
The AMOS Project
IST-2001-34717

The Internal Query Language Design

Deliverable D3
CLIP Technical Report CLIP 1/03.1

Responsible person: Manuel Carro, Technical University of Madrid (mcarro@fi.upm.es)

Release history

Number Author Comments
0.0 Manuel Carro First draft
0.1 Manuel Carro, Jesús Correas, José

Gómez
Added interfaces

0.2 Manuel Carro, Jesús Correas, José
Gómez

Main body rewritten, added figures

Abstract

We describe the internal query language used in the communication among the interface ofAMOS,
the matching engine, and the implementation of the ontology. While a great part of the defini-
tion of this query language deals with consults and updates of an instance of the ontology, we
do not commit to a given mapping onto a database scheme, which will be defined later in the
project. Instead, we rely on high-level primitives and we adopt a semantics similar to that of logic
programming semantics, with which interfaces can be expressed concisely and at a high-level.

Since the tool is also supposed to be interactive (the user should be able to perform a refinement
of the search), part of the query language deals also with performing searches. Finally, part of the
functionality of the tool is related with updates of the contents of the database: it must be possible
to enter and validate new data about software projects, and thus the interface also caters for the
possibility of database updates.

1

2

Contents

1 Introduction 5

2 Creating and Acessing the Ontology 6
2.1 Ontology Construction and Traversal Primitives .7
2.2 Storing and Retrieving Data from the Database .8
2.3 Description of the Ontology .10

3 The Query Interface 10

4 Conclusions 11

A Information About the Ontology 13
A.1 Usage and interface (ontology access) . 14
A.2 Documentation on exports (ontology access) 14
A.3 Version/Change Log (ontology access) . 17

B Creating and Consulting Assets 19
B.1 Usage and interface (asset access) . 20
B.2 Documentation on exports (asset access) . 20
B.3 Version/Change Log (asset access) . 26

C Handling Information About Organizations 29
C.1 Usage and interface (organization access) 30
C.2 Documentation on exports (organization access) 30
C.3 Version/Change Log (organization access) 32

D Creating and Consulting Certificates 33
D.1 Usage and interface (certification access) 34
D.2 Documentation on exports (certification access) 34
D.3 Version/Change Log (certification access) 37

E Handling Information About Resources 39
E.1 Usage and interface (resource access) . 40
E.2 Documentation on exports (resource access) 40
E.3 Version/Change Log (resource access) . 43

F Creating and Consulting Dictionaries 45
F.1 Usage and interface (dictionary access) . 46
F.2 Documentation on exports (dictionary access) 46
F.3 Version/Change Log (dictionary access) . 48

G Creating and Consulting User Identifications 49
G.1 Usage and interface (user access) . 50
G.2 Documentation on exports (user access) . 50
G.3 Version/Change Log (user access) . 51

3

H Basic types 53
H.1 Usage and interface (basic types) . 53
H.2 Documentation on exports (basic types) . 53
H.3 Version/Change Log (basic types) . 54

I Top-Level matching engine interface 55
I.1 Usage and interface (matching access) . 56
I.2 Documentation on exports (matching access) 56

J Application-Oriented Database Interface 61
J.1 Usage and interface (database access) . 62
J.2 Documentation on exports (database access) 62
J.3 Version/Change Log (database access) . 73

4

1 Introduction

AMOS is a tool aimed at generating sets of Open Source Code software packages (anassembly) from
a database of descriptions thereof. Packages are generated after a search, which is based on:

• User requirements, stating whichcapabilitiesare needed, expressed by means of a set of words
from a fixed, finite, and well defined set of terms, and

• Thedescriptionsof software packages, using terms from the aforementioned set, which reflect
(among other characteristics) which capabilities are needed by a package, and which capabilities
are offered by it.

This approach, which can be termed asindexical retrieval, following the classification in [MMM95],
has several interesting properties. For example, its retrieval rate is 100% in the sense that elements
sought for are always reached if present in the (finite) database. Big databases may lead to a combina-
torial explosion in the size of the search tree and in the number of retrieved packages, which suggests
using:

Ordering heuristics in order to try to lead the search to the better solutions faster. These should be
expressible by the user, and maybe composable.

Incomplete searcheswhich do not necessarily impose a goodness measure on the selection at each
point, but which may remove some (non-promising) branches at each search node, therefore
reducing the effective size of the search tree.

Interactive user-driven refinement with which the user states first a general query and, depending
on the number and quality of the results this query yields, a new query (maybe more, maybe
less general) is created and explored.

While such a tool could in principle be used as a command-line program, a graphical user interface
is a must nowadays. Since access toAMOS descriptions and recovery facilities should be made public,
a WWW-based interface offers platform-independent and world-wide reachability with a relatively
low deployment effort. We will therefore, and as planned in the project workplan, aim at a WWW
interaction. The internal query language, however, will not be tied to this type of interface and can, in
principle, be used with other types of clients (e.g., standalone Java clients which access to anAMOS

server running remotely).
The description of the code resources (packages) obeys to instances of the ontology for Open

Software Code designed as part of this project [Daf02]. This ontology is to be ultimately mapped
on database1 schematas for its implementation and deployment. As the access schemes might differ
according on the underlying technology, we have isolated representation details and provided a high
level interface which is notwithstanding enough as to fulfill the needs of the matching engine and the
interface generator.

The relationships among the interface, the matching engine, and the database containing the de-
scriptions of packages is shown in Figure 1. The arrows are meant to represent usage of external
interface primitives, classified according to their functionality. The set of primitives offered by each
of the main modules make up the generalQuery Interface, which implements methods to perform:

1Note that, on purpose, we are not committing to any vendor, implementation, or database technology, as we want the
ontology design to be general enough as to be easily adaptable for future developments.

5

Ontology
Implementation

Interface
Generation

Matching
Engine

Data
retrieval

Package
addition,
change,
and removal

commands
Control Encapsulated

data flow

Update

Admin. Search

Consult

Figure 1: Interface, matching engine, and database

1. Consults to the database (to be made by the matching engine, by the search interface, and by
the administrative interface),

2. Updates to the database (performed by the administrative interface),

3. And control of the search process (performed by the search interface).

In the rest of this document we will first describe the guidelines which governed the design of
the different operations of the query language and its general functionality, tackling in order the three
points above. Full details are available in the appendices of this document.

2 Creating and Acessing the Ontology

The ontology definition states at a high level which data is necessary to describe an open source
package, and includes related information as to which license is applicable, from where it can be
downloaded, etc. This description is structured at a conceptual level, i.e., it does not try to determine
which fields are key, it does not try to maintain a normal form (e.g., lists are a primitive data type),
and it usesextensionof classes often, much like object-oriented designs do.

It should be noted that while adapting an ontology to be implemented into a relational database
requires the usual normalization steps, viewing (and also implementing) the ontology in Prolog —
or almost any other related logic-based language— requires much less effort, since lists, records
and their composition of records to construct other records, search (in the form of backtraking), and
aggregation (e.g., gathering all the results of a search in a single list) are all first-order citizens, which
greatly eases design, prototyping, and final implementation. Even more, Prolog can express quite
naturally complex dependencies and consistency / integrity constraints which are sometimes stated in
ontology descriptions. In fact, when such constraints are present, the language of first-order logic is
quite often used, which can in many cases be directly translated into Prolog predicates (as done, for
example, in [ACFLGP01] among others) which ensure the internal coherence of the instances of the
ontology. Translating ontologies into Prolog programs (and viceversa) is, in fact, a technique used
since long ago [Far95] and which is being used in several ontology-related applications, ranging from
multisource information fusion [KW02] to ontology retrieval from unstructured sources [SPRS02,
Tec].

6

We will assume, in the design of the interface, that Prolog semantics and capabilities available,
since they make the design much clearer and closer to a conceptual implementation, and also because
the implementation is to be made in Prolog. This semantics include the bidirectionality of arguments
(i.e., procedure arguments can be be used both to construct and to consult a data structure) and the
implicit non-determinism implemented as backtracking.

We will sketch in this section the general approach to constructing and consulting instances classes
as defined in the ontology. A more detailed description of the different primitives, based on the ontol-
ogy described in [Daf02], is to be found in Appendix A to H. We will do the same for the interface
to add class instances to the database and to retrieve them (Section 2.2), and to perform searches for
packages (Section 3). All these interfaces are documented more in depth in the Appendices.

2.1 Ontology Construction and Traversal Primitives

The interface reflects shape of the ontology, capturing the information in it at the same level as the
ontology (Figure 2). The operations allow both building (and updating) instances of a class and
consulting parts of the class itself. The general form of the operations to perform that is

classname_fieldname(Object, Value, NewObject)

It can be used either to:

• Construct a part of an instance of the ontology using a (new) value for a given field, and returns
the new piece of the ontology, as in

asset_author(Asset, "The Clip Lab", NewAsset)

• Retrieve the value of a field, as in

asset_author(Asset, Author, Asset)

(note how the first and third variables have the same name; using a fresh, new variable for the
third argument would yield the same effect).

• Or checkthe value of some field in a given class instance:

asset_author(Asset, "The Clip Lab", Asset)

This last query will succeed if the value of theauthor field in theasset class unifies with
"The Clip Lab" , and will fail (without changing the ontology) otherwise.

All modules implementing access to classes have additionally class constructors (such as as
asset(A)), which either instantiateA to an (empty)asset class skeleton, or check whetherA
is bound to anasset class, and generalclass update/3 calls which allow updating in a single
call a series of fields in the object. These updates are all backtrackable, so that declarativeness is not
lost.

Basic datatypes, such as strings and numbers, are all built-in in Ciao Prolog. Complex types,
such as lists, records (without restrictions as to what the record components are) are also available as
primitive datatypes with automatic memory management. This allows building complex data struc-
tures with a minimal effort and handling them without having to take care of memory allocation /
deallocation.

7

Ontology

Certificate

Organization

User Asset Resource Dictionary Dictionary Item
*

1
1

0..*

1

1

1 1

0..1

1 1..*

1

1..*

0..*

Figure 2: Ontology shape in an UML-like representation

2.2 Storing and Retrieving Data from the Database

The database interface tries to isolate low-level details from the programmer, but, on the other hand,
should provide a set of operations which can be efficiently implemented. The database interface works
directly with the data structures used to generate ontology instances (Section 2.1), and, at the same
time, is aware of the existence ofdatabase identifiers, opaque data structures whose implementation
is dependent on the underlying database technology.

Retrieving class instances from the database is implemented by a series of primitives of the form

classname_description(Description, Key)

whereKey is an identifier for the class instance2 which can be the value of a field ofclass , or a key
generated by the database implementation. In any case, it is a value not supposed to be changed or
generated directly by users of the database acccess module. As an example,

resource_description(Description, Key)

returns inDescription a resource instance (the same data structure which was generated using
the operations in Section 2.1), which can then be traversed, dissassembled, and changed.Key will
be an identifier which may or may not be the same as the value of theAssetName field of the class
asset .

