An Abstract Interpretation-based Approach
to Mobile Code Safety

Elvira Albert! German Puebla? Manuel Hermenegildo?®?

L DSIP, Complutense University of Madrid, ealbert@sip.ucm.es

2 School of Computer Science, Technical University of Madrid,
{german,herme}@fi.upm.es

3 Depts. of Computer Science and Electrical and Computer Engineering,
University of New Mexico, (UNM), herme@unm. edu

Abstract

Recent approaches to mobile code safety, like proof-carrying code, involve associ-
ating safety information to programs. The code supplier provides a program and
also includes with it a certificate (or proof) whose validity entails compliance with
a predefined safety policy. The intended benefit is that the program consumer
can locally validate the certificate w.r.t. the “untrusted” program by means of a
certificate checker—a process which should be much simpler, efficient, and auto-
matic than generating the original proof. We herein introduce a novel approach
to mobile code safety which follows a similar scheme, but which is based through-
out on the use of abstract interpretation techniques. In our framework the safety
policy is specified by using an expressive assertion language defined over abstract
domains. We identify a particular slice of the abstract interpretation-based static
analysis results which is especially useful as a certificate. We propose an algorithm
for checking the validity of the certificate on the consumer side which is itself in
fact a very simplified and efficient specialized abstract-interpreter. Our ideas are
illustrated through an example implemented in the CiaoPP system. Though further
experimentation is still required, we believe the proposed approach is of interest
for bringing the automation and expressiveness which is inherent in the abstract
interpretation techniques to the area of mobile code safety.

Key words: Mobile Code Safety, Certifying Compilation,
Proof-Carrying Code, Abstract Interpretation, Static Analysis.

1 Introduction

One of the most important challenges which computing research faces today
is the development of security techniques for verifying that the execution of
a program (possibly) supplied by an untrusted source is safe, i.e., it meets
certain properties according to a predefined safety policy. Recent approaches
to mobile code safety involve associating safety information in the form of a
certificate to programs [?,7,?]. The certificate (or proof) is created at compile
time, and packaged along with the untrusted code. The consumer who receives
or downloads the code+certificate package can then run a wverifier which by

ALBERT, PUEBLA, HERMENEGILDO

a straightforward inspection of the code and the certificate, can verify the
validity of the certificate and thus compliance with the safety policy.

The key benefit of this “certificate-based” approach to mobile code safety
is that the burden of ensuring compliance with the desired safety policy is
shifted from the consumer to the supplier. The consumer’s task is reduced
from the level of proving to the level of checking. Indeed the verifier, or proof
checker, performs a task that should be much simpler, efficient, and automatic
than generating the original certificate. Well-known methods following this ap-
proach are, among others, Proof-Carrying Code (PCC) [?], the Java bytecode
verifier [?], and Typed Assembly Languages (TAL) [?]. An interesting point
to note is that the certificate may take different forms. For instance, in PCC
the certificate is originally a proof in first-order logic of certain verification
conditions and the verification process involves checking that the certificate is
indeed a valid first-order proof. A recent proposal [?] uses temporal logic to
specify security policies in PCC. In TAL, the certificate is a type annotation
of the assembly language program and the verification process involves a form
of type checking. Nevertheless, the design of mobile code safety systems based
on certificates shares the same, fundamental, challenges:

(i) defining expressive safety policies covering a wide range of properties,
(i) solving the problem of how to automatically generate the certificates and,
(iii) designing simple, reliable, and efficient checkers for the certificates.

The various approaches differ in expressiveness, flexibility, and efficiency, but
they all share the common goal of using safety information to make the local
execution of untrusted mobile code by the consumer safe and efficient. Our
main contribution is to introduce a novel approach to certificate-based mobile
code safety which follows the overall scheme, but which is based throughout
on the use of the technique of abstract interpretation [?] in order to handle
the fundamental and difficult issues mentioned above.

A starting point of our work is the observation that the now well estab-
lished technique of abstract interpretation has allowed the development of
very sophisticated global static program analyses which are at the same time
automatic, provably correct, and practical. The basic idea of abstract inter-
pretation is to infer information on programs by interpreting (“running”) them
using abstract values rather than concrete ones, thus, obtaining safe approx-
imations of programs behavior. The technique allows inferring much richer
information than, for example, traditional types. This includes data struc-
ture shape (like pointer sharing), bounds on data structure sizes, and other
operational variable instantiation properties, as well as procedure-level prop-
erties such as determinacy, termination, non-failure, and bounds on resource
consumption (time or space cost). CiaoPP [?] is the abstract interpretation-
based preprocessor of the Ciao multi-paradigm constraint logic programming
system. It uses modular, incremental abstract interpretation as a fundamental
tool to obtain information about the program. In CiaoPP, the semantic ap-
proximations produced by the analysis have been applied to high- and low-level
optimizations during program compilation, including transformations such as
multiple abstract specialization, parallelization, and resource usage control.
More recently, novel and promising applications of such semantic approxima-
tions have been proposed in the more general context of program development.

In the context of the CiaoPP system, we herein introduce a novel approach

ALBERT, PUEBLA, HERMENEGILDO

to mobile code safety which follows a certificate-based scheme, but which is
based throughout on the technique of abstract interpretation. The design of
our abstract interpretation-based system is made up of three main elements:

(i) An expressive assertion language used to define the safety policy. As-
sertions allow us to express “abstract”—i.e. symbolic—properties over
different abstract domains. Our framework is parametric w.r.t. the ab-
stract domain of interest, which gives us generality and expressiveness.

