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Abstract. Aggregates are used to compute single pieces of information from
separate data items, such as records in a database or answers to a query to a logic
program. The maximum and minimum are well-known examples of aggregates.
The computation of aggregates in Prolog or variant-based tabling can loop even
if the aggregate at hand can be finitely determined. When answer subsumption or
mode-directed tabling is used, termination improves, but the behavior observed
in existing proposals is not consistent. We present a framework to incrementally
compute aggregates for elements in a lattice. We use the entailment and join rela-
tions of the lattice to define (and compute) aggregates and decide whether some
atom is compatible with (entails) the aggregate. The semantics of the aggregates
defined in this way is consistent with the LFP semantics of tabling with con-
straints. Our implementation is based on the TCLP framework available in Ciao
Prolog, and improves its termination properties w.r.t. similar approaches. Defin-
ing aggregates that do not fit into the lattice structure is possible, but some prop-
erties guaranteed by the lattice may not hold. However, the flexibility provided by
this possibility justifies its inclusion. We validate our design with several exam-
ples and we evaluate their performance.

1 Introduction
Aggregates, in general and informally, are operations which take all the records in a
database table or all the answers to a logic programming query and synthesize a result
using these data items. Common aggregates include maximum, minimum, and the set
of all answers, counting the number of solutions, or computing an average. A straight-
forward way to compute aggregates is to compute all solutions and then calculate the
aggregate. However, this has several drawbacks. In some cases, computing an aggregate
can be done without computing all possible answers: for example, if the operational
semantics of the underlying language include mechanisms to avoid repeating useless
computations [2,1]. Also, the computation of the aggregate may involve (recursively)
using the aggregate itself (see Example 1), so computing a full aggregate-less model
with a fixpoint procedure may simply be not correct, and several iterations of fixpoint
procedures may be necessary.

Several tabling systems [14,11,16] include the so-called modes, which make it pos-
sible to implement some specific aggregates incrementally. However, while being very
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1 :- table dist/3.

2

3 dist(X, Y, D) :-

4 dist(X, Z, D1),

5 edge(Z, Y, D2),

6 D is D1 + D2.

7 dist(X, Y, D) :-

8 edge(X, Y, D).

1 :- table dist/3.

2

3 dist(X, Y, D) :-

4 D1 #> 0, D2 #> 0,

5 D #= D1 + D2,

6 dist(X, Z, D1),

7 edge(Z, Y, D2).

8 dist(X, Y, D) :-

9 edge(X, Y, D).

Fig. 1. Left-recursive distance traversal in a graph: Tabling (left) / TCLP (right).
Note: The symbols #> and #= are (in)equalities in CLP.

helpful in some situations, a careful examination of their behavior reveals inconsisten-
cies with the LFP semantics which makes reasoning about simple programs unsound.

In this paper we present a semantics for a class of common aggregates, derived
from an interpretation of their meaning in a lattice. This interpretation makes it possi-
ble to give them a consistent least fixed point semantics. We observe that it is possible
to take advantage of existing implementation techniques for tabled logic programming
and extend them in order to implement the additional machinery necessary for aggre-
gates: tabling, in all of its variants, needs to store the answers returned by the different
branches of the computation, which is a first step towards computing aggregates. We
further develop this initial implementation by adding the necessary support (in the form
of syntax and underlying infrastructure) to incrementally compute aggregates based on
the answers that are added to the table.

In particular, we base our proposal in the Modular TCLP [2,1] framework, which
already has infrastructure to perform tabling with constraints. This infrastructure
includes the possibility of storing answers and using entailment between stored answers
to increase expressiveness, termination properties, and speed of tabling.

In Section 2 we briefly describe the Modular TCLP interface. In Section 3 we
present a semantics for aggregates based on entailment and/or join operation over a
lattice which is consistent with the LFP semantics. In Section 4 we present the generic
framework for lattice-based aggregates with an improvement in Modular TCLP which
allows the combination of answers. In Section 5 we evaluate the expressiveness and
performance of ATCLP versus Prolog and tabling. Finally, in Section 6, we offer some
conclusions.

2 Background: Tabling and Constraints

Tabled Logic Programming with Constraints (TCLP) [2,12,5] improves program
expressiveness and, in many cases, efficiency and termination properties. Let us con-
sider a program to compute distances between nodes in a graph written using tabling
and using TCLP (Fig. 1, left and right, resp.)

