
How to best teach Prolog (to different audiences)

Manuel Hermenegildo1,2 (with P. López-Garćıa1,3 and J.F. Morales1,2)

1U. Politécnica de Madrid (UPM)
2IMDEA Software Institute

3Spanish Research Council (CSIC)

ICLP2023, London, UK

July 14, 2023

Main reference: Some Thoughts on How to Teach Prolog,
(M. Hermenegildo, J.F. Morales, and P. Lopez-Garcia.)
In Prolog - The Next 50 Years, Warren et al. (Eds.), Springer, LNCS 13900.

http://cliplab.org/papers/TeachingProlog-PrologBook.pdf
https://link.springer.com/book/10.1007/978-3-031-35254-6

How to best teach Prolog

• Prolog / LP / CLP must be taught in CS programs,

I Only of few major programming paradigms →
A CS graduate is simply not complete without knowledge of Prolog.

and also in other majors, and in schools, ...?

• But it has to be done right!

I It is a different paradigm, and needs to be taught differently.
I The standard ’programming paradigms’ approach can be counter-productive:

• Not possible in a couple of weeks emulating Prolog in Scheme.
• But, what to do if that is the only slot available?

• The main message: do show the beauty!

⇒ Start by explaining “Green’s dream”...

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 2

How to best teach Prolog

• Prolog / LP / CLP must be taught in CS programs,

I Only of few major programming paradigms →
A CS graduate is simply not complete without knowledge of Prolog.

and also in other majors, and in schools, ...?

• But it has to be done right!

I It is a different paradigm, and needs to be taught differently.
I The standard ’programming paradigms’ approach can be counter-productive:

• Not possible in a couple of weeks emulating Prolog in Scheme.
• But, what to do if that is the only slot available?

• The main message: do show the beauty!

⇒ Start by explaining “Green’s dream”...

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 2

How to best teach Prolog

• Prolog / LP / CLP must be taught in CS programs,

I Only of few major programming paradigms →
A CS graduate is simply not complete without knowledge of Prolog.

and also in other majors, and in schools, ...?

• But it has to be done right!

I It is a different paradigm, and needs to be taught differently.
I The standard ’programming paradigms’ approach can be counter-productive:

• Not possible in a couple of weeks emulating Prolog in Scheme.
• But, what to do if that is the only slot available?

• The main message: do show the beauty!

⇒ Start by explaining “Green’s dream”...

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 2

How to best teach Prolog

• Prolog / LP / CLP must be taught in CS programs,

I Only of few major programming paradigms →
A CS graduate is simply not complete without knowledge of Prolog.

and also in other majors, and in schools, ...?

• But it has to be done right!

I It is a different paradigm, and needs to be taught differently.
I The standard ’programming paradigms’ approach can be counter-productive:

• Not possible in a couple of weeks emulating Prolog in Scheme.
• But, what to do if that is the only slot available?

• The main message: do show the beauty!

⇒ Start by explaining “Green’s dream”...

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 2

What is the best way to program a computer?

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A New View of Computing

system
Deduction

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A New View of Computing

Problem

system
Deduction

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A New View of Computing

Problem
Representation/specification (Logic)

Deduction
system

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A New View of Computing

Deduction

Problem

Questions

(Correct) Answers / Results

Representation/specification (Logic)

system

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A New View of Computing

Deduction

Problem

Questions

(Correct) Answers / Results

Representation/specification (Logic)

system

But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

Prolog is the Materialization of this Dream!

Horn clauses

Problem

(Correct) Answers / Results

Prolog

Questions

SL−Resolution
over

But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?