(i) A fixpoint static analyzer is used to automatically infer information about
the mobile code which can then be used to prove that the code is safe
w.r.t. the given assertions in a straightforward way. We identify the
particular slice of the analysis results which is sufficient for this purpose.

(iii) A simple, easy-to-trust analysis checker verifies the validity of the infor-
mation on the mobile code. It is indeed a specialized abstract interpreter
which does not need to iterate in order to reach a fixpoint (in contrast
to standard analyzers). Efficiency is achieved by taking advantage of the
analysis information gathered in a previous analysis phase.

A main purpose of this paper is to give preliminary evidence that the automa-
tion which is inherent in the abstract interpretation techniques can be brought
to the area of mobile code safety. The resulting scheme has been incorporated
in the CiaoPP preprocessor and its efficiency is now in the process of being
experimentally evaluated.

The paper is organized as follows. Section 2 describes the assertion lan-
guage which is used to define our safety policy. Section 3 presents the cer-
tification process together with the generation of the verification condition
to attest compliance with the safety policy. In Section 4, we introduce our
abstract interpretation-based checking algorithm. Finally, Section 5 discusses
the work presented in this paper together with related work.

2 An Assertion Language to Specify the Safety Policy

The purpose of a safety policy is to specify precisely the conditions under
which the execution of a program is considered safe. In existing approaches,
safety policies usually correspond to some variants of type safety (which may
also control the correct access of memory or array bounds [?]). We propose the
use of (a subset of) the high-level assertion language [?] available in CiaoPP to
define the safety policy in the context of constraint logic programs.

2.1 Preliminaries

We start by introducing some notation and preliminary concepts on constraint
logic programming [?] (CLP). Terms are constructed from variables (e.g., X),
functors (e.g., f) and predicates (e.g., p). We denote by {X; — t,..., X, —
tn} the substitution o with o(X;) = ¢; for all i« = 1,...,n (with X; # X
if i # j) and o(X) = X for any other variable X, where ¢; are terms. A
renaming is a substitution p for which there exists the inverse p~! such that
ppt=plp=id.

A constraint is essentially a conjunction of expressions built from prede-
fined predicates (such as term equations or inequalities over the reals) whose
arguments are constructed using predefined functions (such as real addition).
An atom has the form p(t4, ..., t,) where p is a predicate symbol and the ¢; are
terms. A literal is either an atom or a constraint. A goal is a finite sequence

ALBERT, PUEBLA, HERMENEGILDO

create_streams([],[]).

create_streams ([N|NL], [F|FL]):-
number_codes (N,ChInN), generate(ChInN,Fname),
safe_open(Fname,write,F), create_streams(NL,FL).

generate (ChInN,Fname) :- app("/tmp/",ChInN,Fname) .

safe_open(Fname,Mode,Stream) : -
atom_codes(File,Fname), open(File,Mode,Stream).

Fig. 1. Example mobile code

of literals. A rule is of the form H:-D where H, the head, is an atom and
D, the body, is a possibly empty finite sequence of literals. A constraint logic
program, or program, is a finite set of rules. We assume that all rule heads are
normalized, i.e., H is of the form p(Xj,..., X,,) where X1, ..., X,, are distinct
free variables. !

Example 2.1 Let us consider the CLP program in Figure 1. The main pred-
icate, create_streams/2, receives a list of numbers as first argument and
returns in the second argument the list of file handlers (streams) associated
to the opened files. Predicates number _codes/2, atom_codes/2, and open/3
are [SO-standard Prolog predicates, and thus they are available in CiaoPP.
In our example, the call number_codes (N, ChInN) receives the number N and
returns in ChInN the list of the ASCII codes of the characters comprising a rep-
resentation of N. Also, the call atom_codes(File, Fname) receives in Fname a
list of ASCII codes and returns the atom File made up of the corresponding
characters. A call open(File, Mode, Stream) opens the file named File and
returns in Stream the stream associated with the file. The argument Mode can
have any of the values: read, write, or append.

The auxiliary predicate generate concatenates the prefix “/tmp/” to the
number which receives as first parameter by using the well-known list concate-
nation predicate app/3. Note that predicate create _streams does not call
the system predicate open directly, but instead calls the auxiliary predicate
safe_open. The reason for this will be discussed in Example 2.3.

2.2 Abstract Properties

Assertions are syntactic objects which allow expressing a wide variety of high-
level properties of (in our case CLP-) programs. Examples are assertions which
state information on entry points to a program module, assertions which de-
scribe properties of built-ins, assertions which provide some type declarations,
cost bounds, etc. A distinguishing feature of our approach is that safety
properties are expressed as substitutions in the context of an abstract domain
(D,) which is simpler than the concrete domain (D). An abstract value is
a finite representation of a, possibly infinite, set of actual values in the con-
crete domain. Our approach relies on the abstract interpretation theory [?],
where the set of all possible abstract semantic values which represents D, is
usually a complete lattice or cpo which is ascending chain finite. However,

1 This is not restrictive since programs can always be normalized, and it will facilitate
the presentation of the checking algorithm later. However, in the examples (and in the
implementation of our framework) we use non-normalized programs.

ALBERT, PUEBLA, HERMENEGILDO

for this study, abstract interpretation is restricted to complete lattices over
sets, both for the concrete (27, C) and abstract (D,,C) domains. Abstract
values and sets of concrete values are related via a pair of monotonic map-
pings (a,7): abstraction « : 2P — D, and concretization v : D, — 2P, such
that Vo € 2P : y(a(z)) 22 and Vy € D,: a(y(y)) =y. In general C is
induced by C and «. Similarly, the operations of least upper bound (L) and
greatest lower bound (1) mimic those of 2 in a precise sense.

