
Abstract Interpretation with Specialized Definitions

Germán Puebla1 Elvira Albert2 Manuel V. Hermenegildo1,3

1School of Computer Science
T. U. of Madrid (UPM)

2 School of Computer Science
Complutense U. of Madrid

3Depts. of CS and ECE
U. of New Mexico

ABSTRACT
The relationship between abstract interpretation and par-
tial evaluation has received considerable attention and (par-
tial) integrations have been proposed starting from both the
partial evaluation and abstract interpretation perspectives.
In this work we present what we argue is the first generic
algorithm for efficient and precise integration of abstract in-
terpretation and partial evaluation from an abstract inter-
pretation perspective. Taking as starting point state-of-the-
art algorithms for context-sensitive, polyvariant abstract in-
terpretation and (abstract) partial evaluation of logic pro-
grams, we present an algorithm which combines the best
of both worlds. Key ingredients include the accurate suc-
cess propagation inherent to abstract interpretation and the
powerful program transformations achievable by partial de-
duction. In our algorithm, the calls which appear in the
analysis graph are not analyzed w.r.t. the original definition
of the procedure but w.r.t. specialized definitions of these
procedures. Such specialized definitions are obtained by
applying both unfolding and abstract executability. Also,
our framework is parametric w.r.t. different control strate-
gies and abstract domains. Different combinations of these
parameters correspond to existing algorithms for program
analysis and specialization. Finally, our approach efficiently
computes strictly more precise results than those achievable
by each of the individual techniques. The algorithm is now
one of the key components of CiaoPP, the analysis and spe-
cialization system of the Ciao compiler. For concreteness,
we have developed the algorithms for logic programming, al-
though our approach is general and can be applied to other
programming paradigms.

1. INTRODUCTION AND MOTIVATION
The relationship between abstract interpretation [4] and

partial evaluation [13] has received considerable attention
(see for example [7, 9, 3, 17, 12, 14, 23, 25, 8, 18, 5, 24,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM ’06 Charleston, South Carolina
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

:- module(,[main/2],[assertions]).

:- entry main(s(s(s(L))),R) : (ground(L),var(R)).

main1(X,X2) :- formula1,1(X,X1), formula1,2(X1,X2),

ground1,3(X2).

formula2(X,W) :- ground2,1(X),var2,2(W),two2,3(T),

minus2,4(T,X,X2),twice2,5(X2,W).

two3(s(s(0))).

minus4(X,0,X).

minus5(s(X),s(Y),R) :- minus5,1(X,Y,R).

minus6(0,s(Y), R).

twice7(X, Y) :- var7,1(X).

twice8(X,Y) :- ground8,1(X), tw8,2(X,Y).

tw9(0,0).

tw10(s(X),s(s(NX))) :- tw10,1(X,NX).

Figure 1: Running Example

15] and their references). In order to motivate and illustrate
our proposal for an integration of abstract interpretation and
partial evaluation, we use the running “challenge” example
of Fig. 1. It is a simple Ciao [2] program which uses Peano’s
arithmetic.1 We use the Ciao assertion language in order
to provide precise descriptions of the initial call patterns.
In our case, the entry declaration is used to inform that all
calls to the only exported predicate (i.e., main/2) will always
be of the form ← main(s(s(s(L))), R) with L ground and R a
variable. The predicate main/2 performs two calls to predi-
cate formula/2. A call formula(X,W) performs mode tests
ground(X) and var(W) on its input arguments and returns
W = (X−2)×2. Predicate two/1 returns s(s(0)), i.e., the
natural number 2. A call minus(A,B,C) returns C = A−B.
However, if the result becomes a negative number, C is left
as a free variable. This indicates that the result is not valid.
In turn, a call twice(A,B) returns B = A×2. Prior to com-
puting the result, this predicate checks whether A is valid,
i.e., not a variable, and simply returns a variable otherwise.

By observing the behaviour of the program it can be
seen that for initial queries satisfying the entry declara-
tion, all calls to the tests ground1,3(X), ground2,1(X), and
var2,2(W) will definitely succeed, and can be replaced by
true, even if we do not know the concrete values of variable
L at compile time. Also, the calls to ground8,1(X) will suc-

1Rules are written with a unique subscript attached to the
head atom (the rule number), and a dual subscript (rule
number, body position) attached to each body literal for
later reference. We sometimes use this notation for denoting
calls to atoms as well.

ceed, while the calls to var7,1(X) will fail, and can thus be
replaced by fail. These kinds of optimizations require ab-
stract information from analysis (e.g., groundness and free-
ness). Thus, the example illustrates the benefits of (1) ex-
ploiting abstract information in order to abstractly execute
certain atoms. Furthermore, this may allow unfolding of
other atoms. However, the use of an abstract domain which
captures groundness and freeness information will in general
not be sufficient to determine that in the second execution
of formula/2 the tests ground2,1(X) and var2,2(W) will also
succeed. The reason is that, on success of minus2,4(T,X,X2),
X2 cannot be guaranteed to be ground since minus6/3 suc-
ceeds with a free variable in its third argument position.
It can be observed, however, that for all calls to minus/3

in executions described by the entry declaration, the third
clause for minus/3 is useless. It will never contribute to
a success of minus/3 since such predicate is always called
with a value greater than zero in its second argument. Un-
folding can make this explicit by fully unfolding calls to
minus/3 since they are sufficiently instantiated (and as a
result the “dangerous” third clause is disregarded). This
unfolding allows concluding that in our particular context
all calls to minus/3 succeed with a ground third argument.
This illustrates the importance of (2) performing unfolding
steps in order to prune away useless branches, and that this
will result in improved success information. By the time
execution reaches twice2,5(X2,W), we hopefully know that
X2 is ground. In order to determine that upon success of
twice2,5(X2,W) (and thus on success of formula1,1(X,W)) W
is ground, we need to perform a fixpoint computation. Since,
for example, the success substitution for formula1,1(X,X1)

is indeed the call substitution for formula1,2(X1,X2), the
success of the second test ground2,1(X) (i.e., the one reach-
able from formula1,2(X1,X2)) cannot be established unless
we propagate success substitutions. This illustrates the im-
portance of (3) propagating (abstract) success information,
and performing fixpoint computations when needed, and that
this simultaneously will result in an improved unfolding. Fi-
nally, whenever we call formula(X,W) W is a variable, a prop-
erty which cannot be captured if we restrict ourselves to
downwards-closed domains. This indicates (4) the usefulness
of having information on non downwards-closed properties.

Throughout the paper we show that the framework we
propose addresses the issues mentioned, and in the partic-
ular case of our challenge example can indeed eliminate all
calls to mode tests ground/1 and var/1, and fully unfold
predicates two/1 and minus/3 so that they no longer ap-
pear in the residual code. We have used sharing–freeness as
abstract domain instead of one based on, say, regular types
for two reasons. First, to be able to later illustrate how
non-downwards closed information, including freeness and
definite independence, can be correctly exploited by our al-
gorithm in order to optimize the program, and second, to
show how unfolding can be of great use in order to improve
the accuracy of analyses apparently unrelated to partial de-
duction, such as the classical sharing–freeness.

