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Abstract

In this paper we devise and describe the selection heuristics implemented in the

matching engine of AMOS. We divide the search heuristics into two types, de-

pending on their aims: those which try to generate more assemblies, by using

safe or unsafe rules, and those which try to present to the user the more promis-

ing assemblies, thereby effectively reducing the number of choices the user has

to make.
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1 Introduction

The AMOS Project aims at developing a method and a tool to help to categorize and

search among software assets for which there is source code available. These are

categorized based on an ontology [Daf02] which makes it possible to classify software

packages in a uniform way using tags and representing entities with a well-defined

meaning.

The process of entering descriptions of new packages admittedly needs more work

than in other approaches. In the project we also strive to minimize this effort by pro-

viding an interface which makes it easier to enter new data for most cases. On the

other hand, identifiers with unique meanings make it possible to implement searches

which are able to retrieve items with a 100% recall precision. Comparisons of dif-

ferent approaches for software retrieval [MMM95] have highlighted the advantages of

this kind of search. We expect that the benefits in the search, much more frequent than

information additions, will outweigh the additional effort in insertion.

Highlighting the differences of the Amos approach with other software reposito-

ries, such as SourceForge or FreshMeat, is interesting. Amos does not aim at being

a software repository, but rather just at holding descriptions of software, instead of

the software itself. It aims at taking advantage of accurate descriptions, which can be

richer and, in practice, more flexible, than the tree-like classification most software

repositories provide. As we will see, the kind of searches Amos offers is also more

powerful, while accuracy is not sacrificed unnecessarily.

It is also different from the RPM, Apt, Yum, or Portage repositories in that no bi-

naries or sources themselves are necessarily part of the database, and the descriptions

are based on a set of predefined dictionary terms which after an initial fill-in are ex-

pected to change very slowly over time. Package descriptions do not refer to other

package identifiers / names, but to the capabilities packages offer or need. Amos is

certainly not targeted to the average computer user who wants to download software,

install, and use it. It is addressed to the software developer who wants to retrieve, and

very possibly modify, the source code of a series of packages (i.e., an assembly) which

satisfy a set of requirements. To this end, the search engine should be able to chain

search steps to determine one or more assemblies of inter-dependent packages which

satisfy as completely as possible a set of initial, user-stated requirements.

Since several packages might provide the same capability (or set of capabilities),

several assemblies are possible which could solve an initial query. In order to better

suit developer’s needs, different heuristics will be made available. Also, and since
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packages can ultimately be changed by the developer, approximate searches are sup-

ported by using generalizations of terms stated as such in the dictionary: a term can

be registered to be a generalization of a more precise one, and this knowledge can

be used to expand and guide the search to packages featuring alternative (but related)

descriptions.

In this report we will focus on searches which use dictionary items to describe a

package, with the proviso that sorting heuristics can also be applied a posteriori to

other fields of the package description. We will also pay attention to (and describe a

number of them) heuristics designed to prefer to some assemblies (more advantageous

for a user) over others.

The rest of the report will proceed as follows: Section 2 will present a simple model

for the representation of packages (Section 2.1), the search procedure, and the use of

generalization rules (Section 2.2), we will discuss alternative uses of these rules, and

we will also sketch how situations in which there are too many solutions can be handled

(Section 2.5). Section 3 will refine, from a user-directed point of view, the alternatives

put forward in the previous sections in order to devise a user-oriented interface.

2 A Logical View of Packages

In order to capture the idea and usage of package descriptions and generalizations, and

to showcase the kind of searches and heuristics Amos offers, we will resort to a repre-

sentation using first-order logic. This notation is well known and easy to understand,

while at the same time adequate for our purposes.

The structure of a package description in the ontology has several fields, including,

e.g., author, WWW site where the software proper is stored, number of lines of code,

etc. Not all of them are actually useful to perform searches (because they do not

have a unique associated meaning): for example, deciding whether the WWW address

associated to the package, the name of the (main) author, and other similar fields are

really meaningful is best left to the user. They can, however, be used to sort the results

according to some heuristic, or be used as an auxiliary filter by using, for example,

string matching.
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2.1 Package Requirements and Capabilities

A package P is minimally described with a set of terms, drawn from a predefined

dictionary, which state:

• What is provided by the package (i.e., what capabilities other packages can ex-

pect from P ), and

• What is needed by this package (i.e., what capabilities, usually provided by other

packages, are needed for P to work properly and as a complete software pack-

age).