In this framework an abstract property is defined as an abstract substitution
which allows us to express properties, in terms of an abstract domain, that
the execution of a program must satisfy.

The description domain that we use in our examples is a reqular type do-
main [?]. We will often refer to this domain as eterms [?] since it is the name
it has in CiaoPP. A regular type is a set of terms which can be described by
a regular term grammar or, equivalently, by a finite tree automaton. In order
to define a regular type, one can choose Regular Unary Logic programs as a
representation of tree automata (like [?,7]). We also adopt this representation
as Ex. 2.2 will illustrate. Abstract substitutions in the eterms domain over a
set of variables V' assign a regular type to each variable in V. Apart from the
user’s defined regular types, in the eterms domain, we consider a number of
distinguished symbols which correspond to predefined types. For instance, we
will use in our examples term, which is the most general type, i.e., it corre-
sponds to all possible terms. The type constant denotes functors with zero
arguments, num, the set of all possible numbers, string, lists of characters,
list, any possible list, io_term the modes of accessing files (i.e., write, read
or append), and stream, handlers for sequential files. We allow parametric
types such as 1ist(T) which denotes lists whose elements are all of type T.
Note that the type list is equivalent to list(term). Clearly, 1ist(T) C
list C term for any type T. In eterms, the most general substitution T as-
signs term to all variables in V. The least general substitution | assigns the
empty set of values to each variable. For brevity, in the examples we often
skip variables whose type is the most general substitution (i.e., term).

Example 2.2 In the context of mobile code, it is a safety issue whether the
code tries to access files which are not related to the application in the machine
consuming the code. A very simple safety policy can be to enforce that the
mobile code only accesses temporary files. For example, in a UNIX system this
can be controlled (under some assumptions) by ensuring that the file resides
in the directory /tmp/.

The Regular Unary Logic program safe name in Figure 2 defines a reg-
ular type such that all its values satisfy this very simple notion of safety.
The following abstract property made up of the abstract substitution {X
safe name} expresses that X be bound to a string which starts by the prefix
“/tmp/” followed by a list of alpha-numerical characters. In the following, we
write simply safe_name(X) to represent the previous abstract substitution.
The regtype declarations are used to define new regular types in CiaoPP. In
fact, auxiliary predicates used to define a regular type, like alphanum code,
alpha_code, or num_code must be declared using regtype as well. The con-
struction member (C,"0123456789") is a shortcut for expressing that C can
correspond to any of the codes in the list from character 0 to 9.

ALBERT, PUEBLA, HERMENEGILDO

:- regtype safe_name/1.
safe_name("/tmp/"||L) :- list(L,alphanum_code).

:- regtype alphanum_code/1.
alphanum_code(X) : - alpha_code(X).
alphanum_code(X) : - num_code(X).

:— regtype alpha_code/1.
alpha_code(A) :- member(A,"abcdefghijklmnopqrstuvwzyz") .
alpha_code(A) :- member (A, "ABCDEFGHIJKLMNOPQRSTUVWXYZ") .

:- regtype num_code/1.
num_code(C) : - member (C,"0123456789") .

Fig. 2. Regular types for the example

2.3 The Safety Policy

The original assertion language [?] available in CiaoPP is composed of several
assertion schemes. Among them, we simply consider the two following schemes
for the purpose of this paper, which intuitively correspond to the traditional
pre- and postcondition on procedures.

calls(B,{A\p,o; - -; Ab..}): They express properties which should hold in any
call to a given predicate similarly to the traditional precondition. B is a
predicate descriptor, i.e., it has a predicate symbol as main functor and all
arguments are distinct free variables, and A%, i = 1,...,n, are abstract
properties about execution states. The resulting assertion should be inter-
preted as “in all activations of B at least one property A%, . should hold in

the calling state.”

success(B, [Apre, |[Apost): This assertion schema is used to describe a post-
condition which must hold on all success states for a given predicate. In
the assertion, B is a predicate descriptor, and Ap,. and Ap,s are abstract
properties about execution states. Ap,. is optional and must be evaluated
w.r.t. the store at the calling state to the predicate. However, the condition
Apost must be evaluated w.r.t. the store at the success state of the predicate.
If the optional Ap,. is present, then Ap,s is only required to hold in those
success states which correspond to call states satisfying Ap,... Note that
several success assertions with different A\p,. may be given.

Therefore, abstract properties Ap,. and Ap,s in assertions allow us to express
conditions, in terms of an abstract domain, that the execution of a program
must satisfy. Each condition is an abstract substitution corresponding to the
variables in some atom.

In general, it is the task of the compiler designer to define the safety policy
associated to the system. In the CiaoPP precompiler, the above assertion
language allows us to define the safety policy for the run-time system in the
presence of foreign functions, built-ins, etc.

Example 2.3 Figure 3 shows the assertions which are relevant to the program
in our running example. The first four rows correspond to calls assertions,
whereas the last three are success assertions. Out of the four calls, the
first three are predefined in the system. The last user-defined assertion for
predicate safe_open provides a simple way to guarantee that all calls to open

ALBERT, PUEBLA, HERMENEGILDO

calls(number codes(X,Y), {(num(X);list(Y,numcodes))})
calls(atom codes(X,Y), {(constant(X);string(Y))})
calls(open(X,Y, Z), {constant(X),io mode(Y)})
calls(safe_open(Fname,_,.), {safe name(Fname)})
success (number_codes (X,Y), T, {num(X),list(Y,numcodes)})
success(atom_codes(X,Y), T, {constant(X),string(Y)})
success(open(X,Y,2), T, {constant(X),io mode(Y),stream(Z)})

Fig. 3. Assertions for the example

are safe. It can be read as “the calling conventions for predicate safe_open
require that the first argument be a safe name”. Let us note that the actual
implementation in the CiaoPP system also includes program point assertions [?]
which avoid the use of auxiliary predicates such as this one. For simplicity,
we do not discuss program point assertions here. The safety policy in our
example corresponds to guaranteeing that the program satisfies all the seven
assertions in the figure.

