
PROLE 2006

Generation of Reduced Certificates in
Abstraction-Carrying Code

Elvira Albert1 Puri Arenas1

Germán Puebla2 Manuel Hermenegildo2,3

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es

2 Technical University of Madrid, {german,herme}@fi.upm.es

3 University of New Mexico, herme@unm.edu

Abstract

Abstraction-Carrying Code (ACC) has recently been proposed as a framework
for mobile code safety in which the code supplier provides a program together with
an abstraction whose validity entails compliance with a predefined safety policy.
The abstraction plays thus the role of safety certificate and its generation is carried
out automatically by a fixed-point analyzer. The advantage of providing a (fixed-
point) abstraction to the code consumer is that its validity is checked in a single

pass of an abstract interpretation-based checker. A main challenge is to reduce
the size of certificates as much as possible while at the same time not increasing
checking time. In this paper, we first introduce the notion of reduced certificate

which characterizes the subset of the abstraction which a checker needs in order to
validate (and re-construct) the full certificate in a single pass. Based on this notion,
we then instrument a generic analysis algorithm with the necessary extensions in
order to identify the information relevant to the checker.

Key words: Reduced certificates, abstraction-carrying code,
abstract interpretation, mobile code safety, logic programming

1 Introduction

Proof-Carrying Code (PCC) [12] is a general framework for mobile code safety
which proposes to associate safety information in the form of a certificate

? An extended version of this paper will appear in [2]. This work was funded in part by
the Information Society Technologies programme of the European Commission, Future and
Emerging Technologies under the IST-15905 MOBIUS integrated project, and by the Span-
ish projects TIN2005-09207-C03 (MERIT) and CAM S-0505/TIC/0407 (PROMESAS).
Manuel Hermenegildo is also supported by the Prince of Asturias Chair in Information
Science and Technology at UNM.

This paper was generated using LATEX macros provided by
Electronic Notes in Theoretical Computer Science

Albert, Arenas, Puebla, Hermenegildo

to programs. The certificate (or proof) is created at compile time by the
certifier on the code supplier side, and it is packaged along with the code.
The consumer which receives or downloads the (untrusted) code+certificate
package can then run a checker which by an efficient inspection of the code
and the certificate can verify the validity of the certificate and thus compliance
with the safety policy. The key benefit of this approach is that the task of the
consumer is reduced to checking, a procedure that should be much simpler,
efficient, and automatic than generating the original certificate. Abstraction-
Carrying Code (ACC) [3] has been recently proposed as an enabling technology
for PCC in which an abstraction (or abstract model of the program) plays the
role of certificate. An important feature of ACC is that not only the checking,
but also the generation of the abstraction is carried out automatically, by a
fixed-point analyzer. Both the analysis and checking algorithms are always
parametric on the abstract domain, with the resulting genericity. This allows
proving a wide variety of properties by using the large set of abstract domains
that are available, well understood, and with already developed proofs for
the correctness of the corresponding abstract operations. This is one of the
fundamental advantages of ACC.

In this paper, we consider analyzers which construct a program analysis

graph which is an abstraction of the (possibly infinite) set of states explored
by the concrete execution. To capture the different graph traversal strate-
gies used in different fixed-point algorithms we use the generic description
of [8], which generalizes the algorithms used in state-of-the-art analysis en-
gines. Essentially, the certification/analysis carried out by the supplier is an
iterative process which repeatedly traverses the analysis graph until a fixpoint
is reached. The analysis information inferred for each call is stored in the
answer table [8]. In the original ACC framework, the final full answer table
constitutes the certificate. Since this certificate contains the fixpoint, a single
pass over the analysis graph is sufficient to validate it on the consumer side.

One of the main challenges for the practical uptake of ACC (and related
methods) is to produce certificates which are reasonably small. This is impor-
tant since the certificate is transmitted together with the untrusted code and,
hence, reducing its size will presumably contribute to a smaller transmission
time. Also, this reduces the storage cost for the certificate. Nevertheless, a
main concern when reducing the size of the certificate is that checking time
is not increased as a consequence. In principle, the consumer could use an
analyzer for the purpose of generating the whole fixpoint from scratch, which
is still feasible since analysis is automatic. However, this would defeat one of
the main purposes of ACC, which is to reduce checking time. The objective of
this paper is to characterize the subset of the abstraction which must be sent
within a certificate and which still guarantees a single pass checking process.