There is a special case where it is advisable to have a special operation in order to improve perfo-
mance as much as possible. It is desirable to speed up the access to search-related data (e.g., what a
resource offers, and what a resource demands). Therefore, specialized primitives which only retrieve
items pertaining to the search procedure are introduced

resource_needs(Key, ListOfNeededCapabilities)

resource_provides(Key, ListOfProvidedCapabilities)

which, for a givenKey, return the list of capabilities needed by this package (i.e., a list containing the
dictionary terms as stated by therequires field in theresource class), and the list of provided
capabilities, as stated in theidentificationTags field of theresource class. In addition to
that, the list of capabilities can also be accessed using directly the resource data structure, as in

2Having unique identifiers is not mandatory, but it is in many cases helpful to speed up searches.

8

resource_needs(Resource, ListOfNeededCapabilities)

resource_provides(Resource, ListOfProvidedCapabilities)

In both approaches, the returned result will be in the format more useful to perform searches
(e.g., lists of terms). This basic search interface may be eventually updated with more operations
which retrieve quickly information needed to implement different search heuristics, for example. The
database implementation should also ensure a steadfast implementation of these operations, even if
this causes redundancy of information in the ontology implementation. In such case, the database
interface is of course responsible for keeping the coherence of the database.

In order to abide by Prolog semantics, all the consult operations can both check and generate
answers on backtracking, when called with uninstantiated (or, in general, insufficiently instantiated)
variables. For example, a call such as

resource_description(_Unneeded, Key)

would instantiateKey on backtracking to all the resource keys in the database. These can easily be
retrieved in a list if needed for further processing (this applies, in general, to all the solutions generated
on backtracking). Therefore, special operations which return lists of, e.g., all the author names which
have some asset in the database, are not really needed, although they can very easily be added to the
interface without breaking its functionality:

resource_keys(Keys):-
setof(ThisKey, resource_description(_, ThisKey), Keys).

Needless to say, the previous primitive operations can always be combined to make higher-level,
specialized ontology- and database-related procedures, if found useful during the development of the
project.

Database updates are assumed to be much less frequent than database consults, and usually under
the control of knowledgeable users. Therefore, the update primitives can take a more basic form:
using theresource class as example

resource_update(ResourceKey, NewResource)

when called withResourceKey instantiated to a valid key (which should have been previously
obtained from the database) it will update the resource information associated withResourceKey
to beNewResource ; the old information is removed from the database.NewResource must be a
ground term, i.e., a term which does not contain free variables, in order to ensure a proper semantics.
Note that this restriction is not necessary, or even convenient, when performing retrievals.

If resource update/2 is called with a free variable in theResourceKey argument, the
NewResource is added to the database, if it does not exist yet, and a new identifier is generated for
it. If NewResource exists already in the database,ResourceKey is instantiated to the associated
key. The restriction that no variables can appear in the resource data structure avoids free variables to
be present in the database (thus easing its implementation) and also allows a simpler semantics to the
database updates.

Permanent removal of information stored in the database is achieved with any of the two following
operations:

9

resource_delete(ResourceKey)

resource_delete(Resource)

which, again, needResource to be ground. IfResource is present in the database (c.f.,ResourceKey
is the key of a resource), the associated information is removed. Otherwise, the database does not
change. Removing an item from the database is, of course, a potentially dangerous operation: in order
to maintain the database consistency, data which is only referenced by the item being deleted might be
removed as well (depending on the minimum cardinality with which the referenced objects appears in
their referrers).

2.3 Description of the Ontology

There is a part of the ontology implementation (Appendix A) which cannot be updated by the user, and
which has to be changed, if needed, at implementation level. It gives information about the ontology
version, author, component classes, etc. Changing this only makes sense if the ontology evolves,
which necessarily also involves modifications in the code of some module.

3 The Query Interface

The query interface will receive queries built according to the user preferences stated via the WWW
interface, and it will start a search against the information stored in the database. As shown in Figure 1,
the matching engine has access to the implementation of the ontology through the database interface.
The need to perform involved searches makes it sensible to isolate this facility on a module of its
own, with which the interface communicates through a well-defined interface. Having in mind that
the interface should offer the possibility of progressively showing more solutions to a query, the basic
functions of the search interface are returning (more) solutions to a query and deciding when the
solutions have been exhausted.

We will put together what is to be sought for in aquery abstraction: a datatype which encodes in
a first-order, self-contained structure the terms to search for, and also the state of the search (i.e., at
which point the search was interrupted, and where it should restart). The basic operations are:

build_query(Terms, Heuristic, IncludePacks, ExcludePacks, Query)

make_query(Query, MaxSols, Results, NextQuery)

The first operation constructs a new query out of the user selection performed via the WWW interface:
the heuristic to follow, the capabilities to search for, packages which have been selected by the user
as interesting or advantegeous,3 and packages which arenot desired in a final solution.Results
is a list of at mostMaxSols solutions, containing each at least a summary of the packages returned
by the search procedure.NextQuery returns a first-order, self-contained version of the initial query
which has been updated to reflect where the search has stopped, so that the nextmake query/4
usingNextQuery as first argument can restart the search precisely where it was left by the previous
make query/4 . The query has (finitely) failed (i.e., there a are no [more] solutions) ifResults is
the empty list (and further calls tomake query/4 will not return any more answers, assuming that
the database contents have not changed meanwhile).

3This helps to cut down search, as these are usually pakages the user knows to fulfill some of the desired characteriscs.

10

For brevity, each of the solutions returned inResults summarize the total information associ-
ated to that solution. This makes it easy to represent a set of solutions in a single WWW page, which
the user can quickly glance through. Clicking on one solution will retrieve more information about the
packages which make up that solution. In order to implement this information expansion, an operation

expand_solution(Solution, Packages, Fulfilled, Flooded)

is implemented, which receives aSolution (any of the terms in the list of solutionsResults)
and reproduces the part of the search which lead to that solution, gathering more informacion. Due to
properties of the search being performed, the order in which packages are retrieved is not important
to reproduce faithfully all the intermediate results of a search. Therefore, only the set of packages
returned by each of the solutions inResults is needed. The more relevant data about the search
is the list of capabilities which were needed (either because they were initially requested by the user,
or because intermediate chaining needed it) and which were satisfied or not. More information about
each of these items (e.g., what is their semantics) can be obtained through the database interface.

Additionally, and as a help for refining queries in a process in which the user interacts with the
system, a series of operations to manipulate queries are provided. All of them can be reformulated
based on the bidirectionality ofbuild query/5 and on standard Prolog list processing, but they
are included because of their usefulness:

query_add_search_terms(Query, Terms, NewQuery)

query_remove_search_terms(Query, Terms, NewQuery)

query_add_include_packages(Query, Packages, NewQuery)

query_remove_include_packages(Query, Packages, NewQuery)

query_add_exclude_packages(Query, Packages, NewQuery)

query_remove_exclude_packages(Query, Packages, NewQuery)

4 Conclusions

We have presented the design of the query language internally used by the tools in theAMOS project.
This language casts user requests onto calls to the database implementing the ontology, calls to actu-
ally build and traverse class instances, and calls to start queries against the ontology. The operations
are designed to be as high-level as possible (paired with the abstraction level and possibilities of
Prolog), and to be as close as possible to the conceptual level of the ontology.

Notwithstanding, attention has been paid to efficiency issues in the places where this can be a
concern, namely, in the operations related to the search process.

11

12

A Information About the Ontology

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 12:5:52 CET)
The ontology module acts as a top-level declaration of external properties of the ontology. It al-

lowsconsultingdata such as version, author name and email, and names of other classes the ontology
is made of, but it does not give direct access or reexports primitives implementing operations on the
subclasses. If the ontology evolves, the changes will be reflected in the ontology access implementa-
tion and in the data declared by this interface.

All the operations, but theontology/1 constructive type declaration, must use an already-made
ontology. E.g.,

?- ontology(_O), ontology_author(_O, E).

E = "Carlo Daffara" ? ;

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

13

A.1 Usage and interface (ontology access)

• Library usage:

:- use module(library(ontology access)).

• Exports:

– Predicates:

ontology name/2 , ontology version/2 , ontology status/2 ,
ontology author/2 , ontology authoremail/2 ,
ontology affiliation/2 , ontology description/2 ,
ontology comment/2 , ontology language/2 ,
ontology metadata/3 .

– Regular Types:

ontology/1 .

• Other modules used:

– Application modules:

basic types .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

A.2 Documentation on exports (ontology access)

ontology name/2: PREDICATE

Usage:ontology name(Ont,Name)

– Description:Nameis the name of the ontologyOnt .

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Nameis a string (a list of character codes). (string/1)

ontology version/2: PREDICATE

Usage:ontology version(Ont,Version)

– Description:Version is the version of the ontologyOnt .

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Version is a string (a list of character codes). (string/1)

14

ontology status/2: PREDICATE

Usage:ontology status(Ont,Status)

– Description:Status is the status of the ontologyOnt .

– The following properties should hold at call time:

Ont is currently a term which is not a free variable. (nonvar/1)

Ont is an ontology to store information about open source projects. (ontology/1)

Status is a string (a list of character codes). (string/1)

ontology author/2: PREDICATE

Usage:ontology author(Ont,Author)

– Description:Author is the author name of the ontologyOnt .

– The following properties should hold at call time:

Ont is currently a term which is not a free variable. (nonvar/1)

Ont is an ontology to store information about open source projects. (ontology/1)

Author is a string (a list of character codes). (string/1)

ontology authoremail/2: PREDICATE

Usage:ontology authoremail(Ont,Email)

– Description:Email is the author email of the ontologyOnt .

– The following properties should hold at call time:

Ont is currently a term which is not a free variable. (nonvar/1)

Ont is an ontology to store information about open source projects. (ontology/1)

Email is a string (a list of character codes). (string/1)

ontology affiliation/2: PREDICATE

Usage:ontology affiliation(Ont,Affiliation)

– Description:Affiliation is the affiliation of the author of the ontologyOnt .

– The following properties should hold at call time:

Ont is currently a term which is not a free variable. (nonvar/1)

Ont is an ontology to store information about open source projects. (ontology/1)

Affiliation is a string (a list of character codes). (string/1)

ontology description/2: PREDICATE

Usage:ontology description(Ont,Description)

– Description:Description is a short description of the ontologyOnt .

15

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Description is a string (a list of character codes). (string/1)

ontology comment/2: PREDICATE

Usage:ontology comment(Ont,Comment)

– Description:Commentdescribes the current status of the ontologyOnt .

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Comment is a string (a list of character codes). (string/1)

ontology language/2: PREDICATE

Usage:ontology language(Ont,Language)

– Description:Language is the language name of the ontologyOnt .

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Language is a valid language descriptor. It consists of a pairlang(String, LangCode) ,
whereString is a human-readable language name andLangCode is an atom corre-
sponding to the (standard) coding of languages:

language(lang("English",’EN’)).
language(lang("Spanish",’SP’)).
language(lang("French",’FR’)).
language(lang("German",’DE’)).