The coexistence of different domains in CiaoPP [?] allows expressing a
wide range of properties using the assertion language. They include modes,
types, non-failure, termination, determinacy, non-suspension, non-floundering
and cost bounds. We believe that cost bounds will have an impact for safety
purposes. For instance, an assertion can be used to require that the cost
of a predicate be linear: an erroneous implementation with quadratic cost
would be rejected in this case. However, the cost is a property about the
global computation of the predicate rather than the input-output behavior.
In CiaoPP they are expressed by means of a different assertion scheme, namely,
comp assertions which allow expressing properties of computations.

In contrast to other approaches, assertions are not compulsory for every
predicate. This is important since assertions have to be provided manually.
Thus, the user can decide how much effort to put into writing assertions:
the more of them there are, the more complete the partial correctness of the
program is described and more possibilities to detect problems. However,
pre- and post-conditions are often provided by programmers since they are
often easy to write and very useful for generating program documentation.
Furthermore, assertions are helpful but not actually required in order to obtain
information about the program: the analysis algorithm is able to obtain safe
approximations of the program behavior even if no assertions are given. This is
not always the case in other approaches such as classical program verification,
in which loop invariants are actually required. Such invariants are hard to find
and existing automated techniques are generally not sufficient to infer them,
so that often they have to be provided by hand.

3 Certifying Programs by Static Analysis

This section describes the certification process, i.e., the generation of a certifi-
cate to attest the adherence of the program to the safety policy. The whole
certification method is based on the following idea: a particular slice of the
analysis results computed by abstract interpretation-based fizpoint algorithms
can play the role of certificate for attesting program safety. Intuitively, our
certification process performs the following steps. We start from a set, AS, of
assertions which establishes the safety policy associated to a program, P, in
the context of an abstract domain, D,,, as defined in Sect. 2. Firstly, a stan-

ALBERT, PUEBLA, HERMENEGILDO

dard program analyzer is run, which returns, among other data structures, an
answer table, AT, encoding relevant information about P’s execution (in terms
of the abstract domain D,,). Secondly, a verification condition, VC(AS, AT),
is generated from AS and AT in order to attest compliance of P with respect
to the safety policy. The condition VC(AS, AT') is sent to an automatic veri-
fier which attempts to validate it. If it succeeds, AT constitutes the certificate
and can be sent to the consumer together with the program P. Sections 3.1
and 3.2 give further details on elements AT and VC(AS, AT), respectively.

3.1 Using Analysis Results as Certificates

A main idea in our certification process is that the certificate is automatically
generated by a fixpoint abstract interpretation-based analyzer. In particular,
we rely on the goal dependent (a.k.a. goal oriented) analyzer of [?] which is the
one implemented in the CiaoPP system. This analysis algorithm (we simply
write Analysis for short in the following) receives as input, in addition to
the program P, a set of calling patterns. A calling pattern is a description of
the calling modes (or entries) into the program. In particular, for an abstract
domain D,,, a set of calling patterns () consists of a set of pairs of the form
(A : CP) where A is a predicate descriptor and C'P is an abstract substitution
(i.e., a condition of the run-time bindings) of A expressed as CP € D,,.

In order to compute Analysis(P,Q, D,), traditional (goal dependent) ab-
stract interpreters for (C)LP programs construct an and-or graph (or analysis
graph for short) which corresponds to (or approximates) the abstract seman-
tics of the program [?]. The graph has two sorts of nodes: or-nodes and
and—nodes. Or—nodes correspond to literals whilst and—nodes to rules. Both
kinds of nodes are connected as follows. Or—nodes have arcs to those and—
nodes which correspond to the rules whose head unifies with the literal. An
and-node for a rule H :— By, ..., B, has n arcs to the or-nodes which corre-
sponds to the literals in the body of the rule. Due to space limitations, and
given that it is now well understood, we do not describe here how to compute
the and—or graph, or equivalently, Analysis(P,Q, D,). More details can be
found in, e.g., [?,7,7].

The analysis graph computed by CiaoPP’s abstract interpreter is repre-
sented by means of two data structures in the output: the answer table and the
arc dependency table. The following definition introduces the notion of analy-
sis table (similar definitions can be found, e.g., in [?,?,?]). Informally, it says
that its entries are of the form (A : CP+ AP) which should be interpreted
as “the answer pattern for calls satisfying precondition (or call substitution),
CP, to A accomplishes postcondition (or success substitution), AP.”

Definition 3.1 [Analysis answer table] Let P be a program. Let @ be a set
of calling patterns expressed in the abstract domain D,. We define an analysis
answer table, AT, as the set of entries (4; : CP; — AP;), Vj = 1..n computed
by Analysis(P,Q, D,)[?] where, in each entry, A; is an atom and C'P; and
AP; are, respectively, the abstract call and success substitutions.

