hypothesis is that the re
ursive

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 32

alls already return a
orre
t expression (w.r.t. the graph with whi
h the
alls are

made). If PConds = ; the expression returned is h p

1

& : : : & p

n

, exp

CDG

(Gj

Q

) i.

The subexpression for P = fp

1

; : : : ; p

n

g has an asso
iated CDG whi
h is a �-graph,

sin
e there are no edges between elements of P in the original CDG. The sequential

onjun
tion respe
ts the original edges from elements of P to elements of Q, and

possibly adds more. Sin
e the CDG Gj

Q

is pre
isely the original one without the

edges from elements of P to elements of Q, and the re
ursive
all is
orre
t by

hypothesis, the CDG for this expression is a super{CDG of the original one. In the

last
ase,
onsider expressions e

i

and fun
tion simplify. The CDGs with whi
h

the re
ursive
alls in the e

i

's are made are sub{CDGs of the original one, in su
h

a way that ea
h one has been simpli�ed w.r.t. some
ondition b

i

. The results of

the re
ursive
alls are expressions whose CDGs are super{CDGs of ea
h of these

(by hypothesis). Sin
e the e�e
t of the fun
tion simplify is to add b

i

to the labels

in all the edges of ea
h of these CDGs, their labels
an only be larger than those

in the original subgraphs. Hen
e, the CDG of the resulting expression is also a

super{CDG of the original one. 2

5.2. Variants to the CDG Algorithm

The CDG algorithm seeks to obtain the best possible parallel expressions whi
h
an

be generated on ea
h of the di�erent situations whi
h may o

ur from the boolean

ombinations of
onditions it
onsiders. In doing this, it does not parti
ularly fo
us

on un
onditional dependen
ies (as the UDG algorithm), rather it fo
uses instead

on
onditions whi
h
an allow independen
e of literals. Thus, in the third
ase

of Algorithm 5.1 (PConds = ;), an un
onditional parallel expression is built for

elements in P followed sequentially by another expression re
ursively
omputed for

the rest Q of the literals. No
onsideration is given in this
ase to the un
onditional

dependen
ies whi
h
ould o

ur from literals in Q on literals in P . Algorithm 4.2 for

UDGs, on the other hand, does this, and groups literals depending un
onditionally

on those of P (i.e. Dep(P

i

) for P

i

2 Cover(P)) together and with those on whi
h

they depend (i.e. ea
h P

i

), building an expression for the di�erent groups of literals.

A variant of the CDG algorithm is possible if the
ase for PConds = ; is omitted.

Instead, when this
ase is dete
ted, the sets P and Q should be
omputed again,

as if the verti
es in P and the edges with origin in them did not exist (but without

deleting them). Un
onditional dependen
ies will therefore persist, and will be taken

are of by the UDG algorithm in a re
ursive
all in whi
h PConds = QConds = ;

is dete
ted. This variant will allow a one{to{one
orresponden
e between both

algorithms, so that the expressions built by Algorithm 4.2 will always be the worst

ase subexpression of those built by Algorithm 5.1. This happens in Example 5.2,

but it is not so in general. E.g.:

Example 5.3. Consider the
lause h:- p(X),q(Y),r(X),s(X,Y). Algorithm

5.1 will work as follows. Sin
e X has its �rst o

urren
e in p(X) and Y

in q(Y), p(X) and q(Y) are independent, and the dependen
ies of r(X) and

s(X,Y) on p(X) and of s(X,Y) on q(Y) are un
onditional. Thus, there is only

one
onditional dependen
y: for s(X,Y) on r(X), labeled indep(X; X). There-

fore, P = fp(X); q(Y)g and PConds = ;. The following expression is built:

h p(X) & q(Y), exp

CDG

(Gj

fr(X);s(X,Y)g

i, and the re
ursive
all builds a CGE

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 33

for the two goals involved. The resulting expression is:

h :- p(X) & q(Y), ground(X) => r(X) & s(X,Y).

whi
h is very di�erent from the one in Example 4.4 obtained by Algorithm 4.2:

h :- (p(X), r(X)) & q(Y), s(X,Y).

If Algorithm 5.1 is extended as mentioned, P and Q will be
omputed again

when PConds = ; is found, giving a new P = fr(X)g and Q = fs(X,Y)g. The

boolean
ombinations of indep(X; X) will be
onsidered, but sin
e :indep(X; X) is

known to hold at the ne
k of the
lause, this one will be the only
ombination. The

graph will be updated a

ordingly, giving a UDG, and thus Algorithm 4.2 will be

alled, resulting in the above un
onditional expression. 2

In less
ontrived
ases, the resulting expressions of the extended CDG algorithm

will give nested if-then-elses in whi
h the �nal \else"
ase will always be an un
on-

ditional expression built by the UDG algorithm. Note however that the example

shows why the
onditions in the �-
he
king algorithm for CDGs are not suÆ
ient.

The algorithm will return true for the
lause in the example. However, the best lin-

earization is that of the un
onditional expression above, and in this expression there

is no way to in
orporate the
he
k ground(X) between r(X) and s(X,Y). Thus, if

it were the
ase that p(X) made X ground, the available parallelism between these

two goals would have been lost.

6. Compilation of CDGs made Pra
ti
al

Algorithm 5.1 for
ompiling CDGs has the disadvantage of having exponential

omplexity. This suggests the need of more pra
ti
al approa
hes that
an either

be used by themselves or serve as a \fall ba
k" when the algorithm is fa
ed with

large inputs. Several more pra
ti
al approa
hes are dis
ussed in this se
tion. First,

an alternative algorithm (MEL) not ne
essarily based on graphs is presented. This

algorithm exploits a very simple heuristi
: partition the
lause body at points in

whi
h parallel exe
ution is not allowed. The aim is to �nd the longest parallel

expression possible among those whi
h are
at, i.e. su
h that nested subexpressions

are not allowed. The resulting algorithm is quite simple, has polynomial
omplexity

(quadrati
, in fa
t), results in very simple parallel expressions, and, as we will show

in Se
tion 8, is quite e�e
tive. Se
ondly, and as further alternatives, we dis
uss two

possible variants of algorithms for CDGs. These two methods are aimed at redu
ing

the
omplexity of Algorithm 5.1 by seeking un
onditional parallelism. Thus, they

an be seen as ways to
ombine the CDG and UDG algorithms in order to obtain an

algorithm for CDGs whi
h has some of the good properties of the UDG algorithm

(and thus they are
alled UCDGs algorithms). Both methods are parameterized by

several fun
tions whose de�nition depends on the kind of
ompile-time information

available. In this sense, the algorithms
an be
onsidered more as skeletons of

possible algorithms.

6.1. Non Graph{Based Compilation: the MEL Algorithm

The MEL (Maximum Expression Length) algorithm is based on a heuristi
 whi
h

tries to �nd out points in the body of a
lause where it
an be split into di�erent

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 34

expressions. One example of su
h a point, for the
ase of stri
t independen
e, is

where a new variable appears. Consider a literal whi
h has the �rst o

urren
e of

a variable in a
lause, and this variable is used as an argument of another literal to

the right of the �rst one. The
ondition in stri
t independen
e whi
h must hold for

two literals whi
h share variables establishes that these variables must be ground;

obviously this is not the
ase for su
h two literals, and thus this is a point where it

is not appropriate to annotate a parallel expression.

The heuristi

an however be separated from the notions of independen
e used in

parallelizing the programs. The heuristi

an be read as \partition the body where

a
ondition between two literals is �rst found to be false". In order to a

ommo-

date the MEL de�nition to this approa
h, it is ne
essary to de�ne a framework

for
apturing when
onditions
an be turned to false for a parti
ular
on
ept of

independen
e. This is done by the fun
tions i
ond (and label) and improve of

se
tions 3 and 3.4.

5

The algorithm then pro
eeds in this manner from right to left, i.e. from the last

literal in the body to the ne
k of the
lause. The
lause body is then broken into

two at the points where the above
ondition is found, and a parallel expression (a

CGE) built for the right part of the sequen
e split. The splitting is done right after

the leftmost goal involved in the
ondition. The motivation to do this is to �nd the

longest parallel expressions possible. An alternative heuristi
 will pro
eed forwards

and split right before the rightmost goal involved. The reasoning behind pro
eeding

ba
kwards is based on the observation that goals are generally more instantiated,

and thus more likely to be independent, towards the end of the
lause. Sin
e as the

algorithm progresses it makes
hoi
es (by
reating expressions) that prevent later

opportunities for parallelization, it seems more pro�table to start from the end of

the
lause.

Let a CDG
dg(B) be built for ea
h
lause C � h:- B with B = hg

1

; : : : ; g

n

i.

De�ne I = fI(g

i

; g

j

) j i < jg, where I(g

i

; g

j

) are the sets of
onditions su
h that g

i

and g

j

are independent, whi
h are already simpli�ed w.r.t. the available information

valid before the exe
ution of g

i

, denoted K(g

i

).