Examples of terms used to denote capabilities (i.e., dictionary terms) are: compiler,

c compiler, java runtime environment, c++ compiler, java class,

java compiler, std c libraries, source ada program, etc. A package

named ada to java compiler can be described, for example, as having the re-

quirement of a source ada program and providing a java class.

A package p requiring the set of terms req and providing the set of terms prov

is represented by the facts Requires(p, req) and Provides(p, prov). We also assume

that prov ∩ req = ∅, i.e., a package should not need a capability provided by itself.1

A search starts by stating which capabilities are required in a project, and ends up

with a set of software packages satisfying as many requirements as possible. Thus, we

will represent a state in the search by a pair (pack, r) where pack is a set of packages

and r a set of dictionary terms. In a given state, pack is the current assembly of

packages, and r the required capabilities that are not yet fulfilled by pack.

The initial state of a search for an assembly that provides a set req of capabilities is

thus (∅, req). The ideal final state should be (pack, ∅), where assembly pack satisfies

all initial requirements. However, some requirements may be left unsatisfied because,

e.g., no package providing them is available in the queried database.

Every step in the search selects a package which, hopefully, will reduce the set of

required capabilities. Such a selection augments the packages in the current assembly

with one more package, adds the requirements of the added package to the non-fulfilled

capabilities, and subtracts from them the capabilities provided by the added package.

We express this by the following search rule:

(pack, r) , P rovides(p, prov) ∧ Requires(p, req) ∧ r ∩ prov 6= ∅

( pack
⋃
{p}, (r

⋃
req) \ prov )

(1)

1This is not strictly necessary, since such redundancies can be removed at runtime by the search

algorithm.
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A search consists in a repeated application of this rule. The rule can be applied as

many times as necessary, usually until there is no package p which can provide any of

the pending requirements (i.e., r ∩ prov 6= ∅ does not hold, so that the rule cannot be

applied). Note that r ∩ prov 6= ∅ guarantees that the selected package satisfies some

requirements, but this does not necessarily mean that the set of requirements is reduced

(the package added can have its own new requirements). Two remarks can be made:

• The selection of the package to be chosen at every search step is external to the

rule itself. Several strategies can be adopted to guide the search: for example,

giving preference to packages which satisfy more requirements (i.e., have the

biggest intersection r ∩ prov), or which effectively reduce the set of pending

requirements (i.e., req ⊆ r), or which augment the least the set of pending

requirements (i.e., (r ∪ req) \ prov is the smallest), There is plenty of room for

heuristics.

• In order to be as informative and efficient as possible, more data has to be car-

ried during the search. For example, the set of capabilities which are actually

provided by the accumulated packages in the current state are not explicit in

rule (1). Not using this set might cause the same package to be used twice, or

use packages not strictly needed: they can be added to fulfill a requirement of

some other package that is already satisfied by another package in the assembly.

While adding packages twice does not change the final result of the search, it

has to be avoided in a real implementation for efficiency reasons. Also, adding

“spurious” packages is not a good idea, either. Additionally, as we will see, the

information on the capabilities provided by an assembly can be interesting to the

user of the tool. Making it part of the search algorithm is straightforward, and

we will assume that it is available when needed.

The algorithm presented in [Car03], and shown here in Figure 2, performs this

search exhaustively in a backward-chaining fashion. The current implementation in the

tool uses a classical technique (inverse indexes) to speed up even more the execution.

2.2 Dictionary Terms and their Generalizations

A term used to describe packages is in principle only a syntactic entity, and it is handled

as such by the matching engine. Terms are collected in a dictionary which provides

also a (short) explanation of their intended meaning in human language. Users and
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package implementors use these definitions to agree on the meaning of the dictionary

terms. The matching engine makes no use of the meaning of terms; it simply matches

terms syntactically.

The dictionary contains also generalizations of terms: it states when a term is an

instance of a more general one. For example, a c compiler is an instance of the

more general term compiler. Any package providing a c compiler provides also

a compiler (but not necessarily the other way around); a package requiring just a

compiler should do with a c compiler (but, again, probably not in the opposite

direction).

There are other cases where this relationship is clearer (and more feasible in prac-

tice): for example, different filters for analog signals are known to be instances of more

general filters. Some packages might offer the full range of filters, while some other

packages might offer only a subset of them. In this case it makes sense to use a more

general term to describe the capabilities of the package offering general filters, so that

the use of generalizations is thus easy to justify.