Tabling records the first occurrence of each call to a tabled predicate (the genera-
tor) and its answers. In variant tabling (the most usual form of tabling), when a call
is found to be equal, modulo variable renaming, to a previous generator, the execution
of the call is suspended and it is flagged as a consumer of the generator. For example



dist(a,Y,D) is a variant of dist(a,Z,D) if Y and Z are free variables. Upon suspen-
sion, execution switches to evaluating another, untried branch. A branch which does
not suspend due to the existence of a repeated call can generate an answer for an ini-
tial goal. When a generator finitely finishes exploring all the clauses and all answers
are collected, its consumers are resumed and are fed the answers of the generator. This
may make consumers produce new answers which can in turn resume more consumers.
This process finishes when no new answers can be generated — i.e., a fixpoint has been
reached. Tabling is sound and, for programs with a finite Herbrand model, is complete .

The program in Fig. 1 would always loop under SLD due to the left-recursive rule.
Under tabling, a query such as ?- dist(a,Y,D),D < K would terminate for acyclic
graphs. In a cyclic graph, however, dist/3 has an infinite Herbrand model: every cycle
can be traversed repeatedly and create paths of increasing length. Therefore, that query
will not terminate under variant tabling.

However, the integration of tabling and CLP makes it possible to execute the
dist/3, right, using constraint entailment [4] to suspend calls which are more par-
ticular than previous calls, and to keep only the most general answers. The query
?- D #< K, dist(a,Y,D) terminates under TCLP because by placing the constraint
D #< K before dist(a,Y,D), the search is pruned when the values in D are larger than
or equal to K.

This illustrates the main idea underlying the use of entailment in TCLP: more par-
ticular calls (consumers) can suspend and later reuse the answers collected by more
general calls (generators). In order to make this entailment relationship explicit, we
will represent a TCLP goal as 〈g, cg〉 where g is the call (a literal) and cg is the
projection of the current constraint store onto the variables of the call. For exam-
ple, 〈dist(a,Y,D), D> 0∧D< 75〉 entails the goal 〈dist(a,Y,D), D< 150〉 because
(D> 0∧D< 75)v D< 150. We also say that the latter (the generator) is more general
than the former (the consumer). All the solutions of a consumer are solutions for its
generator, since the space of solutions of the consumer is a subset of that of the genera-
tor. However, not all answers from a generator are valid for its consumers. For example
Y= b∧D> 125∧D< 135 is a solution for our generator, but not for our consumer,
since the consumer call was made under a constraint store more restrictive than the gen-
erator. Therefore, the tabling engine has to filter, via the constraint solver, the answers
from the generator that are consistent w.r.t. the constraint store of the consumer.

Some tabling systems offer facilities that improve termination in this situation.
Tabling engines that implement mode-directed tabling [6,17] and/or answer subsump-
tion [13] can use policies other than being a variant to decide whether a call is a con-
sumer and should be suspended. These are expressed by specifying the modes of some
arguments. For example, the directive :- table dist(_,_,min) specifies the (aggre-
gate) mode min for the third argument. The call will in this case terminate because
only the shortest distance will be returned. However, note that the standard least fix-
point semantics (calculated by tabling) is not well-suited to programs with aggre-
gates [8,9,15]. For example, let us consider the following program:

1 p(1). 2 p(0) :- p(1).



and let us assume that we want to minimize the (single) argument to p/1, i.e., we want
to evaluate this program under the constraint that the argument of p/1 has to be as
small as possible. On the one hand, this means that only one literal (the p(X) having
the smallest value for X) should be in the model. On the other hand, it turns out that
neither {p(0)} nor {p(1)} are consistent with this intended semantics. For p(0) to
be the literal with the minimum value, p(1) needs to be true. But then p(1) would be
in the model and therefore it should be the minimum. This paradox points to the need
of an ASP semantics for the general case (and clarifies why there is not an accepted,
consistent semantics for aggregates in Prolog-based logic programming — see at the
end of Section 3.1). We will present here an alternative, defensible meaning for a class
of aggregates that can stay within the least fixpoint semantics.

3 Aggregates in Lattices

We consider first the case of aggregates that can be embedded into a lattice: the elements
on which we operate can be viewed as points in a lattice whose structure depends on
the particular aggregate we are computing, and where the aggregation operation can be
expressed based on the partial order of the lattice. As an intuitive example, the minimum
of a set of elements is the element x for which there is no other element y s.t. yv x. This
view gives rise to a view of aggregates returning designated representatives of a class.

3.1 Aggregates Based on Entailment

The simplest type of aggregation operations can be defined using only the v operation
of the lattice. Since v is related to constraint entailment, we have used this name.

Definition 1 (Entailment-Based Aggregates).
Given a partial order relation v over a multiset S,1 the aggregate of S over v,
denoted as Aggv, is the set of more general values of S w.r.t. v:

Aggv(S) = {x ∈ S |6 ∃y ∈ S,y 6= x · xv y}

minimum and maximum are two widely used entailment-based aggregates. But it is inter-
esting to note that other policies that select a subset of answers to a query, such as
variant or subsumption, can also be expressed as aggregates in a lattice.