Example 6.1. Consider the
lause h(X):- p(X,Y),q(X,Z),r(X),s(Y,Z). With

a simple lo
al analysis, we have the following (note that free not aliased(X))

:indep(X; X)):

K(p(X,Y)) = ffree not aliased(Y); free not aliased(Z)g

I(p(X,Y); q(X,Z)) = findep(X; X); indep(Y; Z)g

I(p(X,Y); r(X)) = findep(X; X)g

I(p(X,Y); s(Y,Z)) = findep(Y; Y); indep(X; Z)g = ffalseg

K(q(X,Z)) = ffree not aliased(Z)g

I(q(X,Z); r(X)) = findep(X; X)g

I(q(X,Z); s(Y,Z)) = findep(Z; Z); indep(X; Y)g = ffalseg

K(r(X)) = ;

I(r(X); s(Y,Z)) = findep(X; Y); indep(X; Z)g

So C will be
ompiled, under stri
t independen
e, into the following parallel

5

Although in the example we will use a notation whi
h looks like predi
ate logi
, the
lause

variables are in fa
t
onstants in the theory underlying improve. Thus, the framework of Se
tion

3.4, based on propositional logi
, is still valid for our purpose in this se
tion.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 35

lause:

h(X) :- ground(X)) p(X,Y) & q(X,Z),

indep(X,Y), indep(X,Z)) r(X) & s(Y,Z).

Note that the body is split at q(X,Z) (be
ause of Z) and not at p(X,Y) (be
ause

of Y), the largest expression being a
hieved in this way. In fa
t, if the
lause were

split at p(X,Y), no parallel expressions would be possible. Note also that the �rst

CGE does not have the
ondition indep(Y,Z) sin
e this
ondition is automati
ally

satis�ed by virtue of the fa
t that free not aliased(Z) 2 K(p(X; Y)). 2

Example 6.2. Consider the same
lause above. We
ould apply the alternative

heuristi
 of pro
eeding forwards, whi
h will
ause the splitting at s(Y,Z) be
ause

of I(p(X,Y); s(Y,Z)) = ffalseg. The resulting expression will be:

h(X) :- ground(X)) p(X,Y) & q(X,Z) & r(X), s(Y,Z).

Note however that, unless X is ground upon
lause entry, this expression will result

in no parallelism. 2

The algorithm starts with a sequen
e B of literals (initially the body of the

lause under
onsideration) and
omputes its
orresponding parallel expression

exp(
dg(B)).

Algorithm 6.1 MEL annotation. The
ompilation of a CDG G = (V;E) to a paral-

lel expression is given by exp(G) as follows. Let the elements fg

1

; : : : ; g

n

g of V

be ordered by relation pre
.

fun
tion exp

MEL

(G): expression

begin

ompute p as the largest j 2 [1; n℄ s.t. 9i 2 [j + 1; n℄ I(g

j

; g

i

) = false;

If there is no su
h j then p := 0;

Let B1= fg

1

; : : : ; g

p

g and B2= fg

p+1

; : : : ; g

n

g;

IConds :=

S

p<i<n

i<j�n

I(g

i

; g

j

);

D2 := h goal(IConds)) g

p+1

& : : : & g

n

i;

If B1 = ; then return D2;

return h exp

MEL

(Gj

B1

), D2 i;

end.

Note that the de�nition of the algorithm uses fun
tion goal introdu
ed in Se
tion

5.1, and that in applying this fun
tion there is a possibility of further simplifying

the
ondition w.r.t. the available information (in this
ase, that of K(g

p+1

)).

Theorem 6.1 Corre
tness of MEL annotations. The exe
ution of the expressions

obtained by the MEL algorithm is
orre
t w.r.t. their sequential semanti
s.

Proof. We show that the CDG for the obtained expression is a super{CDG of

the original one by indu
tion. First, if no un
onditional edge exists, p = 0 and

B1 = ;. In this
ase, IConds is the union of all the labels in the original CDG,

and D2 has this as
ondition. Therefore, the labels in the resulting CDG for D2 are

IConds in all of the edges; hen
e they are larger than the original ones. Sin
e in this

ase the resulting expression is pre
isely D2, the hypothesis holds. Se
ond, for the

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 36

indu
tion step, assume re
ursion satis�es the hypothesis for a number of
alls. In a

new
all, D2 also satis�es it, with a similar reasoning than in the base
ase. Clearly,

the resulting expression in this
ase, h exp

MEL

(Gj

B1

), D2 i, also satis�es it, sin
e

the sequentialization here gives un
onditional edges. If
orresponding edges existed

in the original CDG, the new label false is always larger than the original one. If

they didn't exist, still the �nal CDG is a super{CDG of the original one. 2

6.2. Extensions to CDG: UCDG Algorithms

Any modi�
ation of the CDG algorithm will result in some loss of parallelism for

ertain input graphs. The question is then how to minimize the loss, or, in other

words, whi
h of all the possible simpli�ed expressions is best. Unfortunately, the

answer to su
h question depends on many di�erent parameters, like the granu-

larity of the goals to be parallelized, the
ost of the tests to be performed, the

su

ess/failure ratio of su
h tests, et
. For this reason we present two algorithms

whi
h are parameterized by several fun
tions. These fun
tions
an de de�ned in

terms of the
ompile-time information available on the above mentioned issues,

thus redu
ing the loss of parallelism. As we will see, the
hoi
e between the two

algorithms will also depend on su
h information.

We �rst propose an algorithm whi
h tries to redu
e the
omplexity of the ex-

pressions, while keeping the good properties of the UDG algorithm. It
he
ks if

the CDG
an be partitioned into subsets whi
h
an then un
onditionally be run in

parallel. Otherwise, a
ondition is sele
ted and enfor
ed on the graph, in the hope

that the partition will now be possible. When a partition is found, subexpressions

are built for ea
h subset, and all of them annotated to run in parallel. Both the

sele
tion of a
ondition and the annotation of the subexpressions are parameterized.

An algorithm in this style will work as follows. Let V = P [Q be a partition of

the nodes of a CDG G = (V;E), as before. The algorithm will
ompute subsets of

Q whi
h depend on one and only one element of P :

� 8p 2 P Conn(p) = fpg [fx 2 V j (p; x; l) 2 E

�

^ 69p

0

2 P (p

0

; x; l

0

) 2 E

�

g

� Conn(P) = fConn(p) j p 2 Pg

Then the subsets of Conn(P) are just the
onne
ted
omponents of the graph

Gj

Conn(P)

. The sets Conn(p

i

) will a
t as the sets Dep(P

i

) in the UDG algorithm,

but unlike the
orresponding P

i

's, they will always be disjoint. Thus, an un
ondi-

tional parallel expression
an be built for the subexpressions arising from re
ursively

applying the algorithm to these subsets. Let sele
t(L) denote a fun
tion whi
h se-

le
ts a
ondition from (a subset of) a set L of them. Let linear(C) denote the

sequential expression
orresponding to the nodes of set C (a

ording to the pre

relation of Se
tion 3.1). This algorithm builds the expression exp(G) as follows.

fun
tion exp

UCDG

(G): expression

begin

If V = fgg then return g;

Let P = ready(G);

If P = fpg then

Cond := sele
t(fl 2 Cond j (g

i

; g

j

; l) 2 Eg);

If Cond = false then return exp(G);

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 37

return h Cond -> exp

UCDG

(update(G; V; Cond)) ; linear(V) i;

else

Let ConnP = Conn(P) = fC

1

; : : : ; C

n

g and ConnP = [

C2ConnP

C;

return h exp(Gj

C

1

) & : : : & exp(Gj

C

n

), exp(Gj

V nConnP

) i;

fi;

end.

Note that the resulting expression returned by the algorithm is parameterized

on a generi
 fun
tion exp whi
h is left open. We
an instantiate this fun
tion to

exp

UDG

of Algorithm 4.3 (if the
orresponding
omponent is a UDG) or any of

the other instan
es of exp whi
h are de�ned in the paper, in
luding the variants of

CDG, MEL, and many more that
an be de�ned.

Example 6.3. Consider the
lause h(X):- p(X),q(Y),r(X),s(Y). There is an un-

onditional dependen
y for s(Y) on q(Y) and a dependen
y labeled with indep(X; X)

for r(X) on p(X). While CDG will annotate it as:

h(X) :- ground(X) -> p(X) & r(X) & (q(Y), s(Y))

; (p(X), r(X)) & (q(Y), s(Y)).

and UDG will annotate it as:

h(X) :- (p(X), r(X)) & (q(Y), s(Y)).

whi
h is the worst
ase subexpression of the expression above, the UCDG algorithm,

using exp

UDG

, will annotate it as follows, where we use => for brevity:

h(X) :- (ground(X) => p(X) & r(X)) & (q(Y), s(Y)).

whi
h
ontains the subexpressions of UDG, one of them additionally annotated

with a
ondition. 2

In this rather simple example, the last expression is equivalent to the expression

produ
ed by CDG. However, this is not always the
ase. In parti
ular, the UCDG

algorithm behaves better for
lauses with big bodies (whi
h sometimes pose serious

problems to CDG | see Se
tion 8). The reason for this is that the UCDG algo-

rithm behaves in a stepwise manner, �rst allowing un
onditional parallelism to be

annotated, and then postponing the
onsideration of the
onditions until no more

un
onditional parallelism
an be exploited.