A generalization has the following semantics: if term t is generalized by term tg

(which we will write t ⇒ tg), then

∀p : Provides(p, prov)∧ t ∈ prov → Provides(p, (prov\{t}) ∪ {tg}) (2)

Note that we “infer” a new fact about term p where the generalized term t does not

appear. This is so in order to separate and, if necessary, to mark the knowledge which

derives from such an inference from the knowledge which is explicit in the package

database. This can be useful in order to, e.g., trace which inferences have been done

during a search. The intended meaning is that tg is an abstraction of t: for example,

the idea of compiler (meaning some compiler, but not every compiler), is a gener-

alization of, for example, c compiler.

Figure 1 shows a depiction of generalization relations. Generalizing a term boils

down to moving from a node to some parent in the lattice. Moving in the opposite

direction (from a node to one of their children) finds out a more concrete term for a

more general one. Within a search procedure, generalization relations can be used in

safe and unsafe ways, described below.

2.3 Applying generalizations safely

According to definition (2), if t ⇒ tg then every package which provides a capability

t provides also the more general capability tg, i.e., a capability of which t is a particular
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Figure 1: A lattice depicting generalization relations

case. Taking this into account, we can write a generalization rule, which will interact

with the search rule, as follows:

t ⇒ tg , P rovides(p, prov)∧ t ∈ prov

Provides(p, (prov \ {t}) ∪ {tg})
(3)

Intuitively, new facts about what a package provides can be deduced by using the

generalization rule together with information already existing about a package. These

new facts can be used by the search rule in the same way as those initially in the

database. They can also be used in new applications of the generalization rule itself.

For example, since a c compiler is more concrete than a compiler, package

providing a c compiler certainly provides also a compiler.

Symmetrically, generalizations also interact with the required capabilities as fol-

lows:
t ⇒ tg , Requires(p, req) ∧ tg ∈ req

Requires(p, (req \ {tg}) ∪ {t})
(4)

I.e., a package which requires a compiler should be happy with any compiler,

or a package requiring just a text editor should be happy with anything that qual-

ifies as text editor, for example, an editor syntax coloring. The new

Requires facts can again be used to search for assemblies.

However, we want to note that it is redundant to apply generalizations both to the

Provides and Requires facts of packages, and applying only on one side is enough.

Without a formal proof, it can be seen that if a generalization rule is needed to help

the search progress, it can be applied either to the provided capabilities (when look-

ing for a candidate package) or to the required capabilities (when adding them to the
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set of pending requirements), because the generalization rule stands “in between” the

Requires and Provides chain, the LHS of the generalization being tied to the pro-

vided capabilities and the RHS of the generalization being associated to the required

capabilities.

With rule (4), if we add to an assembly a new package that requires tg and we have

t ⇒ tg, the new status will have requirement t, instead. This requirement might be

later fulfilled by another package p. The effect would have been the same if we had

added requirement tg and used rule (3) on the Provides fact for p. Thus, the results

are the same whether we fire the use of generalizations to effectively generalize on the

provided capabilities, or to concretize on the required capabilities. This simplifies the

implementation of the search procedure, which can only take into account one of the

rules.

2.4 Unsafe generalizations

The generalization rules can be also be applied in the opposite direction:

t ⇒ tg , P rovides(p, prov)∧ tg ∈ prov

Provides(p, (prov \ {tg}) ∪ {t})
(5)

t ⇒ tg , Requires(p, req) ∧ t ∈ req

Requires(p, (req \ {t}) ∪ {tg})
(6)

These rules are logically unsound. To explain this, let us concentrate on the first

one, since it turns out that the second one is redundant for the search, much the same

as what happens with rules (4) and (3).

Rule (5) expresses that whenever a feature is provided, a more concrete subfeature

is also provided, which is clearly contrary to the intuition we gave before. This is akin

to assuming that definition (2) also holds in the opposite direction. I.e., a package pro-

viding a compiler would provide as well a c compiler, which is not necessarily

so. The reason to allow the application of this rule stems from the possibility of chang-

ing the source code of some package to adapt it to purposes different from those it was

initially devised for. Using it in conjunction with the safe generalization rule provides

a way to jump to sibling nodes (and then to cousins, and so on), which are expected

to be related in a decreasing degree. A limited2 number of steps permits then using

2It is reasonable to limit the number of unsafe generalizations, as we would otherwise have a com-

plete traversal of the package database.
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more terms to look for package matches in the same way as those explicitly listed in

the package descriptions.