Example 1.1. CiaoPP, which implements our proposed
abstract interpretation with specialized definitions, produces
the following specialized code for the example of Fig. 1 (rules
are renamed using the prefix sp):
sp main1(s(s(s(0))),0).

sp main2(s(s(s(s(B)))),A) :- sp tw2,1(B,C),

sp formula2,2(C,A).

sp tw2(0,0).

sp tw3(s(A),s(s(B))) :- sp tw3,1(A,B).

sp formula4(0,s(s(s(s(0))))).

sp formula5(s(A),s(s(s(s(s(s(B))))))) :- sp tw5,1(A,B).

In addition, the algorithm also produces an accurate anal-
ysis for such program. In particular, the success information
for sp main(X,X2) guarantees that X2 is definitely ground
on success. Note that this is equivalent to proving ∀X ≥
3, main(X, X2) → X2 ≥ 0. Furthermore, our system is
able to get to that conclusion even if the entry only informs
about X being any possible ground term and X2 a free vari-
able. This is because, during the computation of the spe-
cialized definitions, the branches corresponding to values of
X smaller than 3 are detected to be failing and the residual
code is indeed equivalent to the one achieved with the more
precise entry declaration. This illustrates how our proposal
is useful for improving the results of analysis even in cases
where there are no initial constants in the query which can
be propagated through the program.

The above results cannot be achieved unless all four points
mentioned before are addressed by a program analysis/spe-
cialization system. For example, if we use traditional partial
deduction [21, 10] (PD) with the corresponding Generalize
and Unfold rules followed by abstract interpretation and ab-
stract specialization as described in [23, 24] we only obtain a
comparable program after four iterations of the: “PD + ab-
stract interpretation + abstract specialization” cycle. This
shows the importance of achieving an algorithm which is
able to interleave PD with abstract interpretation, extended
with abstract specialization, in order to communicate the
accuracy gains achieved from one to the other as soon as
possible. In any case, iterating over “PD + analysis” is not
a good idea from the efficiency point of view.

Figure 2 shows an overview of our abstract interpretation
with specialized definitions proposal. The main idea is that
a generic abstract interpreter, depicted within the outer-
most box, is equipped with a generator of specialized defi-
nitions, depicted within the innermost box. Such generator
provides, upon request, the specialized definitions to be ana-
lyzed by the interpreter. Certain data structures, which take
the form of tables in the figure, are used to communicate be-
tween the two processes and achieve a smooth interleaving.
The input of the whole process is a program together with
a set of calling patterns for it. The output is a specialized
program together with the analysis results inferred for it.
The scheme can be parameterized with different (abstract)
unfolding rules, generalization operators, abstract domains
and widenings —which appear within oval boxes in the fig-
ure. The different instances give rise to interesting analysis
and specialization methods, some of which are well known
and others are novel.

The rest of the paper is organized as follows. Section 2
recalls some preliminary concepts. In Sect. 3 we present
abstract unfolding which already integrates abstract exe-
cutability. Section 4 introduces our notion of specialized
definition and embeds it within an abstract partial deducer.
In Sect. 5 we propose our scheme for abstract interpreta-
tion with specialized definitions. Section 6 discusses how
to interpret the results of our algorithm. Finally, Sect. 7
compares to related work and Sect. 8 concludes.

Calls
Widening

Domain
 Abstract

Dependency
Table

 Abstract
 Unfold

 AGene−
 ralize

ABSTRACT INTERPRETER

Table
 Answer

SPECIALIZED
DEFINITION

Table
Generaliz

Table
Specializ

Program
Specialized

Patterns
Calling

 Answer
 Table

Program

Figure 2: Overview of Abstract Interpreter with Specialized Definition

2. PRELIMINARIES
This section introduces some preliminary concepts on ab-

stract interpretation [4] and partial deduction [21].
We assume some basic knowledge on the terminology of

logic programming (see for example [20] for details). Very
briefly, an atom A is a syntactic construction of the form
p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol
and t1, . . . , tn are terms. A clause is of the form H ← B
where its head H is an atom and its body B is a conjunction
of atoms. A definite program is a finite set of clauses. A goal
(or query) is a conjunction of atoms.

2.1 The Notions of Unfolding and Resultant
Let G be a goal of the form← A1, . . . , AR, . . . , Ak, k ≥ 1.

The concept of computation rule, denoted by R, is used to
select an atom within a goal for its evaluation. The oper-
ational semantics of definite programs is based on deriva-
tions [20]. Let C = H ← B1, . . . , Bm be a renamed apart
clause in P such that ∃θ = mgu(AR, H). Then, the goal ←
θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak) is derived from
G and C via R. As customary, given a program P and a
goal G, an SLD derivation for P ∪{G} consists of a possibly
infinite sequence G = G0, G1, G2, . . . of goals, a sequence
C1, C2, . . . of properly renamed apart clauses of P , and a
sequence θ1, θ2, . . . of mgus such that each Gi+1 is derived
from Gi and Ci+1 using θi+1. A derivation step can be
non-deterministic when AR unifies with several clauses in
P , giving rise to several possible SLD derivations for a given
goal. Such SLD derivations can be organized in SLD trees.
A finite derivation G = G0, G1, G2, . . . , Gn is called success-
ful if Gn is empty. In that case θ = θ1θ2 . . . θn is called
the computed answer for goal G. Such a derivation is called
failed if Gn is not empty and it is not possible to perform a
derivation step from it.

Given an atom A, an unfolding rule [21, 10] computes a set
of finite SLD derivations D1, . . . , Dn (i.e., a possibly incom-
plete SLD tree) of the form Di = A, . . . , Gi with computed
answer substitution θi for i = 1, . . . , n whose associated re-
sultants (or residual rules) are θi(A)← Gi.

2.2 Abstract Interpretation
Abstract interpretation [4] provides a general formal frame-

work for computing safe approximations of program beha-
viour. Programs are interpreted using abstract values in-
stead of concrete values. An abstract value is a finite rep-
resentation of a, possibly infinite, set of actual values in the
concrete domain D. The set of all possible abstract val-

ues constitutes the abstract domain, denoted Dα, which is
usually a complete lattice or cpo which is ascending chain
finite. The subset relation ⊆ induces a partial order on sets
of concrete values. The ⊆ relation induces the v relation on
abstract values. Values in the abstract domain 〈Dα,v〉 and
sets of values in the concrete domain 〈2D,⊆〉 are related via
a pair of monotonic mappings 〈α, γ〉: the abstraction func-
tion α : 2D → Dα which assigns to each (possibly infinite)
set of concrete values an abstract value, and the concretiza-
tion function γ : Dα → 2D which assigns to each abstract
value the (possibly infinite) set of concrete values it repre-
sents. The following operations on abstract substitutions
are domain-dependent and will be used in our algorithms:

– Arestrict(λ, E) performs the abstract restriction (or pro-
jection) of a substitution λ to the set of variables in
the expression E, denoted vars(E);

– Aextend(λ, E) extends the substitution λ to the vari-
ables in the set vars(E);

– Aunif(t1, t2, λ) obtains the description which results
from adding the abstraction of the unification t1 = t2
to the substitution λ;

– Aconj(λ1, λ2) performs the abstract conjunction of two
substitutions;

– Alub(λ1, λ2) performs the abstract disjunction (t) of
two substitutions.