In the above algorithm there is an impli
it
hoi
e in the de�nition of the sele
t

fun
tion, where there is room for di�erent heuristi
s. For example, this fun
tion

ould sele
t the label with the lowest asso
iated run-time
ost. Su
h a fun
tion

ould also be used in Algorithm 5.1 or its variants, in order to redu
e the size of

the expressions it builds. Another option is to
hoose the label whose asso
iated

tests are more likely to su

eed at run-time. In summary, the de�nition of sele
t

would depend on the
ompile-time information available.

A more radi
al way of
ombining the CDG and UDG algorithms is to use the

UDG algorithms (4.2 and 4.3) expli
itly. For this purpose all dependen
ies will be

onsidered un
onditional and the UDG algorithm applied. Then, the labels of the

resulting expression will be
onsidered, the aim being to improve su
h expressions

by exploiting the
onditional parallelism. An algorithm in this style would work as

follows. Let nodes(Exp) denote the set of nodes
orresponding to the atoms in the

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 38

expression Exp, and un
onditional(V

1

; V

2

) be true if all dependen
ies of the nodes

in V

2

on nodes of V

1

are un
onditional.

fun
tion exp

UCDG

(G): expression

begin

return Improve(exp

UDG

(G));

end.

fun
tion Improve(Exp): expression

begin

If Exp is atomi
 then return Exp;

If Exp = Exp

1

& � � �&Exp

n

then

return h Improve(Exp

1

) & � � � & Improve(Exp

n

) i;

If Exp = Exp

1

; Exp

2

and un
onditional(nodes(Exp

1

); nodes(Exp

2

)) then

return h Improve(Exp

1

), Improve(Exp

2

) i

else

return exp(nodes(Exp));

fi;

end.

Note that the e�e
t of the last If statement is similar to that of the MEL

algorithm: if un
onditional(nodes(Exp

1

); nodes(Exp

2

)) su

eeds, this is probably

a pla
e where Algorithm 6.1 would have broken the original
lause body in two

parts. However, this new UCDG algorithm has the advantage of exploiting �rst

un
onditional parallelism.

Example 6.4. Consider the
lause in Example 5.3, augmented with a new indepen-

dent literal:

h :- t(z), p(X), q(Y), r(X), s(X,Y).

Algorithms 6.1 (MEL) and 5.1 (CDG) will build:

h :- t(z) & p(X) & q(Y), ground(X) => r(X) & s(X,Y)

negle
ting the independen
e between t(z) and the other goals. The UCDG algo-

rithm proposed avoids this by using the UDG algorithm, building:

h :- t(z) & ((p(X), r(X)) & q(Y), s(X,Y)) 2

In the above example, if ground(X) su

eeds, the �rst expression will exploit

all available parallelism, while the se
ond one will not. On the other hand, if

the
omputational
ost of t(z) is mu
h greater than that of p(X) and q(Y), the

�rst expression will unne
essarily for
e the CGE to wait. This suggests that both

granularity information and information regarding the probabilities of su

ess of

the tests, should be taken into a

ount when
hoosing between the two algorithms.

This issue will not be dis
ussed further here and is left as future work.

7. Experimental Results

We have implemented the parallelization framework in the
ontext of the &-Prolog

system. The result is an automati
 parallelizer whi
h is parametri
 in the type of

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 39

independen
e and the parallelization algorithm supported. The system has been

instantiated to the
ase of stri
t independen
e in the Herbrand domain for our

experimental study. We have sele
ted for evaluation one algorithm in ea
h of the

interesting
lasses to
ompare them. Algorithm 4.3 was sele
ted as the most promis-

ing variant of the algorithms whi
h exploit only un
onditional parallelism. Algo-

rithm 5.1 is arguably the most interesting variation of the
onditional algorithms,

though with an exponential
ost. The heuristi
 underlying Algorithm 6.1 (MEL),

rather than that of UCDG, seems the most interesting variation of the
onditional

algorithms with polynomial
ost. We have
ompared the performan
e of these

three algorithms, both from the point of view of their behavior when annotating

a program, and that of the annotated program when running in and{parallel. A

relatively wide range of programs has been used as ben
hmarks.

6

Not all of them

are dis
ussed here; instead, we have sele
ted a representative
olle
tion. Table 7.1

gives a short des
ription of ea
h ben
hmark, and Table 7.2 gives an overview of the

omplexity of ea
h of them, useful for the interpretation of the results.

In Table 7.2,
olumns are read as follows. Cl is the number of
lauses being

a
tually annotated (dead
ode, whi
h is dete
ted by the analyzers, is not
onsidered,

as well as fa
ts and
lauses with single literals); AvG the average and MG the

maximum number of goals in these
lauses. CDGs is the number of graphs pro
essed

by the annotators; and AvGan the average and MGan the maximum number of

goals in the CDGs. The rationale behind the CDGs, AvGan, and MGan
olumns

in the table lies in the treatment of built{ins and side{e�e
ts. The �rst step in the

ompilation is to sequentialize these ones, as explained in Se
tion 3. As a result,

the CDG for the
lause is a
tually partitioned into subgraphs at the points where

side{e�e
ts or built-ins o

ur. Column CDGs shows the number of these subgraphs

(whi
h have more than one node, and thus worth
onsidering) that the annotators

have re
eived as input.

To measure the e�e
tiveness of the annotators we have
arried out two kinds of

tests: stati
 and dynami
, and in two di�erent situations. In the �rst situation, no

global analysis is used, i.e. only lo
al,
lause level analysis, is performed (\lo
" in the

tables). In the se
ond situation, a quite powerful global analysis is performed, using

the
ombination of the Sharing+Freeness and ASub abstra
t interpreters des
ribed

in [59, 60, 73, 21℄ (\abs" in the tables). Note that the information obtained in this

ase in
ludes that of the lo
al analysis.

7.1. Annotation EÆ
ien
y

Table 7.3 presents the results in terms of the
ompilation time required for anno-

tation in se
onds (Spar
Station 10, one pro
essor, SICStus 2.1, native
ode). It

shows for ea
h ben
hmark and annotator the average time out of ten exe
utions in

the two di�erent situations mentioned. Note that the time taken in the analysis

phase is not
onsidered.

6

Both system and ben
hmarks are available either by ftp at
lip.dia.fi.upm.es, or from

http://www.
lip.dia.fi.upm.es, or by
onta
ting the authors.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 40

Ben
h. Des
ription

aiakl

Initialization phase for abstra
t uni�
ation in the AKL ana-

lyzer (D. Sahlin and T. Sj�oland)

ann The &-Prolog implementation of the MEL annotator

bid Computes an opening bid for a bridge hand (J. Conery)

boyer Redu
ed Boyer/Moore theorem prover (E. Ti
k)

browse

Pattern re
ognition of regular expressions (T. Dobry and H.

Touati)

deriv Symboli
 di�erentiation

�b Fibona

i numbers

grammar Generates/re
ognizes a small set of English

hanoiapp Solves the Towers of Hanoi problem

mmatrix Multiplies two matri
es

o

ur

Che
ks o

urren
es of sublists within lists of lists (B. Ramku-

mar and L. V. Kale)

palin Re
ognizes palindromes (D.H.D. Warren)

progeom Builds a perfe
t di�eren
e set (W. Older)

qplan

Supplies
ontrol for exe
ution of a database query { Chat'80

(D.H.D. Warren)

qsortapp Qui
k-sort algorithm (with append)

query Small query to a database (D.H.D. Warren)

rdtok R.A. O'Keefe's publi
 domain Prolog tokenizer

read D.H.D. Warren and R.A. O'Keefe's publi
 domain Prolog parser

tak Computes the Takeu
hi fun
tion

ti
ta
toe Plays ti
-ta
-toe by alpha-beta pruning (A.K. Bansal)

warplan Builds plans for robot
ontrol (D.H.D. Warren)

zebra Zebra puzzle (V. Santos-Costa)

TABLE 7.1. Ben
hmark Des
ription.

7.2. Performan
e of CGEs and Tests

One way to measure the e�e
tiveness of the annotators is to
ount the number of

CGEs whi
h a
tually result in parallelism and to study the overhead introdu
ed in

the program by the tests generated. For this purpose we have measured the total

number of
he
ks whi
h o

ur in the annotated programs (\T" in the tables), the

number of these whi
h are not
he
ked during the exe
ution of the program (\N"),

and for the rest, the number of them whi
h always su

eeded (\S"), whi
h always

fail (\F"), and whi
h sometimes su

eed and others fail (\SF"). Also, the times the

he
ks have su

eeded (\TS") or failed (\TF") during exe
ution, and the number

of goals whi
h have been run in parallel as a result (\E"). The results for ea
h

ben
hmark and ea
h of the situations are shown in tables 7.4, 7.5, 7.6, 7.7, and

7.8. Note that ea
h
olumn shows ground
he
ks on the left and indep on the right

(ground/indep), ex
ept for UDG, sin
e it only exploits un
onditional parallelism.

Table 7.4 shows programs for whi
h the annotated result is identi
al in all
ases.

