
(Journal of Logic Programming, Vol. 13, N. 2–3)

Compile-Time Derivation of Variable Dependency

Using Abstract Interpretation

K. Muthukumar

MCC and Department of Computer Science

The University of Texas at Austin

Austin, TX 78712 - USA

muthu@cs.utexas.edu

M. Hermenegildo1

Universidad Politécnica de Madrid (UPM)

Facultad de Informática

28660-Boadilla del Monte, Madrid - Spain

herme@cs.utexas.edu or herme@fi.upm.es

Abstract

Traditional schemes for abstract interpretation-based global analysis of logic programs generally

focus on obtaining procedure argument mode and type information. Variable sharing information

is often given only the attention needed to preserve the correctness of the analysis. However,

such sharing information can be very useful. In particular, it can be used for predicting run-

time goal independence, which can eliminate costly run-time checks in and-parallel execution. In

this paper, a new algorithm for doing abstract interpretation in logic programs is described which

concentrates on inferring the dependencies of the terms bound to program variables with increased

precision and at all points in the execution of the program, rather than just at a procedure level.

Algorithms are presented for computing abstract entry and success substitutions which extensively

keep track of variable aliasing and term dependence information. In addition, a new, abstract

domain independent fixpoint algorithm is presented and described in detail. The algorithms are

illustrated with examples. Finally, results from an implementation of the abstract interpreter are

presented.

1 Introduction

The technique of abstract interpretation for flow analysis of programs in imperative languages was first

presented in a sound mathematical setting by Cousot and Cousot [5] in their landmark paper. Later,

it was shown by Bruynooghe [1], Jones and Sondergaard [17], and Mellish [21] that this technique can

be extended to flow analysis of programs in logic programming languages. Specific algorithms for such

global analysis in logic programs have been given by a number of researchers ([8], [18], [23], [26], [27], [2],

[24], [20], [19], [11], [4] ...). These schemes, mostly geared towards optimizing the sequential execution

of logic programs, generally focus on computing information about the arguments of predicates used in

1The research reported in this paper was performed at MCC, U. of Texas at Austin, and U. of Madrid (UPM). This

work was funded in part by MCC and also in part by ESPRIT project 2471 “PEPMA.”

1

the program, such as (1) the mode of an argument, i.e., whether a particular argument of a predicate

is instantiated on input or on output or both and (2) the type of an argument, i.e., set of terms

that an argument is bound to when the predicate is called or when it succeeds. Variable sharing

(or “aliasing”), i.e., the fact that unification can bind variables to other variables or to terms which

in turn share variables, is “dealt with” in these methods in order to preserve the correctness of the

approach, but it is not generally considered as an output of the analysis and often computed in a very

conservative way [6].

However, the variable sharing information itself can often be of the utmost importance for a com-

piler. For example, such information can be used for compile-time optimization of backtracking [3].

Knowledge of variable sharing information also makes it possible to predict run-time goal indepen-

dence, which is particularly relevant for a compiler which targets execution on a system which supports

Independent And-Parallelism (IAP) (see, for example, [14, 12, 9] and their references for more details

on this type of parallelism): in IAP subgoals in the body of a clause are executed in parallel pro-

vided they are independent, i.e., their run-time instantiations do not share any variables. As shown

in [12, 14], this condition can be ensured by run-time checks on the groundness and independence of

certain program variables.2 However, these checks can be expensive, increasing overhead and reducing

the amount of speed-up achievable through parallelism. Thus, it is of great advantage to eliminate

as many checks as possible by gathering highly accurate information at compile-time regarding the

groundness and independence of the terms to which programs variables will be bound at run-time.

Furthermore, it is useful to have this information for all points in the program, rather than globally

for each procedure. The inference of such information is the main subject of this paper.3 Our main

contributions are as follows:

• Starting with an approach for representing abstract substitutions (in the form of sharing informa-

tion) suggested to us by Jacobs and Langen4 [16] we present new abstract unification algorithms

which compute abstract entry substitutions and abstract success substitutions while extensively

keeping track of variable aliasing and term dependence information. These algorithms can be

used in isolation (if only variable sharing information is to be the output of the analysis) or in

combination with conventional abstract domains as a method for accurately keeping track of

2Program variables are variables that are in the text of the given program.
3Due to the similarities between the search tree explored by a program executed in IAP and that of sequential execution

[14], conventional abstract interpretation techniques can be applied (with only minor modifications) to programs which

are to be evaluated in IAP (Debray presents in [7] an analysis framework for other types of parallelism where the properties

of IAP regarding the similarity with sequential execution don’t hold). In [27] we reported some results obtained from an

abstract interpreter for IAP constructed more or less along the lines of conventional systems, except for the techniques

used to improve its efficiency. This interpreter is most apt at generating groundness information and it was shown in [27]

to be reasonably effective at reducing run-time checks. The approach presented in this paper is targeted at improving

those results through better tracking of terms which are independent but not ground.
4Even though the representation that we use for abstract substitutions is essentially the same as in Jacobs and Langen

[16], there are fundamental differences between our approach and theirs. Most importantly, our algorithm for abstract

interpretation uses a top-down directed bottom-up approach while theirs uses a pure bottom-up approach ([8], [20], [19]).

Consequently, we use a novel fixpoint computation algorithm which takes care of additional complexities brought about

by the top-down directed approach, as opposed to the conventional bottom-up fixpoint computation.

2

variable aliasing.

• We present and give a complete description of a new algorithm for performing top-down driven,

bottom up fixpoint computation which avoids recalculation (by performing fixpoint computation

over subsets of the program, rather than reanalyzing the whole program at each step) and uses

approximations as seeds for convergence improvement. Its output includes abstract substitution

information for all points in the program. While the essential ideas behind computation of

fixpoints in the context of logic programs are understood, the formulation presented herein takes

care of practical efficiency and correctness issues and many details which, to our knowledge, and

particularly in the case of a top-down driven algorithm, have not been described elsewhere.

The algorithms are illustrated with examples. We assume that the reader is familiar with logic

programming (and Prolog to some extent) and the basic concepts of abstract interpretation of logic

programs. However, the following section provides a brief overview of the process in order to introduce

the notation and place in context the algorithms to be presented later. The rest of the paper is

organized as follows: section 3 introduces the concept of abstract substitution used throughout the

paper. Sections 4 and 5 deal with abstract unification respectively explaining how the abstract entry

substitution for a clause and the abstract success substitution for a subgoal are computed. Section 7

presents the fixpoint algorithm. Section 8 illustrates the complete abstract interpretation algorithm

through examples and presents results obtained from an implementation of our algorithm aimed at

the detection of groundness and independence. Finally, section 9 summarizes our conclusions and

discusses suggestions for future work.

2 Abstract Interpretation of Logic Programs

As mentioned previously, abstract interpretation is a useful technique for performing a global analysis

of a program in order to compute, at compile-time, characteristics of the terms to which the variables

in that program will be bound at run-time for a given class of queries. In principle, such an analysis

could be done by an interpretation of the program which computed the set of all possible substitutions

(collecting semantics) at each step. However, these sets of substitutions can in general be infinite

and thus such an approach can lead to non-terminating computations. Abstract interpretation of-

fers an alternative in which the program is interpreted using abstract substitutions instead of actual

substitutions. An abstract substitution is a finite representation of a, possibly infinite, set of actual

substitutions in the concrete domain. The set of all possible terms that a variable can be bound

to in abstract substitutions represents an “abstract domain” which is usually a complete lattice or

cpo of finite height (such finiteness required, in principle, for termination of fixpoint computation),

whose ordering relation is herein represented by “v.” Abstract substitutions and sets of concrete

substitutions are related via a pair of functions referred to as the abstraction (α) and concretization

(γ) functions. In addition, each primitive operation u of the language (unification being a notable

example) is abstracted to an operation u′ over the abstract domain. Soundness of the analysis requires

3

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

Figure 1: Illustration of the abstract interpretation process

that each concrete operation u be related to its corresponding abstract operation u′ as follows: for

every x in the concrete computational domain, u(x) v γ(u′(α(x))).

The input to the abstract interpreter is a set of clauses (the program) and set of “query forms.”

In its minimal form (least burden on the programmer) such query forms can be simply the names

of the predicates which can appear in user queries (i.e., the program’s “entry points”). In order to

increase the precision of the analysis, query forms can also include a description of the set of abstract

(or concrete) substitutions allowable for each entry point. The goal of the abstract interpreter is then

to compute in abstract form the set of substitutions which can occur at all points of all the clauses

that would be used while answering all possible queries which are concretizations of the given query

forms. It is convenient to give different names to abstract substitutions depending on the point in a

clause to which they correspond. Consider, for example, the clause h :- p1, . . . , pn. Let λi and λi+1 be

the abstract substitutions to the left and right of the subgoal pi, 1 ≤ i ≤ n in this clause. See figure

1(b).

Definition 1 λi and λi+1 are, respectively, the abstract call substitution and the abstract success

substitution for the subgoal pi. For this same clause, λ1 is the abstract entry substitution (also

represented as βentry) and λn+1 is the abstract exit substitution (also represented as βexit). 2

Control of the interpretation process can itself proceed in several ways, a particularly useful and

efficient one being to essentially follow a top-down strategy starting from the query forms.5 Several

frameworks for doing abstract interpretation in logic programs follow along these lines. One such

framework is described in detail for example in [1]. In a similar way to the concrete top-down execution,

the abstract interpretation process can then be represented as an abstract AND-OR tree, in which

5More precisely, this strategy can be seen as a top-down driven bottom up computation. As will be shown later,

some degree of fixpoint, bottom up computation is required for correctness in the presence of recursive predicates. A

purely bottom-up analysis scheme is also possible ([8], [20], [19]). The advantage of the top-down driven strategy is that

it restricts the abstract computation to that required for the query forms given rather than that for all possible query

forms. Note that query forms are routinely present in actual programs in the form of module entry point declarations,

so no extra burden need be placed on the user. Additional information from the user can, of course, focus the abstract

computation even further and increase its precision.