→ Prolog (LP)!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 3

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

A Specification and also a Program

Problem: calculate the squares of the naturals < 5. Show imperative program – is it correct?
Let’s develop a specification (and program): (click hereI to run)

:- use_package(sr/bfall). % Use breadth-first search!
natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

?- output(X). X=0;X=s(s(0));... ?- nat_square(X,s(s(s(s(0))))). X=s(s(0))

(And show also a constraints version: we also have efficient arithmetic of course!)
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

Circuit topology

runI
r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 5

https://ciao-lang.org/playground/?code=%25%20---%0A%25%20Circuit%3A%0A%0Aresistor(power%2Cn1).%0Aresistor(power%2Cn2).%20%0A%0Atransistor(n2%2Cground%2Cn1).%0Atransistor(n3%2Cn4%2Cn2).%0Atransistor(n5%2Cground%2Cn4).%0A%0A%25%20---%0A%25%20Circuit%20theory%3A%0A%0Ainverter(Input%2COutput)%20%3A-%20%0A%20%20%20transistor(Input%2Cground%2COutput)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Anand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20transistor(Input1%2CX%2COutput)%2C%0A%20%20%20transistor(Input2%2Cground%2CX)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Aand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20nand_gate(Input1%2CInput2%2CX)%2C%20%0A%20%20%20inverter(X%2C%20Output).%0A%0A%25%20Some%20queries%3A%0A%25%20inverter(In%2COut).%20%20%20%20%20%20%20%25%20Discovers%20where%20there%20is%20an%20inverter%0A%25%20and_gate(In1%2CIn2%2COut).%20%20%25%20Discovers%20where%20there%20is%20an%20and%20gate%0A%25%20nand_gate(In1%2CIn2%2COut).%20%25%20Discovers%20where%20there%20is%20a%20nand%20gate%0A%0A

Circuit topology

runI
r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 5

https://ciao-lang.org/playground/?code=%25%20---%0A%25%20Circuit%3A%0A%0Aresistor(power%2Cn1).%0Aresistor(power%2Cn2).%20%0A%0Atransistor(n2%2Cground%2Cn1).%0Atransistor(n3%2Cn4%2Cn2).%0Atransistor(n5%2Cground%2Cn4).%0A%0A%25%20---%0A%25%20Circuit%20theory%3A%0A%0Ainverter(Input%2COutput)%20%3A-%20%0A%20%20%20transistor(Input%2Cground%2COutput)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Anand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20transistor(Input1%2CX%2COutput)%2C%0A%20%20%20transistor(Input2%2Cground%2CX)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Aand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20nand_gate(Input1%2CInput2%2CX)%2C%20%0A%20%20%20inverter(X%2C%20Output).%0A%0A%25%20Some%20queries%3A%0A%25%20inverter(In%2COut).%20%20%20%20%20%20%20%25%20Discovers%20where%20there%20is%20an%20inverter%0A%25%20and_gate(In1%2CIn2%2COut).%20%20%25%20Discovers%20where%20there%20is%20an%20and%20gate%0A%25%20nand_gate(In1%2CIn2%2COut).%20%25%20Discovers%20where%20there%20is%20a%20nand%20gate%0A%0A

Circuit topology

runI
r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 5

https://ciao-lang.org/playground/?code=%25%20---%0A%25%20Circuit%3A%0A%0Aresistor(power%2Cn1).%0Aresistor(power%2Cn2).%20%0A%0Atransistor(n2%2Cground%2Cn1).%0Atransistor(n3%2Cn4%2Cn2).%0Atransistor(n5%2Cground%2Cn4).%0A%0A%25%20---%0A%25%20Circuit%20theory%3A%0A%0Ainverter(Input%2COutput)%20%3A-%20%0A%20%20%20transistor(Input%2Cground%2COutput)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Anand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20transistor(Input1%2CX%2COutput)%2C%0A%20%20%20transistor(Input2%2Cground%2CX)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Aand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20nand_gate(Input1%2CInput2%2CX)%2C%20%0A%20%20%20inverter(X%2C%20Output).%0A%0A%25%20Some%20queries%3A%0A%25%20inverter(In%2COut).%20%20%20%20%20%20%20%25%20Discovers%20where%20there%20is%20an%20inverter%0A%25%20and_gate(In1%2CIn2%2COut).%20%20%25%20Discovers%20where%20there%20is%20an%20and%20gate%0A%25%20nand_gate(In1%2CIn2%2COut).%20%25%20Discovers%20where%20there%20is%20a%20nand%20gate%0A%0A