Example 1 (min).
The minimum of a set of values is the least upper bound of the lattice ordered by
' > '. The aggregate of S over min is defined as:

Aggmin(S) = {x ∈ S |6 ∃y ∈ S,y 6= x · x > y}

1 This definition would usually be based on a set instead of a multiset. The reason to choose
explicitly a multiset will be clear in Section 4.5, when we apply our implementation to opera-
tions that cannot be embedded in a lattice.



The minimum of a set of values is unique and, as aggregate, is a set: Aggmin({2,3,4}) =
{2}. Note that Aggmin({2,3,4,5,6}) = {2}, as well. Therefore, one can view the aggre-
gation of a set of values as another (potentially different) set that in some sense sum-
marizes or represents the initial set of values. As such, several sets can have the same
aggregate, or, conversely, a single aggregate can represent many initial sets. As we will
see, we define Aggmin({2,3,4}) = {x | x ≥ 2} as this brings interesting properties to
aggregates that are compatible with the intuitive idea of what an aggregate is.

We will see how this definition of aggregates can be applied to the previous min

case to generate a model that is compatible with the least fixpoint of a logic program.
Let us consider the following variant of an example taken from [15].2

Example 2 (p(min)).
In the program below, :- table p(min) is intended to mean that we want to
restrict the model of the program to the atoms that minimize the value of the single
argument of p/1.

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

In absence of the table aggregate declaration, the set of answers would be
{p(0), p(1), p(2), p(3)} and, therefore, the expected aggregated answer using
the minimum should be p(0). This is the model that ATCLP returns as the aggre-
gated answer for the previous program and query. It also behaves consistently with
an LFP semantics if p(k) is intended to mean p(x) s.t. x ≥ k. In that case, using
the clause p(0):- p(3) does not fall into a contradiction: if p(x) s.t. x≥ 0 is the
model of the program, the atom p(3) is true under that model (because 3 ≥ 0).
Therefore, p(3) can be used to support p(0).

We want to note that the current state of affairs in other systems is far from being
satisfactory. Following [15], none of the current answer subsumption implementations
seems to behave correctly: XSB and B-Prolog return p(1), and Yap, which uses batch
scheduling3 returns, on backtracking, p(3), p(2), and p(1) the first time the query is
issued, and only p(1) in subsequent calls.

3.2 Aggregates Based on Join

Some interesting aggregates need to be based on an operation richer than the entailment,
because they have to generate a new element based on previous elements. For these
cases, we posit an aggregate similar to the one in Def. 1, but using the join operation
instead of the entailment.

2 The original example used max. For coherence with the rest of the cases in this paper, we have
converted it to use min.

3 Batch scheduling returns answers as soon as they are found.



Definition 2 (Join-Based Aggregates).
Given a join-semilattice domain D with a join operation t (that is commutative,
associative and idempotent), the aggregated value of any multiset S ∈ D over t,
denoted as Aggt, is the least upper bound of S w.r.t. t:

Aggt(S) = LUBt(S)

The main difference w.r.t. entailment-based aggregates is that when using the join oper-
ator, the resulting aggregate could be a value that is not in S. In our case, it may not be
a logical consequence of the program.

Example 3 (min of pairs).
Let us build on Example 1 and define the minimum of a set of pairs
as element-wise minima. We define the join operation (a1,b1) t (a2,b2) =
(min(a1,a2),min(b1,b2)). The aggregate value of S = {(ai,bi)}, i = 1 . . .n over
this join operator is:

Aggmin(S) = LUBmin({(ai,bi) ∈ S}) = (min(ai),min(bi)) for i = 1 . . .n

Note that the minimum of a set of pairs using an entailment-based aggregate and an
element-wise order (i.e., (a1,b1) > (a2,b2)↔ a1 > a2 ∧ b1 > b2) can return a non-
singleton set Aggmin({(4,4),(4,2),(3,3)}) = {(4,2),(3,3)} that defines a Pareto fron-
tier. The join-based definition, however, returns a unique value which was not an ele-
ment of the initial set: Aggmin({(4,4),(4,2),(3,3)}) = {(3,2)}. Similarly to Def. 1, the
model derived from a join-based aggregate is assumed to capture the constraint used to
generate the aggregate – i.e., Aggmin({(4,4),(4,2),(3,3)})v (5,7).

4 The ATCLP Framework

We present here the ATCLP framework: how aggregated predicates are declared, how
the aggregates are defined, and how the implementation works. This implementation is
based on a program transformation that uses the underlying infrastructure of Modular
TCLP. Finally, we present an extension to the Modular TCLP framework that makes
it possible to combine answers and write aggregation operations that do not follow a
lattice structure.