(language/1)

ontology metadata/3: PREDICATE

Usage:ontology metadata(Ont,Parent,Children)

– Description:Parent is the parent class ofOnt (or ‘none’ if Ont does not have parents).
Children is the list of classesOnt has as children

– The following properties should hold at call time:
Ont is currently a term which is not a free variable. (nonvar/1)
Ont is an ontology to store information about open source projects. (ontology/1)
Parent is an atom. (atm/1)
Children is a list ofatms. (list/2)

ontology/1: REGTYPE

Usage:ontology(Ont)

– Description:Ont is an ontology to store information about open source projects.

16

A.3 Version/Change Log (ontology access)

Version 0.1#1 (2003/2/14, 12:5:52 CET) Added module explanation, updated arities, now working
(Manuel Carro)

Version 0.1 (2003/2/13, 13:30:10 CET) First version (Manuel Carro)

17

18

B Creating and Consulting Assets

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#4 (2003/2/20, 1:30:34 CET)
Assets are the basic abstraction resources (e.g., packages, documentation, etc.) are built on. An

asset contains information pertaining all the relevant information of a resource, but the dependencies
themselves. This is so because there might be resources which do not have explicit dependencies to
search for (e.g., pieces of work which are not ultimately intended to be compiled, such as licenses). In
order to cater for the existence of these entities, theassetabstraction reflects interesting characteristics
of such non-software (but anyway interesting and needed) packages.

The operations herein included are aimed at creating and consulting instances of theassetclass.
They may change (for example, to include more operations) should the ontology evolve in that direc-
tion.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

19

B.1 Usage and interface (asset access)

• Library usage:

:- use module(library(asset access)).

• Exports:

– Predicates:

asset name/3 , asset author/3 , asset maintained by/3 ,
asset homepage/3 , asset download page/3 , asset contact/3 ,
asset license/3 , asset license URL/3 , asset version/3 ,
asset references/3 , asset additional constraints/3 ,
asset additional freedom/3 , asset description/3 ,
asset creation date/3 , asset submitted by/3 ,
asset submission date/3 , asset environment/3 , asset cost/3 ,
asset security classification/3 , asset certification/3 ,
asset package signature/3 , asset check/2 , asset update/3 .

– Regular Types:

asset/1 , asset field/1 .

• Other modules used:

– Application modules:

user access , basic types .

– System library modules:

sort , aggregates .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

B.2 Documentation on exports (asset access)

assetname/3: PREDICATE

Usage:asset name(Asset,Name,NewAsset)

– Description:Nameis the name (identifier) ofNewAsset . It should be unique within the
system, and its presence is required.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Nameis a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

20

assetauthor/3: PREDICATE

Usage:asset author(Asset,Authors,NewAsset)

– Description: Authors is the list of authors ofNewAsset . Its presence is required, an
there must be at least one author.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Authors is a list ofuser s. (list/2)

NewAsset is an asset. (asset/1)

assetmaintained by/3: PREDICATE

Usage:asset maintained by(Asset,Maintainers,NewAsset)

– Description: Maintainers is the list of (current) maintainers ofNewAsset . It may
be empty.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Maintainers is a list ofuser s. (list/2)

NewAsset is an asset. (asset/1)

assethomepage/3: PREDICATE

Usage:asset homepage(Asset,Homepage,NewAsset)

– Description:Homepage is the identifer of the home page ofNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Homepage is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetdownload page/3: PREDICATE

Usage:asset download page(Asset,Download,NewAsset)

– Description:Download is an address whereNewAsset can be downloaded from.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Download is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetcontact/3: PREDICATE

Usage:asset contact(Asset,Contact,NewAsset)

– Description:Contact is the name of a contact person forNewAsset .

21

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Contact is a user. (user/1)

NewAsset is an asset. (asset/1)

assetlicense/3: PREDICATE

Usage:asset license(Asset,License,NewAsset)

– Description:License is the text of the license forNewAsset . Its presence is required.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

License is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetlicenseURL/3: PREDICATE

Usage:asset license URL(Asset,URL,NewAsset)

– Description:URLis an address where the license ofNewAsset can be downloaded from.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

URLis a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetversion/3: PREDICATE

Usage:asset version(Asset,Version,NewAsset)

– Description:Version is the version of the assetNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Version is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetreferences/3: PREDICATE

Usage:asset references(Asset,References,NewAsset)

– Description:References is a set of references concerningNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

References is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetadditional constraints/3: PREDICATE

22

Usage:asset additional constraints(Asset,Constraints,NewAsset)

– Description:Constraints is a description of constraints to be taken into account when
usingNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Constraints is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetadditional freedom/3: PREDICATE

Usage:asset additional freedom(Asset,Freedom,NewAsset)

– Description:Nameis a description of additional properties of the license ofNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Freedom is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetdescription/3: PREDICATE

Usage:asset description(Asset,Description,NewAsset)

– Description: Description is a textual description of the assetNewAsset . Its pres-
ence is required.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Description is a list ofstring s. (list/2)

NewAsset is an asset. (asset/1)

assetcreation date/3: PREDICATE

Usage:asset creation date(Asset,Date,NewAsset)

– Description:Date is the date in whichNewAsset was created.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Date is a date. (date/1)

NewAsset is an asset. (asset/1)

assetsubmitted by/3: PREDICATE

Usage:asset submitted by(Asset,Submitter,NewAsset)

– Description: Submitter is the user which submittedNewAsset . Its presence is re-
quired.

23

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Submitter is a user. (user/1)

NewAsset is an asset. (asset/1)

assetsubmissiondate/3: PREDICATE

Usage:asset submission date(Asset,Date,NewAsset)

– Description:Date is the date whenNewAsset was submitted. Its presence is required.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Date is a date. (date/1)

NewAsset is an asset. (asset/1)

assetenvironment/3: PREDICATE

Usage:asset environment(Asset,Environment,NewAsset)

– Description:Environment is a textual description of the environmentNewAsset was
designed for or used in.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Environment is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetcost/3: PREDICATE

Usage:asset cost(Asset,Cost,NewAsset)

– Description: Cost is the assumed cost ofNewAsset . It will probably be not finally
used, but it is included for generality: some assets might require, e.g., an initial cost.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Cost is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetsecurity classification/3: PREDICATE

Usage:asset security classification(Asset,Class,NewAsset)

– Description:Class is the security classification ofNewAsset .

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Class is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

24

assetcertification/3: PREDICATE

Usage:asset certification(Asset,Certification,NewAsset)

– Description: Certification is the list of certifications applicable toNewAsset . It
may be empty.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Certification is a list ofcertification s. (list/2)

NewAsset is an asset. (asset/1)

assetpackagesignature/3: PREDICATE

Usage:asset package signature(Asset,Signature,NewAsset)

– Description: Signture is the signature of the ofNewAsset ; it is included in order to
make it possible to check the integrity of the assets.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

Signature is a string (a list of character codes). (string/1)

NewAsset is an asset. (asset/1)

assetcheck/2: PREDICATE

Usage:asset check(Asset,WrongFields)

– Description: The already formed assetAsset is checked against the constraints speci-
fied in the ontology definition. Fields whose associated value at entry is afree variable
and whose minimal cardinality is zero are substituted by anull value (see the regular
typenull/1). Fields whose associated value at entry is afree variable and whose min-
imal cardinality is greater than zero are reported as having a wrong value in the variable
WrongFields . Finally, fields whose associated value at entry is not a variable, and
whose type does not match the one specified in the ontology, are also reported as wrong
fields.

– The following properties should hold at call time:

Asset is an asset. (asset/1)

WrongFields is a list ofasset fields s. (list/2)

assetupdate/3: PREDICATE

Usage:asset update(Asset,PairList,NewAsset)

– Description: This operation updatesAsset to give NewAsset . PairList is a list
of pairs (seepair): dash-separated ground termsField-Value , which are meant to
express the name of a field and its updated value.Asset update is a general call upon
which all the rest of theupdate calls rely.

25

– The following properties should hold at call time:

Asset is currently a term which is not a free variable. (nonvar/1)

PairList is currently a term which is not a free variable. (nonvar/1)

Asset is an asset. (asset/1)

PairList is a list ofpair s. (list/2)

NewAsset is an asset. (asset/1)

asset/1: REGTYPE

Usage:asset(Asset)

– Description:Asset is an asset.

assetfield/1: REGTYPE

Usage:asset field(Field)

– Description:Field is a field of an asset

It is currently defined as:

asset_field(name).
asset_field(author).
asset_field(maintainer).
asset_field(homepage).
asset_field(downloadpage).
asset_field(contact).
asset_field(license).
asset_field(licenseurl).
asset_field(version).
asset_field(references).
asset_field(constraints).
asset_field(freedom).
asset_field(assetdescription).
asset_field(creationdate).
asset_field(submittedby).
asset_field(submissiondate).
asset_field(environment).
asset_field(cost).
asset_field(security).
asset_field(certification).
asset_field(signature).

B.3 Version/Change Log (asset access)

Version 0.1#4 (2003/2/20, 1:30:34 CET) Ast to Asset (Manuel Carro)

Version 0.1#3 (2003/2/14, 16:25:56 CET) Changed AssetAfter (Manuel Carro)

26

Version 0.1#2 (2003/2/14, 13:33:59 CET) Added a general assetupdate (Manuel Carro)

Version 0.1#1 (2003/2/14, 12:26:36 CET) Added assetfields (Manuel Carro)

Version 0.1 (2003/2/13, 20:48:26 CET) Initial version, with all interfaces included. (Manuel Carro)

27

28

C Handling Information About Organizations

Author(s): Manuel Carro and the CLIP group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 16:27:27 CET)
The class “Organization” abstracts real organizations (companies, universities, or even user groups),

and ultimately reflects an user’s affiliation. An organization provides a means to locate and identify a
single user (which can be thought of as an extension of an organization) or a group of users who are
somehow associated and work or produce software under the same umbrella.

The operations herein included are aimed at creating and consulting instances of theorganization
class. They may change (for example, to include more operations) should the ontology evolve in that
direction.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

29

C.1 Usage and interface (organization access)

• Library usage:

:- use module(library(organization access)).

• Exports:

– Predicates:

organization name/3 , organization email/3 ,
organization telephone/3 , organization webpage/3 ,
organization notes/3 , organization update/3 ,
organization check/2 .

– Regular Types:

organization/1 , organization field/1 .