In the PCC scheme, the basic idea in order to reduce a certificate is to
store only the analysis information which the checker is not able to reproduce
by itself [9]. With this purpose, Necula and Lee [13] designed a variant of the

2

Albert, Arenas, Puebla, Hermenegildo

Edinburgh Logical Framework, called LFi, in which certificates discard all the
information that is redundant or that can be easily synthesized. Also, Oracle-
based PCC [14] aims at minimizing the size of certificates by providing the
checker with the minimal information it requires to perform a proof. Tactic-
based PCC [4] aims at minimizing the size of certificates by relying on large
reasoning steps, or tactics, that are understood by the checker. Finally, this
general idea has also been deployed in lightweight bytecode verification [16]
where the certificate, rather than being the whole set of Frame Types (FT)
associated to each program point is reduced by omitting those (local) program
point FTs which correspond to instructions without branching and which are
lesser than the final FT (fixpoint). Our proposal for ACC is at the same time
more general (because of the parametricity of the ACC approach) and carries
the reduction further because it includes only in the certificate those calls in
the analysis graph (including both branching an non branching instructions)
required by the checker to re-generate the certificate in one pass.

2 Generation of Full Certificates in ACC

This section introduces the notion of full certificate in the context of (C)LP
[3]. We assume the reader is familiar with abstract interpretation (see [6])
and (Constraint) Logic Programming (C)LP (see, e.g., [11] and [10]). We
consider an abstract domain 〈Dα,v〉 and its corresponding concrete domain

〈2D,⊆〉, both with a complete lattice structure. Abstract values and sets of
concrete values are related by an abstraction function α : 2D → Dα, and a
concretization function γ : Dα → 2D. An abstract value y ∈ Dα is a safe

approximation of a concrete value x ∈ D iff x ∈ γ(y). The concrete and
abstract domains must be related in such a way that the following holds [6]
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is
induced by ⊆ and α. Similarly, the operations of least upper bound (t) and
greatest lower bound (u) mimic those of 2D in a precise sense.

Algorithm 1 has been presented in [8] as a generic description of a fixed-
point algorithm which generalizes those used in state-of-the-art analysis en-
gines, such as the one in CiaoPP [7]. In order to analyze a program, traditional
(goal dependent) abstract interpreters for (C)LP programs receive as input,
in addition to the program P and the abstract domain Dα, a set Sα ∈ AAtom

of Abstract Atoms (or call patterns). Such call patterns are pairs of the form
A : CP where A is a procedure descriptor and CP is an abstract substitution
(i.e., a condition of the run-time bindings) of A expressed as CP ∈ Dα. For
brevity, we sometimes omit the subscript α in the algorithms. The analyzer of
Algorithm 1 constructs an and–or graph [5] (or analysis graph) for Sα which
is an abstraction of the (possibly infinite) set of (possibly infinite) execution
paths (and-or trees) explored by the concrete execution of the initial calls de-
scribed by Sα in P . The program analysis graph is implicitly represented in
the algorithm by means of two global data structures, the answer table and

3

Albert, Arenas, Puebla, Hermenegildo

Algorithm 1 Generic Analyzer for Abstraction-Carrying Code
1: function Analyze f(S,Ω)
2: for A : CP ∈ S do

3: add event(newcall(A : CP),Ω)
4: while E := next event(Ω) do

5: if E := newcall(A : CP) then new call pattern(A : CP,Ω)
6: else if E := updated(A : CP) then add dependent rules(A : CP,Ω)
7: else if E := arc(R) then process arc(R,Ω)
8: return answer table
9: procedure new call pattern(A : CP,Ω)

10: for all rule Ak : −Bk,1, . . . , Bk,nk
do

11: CP0 :=Aextend(CP, vars(. . . , Bk,i, . . .)); CP1 := Arestrict(CP0, vars(Bk,1))
12: add event(arc(Ak : CP ⇒ [CP0] Bk,1 : CP1),Ω)
13: add A : CP 7→ ⊥ to answer table
14: procedure process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2,Ω)
15: if Bk,i is not a constraint then