4.1 From Lattices to Constraints

We built our system upon the infrastructure used in Modular TCLP [2] to handle con-
straints. Indeed, many of the operations are similar: entailment in a lattice can be han-
dled similarly (from an implementation point of view) to entailment in a constraint
system and the implementation of the join operation can also be executed in the same
places where previous, less general answer constraints are discarded in a TCLP system.
We are looking at the aggregate operations in a lattice as a counterpart of similar opera-
tions among constraints, including the removal of answers that, from the point of view
of the aggregates, are entailed by other answers.



1 :- use_package(tclp_aggregates).

2 :- table dist(_,_,min).

3

4 dist(X,Y,D) :-

5 edge(X,Y,D).

6 dist(X,Y,D) :-

7 edge(X,Z,D1),

8 dist(Z,Y,D2),

9 D is D1 + D2.

10

11 entails(min,A,B) :- A >= B.

12

13 edge(a,b,10).

14 ...

1 :- include(aggregate_rt).

2 :- table '$dist'/3.
3

4 dist(X,Y,A1) :-

5 put(V1,(min,F1)),

6 '$dist'(X,Y,V1),
7 ( var(A1) -> A1=F1

8 ; entails(min,A1,F1) ).

9 '$dist'(X,Y,V1) :-

10 get(V1,(min,A1)), A1 = D,

11 edge(X,Y,D).

12 '$dist'(X,Y,V1) :-

13 get(V1,(min,A1)), A1 = D,

14 edge(X,Z,D1),

15 dist(Z,Y,D2),

16 D is D1 + D2.

17 ...

Fig. 2. Left: minimum distance traversal
program using aggregates.

Right: transformation of the program.

4.2 Design of the ATCLP Interface

ATCLP provides a directive to declare the aggregated predicates and a generic interface
designed to facilitate the use of different user-defined aggregates.

For homogeneity, aggregated predicates are declared with the same directive
used by mode-directed tabling: :- table p(agg1,. . .,aggn), where aggi denotes the
aggregate used for the ith argument. For the arguments that should be evaluated under
variant tabling, we use the mode '_'.

Fig. 2, left, shows the minimum distance traversal program using aggregates. The
directive :- use_package(tclp_aggregate) initializes the TCLP engine, and the
directive :- table path(_,_,min) states that the answers of path/3 should be
aggregated using the min of its third argument. The aggregation operation is defined
as an entailment, by specifying with the predicate entails/3 when two values are
entailed from the point of view of min (the first argument to entails/3). Note that the
rest of the program remains as in Fig. 1. The entailment and join operations for a given
aggregate are provided by the user with predicates that implement these operations. The
two predicates that a user can define are:

– entails(Agg,A,B) defines an entailment-based aggregate. It succeeds when the
answer A entails the answer B w.r.t. the aggregate Agg, e.g., when AvAgg B.

– join(Agg,A,B,New) defines a join-based aggregate. It returns in New the combi-
nation of the answers A and B w.r.t. the aggregate Agg, e.g. New = AtAgg B.

Examples of Entailment-Based Aggregates

Example 4 (Implementation of min).
The implementation of Example 1 would be complete by providing the
entails/3 predicate as:



1 entails(min, A, B) :- A >= B.

In order to further clarify the relationship between the aggregates and the model of the
program where they appear, we show now a program that captures the semantics of the
program in Example 2.

Example 5 (interpretation of p(min)).
The code below exemplifies how Example 2 is expected to behave under ATCLP,
according to Def. 1 and the entailment definition in Example 4:

1 p(X) :- entails(min,X,3).

2 p(X) :- entails(min,X,2).

3 p(X) :- entails(min,X,1), p(Y), entails(min,2,Y).

4 p(X) :- entails(min,X,0), p(Y), entails(min,3,Y).

With this interpretation, p(2), inferred by the second clause, is more general than
p(3), inferred from the first clause, since {x ≥ 3} v {x ≥ 2}. p(3) is therefore
discarded when the second clause is executed and only p(2) remains in the model
(which, in our implementation, lives in the answer table of the tabling engine).
After this, the first entailment goal of the third clause succeeds, p(Y) then suc-
ceeds with Y=2 followed by entails(min,2,2), which also succeeds because
2≤ 2, and p(1) is inferred. At this point, p(2) is discarded because p(1) is more
general: {x ≥ 2} v {x ≥ 1}. Finally, the first entailment goal in the last clause
succeeds and the rest of the clause succeeds as well because we had p(1) and
3 ≥ 1. p(0) is then inferred and p(1) is discarded because it entails p(0), i.e.,
p(1) vp(min) p(0).
The interpretation of a query is similar to that of a body goal: ?- p(2) is to
be understood as ?- p(X), entails(min,2,X) which in our example succeeds
because p(X) returns X=0 and entails(min,2,0) succeeds because 2≥ 0.