• Other modules used:

– System library modules:

sort , aggregates .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

C.2 Documentation on exports (organization access)

organization name/3: PREDICATE

Usage:organization name(Org,Name,NewOrg)

– Description: Description is the description of the organizationNewOrg. There
should be a definedNamein each organization

– The following properties should hold at call time:

Org is an organization. (organization/1)

Nameis a string (a list of character codes). (string/1)

NewOrg is an organization. (organization/1)

organization email/3: PREDICATE

Usage:organization email(Org,Emails,NewOrg)

– Description: Emails is a list of contact emails for the organizationNewOrg. Emails
may be the empty list

– The following properties should hold at call time:

Org is an organization. (organization/1)

30

Emails is a list ofstring s. (list/2)

NewOrg is an organization. (organization/1)

organization telephone/3: PREDICATE

Usage:organization telephone(Org,Telephones,NewOrg)

– Description: Telephones is a list of contact phone/fax number for the organization
NewOrg. Telephones may be the empty list

– The following properties should hold at call time:

Org is an organization. (organization/1)

Telephones is a list ofstring s. (list/2)

NewOrg is an organization. (organization/1)

organization webpage/3: PREDICATE

Usage:organization webpage(Org,Webpages,NewOrg)

– Description:Webpages is a list of Web pages for the organizationNewOrg. Webpages
may be the empty list

– The following properties should hold at call time:

Org is an organization. (organization/1)

Webpages is a list ofstring s. (list/2)

NewOrg is an organization. (organization/1)

organization notes/3: PREDICATE

Usage:organization notes(Org,Notes,NewOrg)

– Description: Notes is a list of strings (comments regarding the organizationNewOrg).
Notes may be the empty list

– The following properties should hold at call time:

Org is an organization. (organization/1)

Notes is a list ofstring s. (list/2)

NewOrg is an organization. (organization/1)

organization update/3: PREDICATE

Usage:organization update(Org,PairList,NewOrg)

– Description: It updatesOrg to giveNewOrg. PairList is a list of pairs (seepair):
dash-separated ground termsField-Value , which are meant to express the name of a
field and its updated value.Organization update is a general call upon which all
the rest of theupdate calls rely.

31

– The following properties should hold at call time:

Org is currently a term which is not a free variable. (nonvar/1)

PairList is currently a term which is not a free variable. (nonvar/1)

Org is an organization. (organization/1)

PairList is a list ofpair s. (list/2)

NewOrg is an organization. (organization/1)

organization check/2: PREDICATE

Usage:organization check(Org,WrongFields)

– Description:The already formed organization classOrg is checked against the constraints
specified in the ontology definition. Fields whose associated value at entry is afree vari-
able and whose minimal cardinality is zero are substituted by anull value (see the reg-
ular typenull/1). Fields whose associated value at entry is afree variable and whose
minimal cardinality is greater than zero are reported as having a wrong value in the vari-
ableWrongFields . Finally, fields whose associated value at entry is not a variable, and
whose type does not match the one specified in the ontology, are also reported as wrong
fields.

– The following properties should hold at call time:

Org is an organization. (organization/1)

WrongFields is a list oforganization fields s. (list/2)

organization/1: REGTYPE

Usage:organization(Org)

– Description:Org is an organization.

organization field/1: REGTYPE

Usage:organization field(Field)

– Description:Field is a field of a dictionary item

It is currently defined as:

organization_field(name).
organization_field(email).
organization_field(telephone).
organization_field(webpage).
organization_field(notes).

C.3 Version/Change Log (organization access)

Version 0.1#1 (2003/2/14, 16:27:27 CET) OrgAfter to NewOrg (Manuel Carro)

Version 0.1 (2003/2/13, 20:49:29 CET) Initial version, with all interfaces included. (Manuel Carro)

32

D Creating and Consulting Certificates

Author(s): Manuel Carro and the CLIP group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 16:25:41 CET)
Certificates are means to ensure that the properties stated for a given package hold true, and that

the package has not been altered (for example, by changing code so that misfunction is possible).
Certificates are mandatory (or, at least, highly recommended) in several application fields (e.g., health
care), and can take a range of forms, from fingerprints such as MD5 to digital signatures or, possibly in
a future, to proof-carrying code. Certificates are associated to assets, in such a way that a given asset
may have different certifications created using different methods or issued by different (third-part)
trusted organizations.

The operations herein included are aimed at creating and consulting instances of thecertification
class. They may change (for example, to include more operations) should the ontology evolve in that
direction.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

33

D.1 Usage and interface (certification access)

• Library usage:

:- use module(library(certification access)).

• Exports:

– Predicates:

certification date/3 , certification status/3 ,
certification level/3 , certification policy/3 ,
certification reference/3 , certification artifact type/3 ,
certification artifact/3 , certification verifier/3 ,
certification comments/3 , certification check/2 ,
certification update/3 .

– Regular Types:

certification/1 , certification field/1 .

• Other modules used:

– Application modules:

basic types .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

D.2 Documentation on exports (certification access)

certification date/3: PREDICATE

Usage:certification date(Cert,Date,NewCert)

– Description:Date is the date in whichNewCert was issued. It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Date is a date. (date/1)

NewCert is a certification. (certification/1)

certification status/3: PREDICATE

Usage:certification status(Cert,Status,NewCert)

– Description:Status is the status ofNewCert . It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

34

Status is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification level/3: PREDICATE

Usage:certification level(Cert,Level,NewCert)

– Description:Level is the level ofNewCert . It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Level is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification policy/3: PREDICATE

Usage:certification policy(Cert,Policy,NewCert)

– Description:Policy is the policy ofNewCert . It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Policy is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification reference/3: PREDICATE

Usage:certification reference(Cert,References,NewCert)

– Description: References are references concerning the certificationNewCert . It
must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

References is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification artifact type/3: PREDICATE

Usage:certification artifact type(Cert,Type,NewCert)

– Description:Type is the type ofNewCert . It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Type is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification artifact/3: PREDICATE

Usage:certification artifact(Cert,Artifact,NewCert)

35

– Description:Artifact is the method used to generate the certification in ofNewCert .
Commonly used methods are SHA, MD5 or other hash mark directly extracted from the
resource. It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Artifact is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification verifier/3: PREDICATE

Usage:certification verifier(Cert,Verifier,NewCert)

– Description:Verifier is a verifier ofNewCert . It must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Verifier is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification comments/3: PREDICATE

Usage:certification comments(Cert,Comments,NewCert)

– Description: Comments are general comments regarding the certificationNewCert . It
must be present.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

Comments is a string (a list of character codes). (string/1)

NewCert is a certification. (certification/1)

certification check/2: PREDICATE

Usage:certification check(Cert,WrongFields)

– Description:The already formed certificateCert is checked against the constraints spec-
ified in the ontology definition. Fields whose associated value at entry is afree variable
and whose minimal cardinality is zero are substituted by anull value (see the regular
typenull/1). Fields whose associated value at entry is afree variable and whose min-
imal cardinality is greater than zero are reported as having a wrong value in the variable
WrongFields . Finally, fields whose associated value at entry is not a variable, and
whose type does not match the one specified in the ontology, are also reported as wrong
fields.

– The following properties should hold at call time:

Cert is a certification. (certification/1)

WrongFields is a list ofcertification fields s. (list/2)

certification update/3: PREDICATE

36

Usage:certification update(Cert,PairList,NewCert)

– Description:It updatesCert to giveNewCert . PairList is a list of pairs (seepair):
dash-separated ground termsField-Value , which are meant to express the name of a
field and its update value.certification update/3 is a general call upon which
all the rest of theupdate calls rely.

– The following properties should hold at call time:

Cert is currently a term which is not a free variable. (nonvar/1)

PairList is currently a term which is not a free variable. (nonvar/1)

Cert is a certification. (certification/1)

PairList is a list ofpair s. (list/2)

NewCert is a certification. (certification/1)

certification/1: REGTYPE

Usage:certification(Cert)

– Description:Cert is a certification.

certification field/1: REGTYPE

Usage:certification field(Field)

– Description:Field is a field of a certification

It is currently defined as:

certification_field(date).
certification_field(status).
certification_field(level).
certification_field(policy).
certification_field(reference).
certification_field(artifact_type).
certification_field(artifact).
certification_field(verifier).
certification_field(comments).

D.3 Version/Change Log (certification access)

Version 0.1#1 (2003/2/14, 16:25:41 CET) Changed CertAfter to NewCert (Manuel Carro)

Version 0.1 (2003/2/13, 20:48:55 CET) Initial version, with all interfaces included. (Manuel Carro)

37

38

E Handling Information About Resources

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 16:28:1 CET)
A resource is a piece of information the database knows how to search for. Every resource con-

tains, at least, the information (description terms) needed to express what capabilities are provided by
the resource, and which other capabilities are needed in order to use it in a software project. Every
resource is part of a more general class, theasset, which contains additional information about the
resource (e.g., where the resource can be located, etc.) which is however not needed (and, in fact, not
enough) as to distinguish several resources from each other.

The operations herein included are aimed at creating and consulting instances of theresource
class. They may change (for example, to include more operations) should the ontology evolve in that
direction.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

39

E.1 Usage and interface (resource access)

• Library usage:

:- use module(library(resource access)).

• Exports:

– Predicates:

resource size/3 , resource identificationTags/3 ,
resource language/3 , resource newVersionOf/3 ,
resource uses/3 , resource requires/3 , resource notes/3 ,
resource certification status/3 , resource asset/3 ,
resource check/2 , resource update/3 .

– Regular Types:

resource/1 , resource field/1 .

• Other modules used:

– Application modules:

certification access , asset access , dictionary access .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

E.2 Documentation on exports (resource access)

resourcesize/3: PREDICATE

Usage:resource size(Res,Size,NewRes)

– Description: Size is the (estimated) size of the resourceNewRes. There should be at
least one size in every well-formed resource.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Size is an integer. (int/1)

NewRes is a resource. (resource/1)

resource identificationTags/3: PREDICATE

Usage:resource identificationTags(Res,Tags,NewRes)

– Description: Tags is a list of terms which define the resourceNewRes in terms of the
capabilities it provides.Tags must exist and it mustnot be an empty list.

40

– The following properties should hold at call time:

Res is a resource. (resource/1)

Tags is a list ofditem s. (list/2)

NewRes is a resource. (resource/1)

resource language/3: PREDICATE

Usage:resource language(Res,Language,NewRes)

– Description:Language is the programming language used in the implementation of the
resourceNewRes.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Language is one entry of the dictionary. (ditem/1)

NewRes is a resource. (resource/1)

resourcenewVersionOf/3: PREDICATE

Usage:resource newVersionOf(Res,Forerunner,NewRes)

– Description:Forerunner is the name of the resourceNewRes is a new version of.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Forerunner is an atom. (atm/1)

NewRes is a resource. (resource/1)

resourceuses/3: PREDICATE

Usage:resource uses(Res,Uses,NewRes)

– Description: Uses is the list of resources (determined by their unique name) which can
be used when working with the resourceNewRes. They are not intended to be strong
requirements, but their presence might help in compiling, linking, etc.NewRes. The list
of used resources may be empty.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Uses is a list ofresource s. (list/2)

NewRes is a resource. (resource/1)

resource requires/3: PREDICATE

Usage:resource requires(Res,Requires,NewRes)

– Description:Requires is the list of capabilities which must be present to fully use the
resourceNewRes. They represent strong requirements which will be taken into account
when performing a search.