16: add Hk : CP0 ⇒ [CP1] Bk,i : CP2 to dependency arc table
17: W := vars(Hk, Bk,1, . . . , Bk,nk

); CP3 := get answer(Bk,i : CP2,CP1,W,Ω)
18: if CP3 6= ⊥ and i 6= nk then

19: CP4 := Arestrict(CP3, vars(Bk,i+1))
20: add event(arc(Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4),Ω)
21: else if CP3 6= ⊥ and i = nk then

22: AP1 := Arestrict(CP3, vars(Hk)); insert answer info(H : CP0 7→ AP1,Ω)
23: function get answer(L : CP2,CP1,W,Ω)
24: if L is a constraint then return Aadd(L,CP1)
25: else AP0 := lookup answer(L : CP2,Ω); AP1 := Aextend(AP0,W)
26: return Aglb(CP1,AP1)
27: function lookup answer(A : CP,Ω)
28: if there exists a renaming σ s.t.σ(A : CP) 7→ AP in answer table then

29: return σ−1(AP)
30: else add event(newcall(σ(A : CP)),Ω) where σ is renaming s.t. σ(A) in base form;

return ⊥
31: procedure insert answer info(H : CP 7→ AP,Ω)
32: AP0 := lookup answer(H : CP); AP1 := Alub(AP,AP0)
33: if AP0 6= AP1 then

34: add (H : CP 7→ AP1) to answer table
35: add event(updated(H : CP),Ω)
36: procedure add dependent rules(A : CP,Ω)
37: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there exists

renaming σ s.t. A : CP = (Bk,i : CP2)σ do

38: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2),Ω)

the dependency arc table, both initially empty.

• The answer table contains entries of the form A : CP 7→ AP where A is
always a base form 1 and AP an abstract substitution. Its entries should be
interpreted as “the answer pattern for calls to A satisfying precondition (or
call pattern) CP meets postcondition (or answer pattern), AP.”

1 Program rules are assumed to be normalized: only distinct variables are allowed to occur
as arguments to atoms. Furthermore, we require that each rule defining a predicate p has
identical sequence of variables xp1

, . . . xpn
in the head atom, i.e., p(xp1

, . . . xpn
). We call

this the base form of p.

4

Albert, Arenas, Puebla, Hermenegildo

• A dependency arc is of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2. This is inter-
preted as follows: if the rule with Hk as head is called with description CP0

then this causes the i-th literal Bk,i to be called with description CP2. The
remaining part CP1 is the program annotation just before Bk,i is reached
and contains information about all variables in rule k.

Intuitively, the analysis algorithm is a graph traversal algorithm which places
entries in the answer table and dependency arc table as new nodes and arcs in
the program analysis graph are encountered. To capture the different graph
traversal strategies used in different fixed-point algorithms, a prioritized event

queue is used. We use Ω ∈ QHS to refer to a Queue Handling Strategy

which a particular instance of the generic algorithm may use. Different QHS

may traverse the analysis graph in a depth-first, breadth-first fashion or any
combination (see, e.g., [15] for different strategies). Events are of three forms:

newcall(A : CP) which indicates that a new call pattern for literal A with
description CP has been encountered.

arc(Hk : ⇒ [] Bk,i :) which indicates that the rule k with H as head needs
to be (re)computed from the position k, i.

updated(A : CP) which indicates that the answer description to call pattern
A with description CP has been changed.

The functions add event and next event respectively push an event to the prior-
ity queue and pop the event of highest priority, according to Ω. The algorithm
is defined in terms of five abstract operations on the domain Dα:

Arestrict(CP, V) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V);

Aextend(CP, V) extends the description CP to the variables in the set V ;

Aglb(CP1,CP2) performs the abstract conjunction of two descriptions;

Aadd(C,CP) performs the abstract operation of conjoining (i.e., computing
the conjunction) the abstraction of the constraint C with the description CP;

Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

More details on the algorithm can be found in [8,15]. Let us briefly explain its
main procedures. The algorithm centers around the processing of events on
the priority queue, which repeatedly removes the highest priority event (Line
4) and calls the appropriate event-handling function (L5-7). The function
new call pattern initiates processing of all the rules for the definition of the
internal literal A, by adding arc events for each of the first literals of these
rules (L12). Initially, the answer for the call pattern is set to ⊥ (L13). The
procedure process arc performs the core of the analysis. It performs a single
step of the left-to-right traversal of a rule body. If the literal Bk,i is not a
constraint (L15), the arc is added to the dependency arc table (L16). Atoms
are processed by function get answer. Constraints are simply added to the
current description (L24). In the case of literals, the function lookup answer
first looks up an answer for the given call pattern in the answer table (L28)