An abstract atom of the form A : CP is a concrete atom
A which comes equipped with an abstract substitution CP
which is defined over vars(G) and provides additional infor-
mation on the context in which the atom will be executed
at run-time. In our algorithms, we also use Atranslate(A :
CP, H ← B) which adapts and projects the information
in an abstract atom A : CP to the variables in the clause
C = H ← B. This operation can be defined in terms of
the operations above as: Atranslate(A : CP, H ← B) =
Arestrict(Aunif(A, H, Aextend(CP, C)), C).

As customary, the most general abstract substitution is
represented as >, and the least general (empty) abstract
substitution as ⊥.

Finally, the following standard operations are used in the
algorithms to handle keyed-tables: Create Table(T) initial-
izes a table T . Insert(T,Key , Info) adds Info associated to
Key to T and deletes previous information associated to
Key , if any. IsIn(T,Key) returns true iff Key is currently
stored in the table. Finally, Look up(T,Key) returns the
information associated to Key in T . For simplicity, we
sometimes consider tables as sets and we use the notation
(Key ; Info) ∈ T to denote that there is an entry in the

table T with the corresponding Key and associated Info.

3. UNFOLDING WITH ABSTRACT
SUBSTITUTIONS

We now present our notion of abstract unfolding —based
on an extension of the SLD semantics which exploits ab-
stract information— which is used later to generate special-
ized definitions. This will pave the way to overcome difficul-
ties (1) and (2) presented in Section 1.

3.1 SLD with Abstract Substitutions
Our extended semantics handles abstract goals of the form

G : CP , i.e., a concrete goal G equipped with an abstract
substitution CP . The first rule captures derivation steps.

Definition 3.1 (derivation step). Let G : CP be an
abstract goal where G =← A1, . . . , AR, . . . , Ak and CP is an
abstract substitution defined over vars(G). Let R be a com-
putation rule and let R(G) =AR. Let C = H ← B1, . . . , Bm

be a renamed apart clause in P . Then the abstract goal
G′ : CP ′ is derived from G : CP and C via R if ∃θ =
mgu(AR, H) ∧ CPu 6= ⊥, where:

CPu = Aunif(AR, Hθ, Aextend(CP, Cθ))

G′ = θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)

CP ′ = Arestrict(CPu, vars(G′))

An important difference between the above definition and
the standard derivation step is that the use of abstract (call)
substitutions allows imposing further conditions for perform-
ing derivation steps, in particular, CPu cannot be ⊥. This is
because if CP 6= ⊥ and CPu = ⊥ then the head of the clause
C is incompatible with CP and the unification AR = H will
definitely fail at run-time. Thus, abstract information al-
lows us to remove useless clauses from the residual program.
This produces more efficient resultants and increases the ac-
curacy of analysis for the residual code.

Example 3.2. Consider the goal: formula(s4(X), X2) :
{X/G, X2/V} which appears during the analysis of our run-
ning example (c.f. Fig. 3). We abbreviate as sn(X) the suc-
cessive application of n functors s to variable X. We have
used sharing-freeness as abstract domain in the analysis though,
for simplicity, we will represent the results using traditional
“modes”: the notation X/G (resp. X/V) indicates that vari-
able X is ground (resp. free). After applying a derivation
step using the only rule for formula, we derive:

ground(s4(X)), var(X2), two(T), minus(T, s4(X), X2′), twice(X2′, X2) :

{X/G, X2/V, T/V, X2′/V}

where the abstract description has been extended with up-
dated information about the freeness of the newly introduced
variables. In particular, both T and X2’ are V.

The second rule we present makes use of the availabil-
ity of abstract substitutions to perform abstract executabil-
ity [23] during resolution. This allows replacing some atoms
with simpler ones, and, in particular, with the predefined
atoms true and false, provided certain conditions hold. We
assume the existence of a predefined abstract executability
table which contains entries of the form T : CP ; T ′ which
specify the behaviour of external procedures: builtins, li-
braries, and other user modules. For instance, for predi-
cate ground the abstract execution table contains the in-

formation ground(X) : {X/G} ; true. For var, it contains
var(X) : {X/V}; true.2

Definition 3.3 (abstract execution). Let G : CP
be an abstract goal where G =← A1, . . . , AR, . . . , Ak. Let R
be a computation rule and let R(G) =AR. Let (T : CPT ;

T ′) be a renamed apart entry in the abstract executability
table. Then, the goal G′ : CP ′ is abstractly executed from
G : CP and (T : CPT ; T ′) via R if AR = θ(T) and
CPA v CPT , where

G′ = A1, . . . , AR−1, θ(T
′), AR+1, . . . , Ak

CP ′ = Arestrict(CP, G′)

CPA = Atranslate(AR : CP, T ← true)

Example 3.4. From the derived goal in Ex. 3.2, we can
apply twice the above rule to abstractly execute the calls to
ground and var and obtain:

two(T), minus(T, s4(X), X2′), twice(X2′, X2) :
{X/G, X2/V, T/V, X2′/V}

since both calls succeed by using the abstract executability
table described above given the information in the abstract
substitution.

3.2 Abstract Unfolding
In our framework, resultants for abstract atoms will be

obtained using abstract unfolding in a similar way as it is
done in the concrete setting using unfolding (see Sect. 2.1).

Definition 3.5 (AUnfold). Let A : CP be an abstract
atom and P a program. We define AUnfold(P, A : CP) as
the set of resultants associated to a finite (possibly incom-
plete) SLD tree computed by applying the rules of Definitions
3.1 and 3.3 to A : CP .

The so-called local control of PD ensures the termination
of the above process. For this purpose, the unfolding rule
must incorporate some mechanism to stop the construction
of SLD derivations (we refer to [16] for details).

Example 3.6. Consider an unfolding rule AUnfold based
on homeomorphic embedding [16] to ensure termination and
the initial goal in Ex. 3.2. The derivation continuing from
Ex. 3.4 performs several additional derivation steps and ab-
stract executions and branches (we do not include them due
to space limitations and also because it is well understood).
The following resultants are obtained from the resulting tree:
formula(s(s(s(s(0),s(s(s(s(0))))).

formula(s(s(s(s(s(A))))),s(s(s(s(s(s(B))))))) :-

tw(A,B)
which will later be filtered and renamed as they appear in
rules 5 and 6 of Ex. 1.1.

It is important to note that SLD resolution with abstract
substitutions is not restricted to the left-to-right compu-
tation rule. However, it is well-known that non-leftmost
derivation steps can produce incorrect results if the goal con-
tains impure atoms to the left of AR. More details can be
found, e.g., in [19]. Also, abstract execution of non-leftmost
atoms can be incorrect if the abstract domain used captures
properties which are not downwards closed. A simple solu-
tion is to only allow leftmost abstract execution stop for non-
downwards closed domains (and non-leftmost for derivation
steps).

2In CiaoPP we use assertions to express such information in
a domain-independent manner.