4

AND-nodes and OR-nodes alternate. A clause head h is an AND-node whose children are the literals

in its body p1, . . . , pn (figure 1(b)). Similarly, if one of these literals p can be unified with clauses

whose heads are h1, . . . , hm, p is an OR-node whose children are the AND-nodes h1, . . . , hm (figure

1(a)). During construction of the tree, computation of the abstract substitutions at each point is done

as follows:

• Computing success substitution from call substitution: Given a call substitution λcall for a

subgoal p, let h1, . . . , hm be the heads of clauses which unify with p (see figure 1(a)). Compute

the entry substitutions β1entry, . . . , βmentry for these clauses. Compute their exit substitutions

β1exit, . . . , βmexit as explained below. Compute the success substitutions λ1success, . . . , λmsuccess

corresponding to these clauses. The success substitution λsuccess is then the least upper bound

(LUB) of λ1success, . . . , λmsuccess. Of course the LUB computation is dependent on the abstract

domain and the definition of the v relation.

• Computing exit substitution from entry substitution: Given a clause p0 :- p1, . . . , pn whose

body is non-empty and an entry substitution λ1, λ1 is the call substitution for p1. Its success

substitution λ2 is computed as above. Similarly, λ3, . . . , λn+1 are computed. Finally, λn+1 is

obtained, which is the exit substitution for this clause. See figure 1(b). For a unit clause (i.e.

whose body is empty), its exit substitution is the same as its entry substitution.

Given this basic framework, it is clear that a particular analysis strategy needs to:

• Define an abstract domain and substitution framework, and the v relation,

• Describe how to compute the entry substitution for a clause C given a subgoal p (which unifies

with the head of C) and its call substitution,

• Describe how to compute the success substitution for a subgoal p given its call substitution and

the exit substitution for a clause C whose head unifies with p.

Such information represents the “core” of a particular analysis strategy. Sections 3, 4 and 5 respectively

address the corresponding definitions and algorithms for the approach presented in this paper.

In addition to the three points above, there is, however, one more issue that needs to be addressed.

The overall abstract interpretation scheme described works in a relatively straightforward way if the

program has no recursion. Consider, on the other hand, a recursive predicate p. If there are two

OR-nodes for p in the abstract AND-OR tree such that

• they are identical (i.e., they have the same atoms),

• one is an ancestor of the other, and

• the call substitutions are the same for both,

then the abstract AND-OR tree is infinite and an abstract interpreter using the simple control strategy

described above will not terminate. In order to ensure termination, some sort of fixpoint computation

5

is required. In order to support such fixpoint computation, memo tables [10] are used, for example,

in [8] and stream predicates are used in [26]. In this paper we propose a novel scheme for fixpoint

computation within the context of abstract interpretation. This is described in section 7.

3 Abstraction Framework

In this section, we describe the representation of abstract substitutions used in our abstract interpreter.

As mentioned before, in the concrete interpretation the collecting semantics for a top down execution

of logic programs is usually given in terms of the sets of substitutions associated with each program

point [1]. The traditional approach ([1],[8],[18]) to abstracting such sets of substitutions is to define an

abstract domain and then to describe a method for constructing an abstract substitution corresponding

to a set of substitutions.

For example, the abstract domain used in [1] consists of three elements ground, free and any.

These elements respectively correspond to the set of all ground terms, the set of all unbound (free)

variables, and the set of all terms. An abstract substitution is then defined as a mapping from

program variables (of a clause) to elements of the abstract domain. For example, if X and Y are

the program variables in a clause, then an abstract substitution at a point in that clause could be

{X/ground, Y/free}. This abstract substitution actually represents the set of all substitutions in

which X is bound to a ground term and Y is bound to a free variable.

The approach used for defining abstract substitutions in this paper is entirely different. We are not

per se interested in the set of terms that a program variable is bound to at a point in a clause. Rather,

we are interested in the sharing of variables among the sets of terms that program variables are bound

to.6 For example, let X and Y be the program variables in a clause. The abstract substitution in our

abstract interpreter should tell us whether the sets of terms that X and Y are bound to, share any

variables or not.

We define the abstract substitution for a clause to be a set of sets of program variables in that

clause following an approach initially suggested in [16]. Informally, a set of program variables appears

in the abstract substitution if the terms to which these variables are bound share a variable. For the

example clause of the previous paragraph, the value of an abstract substitution may be {{X}, {X,Y }}.

This abstract substitution corresponds to a set of substitutions in which X and Y are bound to terms

tX and tY such that (1) at least one variable occurs in both tX and tY (this corresponds to the element

{X,Y }) and (2) at least one variable occurs only in tX (this corresponds to the element {X}).

In a sense, the term abstract substitution may be a misnomer for such a data structure. The reason

for such an objection would be that this data structure only abstracts a set of substitutions but it does

not (explicitly) tell us about the set of terms a program variable is bound to in a set of substitutions

(which the conventional abstract substitutions do, as discussed above). Nevertheless, we use the term

abstract substitution for the data structure introduced above, since it does abstract the information

6Note that this approach to abstracting substitutions is complementary to the traditional approach, i.e., it is possible

to combine the two approaches and use abstract substitutions which provide information about both sharing between

program variables and the terms that they are bound to.

6

contained in a set of substitutions.

Before formally describing the representation for abstract substitutions, we review some basic

definitions about substitutions. A substitution for the variables of a clause is a mapping from the

set of program variables in that clause (Pvar) to terms that can be formed from the universe of all

variables (Uvar), and the constants and functors in the given program and query. The domain of a

substitution θ is written as dom(θ). We consider only idempotent substitutions. The instantiation of

a term t under a substitution θ is denoted as tθ and var(tθ) denotes the set of variables in tθ.

Let θ be a given substitution for a clause C. A program variable X, which is in C, is ground under

this substitution if var(Xθ) = ∅. Program variables X and Y, which are in C, are independent if var(Xθ)

∩ var(Yθ) = ∅ [14]. We say that variable V occurs in program variable X under the substitution θ if

V ∈ var(Xθ). Clearly, a program variable X is ground under a substitution θ if there is no variable V

which occurs in X under θ and program variables X and Y are independent if there is no variable V

which occurs in both of them under θ.

Below, we formally define the abstract substitution A(θ) which corresponds to a concrete substi-

tution θ and later we extend it to sets of substitutions. The basic idea behind this definition is as

follows: a set S of program variables appears in A(θ) iff there is a variable V which occurs in each

member of S under θ. Thus, a program variable is ground iff it does not appear in any set A(θ), and

two program variables are independent iff they do not appear together in any set in A(θ).

Definition 2 Subst is the set of all substitutions which map variables in Pvar to terms constructed

from variables in Uvar and constants and functors in the given program and query. 2

Definition 3 Asubst is the set of all abstract substitutions for a clause, i.e., Asubst = ℘(℘(Pvar))

where ℘(S) denotes the powerset of S. 2

Definition 4 The function Occ takes two arguments, θ (a substitution) and U (a variable in Uvar)

and produces the set of all program variables X ∈ Pvar such that U occurs in var(Xθ) i.e.

Occ(θ, U) = {X|X ∈ dom(θ) ∧ U ∈ var(Xθ)}

2

Definition 5 (Abstraction of a substitution)

A : Subst→ Asubst

A(θ) = {Occ(θ, U)|U ∈ Uvar}

2

Example: Let θ = {W/a,X/f(A1, A2), Y/g(A2), Z/A3}. Occ(θ,A1) = {X}, Occ(θ,A2) =

{X,Y }, Occ(θ, A3) = {Z} and Occ(θ, U) = ∅ for all other U ∈ Uvar. hence, A(θ) =

{∅, {X}, {X,Y }, {Z}}.2

The abstraction function A is extended to sets of substitutions as follows:

7

Definition 6 (Abstraction of a set of substitutions)

α : ℘(Subst)→ Asubst

α(Θ) =
⋃

θ∈Θ

A(θ)

2

Essentially, α constructs the union of the sharing information found in all substitutions in Θ. The

corresponding concretization function is:

Definition 7 (Concretization)

γ : Asubst→ ℘(Subst)

γ(SS) = {θ|θ ∈ Subst ∧ A(θ) ⊆ SS}

2

If a clause has N program variables, there can be at most 22
N

different abstract substitutions for

it. A partial order can be defined on these abstract substitutions. λ1 v λ2 iff γ(λ1) ⊆ γ(λ2). It can be

easily shown that λ1 v λ2 iff λ1 ⊆ λ2. Since the set of all abstract substitutions for a clause is finite

and is closed under union, it follows that the least upper bound of two abstract substitutions is equal

to their union and the greatest lower bound is equal to their intersection.

We can make the following observations from the above definitions:

• Since the lattice of abstract substitutions for a clause is finite and hence has a finite depth, we

are assured that fixpoint computation (discussed in section 7) terminates [1].

• For a given clause, the top element in the lattice is the powerset of all the program variables in

that clause.

• The bottom element in the lattice for all clauses is ∅. The meaning of this abstract substitution

can be explained as follows: suppose a clause has a subgoal sg which cannot be satisfied under

its abstract call substitution λ i.e., sg fails. The abstract success substitution for sg would then

be ∅.

• The abstract substitution which makes all program variables in a clause ground is {∅}.

• ∅ is an element of every non-empty abstract substitution λ. This is a consequence of the fact

that every concrete substitution θ has a finite range.

Since the abstract interpreter manipulates only abstract substitutions and since these abstract

substitutions do not have complete information about the term each program variable is bound to,

approximations are introduced in our computations of abstract substitutions. We require that these

be safe approximations.

8

Definition 8 (safe approximation) Suppose the concrete set of substitutions that occurs at a point

in a clause is Θ and the abstract interpreter computes the abstract substitution at this point as λ. λ

is a safe approximation to the actual abstract substitution at this point if, whenever variables X and

Y are dependent according to at least one substitution in Θ, there is a set S ∈ λ such that X ∈ S

and Y ∈ S i.e., the abstract substitution should capture all the sharing information. Similarly, if a

variable X is ground according to λ, it should be ground according to all substitutions in Θ. 2

Thus a computed abstract substitution which is a safe approximation to the actual one is allowed

to be conservatively imprecise: it can indicate that two variables are dependent when actually they

are independent according to the concrete set of substitutions. Similarly, a variable can be nonground

according to such an abstract substitution even if it is ground according to the concrete set of sub-

stitutions. Therefore, the sharing information in such an abstract substitution is characterized as

potential sharing. All the abstract substitutions that are mentioned in subsequent sections of this

paper are conservative abstract substitutions i.e., they are safe approximations to the actual abstract

substitutions.