In the programs of Table 7.5 MEL (\M") and CDG (\C") yield the same result

(not UDG), but it is di�erent with and without global analysis. The same happens

in Table 7.6, but in this
ase the result of UDG is the same with and without

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 41

Ben
h. Cl AvG MG CDGs AvGan MGan

aiakl 7 3.00 5 2 3.50 5

ann 65 3.32 6 26 2.62 6

bid 18 2.78 5 8 2.50 4

boyer 10 3.60 6 2 2.00 2

browse 9 2.89 5 5 2.20 3

deriv 5 3.20 4 4 2.00 2

�b 1 6.00 6 1 2.00 2

grammar 4 2.50 3 4 2.25 3

hanoiapp 1 6.00 6 1 4.00 4

mmatrix 3 2.33 3 2 2.00 2

o

ur 3 3.00 4 2 2.00 2

palin 6 3.17 4 2 3.00 3

progeom 6 3.00 5 3 3.00 4

qplan 47 4.00 9 31 2.68 5

qsortapp 2 3.50 4 1 4.00 4

query 2 4.50 6 2 2.00 2

rdtok 46 3.43 8 0 0.00 0

read 37 4.14 7 2 2.00 2

tak 2 5.00 7 1 4.00 4

ti
ta
toe 37 4.24 48 5 2.20 3

warplan 26 3.69 10 16 2.56 5

zebra 2 10.50 19 3 3.33 6

TABLE 7.2. Ben
hmark Pro�le.

information. In Table 7.8 all algorithms give the same result when global analysis

information is available, but di�erent otherwise. The rest of the programs appear

in Table 7.7.

7.3. Speedup Results

An arguably better way of measuring the e�e
tiveness of the annotators is to mea-

sure the speedup a
hieved: the ratio of the parallel exe
ution time of the program

(ideally for an unbounded number of pro
essors) to that of the sequential program.

This has the additional advantage of allowing to measure the impa
t of the over-

head of the
he
ks: even if the number of goals run in parallel is the same for

di�erent annotations (\E" in the previously mentioned tables), the
he
ks a
tually

performed
an di�er and
ause di�eren
es in speedup.

In order to
on
entrate on the available parallelism itself, without the limita-

tions imposed by a �xed number of physi
al pro
essors, a parti
ular s
heduling,

bus bandwidth, et
., we use a novel evaluation environment,
alled IDRA, pro-

posed in [30℄. IDRA takes as input a spe
ial exe
ution tra
e �le generated from a

sequential (or, also, parallel) exe
ution of the parallel program and the time taken

by the sequential program, and
omputes the a
hievable speedup for any number

of pro
essors. The tra
e �les list the events o

urred during the exe
ution of a

parallel program, su
h as a goal being started or �nished, and the times at whi
h

the events o

urred. Sin
e &-Prolog normally generates all possible parallel tasks

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 42

Ben
hmark lo
 abs

program MEL CDG UDG MEL CDG UDG

aiakl 0.26 0.26 0.24 0.37 0.36 0.36

ann 1.55 1.55 1.43 7.60 7.60 7.53

bid 0.39 0.39 0.36 0.48 0.45 0.46

boyer 0.34 0.31 0.31 0.68 0.66 0.64

browse 0.53 0.46 0.45 0.63 0.56 0.55

deriv 0.20 0.18 0.18 0.27 0.26 0.25

�b 0.13 0.11 0.11 0.15 0.15 0.14

grammar 0.17 0.15 0.15 0.21 0.20 0.20

hanoiapp 0.18 0.18 0.16 0.22 0.20 0.20

mmatrix 0.21 0.19 0.19 0.22 0.21 0.20

o

ur 0.26 0.25 0.24 0.28 0.27 0.26

palin 0.22 0.20 0.20 0.41 0.38 0.39

progeom 0.20 0.19 0.18 0.25 0.24 0.24

qplan 1.59 1.67 1.35 3.63 3.43 3.43

qsortapp 0.17 0.16 0.16 0.19 0.18 0.18

query 0.26 0.23 0.23 0.29 0.27 0.28

rdtok 0.87 0.79 0.80 1.87 1.82 1.84

read 0.90 0.82 0.82 2.02 1.99 2.01

tak 0.17 0.15 0.15 0.23 0.21 0.21

ti
ta
toe 0.90 0.81 0.81 2.08 2.03 2.02

warplan 0.54 0.54 0.51 2.89 2.86 2.77

zebra 2.08 300.86 0.57 4.96 4.65 4.64

TABLE 7.3. EÆ
ien
y Results for Annotators.

in a parallel program, regardless of the number of pro
essors in the system, infor-

mation is gathered for all possible goals that would be exe
uted in parallel. Using

this data, IDRA builds a task dependen
y graph whose edges are annotated with

the exa
t exe
ution times. The possible a
tual exe
ution graphs (whi
h
ould be

obtained if more pro
essors were available) are
onstru
ted from this data and their

total exe
ution times
ompared to the sequential time, thus making quite a

urate

estimations of (ideal | in the sense that parallelization overheads are not taken

into a

ount) speedups. Though ideal, the results have been shown to be very good

approximations of the best possible parallel exe
ution [30℄, and to mat
h
losely

the a
tual speedups obtained in the &-Prolog system for the number of pro
essors

available for
omparison.

The results for a representative subset of the ben
hmarks used are presented in

�gures 7.1, 7.2, and 7.3. For ea
h ben
hmark and situation of analysis, a diagram

with speedup
urves obtained with IDRA is shown. Ea
h
urve represents the

speedup a
hievable for the parallelized version of the program obtained with one

annotator.

8. Dis
ussion

Annotation times are fairly a

eptable for all annotators. MEL and CDG usually

take the same time, with a slight di�eren
e favoring CDG for simpler programs.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 43

Ben
hmark E

�b 986

grammar 0

rdtok 0

tak 2372

TABLE 7.4. Expressions with no
he
ks | Identi
al
ode in all
ases.

Ben
h. Info Ann ground/indep E

Prog. T N S F SF TS TF

deriv lo
 M/C 4/16 0/ 0 4/ 16 0/ 0 0/ 0 538/ 2152 0/ 0 538

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 538

mmatrix lo
 M/C 2/ 8 0/0 2/8 0/0 0/0 182/728 0/ 0 182

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 182

o

ur lo
 M/C 2/ 5 0/0 2/5 0/0 0/0 252/279 0/ 0 252

abs all 0/ 1 0/1 0/0 0/0 0/0 0/0 0/ 0 252

palin lo
 M/C 0/ 4 0/0 0/4 0/0 0/0 0/36 0/ 0 9

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 9

qsortapp lo
 M/C 0/ 1 0/0 0/1 0/0 0/0 0/250 0/ 0 250

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 250

query lo
 M/C 1/ 4 0/0 0/4 1/0 0/0 0/4 2/ 0 1

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 1

read lo
 M/C 1/ 6 0/0 1/6 0/0 0/0 1/6 0/ 0 1

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 1

ti
ta
toe lo
 M/C 10/ 3 0/0 10/3 0/0 0/0 29796/5176 0/ 0 11124

abs all 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 11124

all lo
 udg { { { { { { { 0

TABLE 7.5. Cases where MEL=CDG | Identi
al
ode for all annotators in \abs".

Ben
h. Info Ann ground/indep E

Prog. T N S F SF TS TF

lo
 M/C 4/ 2 0/1 3/1 1/0 0/0 42/14 38348/ 0 14

boyer abs M/C 4/ 0 0/0 3/0 1/0 0/0 42/0 38348/ 0 14

all udg { { { { { { { 0

lo
 M/C 3/ 7 0/2 1/4 2/0 0/1 60/16300 25/ 20 4105

browse abs M/C 2/ 2 0/0 0/1 2/0 0/1 0/4105 25/ 20 4105

all udg { { { { { { { 0

TABLE 7.6. Cases where CDG and MEL produ
e identi
al
ode.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 44

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 4 7 10 13 16 19 22 25 28 31 34
0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

Processors

S
pe

ed
up

Benchmark: ann

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 4 7 10 13 16 19 22 25 28 31 34
0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

Processors

S
pe

ed
up

Benchmark: hanoiapp

FIGURE 7.1. E�e
tiveness of Annotators: Dynami
 Tests | ann/hanoiapp.