41

– The following properties should hold at call time:

Res is a resource. (resource/1)

Requires is a list ofditem s. (list/2)

NewRes is a resource. (resource/1)

resourcenotes/3: PREDICATE

Usage:resource notes(Res,Notes,NewRes)

– Description:Notes is a list of miscellaneous notes regarding the resourceNewRes.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Notes is a string (a list of character codes). (string/1)

NewRes is a resource. (resource/1)

resourcecertification status/3: PREDICATE

Usage:resource certification status(Res,Certification,NewRes)

– Description:Certification is the list of certificates of the resourceNewRes.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Certification is a list ofcertification s. (list/2)

NewRes is a resource. (resource/1)

resourceasset/3: PREDICATE

Usage:resource asset(Res,Asset,NewRes)

– Description:Asset is the (more general) asset the resourceNewResdefines.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Asset is an asset. (asset/1)

NewRes is a resource. (resource/1)

resourcecheck/2: PREDICATE

Usage:resource check(Res,WrongFields)

– Description: The already formed resourceRes is checked against the constraints speci-
fied in the ontology definition. Fields whose associated value at entry is afree variable
and whose minimal cardinality is zero are substituted by anull value (see the regular
typenull/1). Fields whose associated value at entry is afree variable and whose min-
imal cardinality is greater than zero are reported as having a wrong value in the variable
WrongFields . Finally, fields whose associated value at entry is not a variable, and
whose type does not match the one specified in the ontology, are also reported as wrong
fields.

42

– The following properties should hold at call time:

Res is a resource. (resource/1)

WrongFields is a list ofresource field s. (list/2)

resourceupdate/3: PREDICATE

Usage:resource update(Res,PairList,NewRes)

– Description: It updatesRes to giveNewRes. PairList is a list of pairs (seepair):
dash-separated ground termsField-Value , which are meant to express the name of a
field and its update value.Asset update is a general call upon which all the rest of
theupdate calls rely.

– The following properties should hold at call time:

Res is currently a term which is not a free variable. (nonvar/1)

PairList is currently a term which is not a free variable. (nonvar/1)

Res is a resource. (resource/1)

PairList is a list ofpair s. (list/2)

NewRes is a resource. (resource/1)

resource/1: REGTYPE

Usage:resource(Res)

– Description:Res is a resource.

resourcefield/1: REGTYPE

Usage:resource field(Field)

– Description:Field is a field of a resource definition

It is currently defined as:

resource_field(size).
resource_field(identification).
resource_field(language).
resource_field(versionof).
resource_field(uses).
resource_field(requires).
resource_field(notes).
resource_field(cert_status).
resource_field(asset).

E.3 Version/Change Log (resource access)

Version 0.1#1 (2003/2/14, 16:28:1 CET) ResAfter to NewRes (Manuel Carro)

Version 0.1 (2003/2/13, 20:49:41 CET) Initial version, with all interfaces included. (Manuel Carro)

43

44

F Creating and Consulting Dictionaries

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 16:26:43 CET)
Dictionaries hold the terms to be used both to describe Open Source Packages and to state which

capabilities are of interest when performing a search. Each dictionary consists of a set of terms
(dictionary items); each of these, in turn, may have synonyms (in order to make programmers and
users coming from different knowledge areas to use the same dictionary) and term descriptions (in
order to clarify what is the exact meaning attributed to every dictionary term). The dictionary is
assumed to grow steadily until a sufficient size has been reached, when it should stabilize.

The operations herein included are aimed at creating and consulting instances of thedictionary
anddictionaryItemclasses. They may change (for example, to include more operations) should the
ontology evolve in that direction.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

45

F.1 Usage and interface (dictionary access)

• Library usage:

:- use module(library(dictionary access)).

• Exports:

– Predicates:

ditem entry/3 , ditem synonyms/3 , ditem generalization/3 ,
ditem translation/3 , ditem check/2 , ditem update/3 ,
dictionary entries/3 .

– Regular Types:

dictionary/1 , ditem/1 , ditem field/1 .

• Other modules used:

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

F.2 Documentation on exports (dictionary access)

ditem entry/3: PREDICATE

Usage:ditem entry(Item,Entry,NewItem)

– Description: Entry is the actual name of the concept stored inNewItem . Its presence
is required.

– The following properties should hold at call time:

Item is one entry of the dictionary. (ditem/1)

Entry is a string (a list of character codes). (string/1)

NewItem is one entry of the dictionary. (ditem/1)

ditem synonyms/3: PREDICATE

Usage:ditem synonyms(Item,Synonyms,NewItem)

– Description: Synonyms is the list of synonyms for the name of the concept stored in
NewItem . It may be an empty list.

– The following properties should hold at call time:

Item is one entry of the dictionary. (ditem/1)

Synonyms is a list ofstring s. (list/2)

NewItem is one entry of the dictionary. (ditem/1)

46

ditem generalization/3: PREDICATE

Usage:ditem generalization(Item,Generalization,NewItem)

– Description: Generalization is a list of terms which generalize the meaning of
NewItem . They are used to broaden the search in order to obtain (more) matches. It
may be an empty list.

– The following properties should hold at call time:

Item is one entry of the dictionary. (ditem/1)

Generalization is a list ofditem s. (list/2)

NewItem is one entry of the dictionary. (ditem/1)

ditem translation/3: PREDICATE

Usage:ditem translation(Item,Translation,NewItem)

– Description: Translation is a list of pairs which define what is the translation to
different languages of the term stored inNewItem .

– The following properties should hold at call time:

Item is one entry of the dictionary. (ditem/1)

Translation is a list oftrans s. (list/2)

NewItem is one entry of the dictionary. (ditem/1)

ditem check/2: PREDICATE

Usage:ditem check(Ditem,WrongFields)

– Description: The already formed dictionary itemDitem is checked against the con-
straints specified in the ontology definition. Fields whose associated value at entry is a
free variable and whose minimal cardinality is zero are substituted by anull value (see
the regular typenull/1). Fields whose associated value at entry is afree variable and
whose minimal cardinality is greater than zero are reported as having a wrong value in the
variableWrongFields . Finally, fields whose associated value at entry is not a variable,
and whose type does not match the one specified in the ontology, are also reported as
wrong fields.

– The following properties should hold at call time:

Ditem is one entry of the dictionary. (ditem/1)

WrongFields is a list ofditem field s. (list/2)

ditem update/3: PREDICATE

Usage:ditem update(Ditem,PairList,NewDitem)

– Description: It updatesDitem to give NewDitem . PairList is a list of pairs (see
pair): dash-separated ground termsField-Value , which are meant to express the
name of a field and its update value.Ditem update is a general call upon which all the
rest of theupdate calls rely.

47

– The following properties should hold at call time:

Ditem is currently a term which is not a free variable. (nonvar/1)

PairList is currently a term which is not a free variable. (nonvar/1)

Ditem is one entry of the dictionary. (ditem/1)

PairList is a list ofpair s. (list/2)

NewDitem is one entry of the dictionary. (ditem/1)

dictionary entries/3: PREDICATE

Usage:dictionary entries(Dict,Entries,DictAfter)

– Description:Entries is the list of items (dictionary entries, as per the definition above)
stored in the dictionaryDictAfter . There must be at least a term in the dictionary.

– The following properties should hold at call time:

Dict is a dictionary. (dictionary/1)

Entries is a list ofditem s. (list/2)

DictAfter is a dictionary. (dictionary/1)

dictionary/1: REGTYPE

Usage:dictionary(Dict)

– Description:Dict is a dictionary.

ditem/1: REGTYPE

Usage:ditem(Item)

– Description: Item is one entry of the dictionary.

ditem field/1: REGTYPE

Usage:ditem field(Field)

– Description:Field is a field of a dictionary item

It is currently defined as:

ditem_field(entry).
ditem_field(synonyms).
ditem_field(generalization).
ditem_field(translation).

F.3 Version/Change Log (dictionary access)

Version 0.1#1 (2003/2/14, 16:26:43 CET) Changed ItemAfter to NewItem (Manuel Carro)

Version 0.1 (2003/2/13, 20:49:7 CET) Initial version, with all interfaces included. (Manuel Carro)

48

G Creating and Consulting User Identifications

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#1 (2003/2/14, 16:28:28 CET)
Users exist in the system because they are responsible or somehow linked to resources. The

classuserexpresses the minimal information needed to distinguish among users, by establishing the
identity (i.e., their digital signature) which is used to mark the packages the user is responsible for, and
the organization the user belongs to. A user by itself can be the unique participant on an organization,
in which case the organization would consist of a single individual.

The operations herein included are aimed at creating and consulting instances of theuserclass.
They may change (for example, to include more operations) should the ontology evolve in that direc-
tion.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, ‘Ciao Prolog’, NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field ofObj , and it will fail otherwise.

Fields which return a free variable are supposed to be uninitialized (which is incorrect for fields
of well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

49

G.1 Usage and interface (user access)

• Library usage:

:- use module(library(user access)).

• Exports:

– Predicates:

user affiliation/3 , user package signature/3 , user update/3 ,
user check/2 .

– Regular Types:

user field/1 , user/1 .

• Other modules used:

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

G.2 Documentation on exports (user access)

user affiliation/3: PREDICATE

Usage:user affiliation(User,Affiliation,NewUser)

– Description:Affiliation is the list of organizations theNewUser belongs to.

– The following properties should hold at call time:

User is a user. (user/1)

Affiliation is a list oforganization s. (list/2)

NewUser is a user. (user/1)

user packagesignature/3: PREDICATE

Usage:user package signature(User,Signature,NewUser)

– Description: Signature is the digital signature with whichNewUser signs its pack-
ages.

– The following properties should hold at call time:

User is a user. (user/1)

Signature is a string (a list of character codes). (string/1)

NewUser is a user. (user/1)

user update/3: PREDICATE

50

Usage:user update(User,PairList,NewUser)

– Description:It updatesUser to giveNewUser . PairList is a list of pairs (seepair):
dash-separated ground termsField-Value , which are meant to express the name of a
field and its update value.User update is a general call upon which all the rest of the
update calls rely.

– The following properties should hold at call time:
User is currently a term which is not a free variable. (nonvar/1)
PairList is currently a term which is not a free variable. (nonvar/1)
User is a user. (user/1)
PairList is a list ofpair s. (list/2)
NewUser is a user. (user/1)

user check/2: PREDICATE

Usage:user check(User,WrongFields)

– Description: The already formed userUser is checked against the constraints specified
in the ontology definition. Fields whose associated value at entry is afree variable and
whose minimal cardinality is zero are substituted by anull value (see the regular type
null/1). Fields whose associated value at entry is afree variable and whose mini-
mal cardinality is greater than zero are reported as having a wrong value in the variable
WrongFields . Finally, fields whose associated value at entry is not a variable, and
whose type does not match the one specified in the ontology, are also reported as wrong
fields. .