3.1 Other definitions

In this section, we present some definitions and results that are used in sections 4 and 5.

Given a set of program variables S and a subgoal pred(u1, . . . , un), pos(pred(u1, . . . , un), S) gives

the set of all argument positions of this subgoal in which at least one element of S occurs.

Definition 9

pos(pred(u1, . . . , un), S) = {i|S ∩ var(ui) 6= ∅}

2

Given a subgoal

pred(u1, . . . , un) and an abstract substitution λ, the function P(pred(u1, . . . , un), λ) computes the

dependencies among the argument positions of this subgoal due to λ. This is expressed as a subset of

the powerset of {1, . . . , n} (similar to representing an abstract substitution as a set of sets of program

variables).

Definition 10

P(pred(u1, . . . , un), λ) = {pos(pred(u1, . . . , un), S)|S ∈ λ}

2

Example: Let n = 2, u1 = f(X,Y), u2 = g(Y,Z), and λ = {∅, {X}, {Y }, {X,Z}}.

pos(pred(f(X,Y), g(Y,Z)), ∅) = ∅

pos(pred(f(X,Y), g(Y,Z)), {X}) = {1}

9

pos(pred(f(X,Y), g(Y,Z)), {Y }) = {1, 2}

pos(pred(f(X,Y), g(Y,Z)), {X,Z}) = {1, 2}

Therefore, P(pred(f(X,Y), g(Y,Z)), λ) = {∅, {1}, {1, 2}}.2

Definition 11 (Closure under union) For a set of sets SS, the closure SS∗ of SS is the smallest

superset of SS that satisfies: S1 ∈ SS
∗ ∧ S2 ∈ SS

∗ ⇒ S1 ∪ S2 ∈ SS
∗. 2

Proposition 1 Let σ and µ be two concrete substitutions, whose domains are Pvar and Uvar respec-

tively. Let λ be an abstract substitution such that A(σ) ⊆ λ. Then A(| σ ◦ µ |dom(σ)) ⊆ λ∗, where

| σ ◦ µ |dom(σ) indicates the restriction of σ ◦ µ to the domain of σ. 2

Proof: We note that

Occ(| σ ◦ µ |dom(σ), X) =
⋃

X∈var(Y µ)

Occ(σ, Y)

Since A(σ) = {Occ(σ, U) | U ∈ Uvar}, we have A(| σ ◦ µ |dom(σ)) ⊆ (A(σ))∗ ⊆ λ∗.2

Corollary 1 Let λcall and λsuccess be the abstract call and success substitutions for a subgoal sg,

respectively corresponding to Θcall (the set of all its call substitutions) and Θsuccess (the set of all its

success substitutions). Then λsuccess ⊆ λ∗call. 2

Proof: For each θcall ∈ Θcall, there exists a θsuccess ∈ Θsuccess and a substitution µ (this is the

substitution obtained by “solving” the subgoal sg) such that θsuccess = | θcall ◦ µ |dom(θcall). Therefore,

λsuccess = α(Θsuccess)

=
⋃

θsuccess∈Θsuccess

A(θsuccess)

=
⋃

θsuccess∈Θsuccess,θcall∈Θcall,θsuccess=|θcall◦µ|dom(θcall)

A(| θcall ◦ µ |dom(θcall))

⊆
⋃

θcall∈Θcall

(A(θcall))
∗

⊆ (
⋃

θcall∈Θcall

A(θcall))
∗

= (α(Θsuccess))
∗

= (λcall)
∗

2

Corollary 2 Let λcall and λsuccess be as in corollary 1. Then P(sg, λsuccess) ⊆ (P(sg, λcall))
∗. 2

10

Proof: From corollary 1 we get λsuccess ⊆ {S | ∃Si ∈ λcall(S =
⋃

i Si)}. We observe that

pos(sg,
⋃

i Si) =
⋃

i pos(sg, Si). Therefore,

P(sg, λsuccess) = {pos(sg, S) | S ∈ λsuccess}

⊆ {pos(sg,
⋃

i

Si) | ∃Si ∈ λcall}

= {
⋃

i

pos(sg, Si) | ∃Si ∈ λcall}

= {pos(sg, S) | S ∈ λcall}
∗

= (P(sg, λcall))
∗

2

Definition 12 (Projection) Let µ be an abstract substitution for a subgoal sg and Ssg be the set

of program variables in this subgoal. The projection of µ on sg is defined as the abstract substitution

{S | S = S′ ∩ Ssg, S
′ ∈ µ}. 2

Corollary 3 Let the subgoal sg (with a projected abstract call substitution λ) be unified with the head

hd of a clause C. The abstract entry substitution for C, βentry satisfies the condition P(hd, βentry) ⊆

(P(sg, λ))∗. 2

Proof: Let λunify(sg,hd) be the abstract substitution for sg after its unification with hd. After

unification, the dependencies among the argument positions are the same for both sg and hd, since they

have been instantiated to the same term. Therefore, P(hd, βentry) = P(sg, λunify(sg,hd)). By arguments

similar to the proofs of corollaries 1 and 2, it can be shown that P(sg, λunify(sg,hd)) ⊆ (P(sg, λ))∗. 2

Unless otherwise noted, all substitutions referred to in the rest of this paper are abstract substitu-

tions.

4 Computing the Abstract Entry Substitution

In this section, we describe an algorithm to compute the (abstract) entry substitution for a clause C

given a subgoal sg (which unifies with the head hd of this clause) and sg’s (abstract) call substitution.

If the program variables in hd belong to a set Shd, then a conservative entry substitution for this

clause would be ℘(Shd). But this is too pessimistic an estimate, since it says that every program

variable in hd is potentially dependent on every other program variable. To get a more accurate

estimate, we determine which program variables in Shd are ground and try to reduce the sharing

information in the entry substitution. An algorithm for performing this task is given in section 4.1.

Section 4.2 illustrates this algorithm with an example. This algorithm can be summarized as follows:

• Perform abstract unification: Do a term by term unification for sg and hd and determine

the potential sharing information between the program variables in sg and hd. This is done in

steps 1 through 3.

11

• Propagate groundness information: A program variable in Shd is ground if it is unified with

a ground term in sg. This term could be ground either because the program variables in it

are ground in sg’s call substitution, because it does not contain any program variables, because

some of its program variables are ground due to unification with terms in hd, or because of a

combination of the above. This is done in steps 4 through 6.

• Apply independence information in sg’s call substitution: Take the remaining pro-

gram variables (which are potentially nonground) in Shd. Form dependencies among them based

on the results of abstract unification and groundness analysis. Eliminate some of these de-

pendencies based on the information in sg’s call substitution. This is done in steps 7 through

10.

4.1 Algorithm

Let the set of program variables which occur in sg be Ssg = {X1, X2, . . . , Xm}. Let sg = pred(s1, s2,

. . . , sn) and the head hd (which is unifiable with sg) = pred(t1, t2, . . . , tn). Let the set of the program

variables in hd be Shd = {Y1, Y2, . . . , Yp} and the set of program variables which do not occur in hd

but occur in the body of the clause of hd be {Yp+1, . . . , Yq}. We assume7 that Ssg ∩ {Y1, . . . , Yq} = ∅.

Let λcall be the call substitution of the subgoal sg. Below we describe the algorithm for computing

the entry substitution βentry for the clause C = hd :- body.

1. Projection: Compute λ by projecting λcall on to the set Ssg, i.e.,

λ← {S | S = (S ′ ∩ Ssg), S
′ ∈ λcall}

λ contains all the potential sharing information among program variables in sg.

2. Normalize unification equations: i.e., for each pair of terms si, ti, 1 ≤ i ≤ n, normalize the

equation si = ti so that it is replaced by a set of equations Z = TermZ , Z ∈ Ssg ∪ Shd. Form

the set U as follows:

U ← {(Z, SetZ) | SetZ = var(TermZ), Z = TermZ is a normalized equation}

3. Grouping: For each Z such that (Z, Set1Z), . . . (Z, SetkZ) are elements of U , replace these

elements with (Z, {Set1Z , . . . SetkZ}). The presence of this element in U means that, due to

the unification of sg and hd, the program variable Z is bound to k different terms, respectively

containing the sets of program variables Set1Z , . . . , SetkZ .

4. Initialize the set of ground program variables: Let G denote the set of program vari-

ables in sg and hd that are ground. Initialize G as follows: for all (Z, SSZ) ∈ U such that

• ∅ ∈ SSZ (i.e., Z is bound to a ground term due to the current unification), or

• Z belongs to the set Ssg and is ground according to λ,

7This assumption is valid due to renaming of variables in clauses.

12

add Z to G. We also maintain a queue L of ground program variables, whose groundness has

not been propagated to other program variables. Initially L contains the same elements as G in

some order.

5. Groundness propagation:

Repeat

(a) Dequeue Z from L;

(b) Let G1← {W |W 6∈ G, (Z, SS) ∈ U , S ∈ SS,W ∈ S}. Update G← G∪G1. Also, enqueue

the elements in G1 to the queue L and remove (Z, SS) from U (this step ensures that the

“groundness” of Z is transmitted to all the program variables that occur in the terms that

Z is bound to);

(c) For all W,S, SS such that (W,SS) ∈ U , S ∈ SS and Z ∈ S, remove Z from S. If S becomes

an empty set and if W is not in the set G, enqueue W in the queue L and add it to the

set G (this step ensures that occurrences of Z are removed from the RHS of the unification

equations);

Until the queue L is empty.

6. Update λ: λ ← {S | S ∈ λ, S ∩ G = ∅}. This is an update of the call substitution λ to reflect

the fact that some variables in Ssg have become ground due to unification of sg with hd.