5

Albert, Arenas, Puebla, Hermenegildo

and if it is not found, it places a newcall event (L30). When it finds one, then
this answer is extended to the variables in the rule the literal occurs in (L25)
and conjoined (i.e., the conjunction of both descriptions is computed) with
the current description (L26). The resulting answer (L17) is either used to
generate a new arc event to process the next literal in the rule, if Bk,i is not the
last one (L18); otherwise, the new answer is computed by insert answer info.
This is the part of the algorithm more relevant to the generation of reduced
certificates. The new answer for the rule is combined with the current answer
in the table (L32). If the fixpoint for such call has not been reached, then
the answer table entry is updated with the combined answer (L34) and an
updated event is added to the queue (L35). The purpose of such an update is
that the function add dependent rules (re)processes those calls which depend
on the call pattern A : CP whose answer has been updated (L37). This effect is
achieved by adding the arc events for each of its dependencies (L38). Note that
dependency arcs are used for efficiency: they allow us to start the reprocessing
of a rule from the body atom which actually needs to be recomputed due to
an update rather than from the leftmost atom.

The following definition corresponds to the certification process carried
out by the producer. First, an abstraction (written Certα) is automatically
generated which safely approximates the behaviour of the program by using
a static analyzer. And, second, the verification condition is generated from
this certificate and it can be proved only if the execution of the code does not
violate the safety policy. In particular, we use an abstract safety policy Iα ∈
AInt in order to specify precisely the (abstract) conditions under which the
execution of a program is considered safe. Then, the certifier checks whether
the abstraction entails the safety policy, i.e., Certα v Iα.

Definition 2.1 We define function Certifier f:Prog × ADom ×AAtom ×
AInt × QHS 7→ ACert which takes a program P ∈ Prog, Dα ∈ ADom, Sα ∈
AAtom, Iα ∈ AInt , Ω ∈ QHS and returns as full certificate, FCert ∈ ACert ,
the answer table computed by Analyze f(Sα, Ω) for P in Dα if FCert v Iα.

3 Reduced Certificates

The key observation in order to reduce the size of certificates is that certain
entries in a certificate may be irrelevant, in the sense that the checker is
able to reproduce them by itself in a single pass. The notion of relevance is
directly related to the idea of recomputation in the program analysis graph.
Intuitively, given an entry in the answer table A : CP 7→ AP , its fixpoint may
have been computed in several iterations from ⊥, AP0, AP1, . . . until AP . For
each change in the answer, an event updated(A : CP) is generated during the
analysis. The above entry is relevant in a certificate (under some strategy)
when its updates force the recomputation of other arcs in the graph which
depend on A : CP (i.e., there is a dependency from it in the table). Thus,
unless A : CP 7→ AP is included in the (reduced) certificate, a single-pass

6

Albert, Arenas, Puebla, Hermenegildo

checker which uses the same strategy as the code producer will not be able to
validate the certificate.

3.1 The Notion of Reduced Certificate

According to the above intuition, we are interested in determining when an
entry in the answer table has been “updated” during the analysis and such
changes affect other entries. However, there are two special types of updated
events which can be considered “irrelevant”. The first one is called a redun-

dant update and corresponds to the kind of updates which force a redun-
dant computation. We write DAT |A:CP to denote the set of arcs of the form
H : CP0 ⇒ [CP1]B : CP2 in the current dependency arc table such that they
depend on A : CP with A : CP = (B : CP2)σ for some renaming σ.

Definition 3.1 Let P ∈ Prog, Sα ∈ AAtom and Ω ∈ QHS. We say that an
event updated(A : CP) which appears in the event queue during the analysis
of P for Sα is redundant w.r.t. Ω if, when it is generated, DAT |A:CP = ∅.

The second type of updates which can be considered irrelevant are initial

updates which, under certain circumstances, are generated in the first pass
over an arc. In particular, we do not take into account updated events which
are generated when the answer table contains ⊥ for the updated entry. Note
that this case still corresponds to the first traversal of any arc and should not
be considered as a reprocessing.