As noted before, this interpretation extends the range of atoms which are true to include
some that were not in the program without the aggregate declaration. The model for the
latter was {p(0), p(1), p(2), p(3)}, but the intended meaning of ?- p(X) under the
new semantics is {p(X) | entails(min,X,0)}, and therefore the query ?- p(5) also
succeeds. While this may seem strange, we also want to note that by seeing aggregates
as constraints defining a domain for a variable plus a value to anchor these constraints,
this interpretation is similar to an answer in a CLP system or to the behavior of sub-
sumption tabling in the Herbrand domain, as the following example highlights:

Example 6 (p(sub)).
In the program below, :- table p(sub) means that we want to keep the more
general answers.

1 :- table p(sub).

2 p(f(X,Y)).

3 p(f(g(Z),a)).

4 :- use_module(terms_check).

5 entails(sub,A,B) :-

6 instance(A,B).



1 path(X,Set) :-

2 setof(Y, path_(X,Y), Set).

3 path_(X,Y) :- edge(X,Y).

4 path_(X,Y) :- edge(X,Z), path_(Z,Y).

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X,Ys) :- edge(X,Z),

4 path(Z,Ys).

1 edge(a,b). edge(b,c). edge(b,a). edge(c,d).

Fig. 3. Set of reachable nodes from a given node.

Without the aggregate declaration, the set of answers for the query ?- p(X)

is {p(f(X,Y)),p(f(g(Z),a))}. In the Herbrand domain with subsumption
tabling, the answer A = f(X,Y) covers the answer A = f(g(Z),a). Therefore,
the expected aggregated answer using subsumption is p(f(X,Y)). Note that the
query ?- p(f(1,g(-1))) succeeds under ATCLP, but also in Prolog under the
standard LFP semantics, even if the literal was not present in the set of answers
obtained without the aggregate declaration. Therefore, our interpretation of the
meaning of a model for a program with aggregates can be viewed as an extension
of the Herbrand model with subsumption for constraint domains.

An Example of Join-Based Aggregates

Example 7 (path(set)).
Let us consider a program to compute the set of nodes that are reachable from a
given node in a graph. Fig. 3 shows, on the left, a simple Prolog program and,
on the right, an ATCLP program using the set aggregate (see below). While both
seem to have the same expressiveness, the Prolog program would loop for graphs
with cycles and cannot to answer some queries that the ATCLP program can (see
at the end of this example). Adding tabling to the Prolog program helps in this
case, but note that mixing all-solution predicates and tabling does not always work,
as the suspension and resumption mechanism of tabling interacts with the usual
failure- and assert-driven implementations of setof/3 and similar predicates.
The set aggregate generates sets from the union of subsets. It can therefore gener-
ate values that are not logical consequences of the program without aggregates.
Assuming that we have a library implementing basic operations on sets (e.g.,
Richard O’Keefe’s well-known ordset.pl), we can define the set aggregate as:

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

Note that in this case we define both the entailment and the join (although the
former can be defined in terms of the latter).
This example returns the set (as an ordered list without repetitions) L=[a,b,c,d]
for the query ?- path(a,L). Moreover, if we want to know which nodes can reach
a set of nodes, the query ?- path(X,[a,d]) returns X=a and X=b under ATCLP,
which neither Prolog nor tabling can if setof/3 is used.



In general, for lattice-based aggregates, entails/3 can be defined in terms of join/4
or vice versa. However, join-based aggregates allows us to aggregate the answers in a
unique value, and in some cases its gain in efficiency, in space, and time comes with a
loss of precision. Nevertheless, there are applications where this trade-off can remain
feasible, e.g., abstract interpretation and stream data analysis.

4.3 Implementation Sketch

In this section we present the program transformation used to execute programs with
aggregates and we describe how ATCLP is implemented using Modular TCLP as under-
lying infrastructure.

Modular TCLP: Modular TCLP is a tabling engine that handles constraints natively.
It can use constraint entailment to perform suspension and to save and return only the
most general answers to a query. Its modularity comes from the existence of a generic
interface with constraint solvers that defines what operations a constraint solver needs
to provide to the tabling engine [2]. By extending the code (written in Prolog) that
calls these external solver operations, we can hack the existing TCLP engine to execute
aggregates as described before.

Program transformation: Fig. 2, right, shows the transformation applied to the pred-
icate dist/3. The original entry point is rewritten to call an auxiliary predicate where
the aggregated arguments are substituted by attributed variables [7]. These are later on
caught by the tabling engine [5] and their execution is derived to the TCLP code written
in Prolog. The auxiliary predicate corresponds to the original one, but the original argu-
ments are retrieved from the attributed variables with get/2. The attributes are tuples of
the form (Aggi,Fi), where Aggi is the aggregate mode declared for that argument and
Fi is a fresh variable where the aggregated value will be collected. Once the auxiliary
predicate collects the aggregated answer, it is either returned (if called with an unbound
variable) or checked for entailment against the value in the corresponding argument.