7. Potential dependency graph formation: Build an undirected graph GST which will reflect

potential sharing between instantiations of program variables. Let GST = (V,E), where V =

(Ssg ∪Shd)−G and an edge between two vertices indicates a potential sharing between program

variables represented by the two vertices. E = E1 ∪ E2 where E1 and E2 are computed as

follows:

• E1 ← {(Xi, Xj) | Xi ∈ S,Xj ∈ S, S ∈ λ, i 6= j} (In this step, we carry over the sharing

information between program variables in λ to the graph GST).

• E2 ← {(W,Z) | (W,SS) ∈ U , Z ∈ S, S ∈ SS} (In this step, we carry over the sharing

information due to unification to the graph GST).

8. Graph partitioning: Let Shd−G be partitioned into mutually disjoint sets HP1, . . . , HPr such

that Yi and Yj belong to the same partition if and only if there is a path between them in the

graph GST .

9. Form a first approximation to βentry:

β ←
r

⋃

i=1

℘(HPi)

It is clear that the entry substitution βentry for the clause C is a subset of β.

13

10. Prune β down to form βentry: β may contain some sharing information among the arguments

of the subgoal predicate that is not compatible with λ. In this step, we remove such “spurious”

sharing information from β. Consider P(sg, λ). This gives the sharing information among the

arguments of sg due to the abstract substitution λ. By unifying sg with the head hd of the clause

C, the new sharing among the arguments of this subgoal can only be a subset of (P(sg, λ))∗.

This is proved in Corollary 3 (section 3). We take advantage of this fact in “pruning” down

β. βhd ← {S | S ∈ β, pos(hd, S) ∈ (P(sg, λ))∗}. The entry substitution for the clause C is

βentry = (βhd) ∪ {{Yp+1}, . . . , {Yq}}.

Proposition 2 Given a subgoal sg whose abstract call substitution is λcall and a clause C whose

head hd unifies with sg, let βentry be the abstract entry substitution for C as computed by the above

algorithm. Then, βentry is a safe approximation in the following sense: In the concrete interpretation,

let Ωentry be the set of entry substitutions for clause C computed from sg’s set of call substitutions

γ(λcall). Then, Ωentry ⊆ γ(βentry). 2

Proof (Outline): The main proof burden is to show that the dependencies among the program

variables in hd induced by the dependencies in λcall and by the unification of sg with hd are safely

computed. This is precisely done when the potential dependency graph is formed. Firstly, the de-

pendencies due to unification are computed in steps 2 and 3. Secondly, the program variables that

are bound to ground terms due to unification and λcall are identified in a straightforward manner in

steps 4, 5 and 6. Now the potential dependency graph, which shows potential dependencies among its

possibly nonground variables, is formed. Two variables are potentially dependent iff there is a path

between them i.e. they are dependent according to λcall or they are dependent due to unification or

both. Consider a partition P in this graph. The powerset of P describes all possible dependencies

among the variables of P. Therefore, in step 9, we form a first approximation to βentry by taking the

union of the powersets of all partitions (restricted to variables in Shd) of the potential dependency

graph. However, we can refine this value of βentry further by removing some spurious dependencies in

it by using corollary 1 of proposition 1. This is done in step 10. The final value of βentry as computed

by this algorithm is thus a safe approximation. 2

4.2 An Example

We illustrate the above algorithm with the aid of an example.

The subgoal sg pred(X1, f(X2, X4), X3, g(X3), f(X4, h(X4)), X5)

The head hd (of clause C) pred(p(Y1), Y2, q(Y3, Y6), Y4, f(r(Y5), Y6), Y6)

The calling substitution λcall {∅, {X1}, {X3}, {X6}, {X1, X2, X7}, {X3, X4}}

Here Ssg = {X1, X2, X3, X4, X5} and Shd = {Y1, Y2, Y3, Y4, Y5, Y6}. Let {Y7, Y8} be the set of

variables in the body of the clause C that do not occur in its head hd. In the following, we illustrate

how βentry, the entry substitution for the clause C, is computed given the above information:

1. Projection: λ = {∅, {X1}, {X3}, {X1, X2}, {X3, X4}}

14

2. Normalize unification equations:

U = {(X1, {Y1}), (Y2, {X2, X4}), (X3, {Y3, Y6}), (Y4, {X3}), (X4, {Y5}), (Y6, {X4}), (Y6, {X5})}

3. Grouping: In this step we simplify U by collecting together tuples which have the same LHS.

U = {(X1, {{Y1}}), (Y2, {{X2, X4}}), (X3, {{Y3, Y6}}),

(Y4, {{X3}}), (X4, {{Y5}}), (Y6, {{X4}, {X5}})}

4. Initially, G = {X5} and the queue L contains only one element, X5.

5. Groundness propagation: The queue L contains X4, Y6, Y5 at various points during this step.

After this step, G = {X4, X5, Y5, Y6} and

U = {(X1, {{Y1}}), (Y2, {{X2}}), (X3, {{Y3}}), (Y4, {{X3}})}

6. Update λ: λ = {∅, {X1}, {X3}, {X1, X2}}

7. potential dependency graph formation: The graph GST = (V,E) where, V = {X1, X2, X3,

Y1, Y2, Y3, Y4} and E = {(X1, X2), (X1, Y1), (X2, Y2), (X3, Y3), (X3, Y4)}.

8. Graph partitioning: The set Shd −G is partitioned into two sets, {Y1, Y2} and {Y3, Y4}.

9. Taking the union of the powersets of the above partitions, we get

β = {∅, {Y1}, {Y2}, {Y1, Y2}, {Y3}, {Y4}, {Y3, Y4}}

10. Prune β down to form βentry: P(sg, λ) = {∅, {1}, {1, 2}, {3, 4}} and pos(hd, {Y1}) = {1},

pos(hd, {Y2}) = {2}, pos(hd, {Y1, Y2}) = {1, 2}, pos(hd, {Y3}) = {3}, pos(hd, {Y4}) = {4}

and pos(hd, {Y3, Y4}) = {3, 4}. It is clear that {Y2}, {Y3}, {Y4} can be removed from β. To this

pruned down β we add {Y7} and {Y8} to get βentry = {∅, {Y1}, {Y1, Y2}, {Y3, Y4}, {Y7}, {Y8}}.

5 Computing the Abstract Success Substitution

In the previous section, we described an algorithm for computing the entry substitution βentry for a

clause C = hd :- body, given a subgoal sg (which is unifiable with hd) and sg’s call substitution λcall.

In this section we describe an algorithm to compute the success substitution λsuccess for sg, given the

exit substitution βexit for the clause C, i.e., the substitution at the “rightmost” point of the clause C.

This algorithm makes use of the abstract unification information computed in the previous algorithm.

Also, the sets of variables Ssg and Shd that are used here will be the same as in section 4.1.

If βexit = ∅ i.e., the exit substitution is ⊥ indicating that clause C didn’t succeed, then obviously

λsuccess = ∅. Else, we execute the algorithm in the following section. Broadly, the various steps in

this algorithm can be explained as follows:

15

• First we project the exit substitution on to the set of program variables in hd (step 1). We

then check if any of these program variables is ground according to the exit substitution but

was not ground according to the entry substitution. These variables became ground during

the execution of the body of clause C. We propagate the groundness of these variables to the

appropriate variables in sg (steps 2 and 3).

• We then compute the potential dependencies among the program variables in sg by forming

a dependency graph as before and taking the union of the appropriate powersets of program

variables in sg (steps 4 through 6).

• Some of these dependencies may be spurious, i.e (1) they may not agree with the call substitution

of sg or (2) they may not agree with the dependencies among the arguments of sg induced by

the exit substitution of the clause C. These spurious dependencies are removed (step 7).

• What we have now is the projection of the success substitution of sg on its program variables.

This is extended to all the program variables in the clause of sg (step 8).

5.1 Algorithm

1. Projection: Compute β ′ by projecting βexit on to the set Shd (the set of variables in the head

hd), i.e.,

β′ ← {S | S = (S ′ ∩ Shd), S
′ ∈ βexit}

β′ is effectively all the information from βexit that is used in this algorithm.

2. Groundness propagation: Start with the values of G,U and λ at the end of step 6 of the

previous algorithm. Let G2 ← {Z | Z ∈ Shd, Z 6∈ G, ∀S(S ∈ β′ ⇒ Z 6∈ S)} i.e., G2 contains

new ground program variables in hd that were not ground according to β. Update G← G∪G2.

Also, enqueue the elements of G2 to the queue L. This queue is used in the same manner as in

the algorithm in section 4.

If L is empty, then go to step 4. Else, execute the groundness propagation step (step 5) of

the previous algorithm.

3. Update λ: Execute step 6 of the previous algorithm.

4. Potential dependency graph formation: Execute step 7 of the previous algorithm. Let

E3 ← {(Yi, Yj) | Yi ∈ S, Yj ∈ S, S ∈ β′}. E3 contains the new sharing information obtained

from β′. Update E ← E ∪ E3.

5. Graph partitioning: Let Ssg −G be partitioned into mutually disjoint sets SP1, . . . , SPs such

that Xi and Xj belong to the same partition if and only if there is a path between them in the

graph GST .

16

6. Form a first approximation to the projection of λsuccess on sg:

λ′ ←
s

⋃

i=1

℘(SPi)

It is clear that (λsuccess ∩ Ssg) is a subset of λ′.

7. Prune λ′ down to get the projection of λsuccess on sg: λ′ may contain some sharing in-

formation among the arguments of the subgoal predicate that is not compatible with λ and with

β′. In this step, we remove such “spurious” sharing information from λ′.

• Consider P(hd, βexit). This gives the sharing information among the arguments of hd (and

hence of sg) due to the abstract exit substitution βexit for the clause C. It is clear that

the sharing information among the arguments of sg induced by λsuccess ∩ Ssg (and hence

λsuccess) has to be the same as well. Therefore, any element in λ′ that leads to an argument

sharing that is not in P(hd, βexit) must be removed.

• Also, as discussed in section 3 (corollaries 1 and 2), the successful execution of the subgoal

sg can only produce a success substitution which is a subset of λ∗. Therefore, any element

of λ′ that is not in λ∗ must be removed.