– The following properties should hold at call time:
User is a user. (user/1)
WrongFields is a list ofuser fields s. (list/2)

user field/1: REGTYPE

Usage:user field(Field)

– Description:Field is a field of a user instance
It is currently defined as:

user_field(affiliation).
user_field(signature).

user/1: REGTYPE

Usage:user(User)

– Description:User is a user.

G.3 Version/Change Log (user access)

Version 0.1#1 (2003/2/14, 16:28:28 CET) UserAfter to NewUser (Manuel Carro)

Version 0.1 (2003/2/13, 20:49:56 CET) Initial version, with all interfaces included. (Manuel Carro)

51

52

H Basic types

Author(s): Manuel Carro and the CLIP Group, Facultad de Informática, Universidad Politécnica de
Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1 (2003/2/13, 20:48:43 CET)
This module contains basic types used in the database access and ontology handling.
This work has been partially supported by the EU Fifth ESPRIT programme, and it has been

developed as part of the AMOS Project (IST-2001-34717).

H.1 Usage and interface (basic types)

• Library usage:

:- use module(library(basic types)).

• Exports:

– Regular Types:

date/1 , language/1 , null/1 .

• Other modules used:

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

H.2 Documentation on exports (basic types)

date/1: REGTYPE

Usage:date(Date)

– Description:Date is a date.

language/1: REGTYPE

Usage:language(LangDesc)

– Description:LangDesc is a valid language descriptor. It consists of a pairlang(String,
LangCode) , whereString is a human-readable language name andLangCode is an
atom corresponding to the (standard) coding of languages:

language(lang("English",’EN’)).
language(lang("Spanish",’SP’)).
language(lang("French",’FR’)).
language(lang("German",’DE’)).

53

null/1: REGTYPE

Usage:null(Null)

– Description:Null is an atom recognized as thenull value by the database interface.

H.3 Version/Change Log (basic types)

Version 0.1 (2003/2/13, 20:48:43 CET) Initial version, with all interfaces included. (Manuel Carro)

54

I Top-Level matching engine interface

Author(s): Jose Manuel Gomez, Manuel Carro, and the CLIP Group, Facultad de Informática, Uni-
versidad Polit́ecnica de Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

This module provides an interface for building and posting search queries to a database containing
descriptions of open source code packages. The interface operations are primarily aimed at creating
a bridge between aWWW interface (or, in general, any end user) and theontology implementation,
offering a series of primitives to connect both ends.

Building means constructing a term which states which capabilities are of interest (or of no in-
terest). Heuristics to be used in order to direct the search towards a more promising answer without
exploring the whole of the search space can be stated. Additionally, operations are provided to manage
the query as an opaque data structure, in order, e.g., to add / remove search terms from it.

Postingthe query refers to actually sending it to the matching engine. Each query posted specifies
the number of solutions required (useful to generate web pages) and it returns anew queryexpressing
the state of the search after the last solution was found. Posting this new query again will restart the
search where it was left before.

In this module, and unless otherwise specified, operations of the formoperation name(Arg,
Value, NewArg) can be used either:

• To update the relevant field ofArg to Value and leave the result inNewArg, e.g.,

class field(Obj, \"Ciao Prolog \", NewObj)

(for someclass within the ontology, and somefield in theclass) leaving the fields other
thanfield unchanged,

• To retrieve inVar the value of the relevant field without changing it, with, e.g.,class field(,
Var, Obj) or class field(Obj, Var, Obj) , whereVar is a free variable at the mo-
ment of call, or

• To check whether some field has a given value without changing it, with, e.g.class field(,
Value, Obj) or class field(Obj, Value, Obj) , whereValue is bound to a non-
variable term at the moment of the call. The call will succeed ifValue is the same (or at least
unifiable) with what is stored in the corresponding field of @ObjArg, and it will fail otherwise.

Fields which return a free variable are supposed to be unitialized (which is incorrect for fields of
well-formed class instances which need the presence of a certain field). All fields are uninitialized
upon creation of a new class instance.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

55

I.1 Usage and interface (matching access)

• Library usage:

:- use module(library(matching access)).

• Exports:

– Predicates:

build query/5 , make query/4 , expand solution/4 ,
query add search terms/3 , query remove search terms/3 ,
query add include packages/3 ,
query remove include packages/3 ,
query add exclude packages/3 ,
query remove exclude packages/3 .

– Regular Types:

heuristic/1 , solution/1 , query/1 , results/1 .

• Other modules used:

– Application modules:

../DataBase/dictionary access .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

I.2 Documentation on exports (matching access)

build query/5: PREDICATE

Usage:build query(Terms,Heuristic,IncludePacks,ExcludePacks,Query)

– Description: Terms is a a list of dictionary terms to be searched for, describing the de-
sired capabilities.Heuristic is the heuristic to follow during the search.IncludePacks
is a list of packages which have been selected by the user as interesting or advantageous
and whichmust be included in the final solution.ExcludePacks are packages which
are not desired in a final solution, andQuery is a query including the all these terms and
which will be used to perform the search.

– The following properties should hold at call time:

Terms is a list ofsearch term s. (list/2)

Heuristic is an atom. (atm/1)

IncludePacks is a list ofatms. (list/2)

ExcludePacks is a list ofatms. (list/2)

Query is a query. (query/1)

56

make query/4: PREDICATE

Usage:make query(Query,MaxSols,Results,NextQuery)

– Description:Query is the query that currently guides the search,Results is a list of at
mostMaxSols solutions, andNextQuery reflects where the current search has stopped
so thatmake query/4 can restart it at that point. IfResults is an empty list, then no
solutions have been found (and further calls tomake query/4 with NextQuery will
not yield any more solutions).

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

MaxSols is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

MaxSols is an integer. (int/1)

Results is a list ofresult s. (list/2)

NextQuery is a query. (query/1)

expand solution/4: PREDICATE

Usage:expand solution(Solution,Packages,Fulfilled,Flooded)

– Description: expand solution/4 receives a solutionSolution and gathers more
information about the results of the search which lead to that solution:

∗ The list of package names returned (Packages)

∗ which capabilities (either initially requested or internally required by the search pro-
cess) were found (Fulfilled), and

∗ which capabilities were needed, but were not satisfied (Flooded).

– The following properties should hold at call time:

Solution is currently a term which is not a free variable. (nonvar/1)

Solution is a solution (solution/1)

Packages is a list ofatms. (list/2)

Fulfilled is a list ofsearch term s. (list/2)

Flooded is a list ofsearch term s. (list/2)

query add search terms/3: PREDICATE

Usage:query add search terms(Query,Terms,NewQuery)

– Description:query add search terms/3 changes queryQuery to queryNewQuery
by adding new search termsTerms into it.

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Terms is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Terms is a list ofsearch term s. (list/2)

NewQuery is a query. (query/1)

57

query remove search terms/3: PREDICATE

Usage:query remove search terms(Query,Terms,NewQuery)

– Description:query remove search terms/3 changes queryQuery to queryNewQuery
by removing the search termsTerms from it.

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Terms is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Terms is a list ofsearch term s. (list/2)

NewQuery is a query. (query/1)

query add include packages/3: PREDICATE

Usage:query add include packages(Query,Packages,NewQuery)

– Description:query add include packages/3 changes queryQuery to queryNewQuery
by adding new packagesPackages to appear in a final solution.

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Packages is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Packages is a list ofatms. (list/2)

NewQuery is a query. (query/1)

query remove include packages/3: PREDICATE

Usage:query remove include packages(Query,Packages,NewQuery)

– Description:query remove include packages/3 changes queryQuery to query
NewQuery by removingPackages from the list of packages to appear in a final solu-
tion.

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Packages is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Packages is a list ofatms. (list/2)

NewQuery is a query. (query/1)

query add excludepackages/3: PREDICATE

Usage:query add exclude packages(Query,Packages,NewQuery)

– Description: query add exclude packages/3 transforms the queryQuery into
the queryNewQuery by adding the list of packagesPackages to those which will be
excluded from the final solution.

58

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Packages is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Packages is a list ofatms. (list/2)

NewQuery is a query. (query/1)

query remove excludepackages/3: PREDICATE

Usage:query remove exclude packages(Query,Packages,NewQuery)

– Description: query remove exclude packages/3 transforms the queryQuery
into the queryNewQuery by removing the list of packagesPackages from those to be
excluded from the final solution.

– The following properties should hold at call time:

Query is currently a term which is not a free variable. (nonvar/1)

Packages is currently a term which is not a free variable. (nonvar/1)

Query is a query. (query/1)

Packages is a list ofatms. (list/2)

NewQuery is a query. (query/1)

heuristic/1: REGTYPE

Usage:heuristic(H)

– Description:H is a valid heuristic, implemented as a ground term. Valid heuristics are:

heuristic(all).
heuristic(first(N)) :-

int(N).

solution/1: REGTYPE

Usage:solution(Sol)

– Description:Sol is a solution

query/1: REGTYPE

Usage:query(Query)

– Description:Query is a query.

results/1: REGTYPE

Usage:results(Results)

– Description:Results is a list of solutions.

59

60

J Application-Oriented Database Interface

Author(s): Jeśus Correas, Manuel Carro, and the CLIP Group, Facultad de Informática, Universidad
Politécnica de Madrid,clip@dia.fi.upm.es , http://www.clip.dia.fi.upm.es/ .

Version: 0.1#3 (2003/2/18, 12:43:18 CET)
This module implements the predicates which perform queries and modifications on data stored

in the database implementation of the AMOS ontology. The primitives defined in this module aim
at being implementation-independent: the underlying database technology, schemata, and vendor or
query and data language variant should not be reflected at this level. Likewise, the Prolog-level im-
plementation of the data handled by the database interface should not be seen at this level. This is
achieved by wrapping each ontology class with a module treating the class instantiations as opaque
data structures. The operations provided by these modules are internally used when needed by the
database access module.

Unlike the modules related with ontology classes, which have a declarative semantics based on
the generation of one state from the previous one, the predicates related to updates in this module are
aware of the existence of an (external) state which lives across calls (and, ultimately, across program
executions). Therefore, they do not make the distinction of input and output (database) states: changes
to the contents of the database are implicit, and states previous to a change are not recoverable on
backtracking.

In addition to the operations to consult and store, naturally induced by the ontology, some utility
operations, mainly related to accessing the terms needed to perform a search, are included in this
module. This is so in order for the matching engine to have a faster access to the information needed
to perform searches, and to make the code of the matching engine simpler and clearer.

In order to provide a better integration of the database access primitives with the operational
semantics of Prolog, data retrieval operations can both consult and generate answers on backtracking.
This makes it easier to use them from within the matching engine as well.

This work has been partially supported by the EU Fifth ESPRIT programme, and it has been
developed as part of the AMOS Project (IST-2001-34717).

61

J.1 Usage and interface (database access)

• Library usage:

:- use module(library(database access)).