Intuitively, the answer table contains the answer patterns for all literals
in the or-nodes of the graph while the arc dependency table keeps detailed
information about dependencies among or-nodes in the graph. A central
idea in this work is that, for certifying program safety, it suffices to send the
information stored in the analysis answer table since, in contrast to the original

ALBERT, PUEBLA, HERMENEGILDO

generic algorithm [?], a simple analysis checker can be designed for validating
the answer table without requiring the use of the arc dependency table at all
(as we show in Sect. 4). The theory of abstract interpretation guarantees that
the answer table is a safe approximation of the runtime behavior (see [?,7,7]
for details).

Example 3.2 Reconsider the program of Example 2.1 and the abstract do-
main eterms enhanced with the regular type declaration safe name of Ex-
ample 2.2. Take the calling pattern (create_streams(X,Y),{list(X,num)}),
which indicates that initial calls to create_streams are performed with a list
of numbers in the first argument. CiaoPP computes this answer table for it:

| Predicate | Calling Pattern | Success Pattern |

create_streams(A,B) list (A,num) list(A, num),list(B, stream)
number_codes (A, B) num (A) num(A) ,1ist (B,numcodes)
generate(A,B) list (A,numcodes) list (A,numcodes) ,sf(B)
app(A,B,0) A="/tmp/", A="/tmp/",

list (B,numcodes) list (B,numcodes) ,sf(C)
safe_open(A,B,C) sf(A) ,B=write sf(A) ,B=write,stream(B)
atom_codes(A,B) st (B) constant (A) ,sf(B)
open(A,B,C) constant (4), constant (A) ,B=write,

B=write stream(C)

For instance, the first entry should be interpreted as: all calls to predicate
create_streams provide as input a list of numbers in the first argument and,
upon success, they yield lists of numbers and streams, respectively, in each
of its two arguments. It is interesting to note that CiaoPP generates the
auxiliary type sf("/tmp/"||A) :- list(A,numcodes). to represent lists of
numbers starting by the prefix "/tmp/". Clearly, sf C safe name. This will
allow CiaoPP to infer that calls to open performed within this program satisfy
the simple safety policy discussed in Ex. 2.2. Moreover, we use the notation
Var = constant to denote that the system generates a new type whose only
element is this constant, as it happens: for write, in the entries for safe _open
and open and, for "/tmp/", in the entry for app.

In order to increase accuracy, analyzers are usually multivariant on calls
(see, e.g., [?]). Indeed, though not visible in this example, CiaoPP incorpo-
rates a multivariant analysis, i.e., more than one triple (A : CP; — AP)),.. .,
(A:CP,— AP,) n > 1 with CP; # AP; for some i, j may be computed for
the same predicate descriptor A.

3.2 The Verification Condition

In the next step, the code supplier extracts a Verification Condition (VC)
which can be proved only if the execution of the code does not violate the
safety policy. For an initial set of assertions, we define our VC as follows.

Definition 3.3 [Verification Condition| Let P be a program, @ a set of calling
patterns in the abstract domain D, and AT its analysis answer table. Let §
be an assertion. Then, the verification condition, VC(S, AT), for S w.r.t. AT
is defined as follows: VC(S, AT) ::=

ALBERT, PUEBLA, HERMENEGILDO

(A (ACP)E AV Y 0(CP) E M)
(A:CP—AP)eAT
if S'= calls(B,{\poui - Npree})
/\ P(CP) M)\Prec =1V P(AP) L)\Post
(A:CP—AP)eAT
L if S = success(B, Aprecs Apost)

where p is a variable renaming substitution of A w.r.t. B.
If AS is a finite set of assertions, then the verification condition of AS, i.e.,
V(AS, AT), is the conjunction of the verification conditions of the elements

of AS.

Roughly speaking, the VC generated according to Def. 3.3 is a conjunc-
tion of boolean expressions (possibly containing disjunctions) whose validity
ensures the consistency of a set of assertions w.r.t. the answer table computed
by Analysis. It distinguishes two different cases depending on the kind of
assertion. For calls assertions, the VC requires that at least one precondition

e De a safe approximation of all existing abstract calling patterns for the
atom B. In the case of success assertions, there are two cases for them to hold.
The first one indicates that the precondition is never satisfied and, thus, the
assertion trivially holds (and the postcondition does not need to be tested).
The second corresponds to the case in which the success substitutions com-
puted by analysis for the predicate are more particular than the one required
by the assertion. Let us illustrate this definition by means of an example.

Example 3.4 Consider the answer table generated in Example 3.2 and the
calls and success assertions of Figure 3. According to Def. 3.3, the VC is:
(num(X) C (num(X); 1ist(Y, numcodes))A
sf(Y) C (constant(X); string(Y))A
constant(X),Y = write C constant(X), iomode(Y)A
sf(X) C safe name(X)A
num(X), list(Y, numcodes) C num(X), list(Y,numcodes)A
constant(X),sf(Y) C constant(X), string(Y)A
constant(X),Y = write, stream(Z) C constant(X), io mode(Y), stream(Z))

Each conjunct corresponds to an assertion in Fig. 3 in the same order they
appear there. Thus, the first four conjuncts are for the calls assertions and
the last three for the success assertions. The validity of the whole conjunction
can be easily proved by taking into account the following (trivial) relations
between the elements in the domain:
sf(X) C string(X)

X =write C io mode(X)
Note that the first two conjuncts contain a disjunction in the right condition.
In the second one, the condition sf(Y) C (constant(X);string(Y)) holds
because sf(Y) C string(Y).