These steps are summarized as follows:

λ′ ← {S | S ∈ (λ′ ∩ λ∗), pos(sg, S) ∈ P(hd, βexit)}

8. Compute λsuccess from λcall and (λsuccess ∩ Ssg): Partition λcall into two subsets λ1call and

λ2call as follows. λ1call contains only those elements S such that S∩Ssg = ∅. λ2call = λcall−λ1call.

λsuccess = {S|(S ∈ (λ2call)
∗) ∧ ((S ∩ Ssg) ∈ λ

′)} ∪ λ1call

We state a proposition similar to the previous one. It essentially says that λsuccess is a safe

approximation to the actual success substitution for the subgoal Ssg.

Proposition 3 Given a subgoal sg whose abstract call substitution is λcall, a clause C whose head hd

unifies with sg and a safe abstract exit substitution βexit (which is compatible with βentry as computed by

the algorithm of section 4 i.e. βexit ⊆ βentry
∗) for C, let λsuccess be the abstract success substitution for

sg computed using C and the above algorithm. Then, λsuccess is a safe approximation in the following

sense: In the concrete interpretation, let Ωsuccess be the set of success substitutions (computed using

the clause C) corresponding to the set of call substitutions γ(λcall) and to exit substitutions γ(βexit).

Then Ωsuccess ⊆ γ(λsuccess). 2

Proof (Outline): The argument for the correctness of this proposition is very similar to the

last one. β′, which contains all the relevant sharing information (due to βexit) among the program

variables in hd is correctly computed in step 1. The groundness and sharing information in β ′ is then

conservatively transmitted to the program variables in sg in steps 2 to 4. The potential dependency

17

graph computed by the previous algorithm is enhanced by the new sharing and groundness information

(if any) in β′ in step 5. In step 6, a conservative estimate of the projection of λsuccess on sg is computed.

Some of the sharing information thus computed may be spurious. They may not agree with (1) the

sharing information in λcall and (2) the argument sharing in hd due to β ′. Such spurious sharing

information is removed in step 7. Finally, λsuccess is conservatively computed in step 8. 2

5.2 An Example

We illustrate the above algorithm by a continuation of the previous example. The subgoal sg, the head

hd (of clause C) and the call substitution λcall (for sg) are as before. Let βexit = {∅, {Y1, Y7}, {Y3, Y4}}.

1. Projection: β′ = {∅, {Y1}, {Y3, Y4}}

2. Groundness propagation: From step 6 of the previous example we get G =

{X4, X5, Y5, Y6}, U = {(X1, {{Y1}}), (Y2, {{X2}}), (X3, {{Y3}}), (Y4, {{X3}})} and λ =

{∅, {X1}, {X3}, {X1, X2}}. After the execution of this step, we get G = {X2, X4, X5, Y2, Y5, Y6}

and U = {(X1, {{Y1}}), (X3, {{Y3}}), (Y4, {{X3}})}.

3. update λ: λ = {∅, {X1}, {X3}}

4. Potential dependency graph formation: GST = (V,E), where V = {X1, X3, Y1, Y3, Y4} and

E = {(X1, Y1), (X3, Y3), (X3, Y4), (Y3, Y4)}.

5. Graph partitioning: The set Ssg −G has two elements, X1 and X3 and two partitions {X1}

and {X3}.

6. Thus, we get λ′ = {∅, {X1}, {X3}}

7. Prune λ′ down to get λsuccess ∩ Ssg: There are two nonempty set elements in λ′, which also

belong to the set λ. Therefore they are also in the set λ∗. Moreover, pos(sg, {X1}) = {1} and

pos(sg, {X3}) = {3, 4}. These belong to the set P(hd, βexit) = {{1}, {3, 4}}. Thus, no element

is removed from λ′.

8. Compute λsuccess from λcall and (λsuccess ∩ S): λ1call = {∅, {X6}} and λ2call = {{X1}, {X3},

{X3, X4}, {X1, X2, X7}}. From this, we compute λsuccess = {∅, {X1}, {X3}, {X6}}.

6 Optimization of the Computation of Success Substitutions in Spe-

cial Cases

As mentioned in section 2, the algorithms described in sections 4 and 5 can together be used to

compute the success substitution of a subgoal sg given its call substitution and the head hd of a clause

which unifies with sg. However, if it is known that this clause is a “fact” i.e., it doesn’t have a body,

we can eliminate some of the steps in computing sg’s success substitution from its call substitution.

Consequently, the optimized algorithm consists of the following steps:

18

• Steps 1 through 7 of the entry substitution algorithm (section 4), followed by

• Steps 5 through 8 of the success substitution algorithm (section 5)

7 A Top-down Driven Fixpoint Computation Algorithm for Ab-

stract Interpretation

In this section, we describe an efficient, top-down driven fixpoint computation algorithm for abstract

interpretation. The goal of this algorithm is to build the abstract AND-OR tree for the given program

and goal, thus computing the abstract substitutions at all points of this program.

As mentioned in section 2, in building the abstract AND-OR tree for a given program and a goal,

the abstract interpreter has to repeatedly execute the basic step of computing the success substitution

of a subgoal whose call substitution is given. Given a subgoal p, its call substitution λcall and clauses

C1, . . . , Cm whose heads unify with p, a näıve approach to executing this basic step would be to build

the subtree for p in a top-down fashion:

• Project λcall on to the variables in p to obtain λ, the projected call substitution for p.

• For each clause Ci, compute its entry substitution using the algorithm in section 4. Compute

its exit substitution by recursively computing the success substitutions for each of its subgoals

in a left-to-right fashion. Compute λ′i, the projected success substitution for p from clause Ci,

using the algorithm in section 5.

• Compute λ′, the projected success substitution for p by taking the least upper bound (LUB) of

λ′i, 1 ≤ i ≤ m. Extend λ′ to λsuccess, the success substitution for p.

As also mentioned in section 2, this approach may lead to problems if p or one of its descendents

in its subtree is a recursive predicate. A situation as shown in figure 2(a) may develop if p is recursive,

for example. In this case, a subtree for p has a descendent node which has the same atom (p) and the

same projected call substitution (λ). Obviously, this will lead to an infinite loop and λ′ will never be

computed.

The goal of the fixpoint algorithm is to facilitate the computation of λ′ in such cases without going

into an infinite loop. The basic idea behind this algorithm is as follows:

• Compute the approximate value of λ′ using the non-recursive clauses C1, . . . , Cr for p and record

this value in a memo table [10]. Details of this memo table are described in section 7.1.

• Construct the subtree for p, using the approximate value of λ′ from the memo table, if necessary.

Note that this computation will not enter into an infinite loop since approximate values of

projected success substitutions from the memo table are used for recursive predicates.

• Update the value of λ′ using p’s subtree. This value is “more accurate” than the previous one.

Update p’s subtree to reflect this change and compute the new value of λ′ again. Repeat this

step until the value of λ′ doesn’t change, i.e., it has reached fixpoint.

19

7.1 Details of the memo table

The memo table has an entry for each subgoal with a distinct atom and a distinct (projected) call

substitution (modulo renaming of the variables) that occurs in the abstract AND-OR tree.8 In the

context of the fixpoint algorithm described in this paper, the main use of the memo table is to store -

possibly incomplete - results (i.e. values of the projections of success substitutions) obtained from an

earlier round of iteration. Each entry in this table has four fields:

1. The atom for the subgoal9

2. The projection of its call substitution on its variables (λ)

3. The projection of its success substitution on its variables (λ′)

4. Characterization of the information in the third field i.e., whether it is complete or approximate

or fixpoint. These labels are explained in detail in section 7.3. For a nonrecursive predicate, this

entry is always complete, but for a recursive predicate, it can take on any of the above three

values.

The desired output of the algorithm, the abstract AND-OR tree for the given program and query,

is implicitly contained in the memo table at the termination of the algorithm. Therefore, the memo

table is the output of the algorithm as presented in section 7.3. Also, in an actual implementation

of this algorithm, each entry in the memo table has an additional field indicating the clause in which

the subgoal corresponding to this entry occurs and also its position within the clause. On completion

of the algorithm, this information gives direct access to the abstract substitutions at all points in the

given program. For reasons of space and clarity, the memo table in the algorithm presented in section

7.3 does not have this information.

7.2 Overview of the algorithm

This section presents the “core” of our fixpoint computation algorithm. We give a detailed description

of this algorithm in section 7.3. Section 7.4 gives an outline of the proof of its correctness.

It assumes that the predicates in the given program have already been classified as recursive or

nonrecursive.10 As mentioned before, the fundamental step that is executed in this algorithm over

8Normally, the memo table is empty at the start of fixpoint computation. However, if the given program invokes

modules which have been pre-compiled, the results of abstract interpretation for these modules can be pre-loaded into

the memo table. This saves the work of performing abstract interpretation for these modules again. In addition, it can

be assumed that conceptually the memo table is preloaded with the entries corresponding to the built-ins, which are

marked as complete. In practice, however, because of the peculiarities of some non-logical built-ins and since the built-ins

are a very important source of information they are treated specially. Note as well that the memo table is also used in

the algorithm for storing dependency information. This temporary information will not be present, however, at the end

of the analysis.
9This field actually contains information about the unique ID for the subgoal in the abstract AND-OR tree.

10The algorithm for classifying predicates as recursive or nonrecursive is described in Ullman [25].

20

and over again is the computation of the success substitution of p given its call substitution, where p

is an atom that occurs as a node in the abstract AND-OR tree for the given program and goal.

If the predicate for p is nonrecursive, then it is checked if the memo table has an entry corresponding

to (1) the atom for this subgoal (modulo renaming of variables) and (2) λ.

• If there is such an entry, the value of λ′ is obtained from this entry and λsuccess is computed by

extending λ′ to all the variables in the clause for the subgoal.