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Processors

S
pe

ed
up

Benchmark: aiakl

cdg-abs mel-abs udg-abs
cdg-loc mel-loc udg-loc

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

Processors

S
pe

ed
up

Benchmark: boyer

FIGURE 7.2. E�e
tiveness of Annotators: Dynami
 Tests | Little Parallelism.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 45

cdg-abs mel-abs udg-abs
cdg-loc mel-loc udg-loc

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Processors

S
pe

ed
up

Benchmark: tak

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 4 7 10 13 16 19 22 25 28 31 34
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Processors

S
pe

ed
up

Benchmark: qsortapp

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Processors

S
pe

ed
up

Benchmark: deriv

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

Processors

S
pe

ed
up

Benchmark: occur

FIGURE 7.3. E�e
tiveness of Annotators: Dynami
 Tests | Good Parallelism.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 46

Ben
h. Info Ann ground/indep E

Program T N S F SF TS TF

mel 14/ 36 3/19 3/12 5/1 3/4 168/183 207/ 93 99

lo

dg 22/ 46 6/29 5/12 8/1 3/4 180/183 297/ 93 99

udg { { { { { { { 0

ann mel 6/ 14 0/3 0/6 3/1 3/4 75/111 138/ 93 99

abs
dg 12/ 18 2/8 1/5 6/1 3/4 81/105 228/ 93 99

udg { { { { { { { 0

mel 2/ 1 0/0 2/1 0/0 0/0 510/255 0/ 0 255

lo

dg 5/ 1 2/1 3/0 0/0 0/0 765/0 0/ 0 255

udg { { { { { { { 0

hanoiapp mel 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 255

abs
dg 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 255

udg { { { { { { { 255

mel 13/ 57 9/47 3/10 1/0 0/0 6/12 3/ 0 7

lo

dg 16/ 84 12/74 3/10 1/0 0/0 6/12 3/ 0 7

udg { { { { { { { 0

qplan mel 2/ 1 2/1 0/0 0/0 0/0 0/0 0/ 0 7

abs
dg 2/ 1 2/1 0/0 0/0 0/0 0/0 0/ 0 7

udg { { { { { { { 7

mel 14/ 11 3/3 6/8 2/0 3/0 105/47 50/ 0 66

lo

dg 28/ 15 13/9 8/5 3/1 4/0 113/45 58/ 4 66

udg { { { { { { { 6

warplan mel 14/ 7 3/1 6/6 2/0 3/0 105/33 50/ 0 66

abs
dg 28/ 10 13/6 8/3 3/1 4/0 113/29 58/ 4 66

udg { { { { { { { 6

mel 0/ 250 0/247 0/2 0/1 0/0 0/112 0/ 56 1

lo

dg 1/ 4835 0/4729 1/96 0/10 0/0 56/3346 0/ 420 1

udg { { { { { { { 1

zebra mel 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 1

abs
dg 0/ 0 0/0 0/0 0/0 0/0 0/0 0/ 0 1

udg { { { { { { { 1

TABLE 7.7. Other Programs.

On the
ontrary, MEL takes less time for
omplex programs, with zebra being an

extreme example. Note that
omplexity here is measured as the number of literals

in
lauses: the higher the number of literals, the more linearizations of the
lause

graph are possible. This dominates the
omplexity of CDG, as it tries to
onsider all

possible alternatives. UDG usually takes less than the other two without informa-

tion (from global analysis), be
ause in this
ase it
an rarely �nd any opportunities

for parallelization. When information from global analysis is available, UDG takes

the same time as the other two. In several
ases (like qplan, read, ti
ta
toe, and

also zebra) the annotation task is faster with global analysis. Sin
e the input graph

in this
ase is fairly simpli�ed with the information from su
h analysis, the algo-

rithms have to deal with less edges and shorter labels. This
auses annotation with

global analysis to be more eÆ
ient than without it. The unusually large annotation

time for zebra is due to the low a

ura
y of the information provided by the lo
al

analyzer, whi
h is unable to dete
t the de�nite dependen
ies whi
h exist among all

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 47

Ben
h. Info Ann ground/indep E

Program T N S F SF TS TF

mel 0/10 0/0 0/10 0/0 0/0 0/10 0/0 2

aiakl lo

dg 4/42 2/38 2/4 0/0 0/0 2/4 0/0 2

udg { { { { { { { 0

abs all 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2

mel 7/12 2/0 4/12 1/0 0/0 17/44 1/0 27

bid lo

dg 10/19 5/7 4/12 1/0 0/0 17/44 1/0 27

udg { { { { { { { 0

abs all 0/0 0/0 0/0 0/0 0/0 0/0 0/0 27

mel 2/2 0/0 1/2 1/0 0/0 13/220 13/0 110

progeom lo

dg 2/2 0/0 1/2 1/0 0/0 13/220 13/0 110

udg { { { { { { { 0

abs all 0/0 0/0 0/0 0/0 0/0 0/0 0/0 110

TABLE 7.8. Cases where all annotated results have no
he
ks with \abs".

the six goals being
onsidered for one
lause. As a result, all possible
ombinations

have to be explored. This is avoided when using the information provided by the

Sharing+Freeness domain.

Regarding the parallelized programs resulting from annotation, we identify sev-

eral
lasses of programs. Two purely sequential programs and two (simple) parallel

programs appear in Table 7.4, the simplest
ases. The annotators are su

essful at

dete
ting su
h sequentiality and do not generate any parallel expression. In the
ase

of simple parallel programs, where independen
e of goals
an be inferred even with

a lo
al analysis of the
lauses (global analysis in this
ase leads to no advantage),

all the annotators are able to exploit this (un
onditional) parallelism.

Programs whose parallelization is more
omplex, but still relatively easy, appear

in Table 7.5. MEL and CDG (as well as UDG when having good information) are

able to extra
t the available parallelism to a great extent. Also, all annotations

produ
ed lead to parallelism, i.e. no spurious parallel expressions (not really run in

parallel, sin
e their tests in fa
t fail at run{time) are generated. This is shown by

the fa
t that none of the
he
ks ever fail at exe
ution time (\F" in the table). In

fa
t, for MEL and CDG the annotated
ode is exa
tly the same, and thus the same

parallelism is exploited. The worst
ase is that of UDG, whi
h
annot exploit any

parallelism without global analysis information.

7

When information is available, its

annotated
ode is also identi
al to that of the other two: all annotators are able

to extra
t the same amount of parallelism, and with expressions without run{time

he
ks.

For more
omplex programs, like those of Table 7.8, the di�eren
es in the be-

havior of MEL and CDG are more apparent. On
e again, for these programs the

three annotators behave the same way when good global information is available,

and extra
t the same parallelism as when not having su
h information, but without

he
ks. Without information, though, annotators are for
ed to pla
e some
he
ks

to be exe
uted at run{time. In the
ase of CDG, it turns out that most of these

7

This
an a
tually be observed in all tables, ex
ept for the
ases of warplan and zebra; the

parallelism exploited in these
ases is marginal, and with granularity analysis it would be avoided.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 48

he
ks are not a
tually exe
uted at run{time be
ause many of the possible paral-

lel expressions annotated by CDG are not used in the exe
ution of the program.

Nonetheless, note that in the
ase of aiakl, the expression exploited has mu
h fewer

he
ks than the
orresponding one annotated by MEL (for the same goals in the

program): 2 ground
he
ks and 4 indep
he
ks against 10 indep
he
ks. This is due

to the graph linearization performed by CDG, whi
h takes all possibilities into a
-

ount. If-then-elses built by CDG
an be viewed as an \indexing" over the possible

parallel expressions, based on some
he
ks. In aiakl, this indexing is able to lead to

the parallel expressions with less e�ort than that required by MEL, whi
h simply

puts
onditions at
ertain points in the
lause. Though this di�eren
e is not very

relevant at exe
ution time in the
ase of aiakl (see Figure 7.2), it
an be so for other

programs, and is an interesting feature (though expensive) of the CDG algorithm.

Table 7.6 shows two programs whi
h are harder to parallelize. UDG
annot

extra
t parallelism, be
ause there is no un
onditional parallelism. MEL and CDG

extra
t the same amount of
onditional parallelism, but for both algorithms the

number of
he
ks is less when global information is available. This is spe
ially true

for indep
he
ks, sin
e independen
e is not easy to reason about in \lo
" (without

global analysis). In fa
t, though, little parallelism is obtained. In the
ase of boyer,

signi�
ant parallelism
an be exploited but only using the
on
ept of non{stri
t

independen
e [46, 14℄; in browse, although a good number of goals are exe
uted in

parallel, a
riti
al part of the algorithm is still sequential.

Programs in Table 7.7 deserve more dis
ussion. The �rst thing to be noti
ed

is that in some
ases UDG is not able to extra
t parallelism even with global

information | this happens for ann, and for warplan and zebra, in whi
h the

parallelism extra
ted is marginal. On the
ontrary, for hanoiapp and qplan the

same parallelism as the other two annotators is extra
ted by UDG. Considering the

high
omplexity of qplan, global analysis turns out to be quite e�e
tive. Se
ond

thing is that global analysis shows also e�e
tive in redu
ing
he
ks. This is pre
isely

the reason of the speedups a
hieved with \abs" w.r.t. \lo
" in ann (Figure 7.1) and

hanoiapp (Figure 7.1), sin
e the number of parallel goals run (\E" in Table 7.7) is

a
tually the same.

Regarding MEL and CDG, it has to be noted that in most programs of Table

7.7 the overhead in number of
he
ks of CDG is high. Although in some
ases (e.g.

qplan) it happens (as it happened in aiakl or bid) that these extra
he
ks (and the

orresponding expressions) are dis
arded at exe
ution time, in other
ases they do

yield some overhead also at exe
ution time. This is the
ase for ann, as
an be seen

in Figure 7.1, where speedups for CDG are always lower than for MEL. The same

happens also for warplan.

An interesting
ase is that of hanoiapp. Its speedup
urves (in Figure 7.1)

illustrate a
ase where, with only lo
al analysis, CDG a
hieves good speedups while

MEL shows very little speedup. MEL
orre
tly but ineÆ
iently parallelizes a
all to

hanoi and a
all to append, while CDG parallelizes a
all to hanoi with a sequen
e

omposed of the other
all to hanoi and a
all to append. As shown in the example

below, MEL needs an indep
he
k, while CDG uses instead a ground
he
k, whi
h

is mu
h less expensive.