Circuit topology

runI
r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 5

https://ciao-lang.org/playground/?code=%25%20---%0A%25%20Circuit%3A%0A%0Aresistor(power%2Cn1).%0Aresistor(power%2Cn2).%20%0A%0Atransistor(n2%2Cground%2Cn1).%0Atransistor(n3%2Cn4%2Cn2).%0Atransistor(n5%2Cground%2Cn4).%0A%0A%25%20---%0A%25%20Circuit%20theory%3A%0A%0Ainverter(Input%2COutput)%20%3A-%20%0A%20%20%20transistor(Input%2Cground%2COutput)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Anand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20transistor(Input1%2CX%2COutput)%2C%0A%20%20%20transistor(Input2%2Cground%2CX)%2C%20%0A%20%20%20resistor(power%2COutput).%0A%0Aand_gate(Input1%2CInput2%2COutput)%20%3A-%0A%20%20%20nand_gate(Input1%2CInput2%2CX)%2C%20%0A%20%20%20inverter(X%2C%20Output).%0A%0A%25%20Some%20queries%3A%0A%25%20inverter(In%2COut).%20%20%20%20%20%20%20%25%20Discovers%20where%20there%20is%20an%20inverter%0A%25%20and_gate(In1%2CIn2%2COut).%20%20%25%20Discovers%20where%20there%20is%20an%20and%20gate%0A%25%20nand_gate(In1%2CIn2%2COut).%20%25%20Discovers%20where%20there%20is%20a%20nand%20gate%0A%0A

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

How to best teach Prolog: Show the Beauty!

• Explain the limits:

I discuss for what logics we have effective deduction procedures,
I justify the choice of FOL, SLD-resolution, semi-decidability (see pictures later)

→ classical LP (Kowalski/Colmerauer).

• Show how logic programs are both logical theories (with declarative meaning) and procedural
programs that can be debugged, followed step by step, etc.

• Show with examples (and benchmarking them) how you can go from executable specifications to
efficient algorithms gradually, and as needed.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 6

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

We can express this definition/specification directly
in Prolog!: runI

mod(X,Y,Z) :-
mult(Y,Q,W), add(W,Z,X), less(Z, Y).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

We can express this definition/specification directly
in Prolog!: runI

mod(X,Y,Z) :-
mult(Y,Q,W), add(W,Z,X), less(Z, Y).

?- op(500,fy,s).
yes

?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;
X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

We can express this definition/specification directly
in Prolog!: runI

mod(X,Y,Z) :-
mult(Y,Q,W), add(W,Z,X), less(Z, Y).

?- op(500,fy,s).
yes

?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;
X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...

Or write a more efficient version, also within (pure)
Prolog: runI

mod(X,Y,X) :- less(X, Y).
mod(X,Y,Z) :- add(X1,Y,X), mod(X1,Y,Z).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground/?code=%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20A%20more%20efficient%20definition%0A%0Amod(X%2CY%2CX)%20%3A-%20less(X%2C%20Y).%0Amod(X%2CY%2CZ)%20%3A-%20add(X1%2CY%2CX)%2C%20mod(X1%2CY%2CZ).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

We can express this definition/specification directly
in Prolog!: runI

mod(X,Y,Z) :-
mult(Y,Q,W), add(W,Z,X), less(Z, Y).

?- op(500,fy,s).
yes

?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;
X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...

Or write a more efficient version, also within (pure)
Prolog: runI

mod(X,Y,X) :- less(X, Y).
mod(X,Y,Z) :- add(X1,Y,X), mod(X1,Y,Z).