• If there is no such entry, let C1, . . . , Cm be the clauses whose heads unify with p. The entry

and exit substitutions for these clauses and subsequently, λ′1, . . . , λ
′
m are computed. λ′i is the

projection of the success substitution on its variables for p computed from the exit substitution

of the clause Ci. λ
′ is computed by taking the least upper bound of λ′i, 1 ≤ i ≤ m. A new entry

in the memo table is created with the values p, λ, λ′, complete and the ID for p for the five fields.

λsuccess is computed by extending λ′ to all the variables in the clause for the subgoal.

If the predicate for p is recursive, then it is checked if the memo table has an entry corresponding

to p and λ.

• If there is such an entry with the last field’s value being complete, then λsuccess is computed as

before by extending λ′ to all the variables in the clause for the subgoal. If the last field’s value

is not complete, then we are in the middle of performing fixpoint computation for p. The action

to be taken in this case is described in detail.11

• If there is no entry for p and λ, let C1, . . . , Cr be nonrecursive clauses for p. λ′fixpoint, the

approximate value of λ′ from these clauses, is computed and a new entry in the memo table is

created with the values p, λ, λ′fixpoint, fixpoint and the ID for p for the five fields. Let Cr+1, . . . , Cm

be the recursive clauses for p. λ′r+1, the projection of p’s success substitution due to the clause

Cr+1, is computed. Let the least upper bound of λ′fixpoint and λ′r+1 be λ′lub. If this is not the

same as λ′fixpoint, then the memo table is updated with λ′fixpoint := λ′lub. This step is repeated

for (r + 2), . . . ,m. If the value of λ′fixpoint did not change for (r + 1), . . . ,m, then fixpoint

computation can be stopped. The projection of the success substitution, λ′fixpoint, that is in the

third field for this entry is accurate and so can be labeled complete. On the other hand, if the

value of λ′fixpoint did change during this step, the fixpoint computation is started again with the

clause Cr+1. This step is repeated until λ′fixpoint reaches fixpoint.

The following are the main advantages of our algorithm:

• Rather than performing fixpoint computation for the entire abstract AND-OR tree in a näıve

fashion, our algorithm localizes the fixpoint computation only for recursive subgoals. Elsewhere

[22], we have described how this leads to a more efficient computation of the abstract AND-OR

tree.

11See the description of the function lambda to lambda prime in section 7.3.

21

• Given a recursive predicate p and its projected call substitution λ, we start the fixpoint compu-

tation by first computing the approximate value of λ′ from the non-recursive clauses for p. This

will lead to a faster fixpoint computation than if we had started with λ′ = ⊥

• The input and output mode information from builtin clauses like is/2 is used to increase the

precision of information that can be obtained from the abstract interpreter.

• Of all the clauses which define the predicate of a subgoal p, only those whose heads unify (in

the concrete domain) with p are used in the computation of the success substitution λsuccess of

p, given its call substitution λcall.

7.3 Algorithm for fixpoint computation

In this section we present the algorithm for fixpoint computation. The substitutions mentioned in this

algorithm are all abstract substitutions unless otherwise stated. Because the algorithm is abstract do-

main independent, certain domain-dependent functions used for unification and other abstract substi-

tution manipulation are left undefined. These functions are described at the points of their occurrence

in the algorithm. For the abstract domain described in section 3, these functions have been described

in sections 4 and 5.

The top-level function, compute abstract and or tree, takes as its input arguments the Program,

Query, and its call substitution and returns the Memo table that was computed by the fixpoint compu-

tation algorithm. The abstract AND-OR tree for the Program can be easily derived from this Memo

table. This function uses the tuple projection function π2 which returns the second argument of an

n-tuple.

Definition 13 (compute abstract and or tree)

compute abstract and or tree(P,Q,λcall) =

π2(call to success(P,Q,λcall,{ },{ })) 2

The function call to success computes the success substitution of a goal given its call substitution.

Its input arguments are the Program, Subgoal, its call substitution, the input Memo table, and in ids. It

returns a 3-tuple (success substitution, output Memo table, out ids). in ids and out ids are sets of node

IDs. More precisely, they are sets of node IDs for which incomplete (i.e. fixpoint) information from

the memo table has been used to compute their success substitutions. The difference between out ids

and in ids gives the set of node IDs in the subtree of Subgoal which used “incomplete” information.

This function uses two abstract domain specific functions, project and extend. project takes as

input a Subgoal and its call substitution and computes its projected call substitution. extend takes

as input a Subgoal, its call substitution, and its projected success substitution and returns its success

substitution.

Definition 14 (call to success)

22

p

p

λ λ′

λ λ′

....

....

....

....

...

δ q δ′

δ q δ′

λ p λ′

(a) (b)

Figure 2: Some situations that arise during fixpoint computation

call to success(P,S,λcall,Min, Idsin) =

(λsuccess,Mout, Idsout)

where λsuccess = extend(S,λcall, λ
′)

and (λ′,Mout, Idsout) = lambda to lambda prime(P,S,project(S,λcall), Min, Idsin) 2

The function lambda to lambda prime computes the projected success substitution (λ′) of a subgoal

p given its projected call substitution (λ). Below, we discuss the five cases it considers:

1. If p is a non-recursive subgoal that has no existing entry in the memo table, then λ′ is computed

by the procedure nr lambda to lambda prime.

2. If p is a recursive subgoal that has no existing entry in the memo table, then fixpoint compu-

tation has to be started for this subgoal. A new entry corresponding to p and λ is created in

the memo table with λ′ initialized to an appropriate value to start the fixpoint computation

(e.g. ⊥). Then the function fixpoint compute computes λ′ by performing fixpoint computa-

tion on p’s subtree. Note that for simplicity the value used in the following description of the

lambda to lambda prime function is ⊥ and the clauses are then visited in an unspecified order.

In an actual implementation, however, the non-recursive clauses are visited first, thus computing

a better first approximation to λ′. Only then fixpoint computation is started. This speeds up

convergence.

3. If the memo table has an entry for p and λ and this entry has the label fixpoint, then the current

node for p is the descendent of another node for p with the same λ i.e., we are in the process of

computing the fixpoint for λ′ for that node. See figure 2(a). The memo table entry for λ′ is an

approximation to the correct value for both the p nodes. The function id(p) returns the unique

ID of the subgoal p.

23

4. If the memo table already has a complete value for λ′, out ids is obviously the same as in ids

since there are no “incomplete” nodes in the subtree for p.

5. If the memo table has an entry for p and λ and this entry has the label approximate, then the

situation is as shown in figure 2(b) i.e., there are two nodes in the tree one of which is the

ancestor and the other is the descendent for the current node for p. Both these nodes are for

the same recursive predicate q. The fixpoint computation for p has already been completed but

the fixpoint computation for q is not yet over. Since the fixpoint computation for p made use of

an approximate value of success substitution for q, the resultant λ′ is not accurate. That is why

this entry has the label approximate. Fixpoint computation for p is started again after this label

is changed to fixpoint in the memo table. Of course, we now start with a better approximation

for λ′.

Definition 15 (lambda to lambda prime)

lambda to lambda prime(P, S, λ,Min, Idsin) =

=







































































































if (S, λ, ,) 6∈Min ∧ S is non-recursive

then (λ′,Mout ∪ {(S, λ, λ
′, complete)}, Idsin)

where (λ′,Mout) = nr lambda to lambda prime(P, S, λ,Min, P)

if (S, λ, ,) 6∈Min ∧ S is recursive

then fixpoint compute(P, S, λ,Min ∪ {(S, λ,⊥, fixpoint)}, Idsin)

if (S, λ, λ′, fixpoint) ∈Min

then (λ′,Min, Idsin ∪ {id(S)}))

if (S, λ, λ′, complete) ∈Min

then (λ′,Min, Idsin)

if (S, λ, λ′, approx) ∈Min

then fixpoint compute(P, S, λ,Min ∪ {(S, λ, λ
′, fixpoint)} − {(S, λ, λ′, approx)}, Idsin) 2

The function nr lambda to lambda prime computes the projected success substitution for a non-

recursive Subgoal given its projected call substitution.

Definition 16 (nr lambda to lambda prime)

nr lambda to lambda prime(P, S, λ,Min, Cls) =

=















































if ∃C ∈ Cls. head(C) unifies with S

then (lub(λ′, λ′C),Mout)

where (λ′C ,Mout,) = clause lambda to lambda prime(P, S,C, λ,M, ∅)

and (λ′,M) = nr lambda to lambda prime(P, S, λ,Min, Cls− {C})

else

(⊥,Min) 2

The function clause lambda to lambda prime computes the projected success substitution λ′C for

the subgoal S using the clause C whose head unifies with S. It uses the abstract domain specific

24

functions call to entry and exit to success. The former computes the entry substitution for C given

the λ for S. The latter computes λ′C for S given the exit substitution for C.

Definition 17 (clause lambda to lambda prime)

clause lambda to lambda prime(P,S,C,λ,Min, Idsin) =

(λ′C ,Mout, Idsout)

where λ′C = exit to success(βexit, S, C, λ)

and (βexit,Mout, Idsout) = entry to exit(βentry,Min, Idsin,P,body(C))

and βentry = call to entry(λ, S,C) 2

Definition 18 (entry to exit)

entry to exit(βentry,Min, Idsin, P,Body) =

=



























































if Body = true

then (βentry,Min, Idsin)

if Body = (Atom,As)

then entry to exit(βint,Mint, Idsint, P,As)

where (βint,Mint, Idsint) = call to success(P,Atom, βentry,Min, Idsin)

if Body = Atom

then call to success(P,Atom, βentry,Min, Idsin) 2

The function fixpoint compute computes the λ′ of a subgoal S by performing fixpoint computation

on its subtree. It does so by applying the fixpoint operator ↑ to the function rec l to lp which traverses

the subtree of S once, as described below. rec l to lp ↑ ω repeatedly applies the function rec l to lp

until fixpoint is reached for λ′.