Therefore, upon creating the answer table and generating the VC, the
validity of the whole boolean condition is checked by resolving each conjunct
separately. Note that each conjunct consists of comparisons of pairs of abstract
substitutions, which simply return either true or false but do not compute
any substitution. This validation may yield three different possible status:

10

ALBERT, PUEBLA, HERMENEGILDO

i) the VC is indeed checked, as it happens in the above example; ii) it is
disproved, and thus the certificate is not valid and the code is definitely not
safe to run (we should obviously correct the program before continuing the
process); iii) it cannot be proved nor disproved, which may be due to several
circumstances. For instance, it can happen that the analysis is not able to infer
precise enough information to verify the conditions. The user can then provide
a more refined description of initial calling patterns or choose a different, finer-
grained, domain. In both the ii) and iii) cases the certification process needs
to be restarted until achieving a VC which meets i).

Finally, let us mention that some works investigate how to minimize the
trusted computing base in order to achieve more trustworthy systems. Founda-
tional PCC [?,?] eliminates the VC generation process and, instead, requires
all program analysis to be incorporated logically in the proof at the cost of
augmenting the proof size. The main advantage is that the PCC implemen-
tation is expected to contain about an order of magnitude less trusted code.
Recently, Configurable PCC [?] proposes a method for implementing a PCC
system based on a VC generator that is mostly untrusted. This is achieved
by using methods to verify each execution of the untrusted generator rather
than the code itself. The adaptation of the ideas in [?,7,?] to our framework
may be subject of future research.

The following theorem states the soundness of the VC. Intuitively, it
amounts to saying that if the VC holds, then the execution of the program
will preserve all safety assertions. Following the notation of [?], we write >V C'
when V(' is valid.

Theorem 3.5 (Soundness of the Verification Condition) Let P be a pro-
gram, AS be a set of assertion, Q) be a set of calling patterns in an abstract
domain D,. Let AT be an analysis answer table for P, Q) and D, as defined in
Def. 3.1. Let VC(AS, AT) be the verification condition from AT and AS gen-
erated as stated in Def. 3.3. If >V C(AS, AT), then P satisfies all assertions
m AS for all computations described by Q).

Proof. [sketch] The proof of the theorem is a direct consequence of the fact
the static analysis algorithm computes a safe approximation of the stores
reached during computation. O

4 Checking Safety in the Consumer

After certifying the safety of the code, the supplier sends the program together
with the certificate to the consumer. To retain the safety guarantees, the
consumer can trust neither the code nor the certificate. Thus, in the validation
process, a code consumer not only checks the validity of the certificate w.r.t.
the program but it also (re-)generates a trustworthy VC. This section describes
only the former part of the validation process, since the latter is identical to
that already discussed in the previous section.

There are at least three reasons for requiring the validation process to be
efficient and driven by a simple algorithm. First, the implementation of the
checking algorithm is part of the safety-critical infrastructure and we want
to minimize it. Second, the local host could be a small embedded system
that lacks computing resources to run large and complex programs. Third,

11

ALBERT, PUEBLA, HERMENEGILDO

the checking will be performed by every consumer (whilst the certification
generation is done only once by the supplier).

As already mentioned, Analysis plays the role of the certificate generator
in our approach. Although global analysis is now routinely used as a practical
tool, it is still unacceptable to run the whole Analysis to validate the certifi-
cate since it still involves considerable cost. One of the main reasons for this
is that the fixpoint algorithm is an iterative process which often recomputes
answers (repeteadly) for the same call due to possible updates introduced by
further computations. At each iteration, the algorithm has to manipulate
rather complex data structures—which involve performing updates, lookups,
etc.—until the fixpoint is reached. The whole validation process is centered
around the following observation: the checking algorithm can be defined as
a very simplified “one-traversal” analyzer. Intuitively, the computation of a
fixpoint algorithm, such as Analysis, can be understood as:

Analysis = fixpoint(analysis_step)

We write explicitly fixpoint to highlight that the analysis can be seen as
an iterative process which repeatedly performs a traversal of the analysis
graph (denoted by analysis_step) until the computed information does not
change, i.e., it reaches a fixpoint. The novel idea is that the simple, non-
iterative, analysis_step process can play the role of abstract interpretation-
based checker. In other words, check = analysis_step. This is justified by
the assumption that the certification process already provides the fixpoint re-
sult in the form of certificate. Thus, as long as the answer table is valid, an
additional analysis traversal over it—or equivalently one single execution of
analysis_step—cannot change the result.

The next definition presents our abstract interpretation-based checking al-
gorithm. It takes as input: a program P, an initial set of calling patterns
() in an abstract domain D,, and its certificate Cert (which is the analysis
answer table). In a single traversal, it constructs a program analysis graph
for P and @ by using the information in Cert. The algorithm is devised as a
graph traversal procedure which places entries in a local answer table, AT, as
new nodes in the program analysis graph are encountered. Thus, it handles
two distinct answer tables: the local AT + the incoming Cert. The final goal
of the checking is to reconstruct the analysis graph and compare the results
with the information stored in Cert. As long as Cert is valid, both results
coincide and, thus, the certificate is guaranteed to be valid w.r.t. the program.
Otherwise, the checker reports an error and rejects the program.

Definition 4.1 [Abstract Interpretation-based Checker] Let P be a program
and () be a set of calling patterns in the abstract domain D,. Let Cert be a
safety certificate as defined in Def. 3.1. The validation of Cert is performed
by the procedure check depicted in Figure 4.2 The algorithm uses a local
answer table, AT, to compute the results (initially it does not contain any
entry). Procedure check is defined in terms of five abstract operations [?] on
the description domain D, of interest:

o Arestrict(CP, V) performs the abstract restriction of a description CP to the
set of variables in the set V', denoted vars(V);

2 TFollowing the presentation of Analysis [?], we assume that the program P and the answer
table are global parameters throughout the algorithm.