Algorithm 1 Abstract Partial Deduction with Specialized
Definitions
1: procedure partial evaluation with spec defs(P, {A1 :

CP1, . . . , An : CPn})
2: Create Table(GT); Create Table(ST)
3: for j = 1..n do
4: process call pattern(Aj : CPj)

5: procedure process call pattern(A : CP)
6: if not IsIn(GT , A : CP) then

7: (A1, A′
1)← specialized definition(P, A : CP)

8: A1 : CP1 ← Look up(GT , A : CP)
9: for all ren. apart clause Ck = Hk ← Bk ∈ P s.t. Hk

unifies with A′
1 do

10: CPk ← Atranslate(A′
1 : CP1, Ck)

11: process clause(CPk, Bk)

12: procedure process clause(CP, B)
13: if B = [L|R] then

14: CPL ← Arestrict(CP, L)
15: process call pattern(L : CPL)
16: process clause(CP, R)

17: function specialized definition(P, A : CP)
18: A′ : CP ′ ← AGeneralize(ST , A : CP)
19: Insert(GT , A : CP, A′ : CP ′)
20: if IsIn(ST , A′ : CP ′) then

21: A′′ ←Look up(ST , A′ : CP ′)
22: else
23: Def ← AUnfold(P, A′ : CP ′)
24: A′′ ← new filter(A′)
25: Insert(ST , A′ : CP ′, A′′)
26: Def ′ ← {(H′ ← B) | (H ← B) ∈ Def ∧ H ′ =

ren(H, {A′/A′′})}
27: P ← P

S

Def ′

28: return (A′, A′′)

4. SPECIALIZED DEFINITIONS
Typically, PD is presented as an iterative process in which

partial evaluations are computed for the new generated atoms
until they cover all calls which can appear in the execution of
the residual program. This is formally known as the closed-
ness condition of PD [21]. In order to ensure termination
of this global process, the so-called global control defines
a Generalize operator (see [16]) which guarantees that the
number of SLD trees computed is kept finite, i.e., it ensures
the finiteness of the set of atoms for which partial evaluation
is produced. However, the residual program is not generated
until such iterative process terminates.

We now define an Abstract Partial Deduction (APD) algo-
rithm whose execution can later be interleaved in a seamless
way with a state-of-the-art abstract interpreter. For this it
is essential that the APD process be able to generate resid-
ual code for each call pattern as soon as we finish processing
it. This will make it possible for the analysis algorithm to
have access to the improved definition. As a consequence,
the accuracy of the analyzer may be increased and objective
(2) described in Sect. 1 achieved.

4.1 Abstract Partial Deduction
Algorithm 1 presents an APD algorithm. The main differ-

ence with standard algorithms for APD is that the resultants
computed by AUnfold (L23) are added to the program dur-
ing execution of the algorithm (L27) rather than in a later
code generation phase. In order to avoid conflicts among the
new clauses and the original ones, clauses for specialized def-
initions are renamed with a fresh predicate name (L26) prior
to adding them to the program (L27). The algorithm uses

two global data structures. The specialization table contains
entries of the form A : CP ; A′. The atom A′ provides the
link with the clauses of the specialized definition for A : CP .
The generalization table stores the results of the AGeneralize
function and contains entries A : CP ; A′ : CP ′ where
A′ : CP ′ is a generalization of A : CP , in the sense that
A = A′θ and (A : CP) v (A′ : CP ′).

Procedure partial evaluation with spec defs (L1-4)
initiates the computation. It first initializes the tables and
then calls process call pattern for each abstract atom
Aj : CPj in the initial set to be partially evaluated. The
task of process call pattern is, if the atom has not been
processed yet (L6), to compute a specialized definition for
it (L7) and then process all clauses in its specialized defi-
nition by means of calls to process clause (L9-11). For
simplicity of the presentation, we assume that clause bodies
returned by specialized definition are represented as lists
rather than conjunctions. Procedure process clause tra-
verses clause bodies, processing their corresponding atoms
by means of calls to process call pattern, in a depth-
first, left-to-right fashion. In contrast, the order in which
pending call patterns (atoms) are handled is usually not
fixed in APD algorithms. They are often all put together in
a set. The purpose of the two procedures process clause
and process call pattern is to traverse the clauses in the
left-to-right order and add the corresponding call patterns.
In principle, this does not have additional advantages w.r.t.
existing APD algorithms because success propagation has
not been integrated yet. However, the reason for our pre-
sentation is to be as close as possible to our analysis algo-
rithm with success propagation which enforces a depth-first,
left-to-right traversal of program clauses.

The correctness of Algorithm 1 can be established using
the framework for APD in [15].

4.2 Limitations of APD
It is important to note that Algorithm 1 does not perform

success propagation yet (difficulty 3). In L16, it becomes
apparent that all atom(s) in R will be analyzed with the
same call pattern CP as L, which is to their left in the
clause. This may clearly lead to substantial precision loss.
For instance, the abstract pattern formula(C, A) : {C/G, A/V}
which is necessary to obtain the last two resultants of Ex. 1.1
cannot be obtained with this algorithm. In particular, we
cannot infer the groundness of C which, in turn, prevents us
from abstractly executing the next call to ground and, thus,
from obtaining this optimal specialization.

In addition, this lack of success propagation makes it diffi-
cult or even impossible to work with non downwards closed
domains (difficulty 4), since CP may contain information
which holds before execution of the leftmost atom L but
which can be uncertain or even false after that. In fact, in
our example CP contains the info C/V, which becomes false
after execution of tw(B, C), since now C is ground. This prob-
lem is solved in the algorithm we present in the next section,
where analysis information flows from left to right, adding
more precise information and eliminating information which
is no longer safe or even definitely wrong.

4.3 Integration with Abstract Interpreter
For the integration we propose, the most relevant part of

the algorithm comprises L17-28, as it is the code fragment
which is directly executed from our abstract interpreter. The

{X/G,X2/V}main(s3(X), X2){X/G,X2/G}

¤

£

¡

¢
SPEC DEF(main(s3(X), X2) : {X/G, X2/V})

• •
main(s3(0), 0) main(s4(B), A)

jjjjjjjj

ZZZZZZZZZZZZZZ

2
{B/G,C/V}tw(B, C){B/G,C/G} //___________ {C/G,A/V}formula(C, A){C/G,A/G}

¤

£

¡

¢
SPEC DEF(tw(B, C) : {B/G, C/V})

• •

¤

£

¡

¢
SPEC DEF(formula(C, A) : {C/G, A/V})

• •
tw(0, 0) tw(s(B), s2(C) formula(0, s4(0))))) formula(s(A), s6(B)

2 {B/G,C/V}tw(B, C){B/G,C/G}

ff

2 {A/G,B/V}tw(A, B){A/G,B/G}

ll

Figure 3: Analysis Graph computed by ABS INT WITH SPEC DEF

remaining procedures (L1-L16) will be overridden by more
accurate ones later. The procedure of interest is special-
ized definition. As it is customary, it performs (L18) a
generalization of the call A : CP using the abstract coun-
terpart of the Generalize operator, denoted by AGeneralize,
and which is in charge of ensuring termination at the global
level. The result of the generalization, A′ : CP ′, is inserted
(L19) in the generalization table GT . Correctness of the al-
gorithm requires that (A : CP) v (A′ : CP ′). If A′ : CP ′

has been previously treated (L20), then its specialized defi-
nition A′′ is looked up in ST (L21) and returned. Otherwise,
a specialized definition Def is computed for it by using the
AUnfold operator of Def. 3.5 (L23).