Definition 19 (fixpoint compute)

fixpoint compute(P,S,λ,Min, Idsin) =

(λ′,M ′′ − {(S, λ, ,)} ∪ {(S, λ, λ′, Label)}, (Idsin ∪ Idssubtree − {id(S)}))

where(M ′′,Label) = update abs ao tree(M ′, S, Idssubtree)

and (λ′,M ′, Idssubtree) = rec l to lp↑ ω(P, S, λ, (λ′init,Min, ∅), P)

where(S, λ, λ′init, fixpoint) ∈Min 2

The application of the fixpoint operator ↑ to the function rec l to lp is made explicit by means of

the following definition:

Definition 20 (rec l to lp↑)

rec l to lp↑ 0(P, S, λ, (λ′,M, Ids), P) = (λ′,M, Ids)

rec l to lp↑ (n+ 1)(P, S, λ, (λ′,M, Ids), P) = rec l to lp(P, S, λ, rec l to lp↑ n(P, S, λ, (λ′,M, Ids), P),P)

rec l to lp↑ ω(P, S, λ, (λ′,M, Ids), P) = (∪n<ωλ
′
n,∪n<ωMn,∪n<ωIdsn)

where (λ′n,Mn, Idsn) = rec l to lp↑ n(P, S, λ, (λ′,M, Ids), P) 2

25

As mentioned before, the function rec l to lp traverses the subtree once, computing the projected

success substitution λ from the projected call substitution λ′ for the recursive case:

Definition 21 (rec l to lp)

rec l to lp(P, S, λ, (λ′in,Min, Idsin), Cls) =

=



























if ∃C ∈ Cls. head(C) unifies with S

then rec l to lp(P, S, λ, cl rec l to lp(P, S, λ, (λ′in,Min, Idsin), C), Cls− {C})

else

(λ′in,Min, Idsin) 2

The function cl rec l to lp computes the projected success substitution λ from the projected call

substitution λ′ one clause at a time for the recursive case. It uses the abstract domain specific function

lub which returns the least upper bound of two abstract substitutions.

Definition 22 (cl rec l to lp)

cl rec l to lp(P,S,λ, (λ′in,Min, Idsin),C) =

(λ′out,Mout − {(S, λ, λ
′
in, fixpoint)} ∪ {(S, λ, λ

′
out, fixpoint)}, Idsout)

where λ′out = lub(λ′in, λ
′
C)

and (λ′C ,Mout, Idsout) = clause lambda to lambda prime(P, S,C, λ,Min, Idsin) 2

Once fixpoint computation is completed for the subtree of a recursive subgoal S, the set of node

IDs whose approximate success substitutions were used for this fixpoint computation, Idssubtree, is

examined. If this contains only the node ID for S, then the λ′ computed for S is labeled complete. In

this case, it is possible that some other node IDs were “dependent” on this node ID. The dependency

information for these nodes is suitably updated by the function update depend set. If Idssubtree contains

node IDs other than id(S), then the λ′ obtained by the fixpoint computation is labeled approx. The

dependency information is suitably updated in the memo table by the function update abs ao tree.

Definition 23 (update abs ao tree)

update abs ao tree(Min, S, Idssubtree) =

=



























if (Idssubtree − {id(S)}) = ∅

then (update depend set(Min, id(S)), complete)

else

(Min − {depend set(id(S),)} ∪ {depend set(id(S), (Idssubtree − {id(S)}))}, approx) 2

26

Definition 24 (update depend set)

update depend set(Min, Id) =

=



























































































if ∃Id′, Set. depend set(Id′, Set) ∈Min ∧ Id ∈ Set

then update depend set(M − {depend set(Id′, Set)} ∪ {depend set(Id′, Set− {Id})}, Id)

where M =

=



































if Set− {Id} = ∅

then Min − {(S
′, λ, λ′, approx)} ∪ {(S ′, λ, λ′, complete)}

where S′ = id−1(Id′)

else

Min

else

Min 2

7.4 Outline of the proof of correctness of the algorithm

Proposition 4 Given the following:

• an abstract domain that satisfies the conditions:

– that the number of distinct (modulo renaming of variables) abstract substitutions for a clause

is finite,

– that they form a lattice with respect to a partial order induced by the concretization function

• correct, terminating procedures to compute the following:

– abstract entry substitution βentry for a clause C given the abstract call substitution λcall of

a subgoal sg which unifies with the head hd of C

– abstract success substitution for a subgoal sg given its abstract call substitution and the

abstract exit substitution of a clause C whose head hd unifies with sg

– LUB of two abstract substitutions (of the same clause)

the fixpoint computation algorithm described above correctly computes the abstract AND-OR tree (i.e.,

the abstract substitutions at all points) for a given program and goal. Also, it terminates for all inputs.

2

Proof (Sketch): The correctness of this algorithm follows from:

• the fact that it computes the abstract projected success substitution λ′ of a subgoal sg as the

LUB of the abstract projected success substitutions λ′i computed from the clauses Ci, where

Ci, i = 1, . . . , n are all clauses whose heads unify with sg.

• the fact that if an atom sg with the same projected call substitution (λ) (modulo renaming of

variables) appears in different nodes of the tree, it has the same value for the projected success

substitution (λ′) at these nodes

27

Termination: When the given program has no recursive predicates, it is clear that this algorithm

terminates since it builds the abstract AND-OR tree in a top-down fashion and that tree cannot have

two nodes with the same atom and projected call substitution (modulo renaming of variables), with

one node being the descendent of the other.

When the given program has recursive predicates, the termination of this algorithm follows from:

• the fact that the subtree of a node with a recursive predicate p is finite. Since p can only

have a finite number of distinct call substitutions, the subtree can only have a finite number of

occurrences of nodes who have a variant of p and which themselves have subtrees. All other nodes

with p as their predicates use the approximate value of the projected success substitution from

the memo table (since they have an ancestor with the same atom and projected call substitution

(modulo renaming of variables)) and hence do not have any descendent nodes.

• Given that the subtree of a node with a recursive predicate p is finite, it is easy to see that the

complete construction of this subtree takes only a finite number of steps. Broadly speaking, the

construction of this tree proceeds as follows: First the approximate value of the projected success

substitution is computed as the LUB of the projected success substitutions computed from p’s

non-recursive clauses. Then the sub-tree is dynamically traversed in a depth-first manner and

we return to the root of the subtree. At this time, the value of the projected success substitution

is updated as the LUB of the old value and the value computed from p’s recursive clauses.

If there is a change in this value, then the dynamic depth-first traversal is continued again. Note

that this “looping” through the depth-first traversal can take place only a finite number of times,

since the LUB operation is obviously monotonic and the abstract substitutions for a clause form

a finite lattice and so the fixpoint will be reached in a finite number of steps.

If there is no change in the value of the projected success substitution for this node, then its

subtree is complete and so we have reached the end of fixpoint computation for this node.

2

8 Implementation Results

In this section, we present the results of running an implementation of an abstract interpreter which

uses the fixpoint algorithm discussed in section 7.3. The goal of this abstract interpreter is to infer

the groundness and independence of program variables so that run-time groundness and independence

checks can be eliminated for an Independent And-Parallel execution of a given logic program. It takes

as input a logic program which also contains a description of the query (or set of queries) and its (their)

abstract substitution, provided by the procedure qmode/2.12 It generates a memo table containing

the abstract substitutions at all points of the clauses which have been used for building the abstract

AND-OR tree for the given query or queries.

12If the user does not provide a query form, a general one (using a most general abstract substitution) is generated

for all entry points which appear in the module declaration for the file.

28

Clause / Subgoal Abstract call substitution

:- qmode(qsort(A,B),[[B]]).

qsort(A,B) :-

qsort(A,B,[]). % [[B]]

qsort([],A,A).

qsort([A|B],C,D) :-

partition(B,A,E,F), % [[C],[D],[E],[F],[G],[H]]

qsort(F,G,D), % [[C],[D],[G],[H]]

qsort(E,C,[A|H]), % [[C],[D,G],[H]]

G=H. % [[C,H],[D,G]]

partition([],A,[],[]).

partition([A|B],C,D,[A|E]) :-

A > C, % [[D],[E]]

!,

partition(B,C,D,E). % [[D],[E]]

partition([A|B],C,[A|D],E) :-

A=<C, % [[E],[D]]

partition(B,C,D,E). % [[E],[D]]

Table 1: Results of abstract interpretation for the quicksort program

This implementation of the abstract interpreter is part of a parallelizing compiler for logic that

has proven successful in obtaining speed-ups for a variety of logic programs [13, 15]. Normally, the

results of the abstract interpreter are passed to the parallelizing compiler. However, there is an option

in this system which enables it to output only the results of the abstract interpreter. Basically, the

output is an annotated version of the given logic program, which contains as comments the abstract

call substitutions of subgoals in all non-unit clauses. Lists are used in the place of sets for abstract

substitutions. The results of using such an option on an example program (quicksort using difference

lists) are presented in table 1. The first column gives a subgoal (along with the clause in which it

occurs) and the second column gives its abstract call substitution.

For reasons of space, we do not show the abstract AND-OR tree for this program. However,

we observe from table 1 that, in the body of the second clause for qsort dl, after the execution

of partition(B,A,E,F), program variables A, B, E, F are ground and C, D, G, H are mutually

independent. Therefore, in an IAP implementation of this program, the subgoals qsort dl(F,G,D)

and qsort dl(E,C,[A|H]) can be executed in parallel without any groundness or independence checks.

It is interesting to note that the same results would have been obtained even if the query form had

been the more general “:- qmode(qsort(A,B),[[A][B]]).”. Also, the use of the abstract interpreter

(whose code is not greatly optimized) added 45% to the compilation time, which is considered a

29

{{B}} {∅}

{{P},{Q},{R},{S},{Y}} partition(X,W,P,Q) {{R},{S},{Y}} qsort(P,R) {{S},{Y}} qsort(Q,S) {{Y}} append(R,[X|S],Y) {∅}

partititon(_,[],[],[]) partititon(X1,[Y1|Z1],[Y1|P1],Q1) partition(X2,[Y2|Z2],P2,[Y2|Q2])

{{P1},{Q1}} X1 > Y1 {{P1},{Q1}} partition(X1,Z1,P1,Q1) {∅}

similar sub-tree

qsort([X|W],Y)qsort(_,[],[])

qsort(A,B)

{{P},{Q}} {∅} {{R}} {∅} {{S}} {∅} {{Y}} {∅}

{∅} {∅} {∅}{{P1},{Q1}}

Figure 3: Abstract AND-OR tree for the quicksort program

reasonable overhead. In fact, this overhead is not worse than that of previous, less precise abstract

interpreters [27].