?- mod(s(s(s(s(s(0))))), s(s(0)), R).
R = s(0) ?

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground/?code=%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20A%20more%20efficient%20definition%0A%0Amod(X%2CY%2CX)%20%3A-%20less(X%2C%20Y).%0Amod(X%2CY%2CZ)%20%3A-%20add(X1%2CY%2CX)%2C%20mod(X1%2CY%2CZ).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).

Show the Beauty: from Specifications to Efficient Programs

The modulo operation, mod(X,Y,Z) where Z is the remainder from dividing X by Y:

∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y

We can express this definition/specification directly
in Prolog!: runI

mod(X,Y,Z) :-
mult(Y,Q,W), add(W,Z,X), less(Z, Y).

?- op(500,fy,s).
yes

?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;
X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...

Or write a more efficient version, also within (pure)
Prolog: runI

mod(X,Y,X) :- less(X, Y).
mod(X,Y,Z) :- add(X1,Y,X), mod(X1,Y,Z).

?- mod(s(s(s(s(s(0))))), s(s(0)), R).
R = s(0) ?

Again, we can also show the constraints version.

And we can discuss modes and how they affect
determinacy, cost, termination, etc.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 7

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground/?code=%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20A%20more%20efficient%20definition%0A%0Amod(X%2CY%2CX)%20%3A-%20less(X%2C%20Y).%0Amod(X%2CY%2CZ)%20%3A-%20add(X1%2CY%2CX)%2C%20mod(X1%2CY%2CZ).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).

How to best teach Prolog: Show the Beauty!

• Show how unification is also a device for constructing and matching complex data structures with
(declarative) pointers. Show it in the top level, giving “the data structures class.”

?- X=f(K,g(K)),
Y=a,
Z=g(L),
W=h(b,L),
% Heap memory at this point −→
p(X,Y,Z,W).

aY

gZ L

g

W h b

X f K

• Do use types (and properties in general): define them as predicates, show them used to check if
something is in the type (dynamic checking), or “run backwards” to generate the “inhabitants”;
property-based testing for free!

natlist([]).
natlist([H|T]) :- natural(H), natlist(T).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 8

How to best teach Prolog: Show the Beauty!

• Show how unification is also a device for constructing and matching complex data structures with
(declarative) pointers. Show it in the top level, giving “the data structures class.”

?- X=f(K,g(K)),
Y=a,
Z=g(L),
W=h(b,L),
% Heap memory at this point −→
p(X,Y,Z,W).

aY

gZ L

g

W h b

X f K

• Do use types (and properties in general): define them as predicates, show them used to check if
something is in the type (dynamic checking), or “run backwards” to generate the “inhabitants”;
property-based testing for free!

natlist([]).
natlist([H|T]) :- natural(H), natlist(T).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 8

How to best teach Prolog: Show the Beauty!

• Show the (3-line) meta-interpreter!

I It is a thing of beauty.
I An excellent demonstrator of the unique powers of Prolog.

• Use motivational examples that involve search (puzzles, etc.).

I it is a unique characteristic of the language

and give advice on how to control it.

• Incomplete data structures, DCGs, ...

• Show that there are plenty of interfaces to other languages, data representations, etc.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 9

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 10

Characterization of the search tree

solution

solution

fail

fail

solution
fail

infinite failure

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 11

Depth-First Search

solution

solution

fail

fail

solution
fail

infinite failure

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 12

Breadth-First Search

solution

fail

fail

solution
fail

infinite failure

solution

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 13

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

I Do relate semi-decidability to the halting problem: no-one (Prolog, logic, nor other Turing-complete
prog. language) can solve that (but tabling helps: good time to introduce it!).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 14

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

I Do relate semi-decidability to the halting problem: no-one (Prolog, logic, nor other Turing-complete
prog. language) can solve that (but tabling helps: good time to introduce it!).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 14

How to best teach Prolog: Dispel the Unfounded Myths!