As already mentioned, the specialized definition Def for
the abstract atom A : CP is used to extend the original
program P . First, the atom A′ is renamed by using new filter

which returns an atom with a fresh predicate name, A′′,
and optionally filters constants out (L24). Then, function
ren is applied to rename the clause heads using atom A′

(L26). The function ren(A, {B/B′}) returns θ(B′) where
θ = mgu(A, B). Finally, the program P is extended with
the new, renamed specialized definition, Def ′.

Example 4.1. Three calls to specialized definition ap-
pear (within an oval box) during the analysis of our running
example in Fig. 3 from the following abstract atoms, first
main(s3(X), X2) : {X/G, X2/V}, then tw(B, C) : {B/G, C/V} and
finally formula(C, A) : {C/G, A/V}. The output of such exe-
cutions is used later (with the proper renaming) to produce
the resultants in Ex. 1.1. For instance, the second clause
obtained from the first call to specialized definition is
sp main2(s(s(s(s(B)))),A) :- tw2,1(B,C),

formula2,2(C,A).

where only the head is renamed. The renaming of the body
literals is done in a later code-generation phase (see Sec-
tion 6.1). As already mentioned, Alg. 1 is not able to obtain
the three abstract atoms above due to the absence of success
propagation.

5. ABSTRACT INTERPRETATION WITH
SPECIALIZED DEFINITIONS

We now present our final algorithm for abstract interpre-
tation with specialized definitions. This algorithm extends
both the APD Algorithm 1 and the abstract interpretation

algorithms in [22, 11]. The main improvement w.r.t. Al-
gorithm 1 is the addition of success propagation. Unfor-
tunately, this requires computing a global fixpoint. It is
an important objective for us to be able to compute an
accurate fixpoint in an efficient way. The main improve-
ments w.r.t the algorithms in [22, 11] are the following.
(1) It deals directly with non-normalized programs. This
point, which does not seem very relevant in a pure analysis
system, becomes crucial when combined with a specializa-
tion system in order to profit from constants propagated by
unfolding. (2) It incorporates a hardwired efficient graph
traversal strategy which eliminates the need for maintaining
priority queues explicitly [11]. (3) The algorithm includes a
widening operation for calls, Widen Call, which limits the
amount of multivariance in order to keep the number of call
patterns analyzed finite. This is required in order to be able
to use abstract domains which are infinite, such as regular
types. (4) It also includes a number of simplifications to
facilitate understanding, such as the use of the keyed-table
ADT, which we assume encapsulates proper renaming apart
of variables and the application of renaming transformations
when needed. (5) It interleaves program analysis and spe-
cialization in a way that is efficient, accurate, and practical.

5.1 The Program Analysis Graph
In order to compute and propagate success substitutions,

Algorithm 2 computes a program analysis graph in a simi-
lar fashion as state of the art analyzers such as the CiaoPP

analyzer [22, 11]. For instance, the analysis graph com-
puted by Algorithm 2 for our running example is depicted
in Fig. 3.

The graph has two sorts of nodes. Those which corre-
spond to atoms are called “OR-nodes”. An OR-node of
the form CP AAP is interpreted as the answer (success) pat-
tern for the abstract atom A : CP is AP. For instance,
the OR-node {X/G,X2/V}main(s3(X), X2){X/G,X2/G} indicates that
when the atom main(s3(X), X2) is called with description
{X/G, X2/V} the answer (or success) substitution computed
is {X/G, X2/G}.

Those nodes which correspond to rules are called “AND-
nodes”. In Fig. 3, they appear within a dashed box and
contain the head of the corresponding clause. Each AND-
node has as children as many OR-nodes as literals there are

in the body. If a child OR-node is already in the tree, it is
not expanded any further and the currently available answer
is used. For instance, the analysis graph in Figure 3 contains
three occurrences of the abstract atom tw(B, C) : {B/G, C/V}
(modulo renaming), but only one of them has been ex-
panded. This is depicted by arrows from the two non-
expanded occurrences of tw(B, C) : {B/G, C/V} to the ex-
panded one. More information on the efficient construction
of the analysis graph can be found in [22, 11, 1].

5.2 Answer and Dependency Tables
The program analysis graph is implicitly represented in

the algorithm by means of two data structures, the answer
table (AT) and the dependency table (DT).

The answer table contains entries of the form A : CP ;

AP which are interpreted as the answer (success) pattern
for A : CP is AP. For instance, there exists an entry of the
form main(s3(X), X2) : {X/G, X2/V}; {X/G, X2/G} associated
to the OR-node discussed above.

Dependencies indicate direct relations among OR-nodes.
An OR-node AF : CPF depends on another OR-node AT :
CPT iff in the body of some clause for AF : CPF there
appears the OR-node AT : CPT . The intuition is that
in computing the answer for AF : CPF we have used the
answer pattern for AT : CPT . In our algorithm we store
backwards dependencies,3 i.e., for each OR-node AT : CPT

we keep track of the set of OR-nodes which depend on it.
I. e., the keys in the dependency table are OR-nodes and
the information associated to each node is the set of other
nodes which depend on it, together with some additional
information required to iterate when an answer is modified
(updated). Each element of a dependency set for an atom
B : CP2 is of the form 〈H : CP⇒ [Hk : CP1] k, i〉. It should
be interpreted as follows: the OR-node H : CP through the
literal at position k, i depends on the OR-node B : CP2.
Also, the remaining information [Hk : CP1] encodes the fact
that the head of this clause is Hk and the substitution (in
terms of all variables of clause k) just before the call to
B : CP2 is CP1. Such information avoids having to repro-
cess atoms in the clause k to the left of position i.

Example 5.1. For instance, the dependency set for the
abstract atom formula(C, A) : {A/V, C/G} is {〈main(s3(X), X2) :
{X/G, X2/V} ⇒ [main(s4(B), A) : {B/G, A/V, C/G}] 2, 2〉} It in-
dicates that the OR-node formula(C, A) : {A/V, C/G} is only
used in the OR-node main(s3(X), X2) : {X/G, X2/V} via lit-
eral 2,2 (see Example 1.1). Thus, if the answer pattern for
formula(C, A) : {A/V, C/G} is ever updated, then we must re-
process the OR-node main(s3(X), X2) : {X/G, X2/V} from po-
sition 2,2.

5.3 The Algorithm
Algorithm 2 presents our proposed algorithm. Procedure

abs int with spec defs initializes the four tables used by
the algorithm and calls process call pattern for each ab-
stract atom in the initial set. process call pattern ap-
plies, first of all (L7), the Widen Call function to A : CP
taking into account the set of entries already in AT . This re-
turns a substitution CP1 s.t. CP v CP1. The most precise
Widen Call function possible is the identity function, but it

3In the implementation, for efficiency, both forward and
backward dependencies are stored. We do not include them
in the algorithm for simplicity of the presentation.