Example 8.1. For the
lause of the Towers of Hanoi program whose CDGs appear

in examples 3.2 and 3.3, the annotation result of CDG is shown below on the left,

and that of MEL on the right.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 49

shanoi(N0,A,B,C,M) :- shanoi(N0,A,B,C,M) :-

N0 > 1, N0 > 1,

N1 is N0 - 1, N is N0 - 1,

(ground([A,B,C℄) -> shanoi(N,A,C,B,R),

shanoi(N,B,A,C,S)& (ground([A,C℄),

(shanoi(N,A,C,B,R), indep([[B,R℄℄) ->

append(R,[mv(A,C)℄,T) shanoi(N,B,A,C,S)&

), append(R,[mv(A,C)℄,T)

append(T,S,M) ;

; shanoi(N,B,A,C,S),

shanoi(N,A,C,B,R), append(R,[mv(A,C)℄,T)

(ground([A,C℄),),

indep([[B,R℄℄) -> append(T,S,M).

shanoi(N,B,A,C,S)&

append(R,[mv(A,C)℄,T),

append(T,S,M)

;

shanoi(N,B,A,C,S),

append(R,[mv(A,C)℄,T),

append(T,S,M)

)).

In general, though, the di�eren
es in speedups between MEL and CDG are

not very signi�
ant. Ex
eptions are hanoiapp, as dis
ussed, and programs with

very little parallelism, as aiakl (Figure 7.2). In this
ase, as in hanoiapp, CDG

does better than MEL due to its ability to annotate di�erent possibilities for the

same
lause body. In this program only one body with two parallel expressions is

parallelized, and sin
e the speedup a
hieved is very small, the di�eren
es between

the annotations produ
ed by the two algorithms are more relevant. For other

programs with good speedups, as those in Figure 7.3, this does not happen.

9. Con
lusions

We have proposed a proved
orre
t a framework for the automati
 parallelization

of logi
 programs by program transformation. The transformation implies repla
-

ing
onjun
tions of literals with parallel expressions whi
h at run-time trigger the

exploitation of restri
ted, goal{level independent and{parallelism. Our framework

onsists of a two{step
ompilation pro
ess using
onditional dependen
y graphs as

an intermediate formalism. In the �rst step su
h graphs are
onstru
ted using a

given notion of independen
e and simpli�ed taking into a

ount information gath-

ered by program analysis. In the se
ond step the
onditional dependen
y graphs are

onverted into fork-join expressions and the original program rewritten by repla
ing

the
orresponding sequential
onjun
tions of goals with su
h expressions.

Several di�erent algorithms for the se
ond step in the pro
ess have been de�ned

and studied. The UDG and CDG algorithms are based on the desirable obje
tive

of not losing a parti
ular notion of \maximal" parallelism (whi
h we have
alled �-

parallelism) available in the original program. Algorithms for determining whether

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 50

this obje
tive
an be a
hieved at all using fork-join expressions have also been

de�ned. Two alternatives of UDG for the
ase in whi
h avoiding loss of parallelism

is not possible have been presented and dis
ussed. Our study suggests that one

of these alternatives is more appropriate than the other one. Also, an alternative

for CDG whi
h makes it equivalent (modulo some
onditions) to UDG has been

proposed, as well as a new algorithm, UCDG, whi
h
ombines the heuristi
s of UDG

and CDG. A mu
h less
ostly alternative for exploiting
onditional parallelism,

MEL, based on a simple but quite e�e
tive heuristi
 has also been proposed. Finally,

we have also brie
y dis
ussed the importan
e of
onsidering di�erent alternatives

for parallelization, but designing good heuristi
s (typi
ally based on information

regarding goal granularity) to sele
t among them.

The three main annotation algorithms have also been implemented and studied

experimentally. MEL and CDG have been shown to give very similar results in

pra
ti
e. Despite this, ea
h one of them has demonstrated advantages and disad-

vantages. The results show CDG to be better when not having information from

global analysis and if the programs are simple. Interestingly, CDG also shows

advantage in more
omplex programs if good information from global analysis is

available, be
ause in these
ases CDG
an extra
t more sophisti
ated parallelism

than MEL. On the
ontrary, for
omplex programs for whi
h the analysis informa-

tion is not a

urate enough (or no analysis is available), the exponential nature of

CDG
an result in signi�
ant overhead, and thus MEL is a reasonable alternative.

It appears that a good strategy to apply in pra
ti
e may be to use the CDG algo-

rithm in general, but apply MEL in
lauses whi
h are
omplex and/or for whi
h

there is impre
ise analysis information, sin
e for them CDG may be too expensive.

As expe
ted, the UDG avoids any slow{downs
aused by run-time independen
e

he
ks. This makes this algorithm an obvious
hoi
e for
ompletely transparent

parallelization. However, our results show that the use of good analyses whi
h make

a

urate information available is of
ru
ial importan
e in this
ase. Otherwise UDG

is not e�e
tive, obtaining small speedups or no speedups at all.

While not the main fo
us of this paper, our results point at the fa
t that the

availability of a

urate dependen
y information from global analysis is
ru
ial in

automati
 parallelization. Although interesting speedups
an be obtained in some

ases using only lo
al analysis, our overall
on
lusion, based on the improvements

observed, is that global analysis based on abstra
t interpretation is indeed a power-

ful tool in this appli
ation. The e�e
tiveness of this type of global analysis in auto-

mati
 parallelization with the proposed model is studied in detail in [48, 33, 9, 10℄.

The general
on
lusion of our work, spe
ially when seen in
onjun
tion with the

progress made in global analysis, is that, at least using the overall approa
h studied

and the pra
ti
al systems implemented, the task of automati
 (
onstraint) logi

program parallelization is feasible and pra
ti
al. Useful speedups
an be obtained

for interesting programs while slow-downs
an be avoided for those programs whi
h

the approa
h
annot parallelize.

However, mu
h work remains to be done. The speedups des
ribed have been ob-

tained on the
urrent generation of medium-sized shared-memory multipro
essors,

whi
h are
hara
terized by relatively small
ommuni
ation overhead. However,

larger shared addressing spa
e multipro
essors are starting to appear whi
h sup-

port larger numbers of faster pro
essors, but with higher
ommuni
ation overheads.

Also, faster networks are starting to make exploiting parallelism in distributed plat-

forms (multi
omputers) more attra
tive. This requires a

urate
ontrol of the sizes

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 51

of the tasks to be parallelized: granularity
ontrol (see, e.g., [31℄ and its referen
es).

Taking into a

ount granularity information requires some modi�
ations to the an-

notation algorithms. Granularity information was already pointed out as one of the

sour
es of heuristi
 information whi
h
an be used in CDG to
hoose among the

alternatives it generates and redu
e the overhead from the
onditionals.

Another important avenue for improvement is the exploitation of more advan
ed

notions of independen
e, spe
ially a-posteriori ones. One su
h notion is \non-

stri
t independen
e" [46℄. Intuitively, this type of independen
e allows parallelizing

pro
edures that share variables (i.e., pointers) by observing that the uses of su
h

shared variables do not \interfere." We have re
ently developed an automati

parallelizer using non-stri
t independen
e [14℄. This parallelizer uses the same

framework (and implementation) proposed herein, although it was ne
essary to

adapt the annotation algorithms. We are also working on applying the framework

to the automati
 parallelization of
onstraint logi
 programs, using as a starting

point the generalized notions of independen
e presented in [24, 32℄. Some results

are reported in [23℄.

Larger programs tend to make more use of side-e�e
ts and sometimes of obs
ure

features of the sour
e language or operating system. A parallelizing
ompiler, and,

espe
ially, its global analysis phase, has to be able to deal
orre
tly and as a

urately

as possible with these uses. We have addressed previously this problem [8℄ (and

many of the solutions proposed are present in the analyzer used in this study), but

this is also an area that requires additional work.

The
ompilation of programs into a language allowing goal-level, but unrestri
ted

parallelism is another interesting topi
. Restri
ted parallelism
ould be exploited

when possible, with unrestri
ted expressions being annotated otherwise. In [64, 15℄

language primitives are proposed for expressing unrestri
ted parallelism. Moreover,

another potentially important avenue for further improvement may be to dete
t

parallelism at �ner levels of granularity than the goal level used in our study [65,

37, 72℄. An extension of the proposed parallelization framework in this dire
tion is

reported in [63℄. In this
ontext, the notion of lo
al independen
e [56, 13, 12℄ allows

the highest degree of parallelism proposed so far (to our knowledge). The tradeo�s

between the additional parallelism obtained by �ner grain parallelizations and the

in
reased overheads involved need to be studied in detail. Finally, there remains

the general issue of
ombining with or-parallelism [3, 55℄, whi
h we have
onsidered

herein beyond our s
ope.

A
knowledgments

The authors would like to thank Mauri
e Bruynooghe, Kevin Greene, Roger Nasr,

Fran
es
a Rossi, Kish Shen, Ri
hard Warren, Daniel Cabeza, and the anonymous

referees for their very valuable
omments and suggestions on the
ontents of this

paper and previous versions of it.