12

ALBERT, PUEBLA, HERMENEGILDO

check(Q, Cert)
foreach A: CP € Q
process_node(A : CP, Cert)
return Valid

process_node(A : CP, Cert)
if (3 a renaming o s.t. 0(A: CP +— AP) in Cert)
then add (A: CP+— AP) to AT
else return Error
foreach rule Ay, < By 1,...,Bjp, in P
W :=wvars(Ag, Bi i, -, Bin,)
CP, :=Aextend(CP,vars(By,- .., Bin,))
CPRy, = Arestrict(CPy, By, 1)
foreach By ; in the rule body i =1, ..., n
CP, := process_arc(By,; : CPRy, CP,, W, Cert)
if (i <> ny) then CPR, := Arestrict(CP,,var(Bj,i+1))
CP, :=CP,
CPRy := CPR,
AP = Arestrict(C'P,, vars(Ag))
APy := Alub(AP;, 0~ (AP))
if AP <> AP, then return Error

process_arc(By, ; : CPRy, C Py, W, Cert)
if By; is a constraint then CP, := Aadd (By;, CF;)
elseif (A a renaming o s.t. o(By; : CPR, — AP’) in AT)
then process_node (By; : CPRy, Cert)
APy := Aextend (p~1(AP), W) where p is a renaming s.t.
CP, := Aconj (CP,, APy)
return CP,

Fig. 4. Abstract Interpretation-based Checking in CiaoPP

Aextend(CP, V) extends the description CP to the variables in the set V;

Aadd(C, CP) performs the abstract operation of conjoining the actual con-
straint C' with the description CP;

Aconj(CPy, CP,) performs the abstract conjunction of two descriptions;

Alub(CPy, CP,) performs the abstract disjunction of two descriptions.

The checking algorithm proceeds as follows. For each calling pattern in
the set @, the procedure process_node inspects all rules defining the considered
atom. For each rule, it performs a left-to-right traversal of the atoms in the
rule body. The processing of each atom Bj; in the rule body is handled by
process_arc. We refer by C'P, to the description of the program point immedi-
ately before the atom By ; and by C'P, to the description after processing the
atom. Initially, the description C'P, takes the value of the initial description
C'P for the calling pattern A : C'P (extended to all the variables in the rule).
We use the variables CPR, to denote that the description C'P, has been re-
stricted, with = € {a,b}. The procedure process_arc is aimed at computing the
resulting description C'P, after processing a given atom By ;. It distinguishes
two different cases depending on the form of the atom:

* Constraints are simply abstractly added to the current description.

13

ALBERT, PUEBLA, HERMENEGILDO

o If By, is an atom, then it inspects whether it has been processed before:

- If the atom has an entry in the answer table, we do not need to recompute
the answer for the same atom. Indeed, this could risk the termination of
the algorithm.

- Otherwise, we process it by executing procedure process_node. On return,
and in the absence of errors, this processing will have placed an answer
for By ; in the answer table (and possibly for other related atoms as well).

Either way, there will be an answer for the atom at this point. This answer

is conjoined with the description CP, from the program point immediately

before By ; in order to obtain the description for the program point after it.
The computed result is used to process the next literal in the rule when By, ;
is not the last literal. Otherwise, the computed result constitutes indeed the
computed answer for the rule. The answer is combined with the corresponding
answer supplied by the certification process in Cert. If Cert is valid, the com-
parison should hold; otherwise the process prompts an error and the program
is not safe to run.

This algorithm is a simplified version of that in [?] in two main ways. One
is that no control structure is needed in order to guarantee that a fixpoint is
reached. This eliminates the need for the “event queue” of [?]. The second
is that since only one traversal of the analysis graph is to be performed, no
detailed dependency information is required. This eliminates the need for the
“dependency arc table” of [?].

An example of the validation process can be found in the Appendix. Fur-
ther insights on the operations on abstract substitutions (like extensions, re-
strictions, etc.) can be found in [?]. Correctness results will appear in an
extended version of the paper.

The following theorem states the partial correctness of the checking algo-
rithm of Def. 4.1. Informally, it ensures that algorithm check is able to validate
safety certificates which are stored in an analysis answer table.

Theorem 4.2 (partial correctness) Let P be a program, let Q be a set of
calling patterns in an abstract domain D,. Let Cert be an analysis answer
table as stated in Def. 3.1. Then, operation check(Q, Cert) terminates and
validates Cert in P.

5 Discussion

The idea of using the results of abstract interpretation for program verification
and debugging is not new. Analysis results allow proving that the program
is correct w.r.t. non-trivial correctness conditions. This is also the case in
CiaoPP, whose combination of abstract interpretation with a flexible assertion
language opens the door to many uses of abstract interpretation for program
development.

In this paper, we have introduced a novel approach to mobile code safety
which follows the standard strategy of associating safety certificates to pro-
grams, proposed by PCC and related techniques, but which is based through-
out on the use of abstract interpretation. In particular, it differs from PCC
in the following aspects. In our case, the burden on the consumer side is
reduced by replacing an analysis phase with a simple one-traversal abstract
interpretation-based checker. The certificate takes the form of a particular

14

ALBERT, PUEBLA, HERMENEGILDO

slice of the analysis results generated by an abstract interpreter. The cer-
tificate checker on the consumer side is itself in fact a very simplified and
efficient specialized abstract-interpreter. The importance of our definition of
the checker comes from the fact that, while abstract interpretation is a pow-
erful technique, in return it is not without cost: the results it provides are
guaranteed to be correct and often sufficiently precise in order to be useful,
but obtaining analysis results is a costly task, mainly due to the fact that an
analysis fixpoint has to be reached. The checker that we have proposed, on
the other hand, greatly reduces the cost on the receiving side.