ATCLP Internals The TCLP tabling engine calls interface predicates from constraint
solvers whose implementation depends on that solver. When this interface is used to
implement aggregates, its implementation is always the same and ultimately calls the
user-provided entails/3 and join/4 predicates. Fig. 4 shows the implementation of
this interface, under the simplifying assumption that we are aggregating over a single
variable. This implementation merely recovers information related to which aggregate
is being used and which variables are affected, and passes it to and from the join and
entailment operations.

ATCLP uses two objects: the aggregated argument (V) and the aggregate mode and
the value for the argument (Agg,A). There are three main phases in the execution of
ATCLP:

Call entailment: the TCLP engine invokes store_projection(+V,-(Agg,A)) to
retrieve the representation of the aggregated arguments of a new call. Then
call_entail(+(Agg,A),+(Agg,B)) is called to check whether the new call A



1 store_projection(V, (Agg,A)) :- get(V, (Agg,A)).

2 call_entail((_ ,_), (_ ,B)) :- var(B),!.

3 call_entail((Agg,A), (Agg,B)) :- entails(Agg,A,B).

4 answer_compare((Agg,A), (Agg,B),'=<') :- entails(Agg,A,B),!.

5 answer_compare((Agg,A), (Agg,B), '>') :- entails(Agg,B,A),!.

6 answer_compare((Agg,A), (Agg,B),'$new'((Agg,New))) :- join(Agg,A,B,New).

7 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), \+ ground(A), A = B, !.

8 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), entails(Agg,A,B).

Fig. 4. Simplified ATCLP interface with the constraint tabling engine.

entails a previous generator B. It succeeds if B is a variable or if A vAgg B. If so, the
new call suspends and consumes answers from the generator; otherwise, the new
call is marked as a new generator.

Answer entailment: the TCLP engine invokes store_projection(+V,-(Agg,A))
to retrieve the representation of aggregated arguments of a new answer. Then
it invokes answer_compare(+(Agg,A),+(Agg,B),-Res) to compare the new
answer A against a previous answer B. If A vAgg B, the predicate succeeds with
Res='=<'; conversely, if B @Agg A, the predicate returns Res='>'. This entail-
ment check discards/removes more particular answers from the answer table. When
the entailment check fails, and if the join operator of the aggregate mode Agg is
implemented, the predicate returns Res = '$new'(New), where New = A tAgg
B. Otherwise, answer_compare/3 fails and the new answer is stored in the answer
table of the generator.

Answer consistency: In constraint tabling, answers from a generator may not be
directly applicable to a consumer: if the environment of the consumer is more
restrictive than that of the generator, the generator’s answers have to be filtered
by applying the constraints in the consumer environment to generate compatible
answers. The TCLP engine invokes apply_answer(+V,+(Agg,B)). When A (the
aggregate value of V) is a variable, B is returned as the aggregated answer. Other-
wise, entailment is checked: if A entails B, appl_answer/2 succeeds, and it fails
otherwise.

4.4 Adapting the Answer Management of TCLP

The Modular TCLP framework further rewrites the program in Fig. 2, right, to add
at the end of each clause a call to the predicate new_answer/0 (Fig. 6), which saves
answers in the answer table.

This rewritten predicate is called through a meta-predicate tabled_call/1

(Fig. 5), that executes the call entailment phase. store_projection/2 retrieves the
current value of the aggregate, and call_entail/2 detects if the current call entails
a previous generator by comparing their projections, i.e., their aggregates. If that is the
case, the call is suspended by suspend_consumer/1; otherwise, the new call is made a
generator and executed (with save_generator/3 and execute_generator/2 resp.)
When the generators terminate and/or the consumers are resumed, answer consistency
is checked and apply_answer/2 applies all the answers collected during the execution
of the generator.



1 tabled_call(Call) :-

2 call_lookup_table(Call, Vars, Gen),

3 'store_projection'(Vars, ProjStore),

4 ( projstore_Gs(Gen, List_GenProjStore),

5 member(ProjStore_G, List_GenProjStore),

6 'call_entail'(ProjStore, ProjStore_G) ->

7 suspend_consumer(Call)

8 ; save_generator(Gen, ProjStore_G, ProjStore),

9 execute_generator(Gen, ProjStore_G),

10 ),

11 answers(Gen, ProjStore_G, List_Ans),

12 member(Ans, List_Ans),

13 projstore_As(Ans, List_AnsProjStore),

14 member(ProjStore_A, List_AnsProjStore),

15 'apply_answer'(Vars, ProjStore_A).