For example, the class of sorting algorithms which remove duplicates (say, which

provide sort no dup) and that of sorting algorithms which do not remove duplicates

(sort dup) are instances of sort algorithms. Should the user be looking for a non-

removing sort algorithm, if all packages in a given database which provide the ability

to sort are of the removing type, unsafe generalizations would make it possible for the

search procedure to use the sorting (i.e., any sorting algorithm) requirement from

the more particular sorting dup (this is an unsafe step) and then use the require-

ment of a sorting no dup (this step is safe). The code for the retrieved package

can be later modified by the programmer in order not to remove duplicates.

Input: R, a set of requirements

Output: (P, R), sets of needed packages and unfulfilled requirements

Algorithm:

F := ∅ -- What has been fulfilled so far

P := ∅ -- Packages used so far

do -- Invariant: R ∩ F = ∅

select A s.t. Provides(A, q) ∧ Requires(A, p) ∧ q ∩ R 6= ∅

F := F ∪ q

R := (R - q) ∪ (p - F)

P := P ∪ {A}

until <there is no A s.t. Provides(A, q) ∧ q ∩ R 6= ∅>

return (P, R)

Figure 2: Schematic nondeterministic search algorithm

2.5 Searching for Packages

The search algorithm in Figure 2 (from [Car03]) starts with an initial set of require-

ments and looks for packages which offer some of them in order to progressively

reduce that set until no more reduction steps can be performed. The algorithm is very

general, and can be frobbed to suit different needs for the search. We will present here

some opportunities for improvement, and discuss them more thoroughly and from a

user point of view in Section 3.
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Finishing the Search The deduction rule does not state any search strategy nor de-

cide when the search has finished, and there is complete freedom to decide which

package is to be selected in each search step, and when the search has finished. The

non-deterministic search algorithm in Figure 2 stops when the number of packages

cannot be reduced. However, other stop criteria could be used.

For example, one might choose to finish (a branch of) the search when no more

initial requirements can be satisfied, or when the number of unsatisfied capabilities

is minimal. In the first case, the search will stop if new packages will only satisfy

requirements which were not in the initial requirement set. In the second case, it will

stop if adding new packages will only increase the number of pending requirements

(even though there might still be some initial requirements pending which could have

been satisfied).

In general, stop criteria involve minimizing some function on the state of the

search. However, since the final objective is to fulfill a set of initial requirements

with a set of packages, it makes sense to make the search try to (eagerly) complete

the requirements as much as possible with the packages present in the database, i.e.,

progress until the number of pending requirements which can be satisfied is, hopefully,

zero.

Enlarging the Search Space The application of generalization rules can be dealt

with by implementing the select keyword conveniently, so that set of package de-

scriptions the selection takes into account is enlarged by generalization.

Guiding the Search and Selecting Assemblies Plugging in search heuristics based

on selection rules which use local information to guide the search to a satisfactory

assembly faster is also possible by adapting the implementation of select. On the

other hand, filters which decide which assemblies are more promising typically need

information about the rest of the assemblies at every moment.

Influencing the Packages in the Solutions Sometimes an experienced user may

want to explicitly ban some packages from a final assembly (because e.g. they have

well-known problems or compatibility issues), or force them to be included in the final

assembly. It is possible to do that quite straightforwardly by using the algorithm in

Figure 2, and simply initializing adequately the search state variables and instructing

select not to take the banned packages into account.
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Figure 3: Search Page
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3 Search Parameters

The interface presented to the user has to give an intuitive access to the internal search

capabilities, and permit the user to expand the search space in order to find more as-

semblies if needed. It must also makes it possible to sort the results according to some

heuristics without removing solutions. Figure 3 depicts the search page currently im-

plemented. In this section we will describe:

• How the user can specify that the search should use the generalizations in the

dictionary in order to generate more (potentially incorrect) results (Section 3.2),

and

• How it is possible to have a basic control on which packages are to be forced to

appear / not to appear in a final assembly (Section 3.3),

• How the order in which results are shown can be changed by setting some pa-

rameters related to different aspects of the quality of an assembly (Sections 3.4

and 3.5). Additional quality measures can be defined, and our approach is easy

to update to take them into

We will focus here on designing and discussing search and sort heuristics and pa-

rameters, and on justifying their usefulness from the point of view of the final user,

rather than on describing their implementations.