Algorithm 2 Abstract Interpretation with Specialized Def-
initions
1: procedure abs int with spec defs(P, {A1 : CP1, . . . , An :

CPn})
2: Create Table(AT); Create Table(DT)
3: Create Table(GT); Create Table(ST)
4: for j = 1..n do
5: process call pattern(Aj :

CPj , 〈Aj : CPj ⇒ [Aj : CPj], j, entry〉)

6: function process call pattern(A : CP, Parent)
7: CP1 ←Widen Call(AT , A : CP)
8: if not IsIn(AT , A : CP1) then

9: Insert(AT , A : CP1,⊥)
10: Insert(DT , A : CP1, ∅)
11: (A′, A′

1)← specialized definition(P, A : CP1)
12: A′′ ← ren(A, {A′/A′

1})
13: for all renamed apart clause Ck = Hk ← Bk ∈ P

s.t. Hk unifies with A′′ do
14: CPk ← Atranslate(A′′ : CP1, Ck)
15: process clause(A : CP1 ⇒ [Hk : CPk] Bk, k, 1)
16: Deps← Look up(DT , A : CP1)

S

{Parent}
17: Insert(DT , A : CP1, Deps)
18: return Look up(AT , A : CP1)

19: procedure process clause(H :CP ⇒ [Hk : CP1] B, k, i)
20: if CP1 6= ⊥ then
21: if B = [L|R] then

22: CP2 ← Arestrict(CP1, L)
23: AP0 ← process call pattern(L : CP2,

〈H :CP ⇒ [Hk : CP1], k, i〉)
24: CP3 ← Aconj(CP1, Aextend(AP0, CP1))
25: process clause(H : CP ⇒ [Hk : CP3]R, k, i+1)
26: else
27: AP1 ← Atranslate(Hk : CP3, H ← true)
28: AP2 ← Look up(AT , H : CP)
29: AP3 ← Alub(AP1, AP2)
30: if AP2 6= AP3 then
31: Insert(AT , H : CP, AP3)
32: Deps← Look up(DT , H : CP)
33: process update(Deps)

34: procedure process update(Updates)
35: if Updates = {A1, . . . , An} with n ≥ 0 then

36: A1 = 〈H :CP ⇒ [Hk : CP1], k, i〉
37: if i 6= entry then
38: B ← get body(P, k, i)
39: remove previous deps(H : CP ⇒ [Hk : CP1]

B, k, i)
40: process clause(H :CP ⇒ [Hk : CP1] B, k, i)
41: process update(Updates− {A1})

can only be used with abstract domains with a finite num-
ber of abstract values. This is the case with sharing–freeness
and thus we will use the identity function in our example.
If the call pattern A : CP1 has not been processed before,
it places (L9) ⊥ as initial answer in AT for A : CP and
sets to empty (L10) the set of OR-nodes in the graph which
depend on A : CP1. It then computes (L11) a specialized
definition for A : CP1. We do not show in Algorithm 2 the
definition of specialized definition, since it is identical to
that in Algorithm 1. In the graph, we show within an oval
box the calls to specialized definition which appear dur-
ing the execution of the running example (see the details in
Sect. 4). The heads of the clauses in the specialized defini-
tion are linked to the box with a dotted arc. Then (L13-15)
calls to process clause are launched for the clauses in the
specialized definition w.r.t. which A : CP1 is to be analyzed.
Only after this, the Parent OR-node is added (L16-17) to
the dependency set for A : CP1.

The function process clause performs the success prop-

agation and constitutes the core of the analysis. First, the
current answer (AP0) for the call to the literal at position
k, i of the form B : CP2 is (L24) conjoined (Aconj), after
being extended (Aextend) to all variables in the clause, with
the description CP1 from the program point immediately
before B in order to obtain the description CP3 for the pro-
gram point after B. If B is not the last literal, CP3 is taken
as the (improved) calling pattern to process the next literal
in the clause in the recursive call (L25). This corresponds
to left-to-right success propagation and is marked in Fig. 3
with a dashed horizontal arrow. If we are actually process-
ing the last literal, CP3 is (L27) adapted (Atranslate) to the
initial call pattern H : CP which started process clause,
obtaining AP1. This value is (L29) disjoined (Alub) with the
current answer, AP2, for H : CP as given by Look up. If
the answer changes, then its dependencies, which are readily
available in DT , need to be recomputed (L33) using pro-
cess update. This procedure restarts the processing of all
body postfixes which depend on the calling pattern for which
the answer has been updated by launching new calls to pro-
cess clause. There is no need of recomputing answers in
our example. The procedure remove previous deps elim-
inates (L39) entries in DT for the clause postfix which is
about to be re-computed. We do not present its definition
here due to lack of space. Note that the new calls to pro-
cess clause may in turn launch calls to process update.
On termination of the algorithm a global fixpoint is guar-
anteed to have been reached. Note that our algorithm also
stores in the dependency sets calls from the initial entry
points (marked with the value entry in L5). These do not
need to be reprocessed (L37) but are useful for determin-
ing the specialized version to use for the initial queries after
code generation.

The CiaoPP analysis and specialization system implements
abstract interpretation with specialized definitions as intro-
duced in Algorithm 2. For our running example, the system
is able to obtain the specialized code and the accurate anal-
ysis results of Example 1.1. Due to space limitations, we
have not traced all the steps performed during the execu-
tion of the algorithm, though the analysis graph in Fig. 3
shows the clauses obtained by specialized definition and
the call/success patterns inferred by the analysis of such
clauses.

5.4 Termination
If we compose a terminating analysis strategy (abstract

domain plus widening operator) with a terminating PD strat-
egy (local control plus global control), then Algorithm 2 also
terminates for such strategies. Intuitively, if we have a ter-
minating AUnfold rule and the abstract domain is ascend-
ing chain finite, non-termination can only occur if the set of
call patterns handled by the algorithm is infinite. Since the
Widen Call function guarantees that a given concrete atom
A can only be analyzed w.r.t. a finite number of abstract
substitutions CP , non-termination can only occur if the set
of atoms has an infinite number of elements with different
concrete parts. If the AGeneralize function guarantees that
an infinite number of different concrete atoms cannot occur,
then termination is guaranteed.

6. INTERPRETING THE RESULTS OF THE
ALGORITHM

We first discuss whether we can interpret the results of
Algorithm 2 in terms of analysis. We use θ|{X1,...,Xn} to
denote the projection of substitution θ onto the set of vari-
ables {X1, . . . , Xn}. We denote by success(A : CP, P) the
set of computed answers for initial queries described by the
abstract atom A : CP in a program P , i.e., success(A :
CP, P) = {θ′′ | ∃θ ∈ γ(CP) ∧ ∃θ′} s.t. θ′ is a computed
answer for Aθ and θ′′ = θθ′|vars(A)}.