Dispel unfounded myths about the language, and show that many of the shortcomings of early
Prologs have been addressed over the years.

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use/build system to run alternatively and selectively in breadth-first, iterative deepening, tabling, etc.
I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite failures, etc.), and thus

why breadth-first works, and why depth-first sometimes may not.

I Do relate semi-decidability to the halting problem: no-one (Prolog, logic, nor other Turing-complete
prog. language) can solve that (but tabling helps: good time to introduce it!).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 14

How to best teach Prolog: Dispel the Unfounded Myths!

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are not present.
I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but we keep it as encapsulated as possible.

• “Prolog has no applications / interest / is a toy language...”

I Show the many examples of impressive applications (cf. Prolog Year/Book).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 15

How to best teach Prolog: Dispel the Unfounded Myths!

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are not present.
I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but we keep it as encapsulated as possible.

• “Prolog has no applications / interest / is a toy language...”

I Show the many examples of impressive applications (cf. Prolog Year/Book).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 15

How to best teach Prolog: Dispel the Unfounded Myths!

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are not present.
I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but we keep it as encapsulated as possible.

• “Prolog has no applications / interest / is a toy language...”

I Show the many examples of impressive applications (cf. Prolog Year/Book).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 15

How to best teach Prolog: Dispel the Unfounded Myths!

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are not present.
I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but we keep it as encapsulated as possible.

• “Prolog has no applications / interest / is a toy language...”

I Show the many examples of impressive applications (cf. Prolog Year/Book).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 15

How to best teach Prolog: Dispel the Unfounded Myths!

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are not present.
I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but we keep it as encapsulated as possible.

• “Prolog has no applications / interest / is a toy language...”

I Show the many examples of impressive applications (cf. Prolog Year/Book).

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 15

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog: Dispel the Unfounded Myths!

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students: already exposed to other
languages (imperative/OO, sometimes functional) and hopefully have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after SSA). It is simply more.

(Useful for analysis of other languages!) → Use optionally functional syntax (sometimes compact):
(Read ˜ as “the result of” = “last argument of.”)

grandparent(X,˜parent(˜parent(X))).
grandparent(X,˜parent(Z)) :- parent(X,Z).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

?- E = ˜append(˜append(A,B),D).
?- append(A,B,C), E = ˜append(C,D).
?- append(A,B,C), append(C,D,E).

I Show that it is completely normal if used in one direction and one definition per procedure.
I But it can also have several definitions, search, run backwards, etc.
I In addition to stack of forward continuations, as any language, for procedure return, also a stack of

backwards continuations to go if there is a failure (previous choice point).

• “Prolog is slow” → show it is actually fast!

M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 16

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

How to best teach Prolog

• System types:
I Classical installation: most appropriate for more advanced students / “real” use.

Show serious, competitive language.
I Playgrounds and notebooks –see PL50 Book papers!

(e.g., Ciao Playground/Active Logic Documents, SWISH, τ -Prolog, SICStus+Jupyter).
• Can be attractive for beginners, young students.
• Some places (e.g., schools) may not have personnel/machines for installation, but will have a tablet.
• Server-based vs. browser-based.
• Very useful for executable examples in manuals and tutorials.

Offer both types to students!
• Block-based versions can be useful starters for youngest (cf. Laura Cecchi’s paper in PL50 Book)
I Also, nice tool for kids developed by J.F.Morales and S. Abreu for the Prolog Year (see PL50 Book).

• Ideally the system should allow covering:
I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order support and functional syntax,
I constraints,
I ASP/s(CASP), etc.

Free teaching materials (slides, examples, ALDs) following these ideas: https://cliplab.org/logalg
M. Hermenegildo, J.F. Morales, P. López-Garćıa – How to best teach Prolog (Teaching Prolog: the next 50 years. ICLP, Jul 14, 2023) 17

https://cliplab.org/logalg