Fig. 5. tabled_call
1 new_answer :-

2 answer_lookup_table(Vars, Ans),

3 'store_projection'(Vars, ProjStore),

4 ( projstore_As(Ans, List_AnsProjStore),

5 member(ProjStore_A, List_AnsProjStore),

6 'answer_compare'(ProjStore, ProjStore_A, Res),

7 ( Res == '=<' % Discard ProjStore

8 ; Res == '>', % Remove ProjStore_A

9 remove_answer(ProjStore_A),

10 fail

11 ; Res == '$new'(NewProjStore), % Save NewProjStore

12 remove_answer(ProjStore_A),

13 save_answer(Ans, NewProjStore)

14 ), !

15 ; save_answer(Ans, ProjStore) % Save ProjStore

16 ), !, fail.

Fig. 6. Extended implementation of new_answer/0.

new_answer/0 (Fig. 6) collects the answers executing the answer entailment phase.
Lines 7 to 10 perform the entailment check while lines 11 to 13 can join an incoming
answer with previous answers into a new answer, and remove the previous answers [12].
This is used to combine two points A1 and A2 of a lattice into A1 t A2 and, for example,
store abstractions of answers. Such abstraction may lose some precision, but this can be
acceptable for some applications (e.g., in abstract interpretation).

4.5 Non-Lattice Aggregates

We presented aggregates that are defined over lattices where the join operation is com-
mutative, associative, and idempotent. However, there are many common aggregates
that can be implemented using ATCLP but that do not satisfy some of the properties
listed above. As a consequence, their execution may not completely align with LFP
semantics. This is the case of sum, which can be defined using the join operator, but
which does not have a sound definition for entailment.



Example 8 (probability of paths in a graph).
Let us consider a (cyclic) graph where each edge has a transition probability. We
want the probability P of reaching a node N from another node a. P is the sum of
the transition probabilities of all possible paths from a to N. Then, on one hand we
have to multiply the probability of every traversed edge to calculate the probability
of a path and, on the other hand, we have to add probabilities for every path. We
define an aggregate (resp., sum and thr(Epsilon)) for each of these.
Incrementally adding path probabilities (in general, numbers) is easy by adding
every new answer to the previous value. This behaves as expected when we have
a finite set of answers to add. For non-cyclic graphs, the model is finite and com-
puting all the paths and their sum is possible. However, in case of cycles, edges
within loops may have to be traversed an unbounded number of times, and their
contribution to the final solution decreases with every loop.
A possible strategy is to discard edges when their contribution goes below a certain
user-defined threshold. With a somewhat ad-hoc reading of this condition, we can
say that new solutions with a difference small enough w.r.t. existing solutions entail
these previous solutions and therefore they ought not to be taken into account. This
can be expressed in our framework by defining another aggregate that decides, via
entailment, when further advancing in a path does not contribute enough.

1 :- table reach(_,sum).

2 :- table path(_,_,thr(0.001)).

3

4 entails(sum,_,_) :- fails.

5 join(sum, A, B, C) :-

6 C is A + B.

7 entails(thr(Epsilon), A, B):-

8 A < Epsilon * B.

9 reach(N,P) :- path(a,N,P).

10

11 path(X,Y,P) :-

12 edge(X,Y,P).

13 path(X,Y,P) :-

14 edge(X,Z,P1),

15 path(Z,Y,P2),

16 P is P1 * P2.

In this example, for each node N, the predicate reach(_,sum) aggregates in its
second argument the sum of the transition probabilities of the paths from a to N.
Note we want to add all distances; therefore we define the entailment of sum to be
always false. Since cyclic graphs have infinitely many paths, we have implemented
the threshold aggregate, denoted by thr(Epsilon) to discard paths between
X and Y whose relative contribution to the final results w.r.t. the contribution of
another path falls below Epsilon.

5 Experimental Evaluation

We will now evaluate the expressiveness and performance of ATCLP w.r.t. pure Prolog
and tabling. The ATCLP framework presented in this paper is based on TCLP, that is in
turn implemented in Ciao Prolog. The examples, benchmarks, and a Ciao Prolog dis-
tribution including the libraries and frameworks presented in this paper are available at



Prolog tabling ATCLP
3x3 1051 167 (2) 359 (1)
4x4’ > 5 min 10166 (130) 15194 (30)
4x4” > 5 min out of mem. 134918 (252)

Table 1. Run time (ms), between parentheses the memory usage (in Mb)
for Minimax with different initial boards.

http://www.cliplab.org/papers/padl2019-atclp/.4 All the experiments were per-
formed on a Mac OS X 10.13.6 laptop with a 2 GHz Intel Core i5. Times are given in
milliseconds.