Definition 3.2 In the conditions of Def. 3.1, we say that an event updated(A :
CP) which appears in the event queue during the analysis of P for Sα is initial

for Ω if, when it is generated, the answer table contains A : CP 7→ ⊥.

Initial updates do not occur in certain very optimized algorithms, like the one
in [15]. However, they are necessary in order to model generic graph traversal
strategies. In particular, they are intended to resume arcs whose evaluation
has been suspended.

Definition 3.3 In the conditions of Def. 3.1, we say that an event updated(A :
CP) is relevant iff it is not initial nor redundant.

The key idea is that those answer patterns whose computation has introduced
relevant updates should be available in the certificate.

Definition 3.4 In the conditions of Def. 3.1 we say that the entry A : CP 7→
AP in the answer table is relevant for Ω iff there has been at least one relevant
event updated(A : CP) during the analysis of P for Sα.

Reduced certificates allow us to remove irrelevant entries from the answer table
and produce a smaller certificate which can still be validated in one pass.

Definition 3.5 In the conditions of Def. 3.1, let FCert= Analyze f(Sα, Ω) for
P and Sα. We define the reduced certificate, RCert, as the set of relevant
entries in FCert for Ω.

7

Albert, Arenas, Puebla, Hermenegildo

3.2 Generation of Certificates without Irrelevant Entries

In this section, we proceed to instrument the analyzer of Algorithm 1 with the
extensions necessary for producing reduced certificates, as defined in Def. 3.5.
The resulting analyzer Analyze r is presented in Algorithm 2. It uses the same
procedures of Algorithm 1 except for the new definitions of add dependent rules
and insert answer info. The differences with respect to the original definition
are:

(i) We count the number of relevant updates for each call pattern. To do
this, we associate with each entry in the answer table a new field “u” whose
purpose is to identify relevant entries. Concretely, u indicates the number of
updated events processed for the entry. u is initialized when the (unique and
first) initial updated event occurs for a call pattern. The initialization of u

is different for redundant and initial updates as explained in the next point.
When the analysis finishes, if u > 1, we know that at least one reprocessing
has occurred and the entry is thus relevant. The essential point to note is that
u has to be increased when the event is actually extracted from the queue (L3)
and not when it is introduced in it (L13). The reason for this is that when
a non-redundant, updated event is introduced, if the priority queue contains
an identical event, then the processing is performed only once. Therefore, our
counter must not be increased.

(ii) We do not generate redundant updates. Our algorithm does not introduce
redundant updated events (L13). However, if they are initial (and redundant)
they have to be counted as if they had been introduced and processed and,
thus, the next update over them has to be considered always relevant. This
effect is achieved by initializing the u-value with a higher value (“1” in L11)
than for initial updates (“0” in L10). Indeed, the value “0” just indicates
that the initial updated event has been introduced in the priority queue but
not yet processed. It will be increased to “1” once it is extracted from the
queue. Therefore, in both cases the next updated event over the call pattern
will increase the counter to “2” and will be relevant.

In Algorithm 2, a call (u,AP)=get from answer table(A : CP) looks up in the
answer table the entry for A : CP and returns its u-value and its answer AP .
A call set in answer table(A(u) : CP 7→ AP) replaces the entry for A : CP with
the new one A(u) : CP 7→ AP .Note that, except for the control of relevant
entries, Analyze f(Sα, Ω) and Analyze r(Sα, Ω) have the same behavior and
they compute the same answer table (see [1] for details). We use function
remove irrelevant answers which takes a set of answers of the form A(u) : CP 7→
AP ∈ FCert and returns the set of answers A : CP 7→ AP such that u > 1.

Definition 3.6 We define the function Certifier r: Prog × ADom × AA-
tom ×AInt ×QHS 7→ ACert , which takes P ∈ Prog, Dα ∈ ADom, Sα ∈ AA-
tom, Iα ∈ AInt , Ω ∈ QHS . It returns as certificate, RCert=remove irrelevant-
answers(FCert), where FCert=Analyze r(Sα, Ω), if FCert v Iα.