3.1 Basic Search

Searching consists, in its most basic form, on giving the tool a set of dictionary terms,

which describe desired capabilities, and let the search algorithm to return a set of

packages which provide these capabilities. The interface allows to refine this search

incrementally.

3.2 Expanding the Search

As already mentioned, term generalization can be used to take more packages into

account. Deciding whether to apply (or not) safe and unsafe generalizations must be

easily available and clearly distinguished in the user interface. However, an unbound

number of generalizations can end up making the search procedure to traverse all of
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the packages.3 Being able to limit how many times the generalization rules are used in

each search is then a must. We propose the two following control parameters:

Number of safe generalizations This is the number of safe generalizations (Sec-

tion 2.3) which can be performed when searching for any assembly. If zero, then no

safe generalizations will be attempted.

Number of unsafe generalizations This is the number of unsafe generalizations

(Section 2.4) which can be performed when searching for any assembly. If zero, then

no unsafe generalizations will be attempted.

When both parameters are zero no generalization rule is used, and only the package

database is consulted to build assemblies. The larger the number of generalizations,

the larger the set of assemblies which can be built.

Safe and unsafe generalizations can be active together, and the result of applying

them is to walk up and down the dictionary of terms. The amount of “walking” depends

on the “tightness” of the web of term generalizations. As an example, a request for a

c++ compiler can be satisfied in the end by a package providing a c compiler,

by chaining the two generalizations put forward in the previous paragraph. Even this

chaining can be interesting if, for example, the code to be compiled does not really

depend on object-oriented C++ characteristics and porting it to plain C is relatively

easy.

3.3 Controlling Packages in the Final Assembly

Generalizations of either case can produce too many assemblies, probably not all of

them of interest (recall that unsafe generalizations can produce logically unsound re-

sults). The number of solutions can be tuned by letting the user have some control

about which packages are to be used during the search by:

• Specifying which packages are to be included in a final assembly. If these pack-

ages fulfill a subset of the initial requirements, then no alternatives to meet these

requirements are needed. Note that since we let the search process to finish

with unsatisfied capabilities, adding more search terms to the initial query (a

3This depends on the particular shape of the generalization tree (or, in general, web), which can

connect or not the whole universe of terms.
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technique used with Google and other web search tools) will not produce more

concrete results.

• Putting a ban on packages also helps to retrieve better assemblies, since soft-

ware pieces already known (e.g., by personal experience) to be defective can be

removed right from the beginning.

We believe that these two possibilities are interesting and therefore they should be

included among the options users have available.

Packages not to be taken into account The names of packages which must not be

part of any final assembly.

Packages forced to appear in an assembly The names of packages which the user

wants to appear in all final assemblies (and which will be taken into account in any in-

termediate search step).

These two parameters might however fail to reduce sufficiently the number of as-

semblies and, besides, they need some experience and knowledge about the package

database and about the behavior of packages on it. Therefore it is necessary to design

an intuitive method to make it easier for the user to select among a large number of

solutions, many of which may not be interesting. Since we do not want to remove

solutions which have been generated according to user preferences, we have opted for

a way to express a ranking on the solutions. We will devote Sections 3.4 and 3.5 to

this issue.

3.4 Preference Heuristics

A set of preferences which makes it possible to choose some assembly over the rest

can be stated. This would help to reduce the number of assemblies a user has to deal

with. We will define a series of quality measures applicable to each assembly in order

to rank it in relation with the rest of the assemblies. The ranking will be used to sort

the assemblies before presenting them to the user, so that those with a higher score are

seen before. In general, this can only be done when all the assemblies for a given initial

search are known, and therefore the whole search space has to be exhausted anyway.

Note that these quality measures do not work at the level of the source code: on

one hand they address a quite abstract measure (appropriateness of a set of open source
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packages), which is quite independent of the quality of every source code package,

and, on the other hand, metrics addressed to evaluate source code cannot be used

here, because in general the Amos database does not have the source code stored.

Our metrics work on the following data, which is currently available [Car03] after the

solution for each assembly has finished:

Initial search terms These are the terms the user wanted to search for, and they are

of course known when the search finishes.

The packages in the final assembly These constitute the core of the information re-

turned to the user.

The unsatisfied requirements These are the requirements which the user wanted to

look for at the beginning of the search, and which the current package assembly

could not satisfy, plus the requirements needed by the intermediate search steps

(i.e., by the packages in the assembly) which the user initially did not require,

and which were left unsatisfied.