We will first evaluate some implementations of the well-known minimax algorithm
applied to (an extended version of) TicTacToe. Our starting point is the Prolog version
from [10,3] that uses bagof/3 to collect the possible movements from a TicTacToe
position and selects the best one. Thanks to the expressiveness of ATCLP, our code for
the core minimax procedure (below) is considerably more compact (i.e., less number of
predicates and arguments per predicate) than the equivalent Prolog or tabling code.

1 :- table minimax(_, first, best).

2

3 minimax(Pos, NextPos, (Pos,Val)) :-

4 move(Pos, NextPos), % Chose a move

5 minimax(NextPos, _, (NextPos, Val)).

6 minimax(Pos, Pos, (Pos,Val)) :-

7 \+ move(Pos, _), % Final position

8 utility(Pos,Val). % Calculate score

9

10 entails(best,(Pos,ValA),(Pos,ValB)) :-

11 min_to_move(Pos), ValA >= ValB. % Minimizing

12 entails(best,(Pos,ValA),(Pos,ValB)) :-

13 max_to_move(Pos), ValA =< ValB. % Maximizing

14 entails(first,_,_) :- true. % Chose first best option

The ATCLP code chooses the best movement by applying the best aggregate which
discards movements with worst (resp., best, depending on the current player) value. The
infrastructure for aggregates transparently keeps track of gathering solutions and retains
only the most relevant one at each moment. Note that we are using two different aggre-
gates functions in the same predicate: best takes care of minimization/maximization
and first retains only the first solution found among those with the same score.

We compared execution time and memory usage in two scenarios: determining the
best initial movement for a 3×3 TicTacToe board and determining the best movement
for a 4×4 TicTacToe starting at two different positions. In all three cases the remaining
game tree was completely explored. The results (Table 1) show that the Prolog version
is the slowest, with the tabling version being faster than the ATCLP version. However,

4 Stable versions of Ciao Prolog are available at http://www.ciao-lang.org. However,
ATCLP is still in development and not fully available yet in the stable versions.

http://www.cliplab.org/papers/padl2019-atclp/
http://www.ciao-lang.org


Prolog Tabling ATCLP
game data 01 8062.49 14.66 2.89
game data 02 > 5 min. 37.59 4.87
game data 03 > 5 min. 1071.26 19.61
game data 04 > 5 min. 4883.00 23.21

Table 2. Run time (ms) comparison for Games with different scenarios.

the ATCLP version behaves considerably better than tabling in terms of table memory
consumption (between parentheses, in Mb). This is because viewing aggregates as con-
straints automatically stops the search as soon as the value of an aggregate is worse than
a previously found one. That makes the ATCLP version to terminate for cases where
regular tabling runs out of memory.

The second benchmark is the Game problem presented in the LP/CP contest of ICLP
2015 (http://picat-lang.org/lp_cp_pc/Games.html). The problem can be seen as a
graph traversal where the movements represent a decision regarding whether to repeat
the same game or play a new one. There are two parameters to optimize: T, the remain-
ing money, and F, the fun we have had (which can be negative). The final goal have as
much fun as possible, for which one has to keep as much money as possible. The core
of the algorithm, where we again want to stress its compactness, follows:

1 :- table total_fun(max).

2 total_fun(F) :-

3 reach(initial,end,_,F).

4

5 :- table reach(_,_,max,max).

6 reach(GameA,GameB,T,F) :-

7 edge(GameA,GameB,T,F).

8 reach(GameA,GameB,Tf,Ff) :-

9 reach(GameA,GameZ,T1,F1),

10 edge(GameZ,GameB,T2,F2),

11 Ff is F1 + F2,

12 Tm is T1 + T2, Tm >= 0,

13 ( cap(Cap), Tm > Cap ->

14 Tf is Cap ; Tf is Tm ).

We developed three versions of a program to solve this problem using Prolog,
tabling, and ATCLP. Table 2 shows that the ATCLP on-the-fly aggregate computa-
tion performs better than either Prolog or tabling, since ATCLP does not try to evaluate
states where T and F are worse than in states already evaluated.

6 Conclusion and Future Work
We have presented a framework to implement a type of aggregates, defined over a lattice
structure, whose behavior is consistent with the least fixpoint semantics. We provide an
interface so that final users can define the basic operations on which the aggregates are
built. We validated the flexibility and expressiveness of our framework through sev-
eral examples; we also evaluated their performance in a couple of benchmarks, which
showed a positive balance between memory consumption and execution speed.

Among the immediate future plans, we want to work on increasing the perfor-
mance of the system and improve the user interface. In many cases, the entails/3

and join/4 predicates can directly be generated from a mode definition by providing

http://picat-lang.org/lp_cp_pc/Games.html


a predicate name. While this will not enhance performance or give more flexibility, it
will make using the ATCLP interface more user-friendly. We also plan to include with
ATCLP a library of commonly-used aggregate functions.
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