8

Albert, Arenas, Puebla, Hermenegildo

Algorithm 2 Analyze r: Analyzer instrumented for Certificate Reduction
1: procedure add dependent rules(A : CP,Ω)
2: (AP, u) =get from answer table(A : CP)
3: set in answer table(A(u + 1) : CP 7→ AP)
4: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there exists

renaming σ s.t. A : CP = (Bk,i : CP2)σ do

5: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2),Ω)
6: procedure insert answer info(H : CP 7→ AP,Ω)
7: AP0 := lookup answer(H : CP,Ω) ; AP1 := Alub(AP,AP0)
8: if AP0 6= AP1 then % updated required

9: if AP0 = ⊥ then

10: if DAT |H :CP 6= ∅ then u = 0 % non redundant initial update

11: else u = 1 % redundant initial update

12: else (u,)=get from answer table(H : CP) % not initial update

13: if DAT |H :CP 6= ∅ then add event(updated(H : CP))
14: set in answer table(H(u) : CP 7→ AP1)

We have demonstrated in [1] that a checking algorithm which uses the same
QHS is able to reconstruct the full certificate from the reduced certificate in a
single pass over the full abstraction. Our completeness results also ensure that
all reduced certificates validated by the checker are indeed valid, regardless of
the QHS upon which the checker is based.

4 Discussion

As we have pointed out throughout the paper, the gain of the reduction is
directly related to the number of updates (or iterations) performed during
analysis. Clearly, depending on the graph traversal strategy used, different
instances of the generic analyzer will generate reduced certificates of different
sizes. Significant and successful efforts have been made during recent years
towards improving the efficiency of analysis. The most optimized analyzers
actually aim at reducing the number of updates necessary to reach the fi-
nal fixpoint [15]. Interestingly, our framework greatly benefits from all these
advances, since the more efficient analysis is, the smaller the corresponding
reduced certificates are. We have implemented a generator and a checker of re-
duced certificates in CiaoPP. Both the analysis and checker use the optimized
depth-first new-calling QHS of [15]. In our experimental evaluation (see [2]
for details) we have observed reductions in the size of certificates by a factor
of over 3 on average using our reduced certificates across a set of benchmarks,
with a very small variation in checking time (within 6% on average).

References

[1] E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced Certificates for
Abstraction-Carrying Code. TR CLIP8/2005.0, Technical University of Madrid
(UPM), School of Computer Science, UPM, October 2005.

9

Albert, Arenas, Puebla, Hermenegildo

[2] E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced Certificates
for Abstraction-Carrying Code. In Proc. of ICLP’06, Springer LNCS, 2006. To
appear.

[3] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In
Proc. of LPAR’04, Springer LNAI 3452, pp. 380–397, 2005.

[4] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In Proc. of CASSIS’04, Springer LNCS, 2004.

[5] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming, 10:91–124, 1991.

[6] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. of POPL’77, pp. 238–252, 1977.

[7] M. Hermenegildo, G.Puebla, F. Bueno, and P. López-Garćıa.
Integrated Program Debugging, Verification, and Optimization Using Abstract
Interpretation (and The Ciao System Preprocessor). Science of Computer

Programming, 58(1–2):115–140, October 2005.

[8] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.

[9] Xavier Leroy. Java bytecode verification: algorithms and formalizations.
Journal of Automated Reasoning, 30(3-4):235–269, 2003.

[10] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended
edition, 1987.

[11] Kim Marriot and Peter Stuckey. Programming with Constraints: An

Introduction. The MIT Press, 1998.

[12] G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pp. 106–119. ACM
Press, 1997.

[13] G.C. Necula and P. Lee. Efficient representation and validation of proofs. In
Proc. of LICS’98, pp. 93. IEEE Computer Society, 1998.

[14] G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In
Proc. of POPL’01, pp. 142–154. ACM Press, 2001.

[15] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental
Analysis of Logic Programs. In Proc. of SAS’96, Springer LNCS 1145, pp.
270–284, 1996.

[16] E. Rose and K. Rose. Java access protection through typing. Concurrency and

Computation: Practice and Experience, 13(13):1125–1132, 2001.

10

	Introduction
	Generation of Full Certificates in ACC
	Reduced Certificates
	The Notion of Reduced Certificate
	Generation of Certificates without Irrelevant Entries

	Discussion
	References