• Exports:

– Predicates:

resource description/2 , resource needs/2 ,
resource provides/2 , resource db update/2 ,
resource delete/1 , organization description/2 ,
organization db update/2 , organization delete/1 ,
user description/2 , user db update/2 , user delete/1 ,
certification description/2 , certification db update/2 ,
certification delete/1 , ditem description/2 ,
ditem db update/2 , ditem delete/1 .

– Regular Types:

db key/1 .

• Other modules used:

– Application modules:

asset access , resource access , user access ,
organization access , certification access ,
dictionary access , database impl .

– Internal (engine) modules:

arithmetic , atomic basic , attributes , basic props ,
basiccontrol , data facts , exceptions , io aux , io basic ,
prolog flags , streams basic , system info , term basic ,
term compare , term typing .

J.2 Documentation on exports (database access)

db key/1: REGTYPE

Usage:db key(Key)

– Description: Key is a (Prolog) representation of an unique indexing key, used by the
database. It is to be changed according the the database implementation, and it should not
be changed or manipulated by the Prolog program.

resourcedescription/2: PREDICATE

Usage:resource description(Desc,Key)

– Description: Desc is the complete description of the resource internally identified by
Key.

62

– The following properties should hold at call time:

Desc is a resource. (resource/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

resourceneeds/2: PREDICATE

Usage 1:resource needs(Key,Needs)

– Description: Needs is the list of dictionary entries that the package identified byKey
needs.

– The following properties should hold at call time:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Needs is a list ofditem s. (list/2)

Usage 2:resource needs(Res,Needs)

– Description:Needs is the list of dictionary entries that the resourceRes needs.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Needs is a list ofditem s. (list/2)

resourceprovides/2: PREDICATE

Usage 1:resource provides(Res,Provides)

– Description:Provides is the list of dictionary entries that the resourceRes holds.

– The following properties should hold at call time:

Res is a resource. (resource/1)

Provides is a list ofditem s. (list/2)

Usage 2:resource provides(Key,Provides)

– Description: Provides is the list of dictionary entries that the resource identified by
Key provides.

– The following properties should hold at call time:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Provides is a list ofditem s. (list/2)

resourcedb update/2: PREDICATE

Usage 1:resource db update(Key,Res)

63

– Description: The database records are updated in order to makeRes the new resource
description associated toKey in the database.Key must have been previously generated
and associated with a resource.Res must not contain free variables, and it must abide by
the integrity constraints of the ontology. In order to ensure that,resource check/2
may be used before updating the database.

– Call and exit should becompatiblewith:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Res is a resource. (resource/1)

– The following properties should hold at call time:

Key is currently ground (it contains no variables). (ground/1)

Res is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Key is currently ground (it contains no variables). (ground/1)

Res is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Res is a resource. (resource/1)

Usage 2:resource db update(Key,Res)

– Description:ResourceRes is added to the database, and the key associated to the resource
is Key. If Res was not present in the database, a newKey is generated for it.Res must
not contain free variables, and it must abide by the integrity constraints of the ontology.
In order to ensure that,resource check/2 may be used before updating the database.

– Call and exit should becompatiblewith:

Key is a free variable. (var/1)

Res is a resource. (resource/1)

– The following properties should hold at call time:

Key is a free variable. (var/1)

Res is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Res is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Res is a resource. (resource/1)

resourcedelete/1: PREDICATE

Usage 1:resource delete(ResKey)

64

– Description:The resource whose associated key isResKey is removed from the database,
along with all the information which would make the database incoherent with respect to
the constraints stated in the ontology.

– The following properties should hold at call time:

ResKey is currently ground (it contains no variables). (ground/1)

ResKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

– The following properties should hold upon exit:

ResKey is currently ground (it contains no variables). (ground/1)

Usage 2:resource delete(Res)

– Description:The resource represented byRes is removed from the database, along with
all the information which would make the database incoherent with respect to the con-
straints stated in the ontology.Res must not contain free variables, and it must abide by
the integrity constraints of the ontology. In order to ensure that,resource check/2
may be used before updating the database.

– The following properties should hold at call time:

Res is currently ground (it contains no variables). (ground/1)

Res is a resource. (resource/1)

– The following properties should hold upon exit:

Res is currently ground (it contains no variables). (ground/1)

organization description/2: PREDICATE

Usage:organization description(Desc,Key)

– Description:Desc is the complete description of the organization internally identified by
Key.

– The following properties should hold at call time:

Desc is an organization. (organization/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

organization db update/2: PREDICATE

Usage 1:organization db update(Key,Org)

– Description: The database database records are updated in order to makeOrg the new
organization description associated toKey in the database.Key must have been previ-
ously generated and associated with an organization.Org must not contain free variables,
and it must abide by the integrity constraints of the ontology. In order to ensure that,
organization check/2 may be used before updating the database.

65

– Call and exit should becompatiblewith:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Org is an organization. (organization/1)

– The following properties should hold at call time:

Key is currently ground (it contains no variables). (ground/1)

Org is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Key is currently ground (it contains no variables). (ground/1)

Org is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Org is an organization. (organization/1)

Usage 2:organization db update(Key,Org)

– Description:The organizationOrg is added to the database, and the key associated to the
organization description isKey. If Org was not present in the database, a newKey is
generated for it.Org must not contain free variables, and it must abide by the integrity
constraints of the ontology. In order to ensure that,organization check/2 may be
used before updating the database.

– Call and exit should becompatiblewith:

Key is a free variable. (var/1)

Org is an organization. (organization/1)

– The following properties should hold at call time:

Key is a free variable. (var/1)

Org is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Org is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Org is an organization. (organization/1)

organization delete/1: PREDICATE

Usage 1:organization delete(OrgKey)

– Description: The organziation whose associated key isOrgKey is removed from the
database, along with all the information which would make the database incoherent with
respect to the constraints stated in the ontology.

66

– The following properties should hold at call time:

OrgKey is currently ground (it contains no variables). (ground/1)

OrgKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

– The following properties should hold upon exit:

OrgKey is currently ground (it contains no variables). (ground/1)

Usage 2:organization delete(Org)

– Description: The organization represented byOrg is removed from the database, along
with all the information which would make the database incoherent with respect to the
constraints stated in the ontology.Org must not contain free variables, and it must abide
by the integrity constraints of the ontology. In order to ensure that,organization check/2
may be used before updating the database.

– The following properties should hold at call time:

Org is currently ground (it contains no variables). (ground/1)

Org is an organization. (organization/1)

– The following properties should hold upon exit:

Org is currently ground (it contains no variables). (ground/1)

user description/2: PREDICATE

Usage:user description(Desc,Key)

– Description:Desc is the complete description of the user associated to the identifierKay.

– The following properties should hold at call time:

Desc is a user. (user/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

user db update/2: PREDICATE

Usage 1:user db update(Key,User)

– Description: The database database records are updated in order to makeUser the new
user description associated toKey in the database.Key must have been previously
generated and associated with an organization.user must not contain free variables,
and it must abide by the integrity constraints of the ontology. In order to ensure that,
user check/2 may be used before updating the database.

– Call and exit should becompatiblewith:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

User is a user. (user/1)

67

– The following properties should hold at call time:

Key is currently ground (it contains no variables). (ground/1)

User is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Key is currently ground (it contains no variables). (ground/1)

User is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

User is a user. (user/1)

Usage 2:user db update(Key,User)

– Description: The userUser is added to the database, and the key associated to the user
description isKey. If User was not present in the database, a newKey is generated for
it. user must not contain free variables, and it must abide by the integrity constraints of
the ontology. In order to ensure that,user check/2 may be used before updating the
database.

– Call and exit should becompatiblewith:

Key is a free variable. (var/1)

User is a user. (user/1)

– The following properties should hold at call time:

Key is a free variable. (var/1)

User is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

User is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

User is a user. (user/1)

user delete/1: PREDICATE

Usage 1:user delete(UserKey)

– Description: The user whose associated key isUserKey is removed from the database,
along with all the information which would make the database incoherent with respect to
the constraints stated in the ontology.

– The following properties should hold at call time:

UserKey is currently ground (it contains no variables). (ground/1)

UserKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

– The following properties should hold upon exit:

UserKey is currently ground (it contains no variables). (ground/1)

68

Usage 2:user delete(User)

– Description:The user represented byUser is removed from the database, along with all
the information which would make the database incoherent with respect to the constraints
stated in the ontology.User must not contain free variables, and it must abide by the
integrity constraints of the ontology. In order to ensure that,user check/2 may be
used before updating the database.

– The following properties should hold at call time:

User is currently ground (it contains no variables). (ground/1)

User is a user. (user/1)

– The following properties should hold upon exit:

User is currently ground (it contains no variables). (ground/1)

certification description/2: PREDICATE

Usage:certification description(Desc,CertKey)

– Description:Desc is the complete description of the certification associated to the iden-
tifier CertKey .

– The following properties should hold at call time:

Desc is a certification. (certification/1)

CertKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

certification db update/2: PREDICATE

Usage 1:certification db update(Key,Cert)

– Description:The database records are updated in order to makeCert the new certificate
description associated toKey in the database.Key must have been previously generated
and associated with a certificate.Cert must not contain free variables, and it must abide
by the integrity constraints of the ontology. In order to ensure that,certification check/2
may be used before updating the database.

– Call and exit should becompatiblewith:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Cert is a certification. (certification/1)

– The following properties should hold at call time:

Key is currently ground (it contains no variables). (ground/1)

Cert is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Key is currently ground (it contains no variables). (ground/1)

Cert is currently ground (it contains no variables). (ground/1)

69

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)
Cert is a certification. (certification/1)

Usage 2:certification db update(Key,Cert)

– Description:The certificateCert is added to the database, and the key associated to the
certificate isKey. If Cert was not present in the database, a newKey is generated for
it. Cert must not contain free variables, and it must abide by the integrity constraints
of the ontology. In order to ensure that,certificate check/2 may be used before
updating the database.

– Call and exit should becompatiblewith:

Key is a free variable. (var/1)
Cert is a certification. (certification/1)

– The following properties should hold at call time:

Key is a free variable. (var/1)
Cert is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Cert is currently ground (it contains no variables). (ground/1)
Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)
Cert is a certification. (certification/1)

certification delete/1: PREDICATE

Usage 1:certification delete(CertKey)

– Description: The certificate whose associated key isCertKey is removed from the
database, along with all the information which would make the database incoherent with
respect to the constraints stated in the ontology.

– The following properties should hold at call time:

CertKey is currently ground (it contains no variables). (ground/1)
CertKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

– The following properties should hold upon exit:

CertKey is currently ground (it contains no variables). (ground/1)

Usage 2:certification delete(Cert)

– Description: The certificate represented byCert is removed from the database, along
with all the information which would make the database incoherent with respect to the
constraints stated in the ontology.Cert must not contain free variables, and it must abide
by the integrity constraints of the ontology. In order to ensure that,certification check/2
may be used before updating the database.

