
A Generic Framework for the Analysis and

Specialization of Logic Programs?

Germán Puebla1, Elvira Albert2, and Manuel Hermenegildo1,3

1 School of Computer Science, Technical U. of Madrid, {german,herme}@fi.upm.es
2 School of Computer Science, Complutense U. of Madrid, elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico, herme@unm.edu

The relationship between abstract interpretation [2] and partial evaluation [5]
has received considerable attention and (partial) integrations have been proposed
starting from both the partial deduction (see e.g. [6] and its references) and ab-
stract interpretation perspectives. Abstract interpretation-based analyzers (such
as the CiaoPP analyzer [9, 4]) generally compute a program analysis graph [1] in
order to propagate (abstract) call and success information by performing fixpoint
computations when needed. On the other hand, partial deduction methods [7]
incorporate powerful techniques for on-line specialization including (concrete)
call propagation and unfolding.

In this work we propose what we argue is the first generic framework for
the efficient and precise integration of abstract interpretation and partial deduc-
tion from an abstract interpretation perspective, and which combines the best
of both worlds. As starting point, we consider state-of-the-art algorithms for
context-sensitive, polyvariant abstract interpretation [9, 4]. The central idea in
this novel framework is to extend such algorithms, which already incorporate suc-
cess propagation, such that calls which appear dynamically in the analysis graph
are not analyzed w.r.t. the definition of the procedure in the original program but
w.r.t. possibly new, specialized definitions of these procedures. These specialized
definitions are obtained by applying powerful techniques for on-line program
specialization, including unfolding and abstract executability [10]. Abstract exe-
cutability allows exploiting analysis information in order to (abstractly) execute
certain atoms, which in turn may allow unfolding of other atoms. Also, perform-
ing unfolding steps allows us to prune away useless branches, which will result
in improved success information. Furthermore, propagating (abstract) success
information simultaneously will result in an improved unfolding. Therefore, key
ingredients of our proposal include the accurate success propagation inherent to
context-sensitive abstract interpretation and the powerful constant propagation
and program transformations achievable by partial deduction.

It should be noted that existing proposals for such integration use abstract
interpretation as a means for improving partial evaluation rather than as a goal

? This work was funded in part by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-38059 ASAP project and by the Spanish Ministry of Science and Education
under the MCYT TIC 2002-0055 CUBICO project. Manuel Hermenegildo is also
supported by the Prince of Asturias Chair in Information Science and Technology
at UNM.



at the same level as producing a specialized program. This implies that, as a
result, their objective is to yield a set of atoms which determines a partial eval-
uation rather than to compute a safe approximation of its success. In contrast, a
fundamental objective of our work is to improve success information by analyzing
the specialized code, rather than the original one. We achieve this objective by
smoothly interleaving both techniques and this, on one hand, improves success
information, even for abstract domains which are not related directly to partial
evaluation. On the other hand, with more accurate success information we can
improve further the quality of partial evaluation. The overall method thus yields
not only a specialized program but also a safe approximation of its behavior.

Our framework is parametric w.r.t. different control strategies (both for local
and global control [3]) and abstract domains (including non downwards-closed

properties). Different combinations of such parameters correspond to existing
algorithms for program analysis and specialization. Simultaneously, our approach
opens the door to strictly more precise results than those achievable by each of
the individual techniques. The framework has been implemented in the context
of the CiaoPP analysis and specialization system. A complete description of the
method (and related techniques) can be found in [8].

References

1. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

2. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

3. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of

PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, pages 88–98. ACM Press, 1993.
4. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of

Constraint Logic Programs. ACM Transactions on Programming Languages and

Systems, 22(2):187–223, March 2000.
5. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall, New York, 1993.
6. M. Leuschel. A framework for the integration of partial evaluation and abstract

interpretation of logic programs. ACM Transactions on Programming Languages

and Systems, 26(3):413 – 463, May 2004.
7. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The

Journal of Logic Programming, 11:217–242, 1991.
8. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-

ized Definitions. Technical Report CLIP6/2005.0, Technical University of Madrid,
School of Computer Science, UPM, July 2005.

9. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145,
1996.

10. G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Ap-
plication to Program Parallelization. J. of Logic Programming., 41(2&3):279–316,
November 1999.

2