REFERENCES

1. Hassan Ait-Ka
i. Warren's Abstra
t Ma
hine, A Tutorial Re
onstru
tion. MIT

Press, 1991.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 52

2. K. A. M. Ali and R. Karlsson. Full Prolog and S
heduling Or-parallelism in Muse.

International Journal of Parallel Programming, 1990. Vol. 19, No. 6, pp. 445{475.

3. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor-

man
e. In 1990 North Ameri
an Conferen
e on Logi
 Programming, pages 757{776.

MIT Press, O
tober 1990.

4. D. Ba
on, S. Graham, and O. Sharp. Compiler Transformations for High-

Performan
e Computing. Computing Surveys, 26(4):345{420, De
ember 1994.

5. A. Bansal and L. Sterling. Transforming Generate-and-test Logi
 Programs

to Committed-
hoi
e And-parallelism. Int'l. Journal of Parallel Programming,

18(5):401{446, 1989.

6. A. Bansal and L. Sterling. An Abstra
t Interpretation S
heme for Identifying

Inherent Parallelism in Logi
 Programs. New Generation Computing, 7(2{3):273{

324, 1990.

7. P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog|The Language and

Appli
ation in Distributed Simulation. In International Conferen
e on Fifth Gen-

eration Computer Systems. Tokyo, November 1988.

8. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-

dard Prolog Programs. In European Symposium on Programming, number 1058 in

LNCS, pages 108{124, Sweden, April 1996. Springer-Verlag.

9. F. Bueno, M. Gar
��a de la Banda, and M. Hermenegildo. E�e
tiveness of Global

Analysis in Stri
t Independen
e-Based Automati
 Program Parallelization. In In-

ternational Symposium on Logi
 Programming, pages 320{336. MIT Press, Novem-

ber 1994.

10. F. Bueno, M. Gar
��a de la Banda, and M. Hermenegildo. E�e
tiveness of Abstra
t

Interpretation in Automati
 Parallelization: A Case Study in Logi
 Programming.

ACM Transa
tions on Programming Languages and Systems, 21(2):189{238, Mar
h

1999.

11. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to Atomi

and Lo
ally Atomi
 CC Programs: A Con
urrent Semanti
s. In Fourth Interna-

tional Conferen
e on Algebrai
 and Logi
 Programming, number 850 in LNCS,

pages 114{132. Springer-Verlag, September 1994.

12. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial Order and Con-

textual Net Semanti
s for Atomi
 and Lo
ally Atomi
 CC Programs. S
ien
e of

Computer Programming, 30:51{82, January 1998. Spe
ial CCP95 Workshop issue.

13. F. Bueno Carrillo. Automati
 Optimisation and Parallelisation of Logi
 Programs

through Program Transformation. PhD thesis, Universidad Polit�e
ni
a de Madrid

(UPM), O
tober 1994.

14. D. Cabeza and M. Hermenegildo. Extra
ting Non-stri
t Independent And-

parallelism Using Sharing and Freeness Information. In 1994 International Stati

Analysis Symposium, number 864 in LNCS, pages 297{313, Namur, Belgium,

September 1994. Springer-Verlag.

15. D. Cabeza and M. Hermenegildo. Implementing Distributed Con
urrent Constraint

Exe
ution in the CIAO System. In Pro
. of the AGP'96 Joint
onferen
e on De
lar-

ative Programming, pages 67{78, San Sebastian, Spain, July 1996. U. of the Basque

Country. Available from http://www.
lip.dia.fi.upm.es/.

16. M. Carro, L. G�omez, and M. Hermenegildo. Some Paradigms for Visualizing Par-

allel Exe
ution of Logi
 Programs. In 1993 International Conferen
e on Logi

Programming, pages 184{201. MIT Press, June 1993.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 53

17. J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logi
 Programs

Based on Stati
 Data Dependen
y Analysis. In Comp
on Spring '85, pages 218{

225, February 1985.

18. S.-E. Chang and Y. P. Chiang. Restri
ted AND-Parallelism Exe
ution Model with

Side-E�e
ts. In Ewing L. Lusk and Ross A. Overbeek, editors, Pro
eedings of the

North Ameri
an Conferen
e on Logi
 Programming, pages 350{368. MIT Press,

Cambridge, MA, 1989.

19. J. Chassin and P. Codognet. Parallel Logi
 Programming Systems. Computing

Surveys, 26(3):295{336, September 1994.

20. K. Clark and S. Gregory. Parlog: Parallel Programming in Logi
. Journal of the

ACM, 8:1{49, January 1986.

21. M. Codish, A. Mulkers, M. Bruynooghe, M. Gar
��a de la Banda, and

M. Hermenegildo. Improving Abstra
t Interpretations by Combining Domains.

ACM Transa
tions on Programming Languages and Systems, 17(1):28{44, January

1995.

22. J. S. Conery. The And/Or Pro
ess Model for Parallel Interpretation of Logi
 Pro-

grams. PhD thesis, The University of California At Irvine, 1983. Te
hni
al Report

204.

23. M. Gar
��a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logi
s, and

Programs, number 1140 in LNCS, pages 77{91, Aa
hen, Germany, September 1996.

Springer-Verlag.

24. M. Gar
��a de la Banda, M. Hermenegildo, and K. Marriott. Independen
e in

Constraint Logi
 Programs. In 1993 International Logi
 Programming Symposium,

pages 130{146. MIT Press, Cambridge, MA, O
tober 1993.

25. S. K. Debray, P. L�opez Gar
��a, M. Hermenegildo, and N.-W. Lin. Estimating the

Computational Cost of Logi
 Programs. In Stati
 Analysis Symposium, SAS'94,

number 864 in LNCS, pages 255{265, Namur, Belgium, September 1994. Springer-

Verlag.

26. S.K. Debray and N.W. Lin. Cost analysis of logi
 programs. ACM Transa
tions

on Programming Languages and Systems, 15(5):826{875, November 1993.

27. D. DeGroot. Restri
ted AND-Parallelism. In International Conferen
e on Fifth

Generation Computer Systems, pages 471{478. Tokyo, November 1984.

28. D. DeGroot. A Te
hnique for Compiling Exe
ution Graph Expressions for Re-

stri
ted AND-parallelism in Logi
 Programs. In Int'l Super
omputing Conferen
e,

pages 80{89, Athens, 1987. Springer Verlag.

29. D. Ku
k et al. Dependen
e Graphs and Compiler Optimizations. In 8th Symposium

on Prin
iples of Programming Languages, pages 207{218. ACM, January 1981.

30. M. Fern�andez, M. Carro, and M. Hermenegildo. IDeal Resour
e Allo
ation (IDRA):

A Te
hnique for Computing A

urate Ideal Speedups in Parallel Logi
 Languages.

Te
hni
al report, T.U. of Madrid (UPM), June 1992.

31. P. L�opez Gar
��a, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-

larity Based Control of Parallelism in Logi
 Programs. Journal of Symboli
 Com-

putation, Spe
ial Issue on Parallel Symboli
 Computation, 22:715{734, 1996.

32. M. Gar
��a de la Banda. Independen
e, Global Analysis, and Parallelism in Dy-

nami
ally S
heduled Constraint Logi
 Programming. PhD thesis, Universidad

Polit�e
ni
a de Madrid (UPM), Fa
ultad Informati
a UPM, 28660-Boadilla del

Monte, Madrid-Spain, September 1994.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 54

33. M. Gar
��a de la Banda and M. Hermenegildo. A Pra
ti
al Appli
ation of Sharing

and Freeness Inferen
e. In 1992 Workshop on Stati
 Analysis WSA'92, number

81{82 in BIGRE, pages 118{125, Bourdeaux, Fran
e, September 1992. IRISA-

Beaulieu.

34. D. Gelernter, A. Ni
olau, and D. Padua. Languages and Compilers for Parallel

Computing. MIT Press, Cambridge, Mass., 1990.

35. G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-

parallel Copying-based Exe
ution of Logi
 Programs. In International Conferen
e

on Logi
 Programming, pages 93{110. MIT Press, June 1994.

36. G. Gupta and V. Santos-Costa. Cuts and Side-E�e
ts in And-Or Parallel Prolog.

Journal of Logi
 Programming, 27(1):45{71, April 1992.

37. G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating

Dependent And-, Independent And-, and Or-parallelism. In 1991 International

Logi
 Programming Symposium, pages 152{166. MIT Press, O
tober 1991.

38. M. Hermenegildo. An Abstra
t Ma
hine Based Exe
ution Model for Computer

Ar
hite
ture Design and EÆ
ient Implementation of Logi
 Programs in Parallel.

PhD thesis, U. of Texas at Austin, August 1986.

39. M. Hermenegildo. An Abstra
t Ma
hine for Restri
ted AND-parallel Exe
ution

of Logi
 Programs. In Third International Conferen
e on Logi
 Programming,

number 225 in Le
ture Notes in Computer S
ien
e, pages 25{40. Imperial College,

Springer-Verlag, July 1986.

40. M. Hermenegildo. Automati
 Parallelization of Irregular and Pointer-Based Com-

putations: Perspe
tives from Logi
 and Constraint Programming. In Pro
eedings

of EUROPAR'97, volume 1300 of LNCS, pages 31{46. Springer-Verlag, August

1997. (invited).