70

– The following properties should hold at call time:

Cert is currently ground (it contains no variables). (ground/1)

Cert is a certification. (certification/1)

– The following properties should hold upon exit:

Cert is currently ground (it contains no variables). (ground/1)

ditem description/2: PREDICATE

Usage:ditem description(Desc,Key)

– Description:Desc is the description of the dictionary itemItem .

– The following properties should hold at call time:

Desc is one entry of the dictionary. (ditem/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

ditem db update/2: PREDICATE

Usage 1:ditem db update(Key,Item)

– Description: The database records are updated in order to makeItem the new item
description associated toKey in the database.Key must have been previously gen-
erated and associated with an dictionary item.Item must not contain free variables,
and it must abide by the integrity constraints of the ontology. In order to ensure that,
ditem check/2 may be used before updating the database.

– Call and exit should becompatiblewith:

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Item is one entry of the dictionary. (ditem/1)

– The following properties should hold at call time:

Key is currently ground (it contains no variables). (ground/1)

Item is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Key is currently ground (it contains no variables). (ground/1)

Item is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Item is one entry of the dictionary. (ditem/1)

Usage 2:ditem db update(Key,Item)

71

– Description: The dictionary itemItem is added to the database, and the key associated
to the item description isKey. If Item was not present in the database, a newKey is
generated for it.Item must not contain free variables, and it must abide by the integrity
constraints of the ontology. In order to ensure that,ditem check/2 may be used before
updating the database.

– Call and exit should becompatiblewith:

Key is a free variable. (var/1)

Item is one entry of the dictionary. (ditem/1)

– The following properties should hold at call time:

Key is a free variable. (var/1)

Item is currently ground (it contains no variables). (ground/1)

– The following properties should hold upon exit:

Item is currently ground (it contains no variables). (ground/1)

Key is a (Prolog) representation of an unique indexing key, used by the database. It is to
be changed according the the database implementation, and it should not be changed or
manipulated by the Prolog program. (db key/1)

Item is one entry of the dictionary. (ditem/1)

ditem delete/1: PREDICATE

Usage 1:ditem delete(ItemKey)

– Description:The dictionary item whose associated key isItemKey is removed from the
database, along with all the information which would make the database incoherent with
respect to the constraints stated in the ontology.

– The following properties should hold at call time:

ItemKey is currently a term which is not a free variable. (nonvar/1)

ItemKey is a (Prolog) representation of an unique indexing key, used by the database. It
is to be changed according the the database implementation, and it should not be changed
or manipulated by the Prolog program. (db key/1)

Usage 2:ditem delete(Item)

– Description: The dictionary entry represented byItem is removed from the database,
along with all the information which would make the database incoherent with respect to
the constraints stated in the ontology.Item must not contain free variables, and it must
abide by the integrity constraints of the ontology. In order to ensure that,ditem check/2
may be used before updating the database.

– The following properties should hold at call time:

Item is currently a term which is not a free variable. (nonvar/1)

Item is one entry of the dictionary. (ditem/1)

72

J.3 Version/Change Log (database access)

Version 0.1#3 (2003/2/18, 12:43:18 CET) preliminary database implementation and minor docu-
mentation changes (Jesus Correas Fernandez)

Version 0.1#2 (2003/2/17, 16:1:32 CET) Documentation and minor changes on module interface.
(Jesus Correas Fernandez)

Version 0.1#1 (2003/2/14, 15:56:45 CET) Initial version, with all interfaces included. (Jesus Correas
Fernandez)

73

74

References

[ACFLGP01] J. C. Arṕırez, O. Corcho, M. Ferńandez-Ĺopez, and A. Ǵomez-Ṕerez. Webode: a
Scalable Workbench for Ontological Engineering. InProceedings of the International
Conference on Knowledge Capture, pages 6–13. ACM Press, 2001.

[Daf02] Carlo Daffara. An ontology for open source code. Technical report, Conecta s.r.l.,
2002. Deliverable D2 of the AMOS Project.

[Far95] Adam Farquhar. Ontolingua to Prolog Syntax Translation. Available
at http://ksl-web.stanford.edu/people/axf/ol-to-prolog.txt ,
April 1995.

[KW02] M. M. Kokar and J. Wang. An Example of Using Ontologies and Symbolic Information
in Automatic Target Recognition. InSensor Fusion: Architectures, Algorithms and
Applications VI, volume 4731 ofSPIE, pages 40–50, 2002.

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues and research directions.IEEE
Transactions on Software Engineering, 1995.

[SPRS02] D. Sleeman, S. Potter, D. Robertson, and M. Schorlemmer. Ontology Extraction for
Distributed Environments. InWorkshop on Knowledge Transformations for the Se-
mantic Web (affiliated to ECAI-02), July 2002.

[Tec] AKT Technologies. Edinburgh Mission Statement. Available at
http://www.aktors.org/publications/technologies/extrakt/ .

75

Index

../DataBase/dictionaryaccess, 56

aggregates, 20, 30
arithmetic, 14, 20, 30, 34, 40, 46, 50, 53, 56,

62
asset/1, 20, 26
assetaccess, 40, 62
assetadditionalconstraints/3, 20, 22
assetadditionalfreedom/3, 20, 23
assetauthor/3, 20, 21
assetcertification/3, 20, 25
assetcheck/2, 20, 25
assetcontact/3, 20, 21
assetcost/3, 20, 24
assetcreationdate/3, 20, 23
assetdescription/3, 20, 23
assetdownloadpage/3, 20, 21
assetenvironment/3, 20, 24
assetfield/1, 20, 26
assethomepage/3, 20, 21
assetlicense/3, 20, 22
assetlicenseURL/3, 20, 22
assetmaintainedby/3, 20, 21
assetname/3, 20
assetpackagesignature/3, 20, 25
assetreferences/3, 20, 22
assetsecurityclassification/3, 20, 24
assetsubmissiondate/3, 20, 24
assetsubmittedby/3, 20, 23
assetupdate/3, 20, 25
assetversion/3, 20, 22
atomicbasic, 14, 20, 30, 34, 40, 46, 50, 53, 56,

62
attributes, 14, 20, 30, 34, 40, 46, 50, 53, 56, 62

basicprops, 14, 20, 30, 34, 40, 46, 50, 53, 56,
62

basictypes, 14, 20, 34
basiccontrol, 14, 20, 30, 34, 40, 46, 50, 53, 56,

62
build query/5, 56

certificatecheck/2, 70
certification/1, 34, 37
certificationaccess, 40, 62

certificationartifact/3, 34, 35
certificationartifact type/3, 34, 35
certificationcheck/2, 34, 36, 69, 70
certificationcomments/3, 34, 36
certificationdate/3, 34
certificationdb update/2, 62, 69
certificationdelete/1, 62, 70
certificationdescription/2, 62, 69
certificationfield/1, 34, 37
certificationlevel/3, 34, 35
certificationpolicy/3, 34, 35
certificationreference/3, 34, 35
certificationstatus/3, 34
certificationupdate/3, 34, 36, 37
certificationverifier/3, 34, 36

datafacts, 14, 20, 30, 34, 40, 46, 50, 53, 56,
62

databaseimpl, 62
date/1, 53
db key/1, 62
dictionary/1, 46, 48
dictionaryaccess, 40, 62
dictionaryentries/3, 46, 48
ditem/1, 46, 48
ditem check/2, 46, 47, 71, 72
ditem db update/2, 62, 71
ditem delete/1, 62, 72
ditem description/2, 62, 71
ditem entry/3, 46
ditem field/1, 46, 48
ditem generalization/3, 46, 47
ditem synonyms/3, 46
ditem translation/3, 46, 47
ditem update/3, 46, 47

exceptions, 14, 20, 30, 34, 40, 46, 50, 53, 56,
62

expandsolution/4, 56, 57

heuristic/1, 56, 59

io aux, 14, 20, 30, 34, 40, 46, 50, 53, 56, 62
io basic, 14, 20, 30, 34, 40, 46, 50, 53, 56, 62

language/1, 53

76

makequery/4, 56, 57

null/1, 25, 32, 36, 42, 47, 51, 53, 54

ontology/1, 13, 14, 16
ontologyaffiliation/2, 14, 15
ontologyauthor/2, 14, 15
ontologyauthoremail/2, 14, 15
ontologycomment/2, 14, 16
ontologydescription/2, 14, 15
ontology language/2, 14, 16
ontologymetadata/3, 14, 16
ontologyname/2, 14
ontologystatus/2, 14, 15
ontologyversion/2, 14
organization/1, 30, 32
organizationaccess, 62
organizationcheck/2, 30, 32, 65–67
organizationdb update/2, 62, 65
organizationdelete/1, 62, 66
organizationdescription/2, 62, 65
organizationemail/3, 30
organizationfield/1, 30, 32
organizationname/3, 30
organizationnotes/3, 30, 31
organizationtelephone/3, 30, 31
organizationupdate/3, 30, 31
organizationwebpage/3, 30, 31

pair, 25, 31, 37, 43, 47, 51
prolog flags, 14, 20, 30, 34, 40, 46, 50, 53, 56,

62

query/1, 56, 59
queryaddexcludepackages/3, 56, 58
queryadd includepackages/3, 56, 58
queryaddsearchterms/3, 56, 57
query removeexcludepackages/3, 56, 59
query removeincludepackages/3, 56, 58
query removesearchterms/3, 56, 58

resource/1, 40, 43
resourceaccess, 62
resourceasset/3, 40, 42
resourcecertificationstatus/3, 40, 42
resourcecheck/2, 40, 42, 64, 65
resourcedb update/2, 62, 63
resourcedelete/1, 62, 64

resourcedescription/2, 62
resourcefield/1, 40, 43
resourceidentificationTags/3, 40
resourcelanguage/3, 40, 41
resourceneeds/2, 62, 63
resourcenewVersionOf/3, 40, 41
resourcenotes/3, 40, 42
resourceprovides/2, 62, 63
resourcerequires/3, 40, 41
resourcesize/3, 40
resourceupdate/3, 40, 43
resourceuses/3, 40, 41
results/1, 56, 59

solution/1, 56, 59
sort, 20, 30
streamsbasic, 14, 20, 30, 34, 40, 46, 50, 53,

56, 62
systeminfo, 14, 20, 30, 34, 40, 46, 50, 53, 56,

62

term basic, 14, 20, 30, 34, 40, 46, 50, 53, 56,
62

term compare, 14, 20, 30, 34, 40, 46, 50, 53,
56, 62

term typing, 14, 20, 30, 34, 40, 46, 50, 53, 56,
62

user/1, 50, 51
useraccess, 20, 62
useraffiliation/3, 50
usercheck/2, 50, 51, 67–69
userdb update/2, 62, 67
userdelete/1, 62, 68
userdescription/2, 62, 67
userfield/1, 50, 51
userpackagesignature/3, 50
userupdate/3, 50

77