The satisfied requirements These are the requirements which were needed during

the search, either because they were initially stated by the user, or because they

were needed by some of the packages in the assembly, and have not bee satisfied.

This set is currently not shown to the user in the GUI, but it can be used to guide

the search as well.

More information can be gathered during the search; however this would very

probably increase the search time, and it was decided not to add at the moment more

items to the information carried around during the search in order to have a fast tool.

Additionally, the data items above are what the search algorithm needs to avoid re-

dundancies in the search and to decide when to stop. We argue that meaningful data

regarding high-level manageability of the assemblies can be generated out of that data.

3.4.1 Size of Assemblies

An approximate measure of the complexity of an assembly is the number of packages

in it. For assemblies which satisfy the initial requirements to a similar degree, the

number of packages may give a rough indication of how manageable will the assembly

be. Assemblies with few packages can be advantageous because they should need less

glue code. On the other hand, an assembly consisting of a large number of packages
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may be easier to adapt to some needs and it may offer additional capabilities, not

initially needed, but which may be interesting when planning for future developments.

Number of packages in the final assembly The number of packages in a final as-

sembly can be rated positively (the more packages the better) or negatively (the fewer

packages the better).

3.4.2 Unsatisfied requirements

Because of the way the search algorithm works, it is guaranteed that every requirement

which remains unsatisfied when a solution is found is not provided by any package in

the database. In the absence of a measure of how important each requirement is, the

number of unsatisfied requirements roughly indicates how well an assembly satisfies

requirements.

Number of unsatisfied requirements The number of requirements which are left

unsatisfied at the end of the search.

3.4.3 Redundant capabilities

Redundant capabilities are those finally provided but which were not initially requested.

These indicate that the assembly has probably more parts / components than strictly

needed. In an extreme case, it would create bloated assemblies. If several assemblies

have the same number of packages or unsatisfied requirements, the one having more

redundant capabilities has probably more (unnecessary) code or more unnecessary in-

ternal complexity.

Number of redundant capabilities The number of capabilities which were satis-

fied during the search, but which were not requested by the user.

3.4.4 Provided capabilities

The total number of provided capabilities (either initially requested or not) is also a

measure of the adequacy of the assembly.

Number of provided capabilities The total number of capabilities provided by the

final assembly.
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3.4.5 Ratio of unmatched requirements

The previous measures are absolute: they compare directly assemblies which can be of

different size, and these comparisons can be unfair or, at least, misleading. Preference

metrics which are relative to some measure of the size of the assembly would help

to generate rankings which do not depend on this size. For example, comparing the

number of pending requirements against those that have been satisfied is a way to

reduce the relevance of the size of the packages while at the same time deciding how

self-contained is the assembly.

Ratio pending / satisfied requirements It returns the value of dividing the number

of pending requirements by the number of requirements satisfied in a final solution.

The lower this ratio, the better the expected quality of the assembly.

3.5 Combining Preferences

The quality parameters stated above can be at odds with each another, and a means to

combining them in a multi-purpose ranking must be defined. A linear combination of

the scores of the previous parameters, where the coefficients can be provided by the

user, can be used to define an optimization to achieve. In order to give a more friendly

interface, we have decided to present the user with symbolic names which are then

translated into numeric weights (typically 3 to 5). The final ranking will be generated

using the formula

r =
5∑

1=1

piwi

where r is the value according to which some assembly is ranked, pi is the value of

i-th parameter and wi is the weight assigned to it by the user.

4 Conclusions

We have introduced package descriptions and dictionary terms and their generaliza-

tions, and shown how they can be conceptualized at the same level and therefore han-

dled uniformly by the search process. We have therefore related this representation

model with a skeleton of the search algorithm and shown how this algorithm can be

changed by adjusting the behavior of just one line.
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We have also seen how generalizations can be used to expand the search using

two very different ideas: safe generalizations, which lead to logically correct results

(according to the logical reading of term generalizations), and unsafe generalizations,

which can lead to incorrect results (again, according to the same reading).

Finally, we have argued that it is possible that too many results are returned, and a

way to help the user to handle this amount of information is needed. We have found it

reasonable to provide a series of parameters which implement a measure of the quality

of the assemblies to sort the different results. Those with a higher score, and which are

probably more promising, are presented before to the user.
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