Another notable difference is that that our scheme is completely defined
at the source-level, whereas in PCC and related approaches the code supplier
typically packages the certificate with the untrusted object code rather than
with the source code. From our point of view these two approaches are of
interest. In many cases the source code is simply not available to the consumer.
Even when there is a choice between object and source code, using object code
has the clear advantage that the trusted computing base in the consumer is
reduced since there is no need for a compiler.

However, open-source code is getting much more relevant these days. As a
result, it is now realistic to expect that a relatively large amount of untrusted
source code is available to the consumer. Part of our interest in open-source
is due to the fact that Ciao is itself a GNU-Licensed Prolog System based on
the availability of the source code for its reviewing and modification.

The advantages of open-source with respect to safety are important since
it allows inspecting the code and applying powerful techniques for program
analysis and validation which allow infering information which may be difficult
to observe at low-level, compiled code. This enables handling more involved
properties which in turn allow more expressive safety policies. Therefore, we
share with PCC the idea of reducing the load in the consumer but our method
is somehow applied in a different manner.

Acknowledgments

This work was funded in part by projects ASAP (EU IST FET Programme
Project Number IST-2001-38059) and CUBICO (MCYT TIC 2002-0055). Part
of this work was performed during a research stay of Elvira Albert and German
Puebla at UNM supported by respective grants from the Secretaria de Estado
de Educacion y Universidades. Manuel Hermenegildo is also supported by the
Prince of Asturias Chair in Information Science and Technology at UNM.

References

A Example of Analysis Checking

Consider again the program of Ex. 2.1, now in normalized form:

create_streams(X,Y):- X=[],Y=[].

create_streams(X,Y):- X=[N|NL], Y=[F|FL],
number_codes(N,ChInN), generate(ChInN,Fname),
safe_open(Fname,write,F), create_streams(NL,FL).

15

ALBERT, PUEBLA, HERMENEGILDO

the calling pattern (create streams(X,Y),{list(X,num)}) and the answer ta-
ble, denoted by Cert, of Ex. 3.2. We describe the more representative steps
that algorithm check performs in order to validate the answer table. First,
procedure process_node looks up an answer for the initial calling pattern in
Cert and adds the entry

(create streams(X,Y) : list(X,num) — AP = list(X,num), list(Y, streams))

in the answer table AT (note that, for short, we use AP to denote this partic-
ular answer pattern). Since there are two rules defining create_streams the
outermost loop performs two iterations:

Iter 1. We start by describing the processing of the first rule (although the or-
der is irrelevant). Since the first atom X=[] in the rule body is a constraint,
its description is computed within procedure process_arc by adding its ab-
stract description, i.e., {nil(X)}, to the initial description {list(X,num)},
resulting in {nil(X) }. Similarly, the analysis for the second constraint adds
{nil(Y)} to the former description producing {nil(X),nil(Y)}. Upon ex-
iting the innermost loop, the disjunction of this description with the answer
stored in Cert is calculated:

AP := Alub ({nil(X),nil(Y)}, AP)

since nil(X) C list(X,num) and the same happens for Y. Thus, the certifi-
cate holds for this rule.

Iter 2. In the second iteration, we find six atoms in the rule body. Thus, the
innermost loop performs the following six steps. The first two traversals deal
with the constraints for X and Y, and are similar to Iter 1. They produce
the calling pattern {1ist (X,num) ,rt2(Y) } where the auxiliary regular type
rt2 is created by CiaoPP to represent a term whose top-level functor is a
list constructed with F as head and FL as tail. For simplicity, we just write
this description as {1ist (X,num),Y=[F|FL]} in the following.

The next atom, number_codes, in the rule body is not a constraint, thus,
process_arc checks whether it has been processed before. Since this is not
the case, it recursively executes process_node in order to get an answer for
it. By using its predefined definition, that process_node gives the answer
{num(N),1list(ChInN,numcodes)} for it. This answer is conjoined with
the description of the program point inmediately before the atom, i.e.:
{list(X,num),Y = [F|FL], num(N), 1ist(ChInN, numcodes)} :=

Aconj({num(N), 1ist(ChInN, numcodes)}, {1ist(X,num),Y = [F|FL]})
Similarly, nodes generate and safe_open are processed producing the final
description after processing safe open, labeled as C'P:

CP = {list(X,num), Y = [stream|FL], num(N),
list(ChInN, numcodes), sf(Fname), stream(F)}
Finally, there is another call to create_streams. Now, process_node finds
out that AT already contains an answer pattern for this predicate. Then,
both calling patterns are conjoined: AP := Aconj(CP, AP). Upon return
from process_arc, it performs the disjunction of the computed answer with
the answer supplied by Cert: AP := Alub(AP, AP). Since the result AP
coincides with the one in the certificate, the proof is validated and the
algorithm terminates in a single graph traversal for the initial query.

16

	Introduction
	An Assertion Language to Specify the Safety Policy
	Preliminaries
	Abstract Properties
	The Safety Policy

	Certifying Programs by Static Analysis
	Using Analysis Results as Certificates
	The Verification Condition

	Checking Safety in the Consumer
	Discussion
	References
	Example of Analysis Checking