Theorem 6.1 (correctness of success). Let P be a
program and let S = {A1 : CP1, . . . , An : CPn} be a set of
abstract atoms. For all Ai : CPi ∈ S, after termination of
abs int with spec defs(P, S), there exists (Ai : CP ′

i ;

APi) ∈ AT s.t. CPi v CP ′
i ∧ success(Ai : CPi, P) ⊆

γ(APi).

Intuitively, correctness holds since Algorithm 2 computes
an abstract and–or graph and, thus, we inherit a generic
correctness result for success substitutions. However, now
we analyze the call patterns in S w.r.t. specialized defini-
tions rather than their original definition in P . Since the
transformation rules in Definitions 3.1 and 3.3 are seman-
tics preserving, then analysis of each specialized definition
is guaranteed to produce a safe approximation of its success
set, which is also a safe approximation of the success of the
original definition.

6.1 The Framework as a Specializer
Before presenting the algorithm for code generation, we

introduce some notation. We denote by spec defs(P,ST)
the subset of clauses in P which correspond to specialized
definitions, as stored in ST . It is defined as spec defs(P,ST)
= {(H ← B) ∈ P | ∃(: ; A′) ∈ ST s.t. H unifies with
A′}.

Each non-root OR-node in the analysis graph has been
generated by a call of the form process call pattern(B :
CP2, 〈H : CP ⇒ [Hk : CP1], k, i〉), see L23 in Algorithm 2.
Thus, each non-root OR-node is uniquely identified by a
pair of the form (B : CP2, 〈H : CP ⇒ [:], k, i〉). We
can classify the OR-nodes in an analysis graph according
to the program point they correspond to, i.e., k, i. We de-
note by OR nodes(k, i) the set of OR-nodes of the form
(: , 〈 : ⇒ [:], k, i〉).

We denote by SD((B : CP2, Id),DT ,GT) the abstract
atom B′ : CP ′

2 which has been used for generating the spe-
cialized definition w.r.t. which the atom (B : CP2, Id) has
been analyzed, and it is defined as:

SD((B : CP2, 〈H : CP ⇒ [:], k, i〉),DT ,GT) = B′ : CP ′
2

s.t. ∃(B : CP1 ; Deps) ∈ DT s.t. (H : CP⇒ [:], k, i) ∈
Deps ∧ ∃(B : CP1 ; B′ : CP ′

2) ∈ GT .
Algorithm 3 presents the procedure for code generation.

Since the specialized definitions generated already have dif-
ferent predicate names, the heads of the new clauses do
not need to be renamed. Function rename body simply
traverses the body of the clauses in the specialized defini-
tions and replaces atoms for predicates in the original pro-
gram with atoms for predicates in the specialized defini-
tions. Deciding which predicate to use is done by function
rename atom. Note that since (optionally) constants are
filtered out by function new filter, this renaming can remove
constants from the original program.

We now present two AGeneralize functions which can be
used in Alg. 2 when using it as a specializer. In both of
them, the decision on whether to lose information in a call

Algorithm 3 Code Generation

1: function Codegen(P,DT ,GT ,ST)
2: return {(Hk ← B′

k) | ∃(Hk ← Bk) ∈ spec defs(P,ST) ∧
B′

k =rename body(Bk, k, 1,DT ,GT ,ST)

3: function rename body(B, k, i,DT ,GT ,ST)
4: if B = (L, R) then

5: L′ ← rename atom(L, k, i,DT ,GT ,ST)
6: R′ ← rename body(R, k, i + 1,DT ,GT ,ST)
7: B′ ← (L′, R′)
8: else
9: B′ ← rename atom(B, k, i,DT ,GT ,ST)

10: return B′

11: function rename atom(L, k, i,DT ,GT ,ST)
12: L′ : CP ′ ← SD((L : , 〈 : ⇒ [:], k, i〉),DT ,GT)
13: return Look up(ST , L′ : CP ′)

AGeneralize(ST , A : CP) is based on the concrete part
of the atom, A. This allows easily defining AGeneralize
operators in terms of existing Generalize operators. Let
Generalize be a (concrete) generalization function. Then we
define AGeneralizeα(ST , A : CP) = (A′, CP ′) where A′ =
Generalize(ST , A) and CP ′ = Atranslate(A : CP, A′ ←
true). Function AGeneralizeα only assigns the same spe-
cialized definition for different abstract atoms when we know
that after adapting the analysis info of both A1 : CP1 and
A2 : CP2 to the new atom A′ the same entry substitu-
tion CP ′ will be obtained in either case. Similarly, we de-
fine AGeneralizeγ(ST , A : CP) = (A′, CP ′) where A′ =
Generalize(ST , A) and CP ′ = >. The function AGeneralizeγ

assigns generalizations taking into account the concrete part
of the abstract atom only, which is the same for all OR-nodes
which correspond to a literal k, i. These functions are in fact
two extremes. In AGeneralizeα we try to keep as much ab-
stract information as possible, whereas in AGeneralizeγ we
lose all abstract information. The latter is useful when we
do not have an unfolding system which can exploit abstract
information or when we do not want the specialized pro-
gram to have different implemented specialized definitions
for atoms with the same concrete part (modulo renaming)
but different abstract substitution.

7. DISCUSSION AND RELATED WORK
The versatility of our framework (and of our implemen-

tation) can be seen by recasting well-known specialization
and analysis frameworks as instances in which the differ-
ent parameters: unfolding rule, widen call rule, abstraction
operator, and analysis domain, take the following values.

Polyvariant Abstract Interpretation. Our algorithm can
behave as the analysis algorithm described in [11, 22] for
polyvariant static analysis by defining an AGeneralize op-
erator which returns the base form of an expression (i.e., it
loses all constants) and an AUnfold operator which performs
a single derivation step (i.e., it returns the original defini-
tion). Thus, the resulting framework would always produce
a residual program which coincides with the original one and
can be analyzed with any abstract domain of interest.

Multivariant Abstract Specialization. The specialization
power of the framework described in [24, 23] can be obtained
by using the same AGeneralize described in the above point
plus an AUnfold operator which always performs a derive
step followed by zero or more abstract execution steps. It is
interesting to note that in the original framework, abstract

executability is performed as an offline optimization phase,
i.e., after analysis, while it is performed online, i.e., during
analysis, in our framework.

Classical Partial Deduction. Our method can be used to
perform classical PD in the style of [21, 10] by using an
abstract domain with the single abstract value > and the
identity function as Widen Call rule. This corresponds to
the PD domain of [15] in which an atom with variables rep-
resents all its instances. Let us note that, in spite of the fact
that the algorithm follows a left-to-right computation flow at
the global control level, the computation order is irrelevant
since the PD domain conveys no information on variables.
However, the process of generating specialized definitions
(as discussed in Section 3) can perform non-leftmost un-
folding steps at the local control level and achieve the same
optimizations as in PD.