Next, we consider the simpler (from the point of view of analysis) version of quicksort which uses

an explicit call to append instead of difference lists. We present the results of abstract interpretation

of this program in the form of an abstract AND-OR tree, since it is much simpler than the abstract

AND-OR tree of the previous program and it is more illustrative than a table. The partition/4

predicate used here is the same as the one used in the previous program and the append/3 predicate

is the standard one.

30

:- qmode(qsort(Xs,Ys),[[Ys]]). %% query and its call substitution

qsort([],[]).

qsort([X|W],Y) :-

partition(X,W,P,Q),

qsort(P,R),

qsort(Q,S),

append(R,[X|S],Y).

The abstract AND-OR tree for this program and query is shown in figure 3. The root of the tree

contains the OR-node qsort(A,B) with its call substitution to its left and its success substitution

to its right. There are three AND-nodes, qsort([X|W],Y), partition(X1,[Y1|Z1],[Y1|P1],Q1)

and partition(X2,[Y2|Z2],P2,[Y2|Q2]). The rest are all OR-nodes. For each OR-node, the call

substitution is shown on its left and the success substitution is shown on its right. If there are

two adjacent siblings M and N (with M to the left of N), the success substitution for M is the call

substitution for N. The projections of the call and success substitutions for a predicate are underlined

and are respectively below the call and success substitutions for the predicate.

It can be seen from this tree that the terms bound to P and Q are ground and the terms bound to R

and S are independent when the subgoal qsort(P,R), which occurs in the body of the recursive clause

for qsort, is called. Therefore, in an IAP implementation for this program, the subgoals qsort(P,R)

and qsort(Q,S) can be run in parallel without any groundness or independence checks.

9 Conclusions and Future Work

Motivated by the needs of applications such as compilation for Independent And-Parallelism (IAP),

we have presented an abstract interpreter that is specifically geared towards detecting groundness

and independence of terms with a high degree of precision, using a novel abstract domain. We have

presented efficient algorithms for computing entry substitutions for clauses and success substitutions

for subgoals. These are the essential steps in any algorithm for an abstract interpreter. We have also

presented a top-down directed, bottom up fixpoint computation algorithm that is independent of the

abstract domain used in the interpreter. The techniques presented in this paper are of direct use in

the compilation of logic programs for execution in systems which support IAP, in keeping accurate

track of variable aliasing in other types of analysis, and, in general, in any compilation problem which

can make use of information regarding variable sharing, groundness, and independence.

We have also presented herein some results from the implementation of an abstract interpreter

which uses the algorithms discussed in this paper. This implementation is part of a parallelizing

compiler for logic programs using independent and-parallelism and a run-time system which have

together proved successful in obtaining speedups for a variety of logic programs [13]. Although a more

detailed study of the performance of the interpreter is a subject for further research, our experiments

31

analyzing various benchmarks have revealed that it is more accurate than previous interpreters [27]

and it already plays an essential part in achieving the favourable speedup results.

At the same time we have identified ways in which the usefulness of the analysis could be in-

creased. In particular, and in the context of IAP,13 it would be quite advantageous to enhance the

existing abstract domain to include information about the “freeness” of variables. To this end we have

developed an abstract domain capable of representing freeness and dependence and developed novel

abstract unification algorithms for it. The results from using this enhanced domain will be reported

elsewhere.

Finally, based on our design decisions for the algorithm and our experiments with the actual im-

plementation of the abstract interpreter we would also like to suggest a number of other avenues for

further research. The structure of the abstract interpretation algorithm as described herein is such

that an implementation of it requires double interpretation, i.e. the given program is interpreted in

the abstract domain by the abstract interpreter, which in turn is interpreted (run) by the underlying

system. There is a certain degree of inefficiency in doing this and previous experiments with differ-

ent abstract interpreters ([27], [8]) suggest that eliminating one of the interpretation steps can be

advantageous. This can be done by performing a partial evaluation of the abstract interpreter into

the program being analyzed, a step which should be done automatically. It would be interesting to

compare the performances of the abstract interpretation algorithm presented using both single and

double interpretation.

The abstract domain used in this paper can be enhanced to include principal functors of terms.

This can improve the accuracy of the results computed by the abstract interpreter. For example,

consider the following program:

p(X,Y) :- q(X),r(X),s(Y).

q(f(W)).

q(g(a)).

...

clauses for r(X) and s(Y).

Suppose that, at entry to p’s clause, it is known that X is instantiated to a term whose principal functor

is g. In the simple abstract domain, this information cannot be used in an abstract substitution. If

the entry substitution for p(X,Y) contains {X,Y}, then we can only infer that the call substitution for

the subgoal r(X) also contains {X,Y}, i.e. we cannot infer that X is grounded and thus independent

of Y.14 But in the enhanced domain, since information is available regarding the principal functor for

the instantiation of each program variable, we know that the principal functor of X is g at entry and

so, X is ground after the execution of q(X). This translates to a more accurate abstract substitution

inferred at this program point.15 Clearly, this also means increased work for the abstract interpreter.

13And even more so in the context of non-strict independent and-parallelism (NSIAP), a type of IAP in which goals

are allowed to run in parallel even if they share variables, provided that they don’t affect each other’s search spaces [15].
14For example, in an IAP implementation of this program, the lack of this information would make a run-time

independence check needed for the terms bound to X and Y in order to run the subgoals r(X) and s(Y) in parallel.
15Consequently, in an IAP implementation of this program, the subgoals r(X) and s(Y) could then be executed in

32

Furthermore, it is not necessary to limit the analysis to first-level structures, and an arbitrary depth

bound can be used [27]. It would be interesting to study the tradeoff between greater accuracy and

increased compilation time during the abstract interpretation phase brought about by the introduction

of different levels of structure depth in the abstract domain.

10 Acknowledgements

We would like to thank the anonymous referees for making many useful suggestions which have helped

us improve the presentation of this paper. We would also like to thank Fosca Giannotti, Francesca

Rossi, Kevin Greene, and the other members of our research groups at MCC, U. of Texas, and U. of

Madrid for their useful comments on earlier drafts of this paper and for their support.

References

[1] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical

Report CW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.

[2] M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrating Type and

Mode Inference. In Fifth International Conference and Symposium on Logic Programming, pages

669–683, Seattle, Washington, August 1988. MIT Press.

[3] J.-H. Chang and Alvin M. Despain. Semi-Intelligent Backtracking of Prolog Based on Static Data

Dependency Analysis. In International Symposium on Logic Programming, pages 10–22. IEEE

Computer Society, July 1985.

[4] M. Corsini and G. Filè. The abstract interpretation of logic programs: A general algorithm and

its correctness. Research report, Department of Pure and Applied Mathematics, University of

Padova, Italy, December 1988.

[5] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Symposium on

Principles of Programming Languages, pages 238–252, 1977.

[6] S. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. Technical

Report 87-24, Dept. of Computer Science, University of Arizona, August 1987.

[7] S. Debray. Static Analysis of Parallel Logic Programs. In Fifth Int’l Conference and Symposium

on Logic Programming, Seattle,Washington, August 1988. MIT Press.

[8] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs. Journal of

Logic Programming, 5(3):207–229, September 1988.

parallel without a run-time independence check, thereby reducing the overhead for parallelism and obtaining a better

speed-up.

33

[9] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation

Computer Systems, pages 471–478. Tokyo, November 1984.

[10] S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In Fourth IEEE

Symposium on Logic Programming, pages 264–272, September 1987.

[11] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP Programs Using

Abstract Interpretation. New Generation Computing, 6(2–3):159–186, 1988.

[12] M. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design

and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of Texas at Austin,

August 1986.

[13] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-

Parallelism. In 1990 International Conference on Logic Programming, pages 253–268. MIT Press,

June 1990.

[14] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent And-Parallelism

in Logic Programs. Technical Report ACA-ST-032-89, Microelectronics and Computer Technol-

ogy Corporation (MCC), Austin, TX 78759, January 1989.

[15] M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990 International

Conference on Logic Programming, pages 237–252. MIT Press, June 1990.

[16] D. Jacobs and A. Langen, December 1988. Personal communication / Draft.

[17] N. Jones and H. Sondergaard. A semantics-based framework for the abstract interpretation of

prolog. In Abstract Interpretation of Declarative Languages, chapter 6, pages 124–142. Ellis-

Horwood, 1987.

[18] H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs. In Fourth IEEE Symposium on

Logic Programming, pages 205–214, San Francisco, California, September 1987. IEEE Computer

Society.

[19] K. Marriott and H. Søndergaard. Semantics-based dataflow analysis of logic programs. Informa-

tion Processing, pages 601–606, April 1989.

[20] Kim Marriott and Harald Sondergaard. Bottom-up dataflow analysis of logic programs. In

Fifth International Conference and Symposium on Logic Programming, pages 733–748, Seat-

tle,Washington, August 1988. MIT Press.

[21] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International Conference on

Logic Programming, number 225 in LNCS, pages 463–475. Springer-Verlag, July 1986.

[22] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algorithm for Top-

down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90, Microelec-

tronics and Computer Technology Corporation (MCC), Austin, TX 78759, April 1990.

34

[23] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. Theoretical Com-

puter Science, 34:227–240, 1984.

[24] H. Sondergaard. An application of abstract interpretation of logic programs: occur check re-

duction. In European Symposium on Programming, LNCS 123, pages 327–338. Springer-Verlag,

1986.

[25] J. D. Ullman. Database and Knowledge-Base Systems, Vol. 1 and 2. Computer Science Press,

Maryland, 1990.

[26] A. Waern. An Implementation Technique for the Abstract Interpretation of Prolog. In Fifth Inter-

national Conference and Symposium on Logic Programming, pages 700–710, Seattle,Washington,

August 1988.

[27] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis of

Logic Programs. In Fifth International Conference and Symposium on Logic Programming, pages

684–699. MIT Press, August 1988.

35