41. M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the

Implementation of Con
urrent and Parallel Logi
 Programming Systems. In Pro
.

of the Twelfth International Conferen
e on Logi
 Programming, pages 631{645.

MIT Press, June 1995.

42. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent

And-Parallelism. New Generation Computing, 9(3,4):233{257, 1991.

43. M. Hermenegildo and R. I. Nasr. EÆ
ient Management of Ba
ktra
king in AND-

parallelism. In Third International Conferen
e on Logi
 Programming, number 225

in LNCS, pages 40{55. Imperial College, Springer-Verlag, July 1986.

44. M. Hermenegildo and F. Rossi. On the Corre
tness and EÆ
ien
y of Independent

And-Parallelism in Logi
 Programs. In 1989 North Ameri
an Conferen
e on Logi

Programming, pages 369{390. MIT Press, O
tober 1989.

45. M. Hermenegildo and F. Rossi. Non-Stri
t Independent And-Parallelism. In 1990

International Conferen
e on Logi
 Programming, pages 237{252. MIT Press, June

1990.

46. M. Hermenegildo and F. Rossi. Stri
t and Non-Stri
t Independent And-Parallelism

in Logi
 Programs: Corre
tness, EÆ
ien
y, and Compile-Time Conditions. Journal

of Logi
 Programming, 22(1):1{45, 1995.

47. M. Hermenegildo and The CLIP Group. Some Methodologi
al Issues in the De-

sign of CIAO - A Generi
, Parallel, Con
urrent Constraint System. In Prin
iples

and Pra
ti
e of Constraint Programming, number 874 in LNCS, pages 123{133.

Springer-Verlag, May 1994.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 55

48. M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Pra
-

ti
al Compilation Tool. Journal of Logi
 Programming, 13(4):349{367, August

1992.

49. D. Ja
obs and A. Langen. Compilation of Logi
 Programs for Restri
ted And-

Parallelism. In European Symposium on Programming, pages 284{297, 1988.

50. Joxan Ja�ar and Jean-Louis Lassez. Constraint Logi
 Programming. In ACM

Symposioum on Prin
iples of Programming Languages, pages 111{119. ACM, 1987.

51. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.

In 1991 International Logi
 Programming Symposium, pages 167{183. MIT Press,

1991.

52. A. King and P. Soper. S
hedule Analysis of Con
urrent Logi
 Programs. In

Krzysztof Apt, editor, Pro
eedings of the Joint International Conferen
e and Sym-

posium on Logi
 Programming, pages 478{492, Washington, USA, 1992. The MIT

Press.

53. Robert A. Kowalski. Logi
 for Problem Solving. Elsevier North-Holland In
., 1979.

54. Y. J. Lin and V. Kumar. AND-Parallel Exe
ution of Logi
 Programs on a Shared

Memory Multipro
essor: A Summary of Results. In Fifth International Conferen
e

and Symposium on Logi
 Programming, pages 1123{1141. MIT Press, August 1988.

55. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,

7(2,3), 1990.

56. U. Montanari, F. Rossi, F. Bueno, M. Gar
��a de la Banda, and M. Hermenegildo.

Towards a Con
urrent Semanti
s-based Analysis of CC and CLP. In Prin
iples

and Pra
ti
e of Constraint Programming, number 874 in LNCS, pages 151{161.

Springer-Verlag, May 1994.

57. K. Muthukumar and M. Hermenegildo. Complete and EÆ
ient Methods for Sup-

porting Side E�e
ts in Independent/Restri
ted And-parallelism. In 1989 Interna-

tional Conferen
e on Logi
 Programming, pages 80{101. MIT Press, June 1989.

58. K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for

Automati
 Compile-time Parallelization of Logi
 Programs for Independent And-

parallelism. In Int'l. Conferen
e on Logi
 Programming, pages 221{237. MIT Press,

June 1990.

59. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstra
t Interpretation. In 1991 Interna-

tional Conferen
e on Logi
 Programming, pages 49{63. MIT Press, June 1991.

60. Kalyan Muthukumar. Compile-time Algorithms for EÆ
ient Parallel Implementa-

tion of Logi
 Programs. PhD thesis, University of Texas at Austin, August 1991.

61. L. Naish. Parallelizing NU-Prolog. In Fifth International Conferen
e and Sym-

posium on Logi
 Programming, pages 1546{1564. University of Washington, MIT

Press, August 1988.

62. E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performan
e Parallel

Prolog System. In International Parallel Pro
essing Symposium, pages 564{572.

IEEE Computer So
iety Te
hni
al Committee on Parallel Pro
essing, IEEE Com-

puter So
iety, April 1995.

63. E. Pontelli, G. Gupta, F. Pulvirenti, and A. Ferro. Automati
 Compile-time Par-

allelization of Prolog Programs for Dependent And-Parallelism. In Pro
. of the

Fourteenth International Conferen
e on Logi
 Programming, pages 108{122. MIT

Press, July 1997.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 56

64. B. Ramkumar and L. V. Kale. Compiled Exe
ution of the Redu
e-OR Pro
ess

Model on Multipro
essors. In 1989 North Ameri
an Conferen
e on Logi
 Program-

ming, pages 313{331. MIT Press, O
tober 1989.

65. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog

System that Transparently Exploits both And- and Or-parallelism. In Pro
eedings

of the 3rd. ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel

Programming. ACM, April 1990.

66. V. Saraswat. Con
urrent Constraint Programming Languages. PhD thesis,

Carnegie Mellon, Pittsburgh, 1989. S
hool of Computer S
ien
e.

67. V. Saraswat, M. Rinard, and P. Panangaden. Semanti
 Foundation of Con
ur-

rent Constraint Programming. In Pro
eedings of the 18th. Annual ACM Conf. on

Prin
iples of Programming Languages. ACM, 1991.

68. V. Sarkar. Partitioning and S
heduling Parallel Programs for Multipro
essors. Pit-

man, London, (1989).

69. V. Sarkar. Instru
tion Reordering for Fork-Join Parallelism. In Pro
eedings of the

ACM SIGPLAN Conferen
e on Programming Language Design and Implementa-

tion, volume 25, pages 322{336, June 1990.

70. E.Y. Shapiro, editor. Con
urrent Prolog: Colle
ted Papers. MIT Press, Cambridge

MA, 1987.

71. E.Y. Shapiro. The Family of Con
urrent Logi
 Programming Languages. ACM

Computing Surveys, 21(3):412{510, September 1989.

72. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.

Journal of Logi
 Programming, 29(1{3):245{293, November 1996.

73. H. Sondergaard. An appli
ation of abstra
t interpretation of logi
 programs: o

ur

he
k redu
tion. In European Symposium on Programming, LNCS 123, pages 327{

338. Springer-Verlag, 1986.

74. S. Taylor, S. Safra, and E. Shapiro. A Parallel Implementation of Flat Con
urrent

Prolog. In E.Y. Shapiro, editor, Con
urrent Prolog: Colle
ted Papers, pages 575{

604, Cambridge MA, 1987. MIT Press.

75. E. Ti
k. The Deevolution of Con
urrent Logi
 Programming Languages. The

Journal of Logi
 Programming, 23(1{3):89{125, 1995.

76. E. Ti
k and C. Bannerjee. Performan
e evaluation of mona
o
ompiler and runtime

kernel. In 1993 International Conferen
e on Logi
 Programming, pages 757{773.

MIT Press, June 1993.

77. K. Ueda. Guarded Horn Clauses. PhD thesis, University of Tokyo, Mar
h 1986.

78. K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Con
urrent Prolog:

Colle
ted Papers, pages 140{156. MIT Press, Cambridge MA, 1987.

79. K. Ueda. Making Exhaustive Sear
h Programs Deterministi
. New Generation

Computing, 5(1):29{44, 1987.

80. D.H.D. Warren. An Abstra
t Prolog Instru
tion Set. Te
hni
al Report 309, Arti�-

ial Intelligen
e Center, SRI International, 333 Ravenswood Ave, Menlo Park CA

94025, 1983.

81. D.H.D. Warren. OR-Parallel Exe
ution Models of Prolog. In Pro
eedings of TAP-

SOFT '87, Le
ture Notes in Computer S
ien
e. Springer-Verlag, Mar
h 1987.

82. D.H.D. Warren. The Extended Andorra Model with Impli
it Control. In Sverker

Jansson, editor, Parallel Logi
 Programming Workshop, Box 1263, S-163 13

Spanga, SWEDEN, June 1990. SICS.

MUTHUKUMAR, BUENO, GARC

�

IA DE LA BANDA, HERMENEGILDO 57

83. W. Winsborough and A. Waern. Transparent And-Parallelism in the Presen
e of

Shared Free variables. In Fifth International Conferen
e and Symposium on Logi

Programming, pages 749{764, Seattle,Washington, 1988.

84. X. Zhong, E. Ti
k, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan.

Towards an EÆ
ient Compile-Time Granularity Analysis Algorithm. In Pro
. of

the 1992 International Conferen
e on Fifth Generation Computer Systems, pages

809{816. Institute for New Generation Computer Te
hnology (ICOT), June 1992.