Abstract Partial Deduction. Several approaches have been
proposed which extend PD with SLDNF-trees by using ab-
stract substitutions [14, 8, 18, 15]. In essence, such ap-
proaches are very similar to the abstract partial deduction
with call propagation shown in Algorithm 1. Though all
those proposals identify the need of propagating success sub-
stitutions, they either fail to do so or propose means for
propagating success information which are not fully inte-
grated within the APD algorithm and, in our opinion, do
not fit in as nicely as the use of and–or trees. Also, these
proposals are either strongly coupled to a particular (down-
ward closed) abstract domain, i.e., regular types, as in [8, 18]
or do not provide the exact description of operations on the
abstract domain which are needed by the framework, other
than general correctness criteria [14, 15]. However, the lat-
ter allow Conjunctive PD [6], which is not available in our
framework yet. It remains as future work to investigate the
extension of our framework in order to analyze conjunctions
of atoms and in order to achieve optimizations like tupling
and deforestation.

Finally, the work in [25] identifies the need for including
unfolding in abstract interpretation frameworks in order to
increase their power. Then, four different alternatives for
doing so (Section 5.3) are discussed. Note that the frame-
work we propose in this work does not correspond to any of
those alternatives and is in fact more powerful than any of
them. Some of the main differences between our approach
and that in [25] are: (1) [25] proposes performing (individ-
ual) unfolding steps directly on the and–or graph computed
by analysis, whereas here we propose to compute special-
ized definitions by a separate component. This has both
theoretical and practical advantages. It allows separation of
concerns, which results in a clearer specification. In addi-
tion, it allows directly reusing the important body of work in
control of PD. (2) The work in [25] cannot handle abstract
domains which are infinite, such as regular types, since there
is no notion of widening on calls. (3) There is no separation
between global and local control. This separation is essen-
tial in order to guarantee termination of the specialization
process. In particular, global control allows reusing already
specialized OR–nodes. It is unclear how one would reuse
an OR–node in an analysis graph for another call not ex-
actly identical. Finally, (4) in contrast to [25] we provide
a precise algorithm which implements the framework.

8. CONCLUSIONS

We have proposed a novel scheme for a seamless integra-
tion of the techniques of abstract interpretation and partial
deduction. Our scheme is parametric w.r.t. the abstract do-
main and the control issues which guide the partial deduc-
tion process. Existing proposals for the integration use ab-
stract interpretation as a means for improving partial eval-
uation rather than as a goal, at the same level as producing
a specialized program. This implies that, as a result, their
objective is to yield a set of atoms which determines a par-
tial evaluation rather than to compute a safe approximation
of its success. Unlike them, a main objective of our work is
to improve success information by analyzing the specialized
code, rather than the original one. We achieve this objec-
tive by smoothly interleaving both techniques which, on one
hand, improves success information—even for abstract do-
mains which are not related directly to partial evaluation.
Furthermore, with more accurate success information, we
can improve further the quality of partial evaluation. The
overall method thus yields not only a specialized program
but also a safe approximation of its behaviour.

Acknowledgments
The authors would like to thank John Gallagher and Michael

Leuschel for useful discussions on the integration of abstract in-

terpretation and partial deduction.

9. REFERENCES
[1] M. Bruynooghe. A Practical Framework for the

Abstract Interpretation of Logic Programs. Journal of
Logic Programming, 10:91–124, 1991.

[2] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. López-Garćıa, and G. Puebla (Eds.). The Ciao
System. Reference Manual (v1.10). Technical report,
School of Computer Science (UPM), 2004. Available
at http://clip.dia.fi.upm.es/Software/Ciao/.

[3] C. Consel and S.C. Koo. Parameterized partial
deduction. ACM Transactions on Programming
Languages and Systems, 15(3):463–493, July 1993.

[4] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

[5] P. Cousot and R. Cousot. Systematic Design of
Program Transformation Frameworks by Abstract
Interpretation. In Proc. of POPL’02, pages 178–190.
ACM, 2002.

[6] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel,
B. Martens, and M.H. Sørensen. Conjunctive Partial
Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming,
41(2&3):231–277, 1999.

[7] J. Gallagher, M. Codish, and E. Shapiro.
Specialisation of Prolog and FCP Programs Using
Abstract Interpretation. New Generation Computing,
6(2–3):159–186, 1988.

[8] J. P. Gallagher and J. C. Peralta. Regular tree
languages as an abstract domain in program
specialisation. Higher Order and Symbolic
Computation, 14(2,3):143–172, 2001.

[9] J.P. Gallagher. Static Analysis for Logic Program
Specialization. In Workshop on Static Analysis
WSA’92, pages 285–294, 1992.

[10] J.P. Gallagher. Tutorial on specialisation of logic
programs. In Proc. of PEPM’93, pages 88–98. ACM
Press, 1993.

[11] M. Hermenegildo, G. Puebla, K. Marriott, and
P. Stuckey. Incremental Analysis of Constraint Logic
Programs. ACM TOPLAS, 22(2):187–223, March
2000.

[12] N. D. Jones. Combining Abstract Interpretation and
Partial Evaluation. In Static Analysis Symposium,
number 1140 in LNCS, pages 396–405.
Springer-Verlag, 1997.

[13] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall, New York, 1993.

[14] M. Leuschel. Program Specialisation and Abstract
Interpretation Reconciled. In Joint International
Conference and Symposium on Logic Programming,
June 1998.

[15] M. Leuschel. A framework for the integration of
partial evaluation and abstract interpretation of logic
programs. ACM Transactions on Programming
Languages and Systems, 26(3):413 – 463, May 2004.

[16] M. Leuschel and M. Bruynooghe. Logic program
specialisation through partial deduction: Control
issues. Theory and Practice of Logic Programming, 2(4
& 5):461–515, July & September 2002.

[17] M. Leuschel and D. De Schreye. Logic program
specialisation: How to be more specific. In Proc. of
PLILP’96, LNCS 1140, pages 137–151, 1996.

[18] M. Leuschel and S. Gruner. Abstract conjunctive
partial deduction using regular types and its
application to model checking. In Proc. of LOPSTR,
number 2372 in LNCS. Springer, 2001.

[19] M. Leuschel, J. Jørgensen, W. Vanhoof, and
M. Bruynooghe. Offline specialisation in Prolog using
a hand-written compiler generator. Theory and
Practice of Logic Programming, 4(1):139–191, 2004.

[20] J.W. Lloyd. Foundations of Logic Programming.
Springer, second, extended edition, 1987.

[21] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation
in Logic Programming. Journal of Logic Programming,
11(3–4):217–242, 1991.

[22] G. Puebla and M. Hermenegildo. Optimized
Algorithms for the Incremental Analysis of Logic
Programs. In Proc. of SAS’96, pages 270–284.
Springer LNCS 1145, 1996.

[23] G. Puebla and M. Hermenegildo. Abstract Multiple
Specialization and its Application to Program
Parallelization. J. of Logic Programming.,
41(2&3):279–316, November 1999.

[24] G. Puebla and M. Hermenegildo. Abstract
Specialization and its Applications. In Proc. of
PEPM’03, pages 29–43. ACM Press, 2003. Invited
talk.

[25] G. Puebla, M. Hermenegildo, and J. Gallagher. An
Integration of Partial Evaluation in a Generic
Abstract Interpretation Framework. In Proc. of
PEPM’99, number NS-99-1 in BRISC Series, pages
75–85. University of Aarhus, Denmark, 1999.

