
B-LOG: A BRANCH AND BOUND METHODOLOGY FOR THE PARALLEL

EXECUTION OF LOGIC PROGRAMS

G. J. Lipovski
and M. V . Hermenegi ldo

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712

Abstract : We propose a computational
methodology -"B-LOG"-, which offers the potential for an
effective implementation of Logic Programming in a parallel
computer. We also propose a weighting scheme to guide the
search process through the graph and we apply the concepts
of parallel "branch and bound" algorithms in order to
perform a "best-first" search using an information theoretic
bound. The concept of "session" is used to speed up the
search process in a succession of similar queries. Within a
session, we strongly modify the bounds in a local database,
while bounds kept in a global database are weakly modified
to provide a better initial condition for other sessions. We
also propose an implementation scheme based on a database
machine using "semantic paging", and the "B-LOG
processor" based on a scoreboard driven controller.

1 Introduction

Logic programming is a major new facet of fifth
generation computing [151. Simultaneously, parallelism is
widely proposed as a means to reach the performance goals
imposed on fifth generation machines, which are not
attainable with conventional sequential processors. However,
parallel computation of logic programs has been shown to be
difficult. Herein, we propose a computational methodology
-"B-LOG"- based on the concepts of Logic Programming
[10] offering the potential for a more effective

implementation in a parallel computer than that of Prolog.
We also propose an architecture to implement this
methodology, which we call a "B-LOG machine".

The basic ideas are simple: the execution of a Logic
Program can be modeled as a search process through an
AND/OR tree [4] or through an OR-tree. In our approach
weights are added to each branch of the OR-tree. In this
way the notions of branch-and-bound algorithms can be used
to perform a "best-first" search rather than the simple
depth-first search present in Prolog [13]. Obviously one of
the main problems which have to be solved when selecting
such an approach is that of which particular bound to use.
We propose one which is related to the information content
of the decision, and may be modified by previous searches in
an adaptive control strategy.

From the point of view of implementation, another
interesting feature is proposed: the retrieval of data from a
semantic paging disk memory [5]. The realization of the B-
LOG processor itself is, on the other hand, proposed using an
associative controller similar to the CDC 6600 scoreboard.
These implementation techniques are sketched here to
provide an effective definition of the search strategy.

The layout of the paper is as follows: the next

section describes the database and search tree, using Prolog
as a starting point and section 3 introduces tlv branch and
bound approach. In section 4 the weighting rtcbex- is
described and section 5 presents the sean !: ind weight
update strategies in the B-LOG macht:,;;. Section 6 describes
a possible implementation in a pkralW computer/database
machine. Section 7 discusses \Nl)-pir:Jlel extensions to the
model and, finally, section 8 g:.'::-: o y conclusions.

2 A Model for the Data Ba:^ and Search
Tree

In order to present our inodfl of the search tree and
database, let us consider the problem of finding all solutions
to a query using conventional Prolog in the classic example
given by Conery and Kibler in [4]. A PJO'OJ, listing for this
example is given in figure 1. It sLous rui>"? f;ic:.-- (the
database) and the series of searches generated by ;: ceit-fTM
query.

RULES

gf(X,Z) ~f(X,Y),f(Y,Z)

gf(X,Z) - f(X,Y),m(Y,Z)

DuUflmc

f(curt,elain) f(som,tarry)
f(dan,pat) f(larry,den).
f(patjohn). rOarry.doug)

OUWTIM

m(elainjohn)
m(manan,elain)
m(peg,den)
m(Deg.doug)

? - gf(sam,G) -> gf(X,Z): - f(X,Y),f(Y,Z) (X/sam,Z/GI

? - f(sem,Y),f(Y,6) -> flsam.larry) (Y/larry)

? - fdarry.G) -> fOarry.den) (G/den)

Figure 1: A Prolog Example

The fact that curt is the father of elain may be expressed as
f (c u r t , e l a i n) .

(constants are lower case, variables are capitalized in Prolog).
Thus, there are ten facts in the example. A rule stating that
X is grandfather of Z if X is father of Y and Y is father of Z
may be coded as

g f (X . Z) : - f (X . Y) . f (Y , Z) .

Thus, there are also two rules in this example.

We can apply queries to this system of facts and
rules. The query (or "goal"), "Who is a grandchild of sam?"
is stated as

? : -gf (sam.G) .
Prolog will try to answer this query by searching through the
database. The steps followed in this search are also shown in
figure 1.

Execution is as follows: the first search for a match
to gf(sam,C) produces two matches to the rules. In Prolog,
the top rule is chosen, instantiating X to sam and Z to G (Z
and G "share"). The next goal will be f(sam.Y) which is
resolved as f(sam,larry) instantiating Y to larry. The
subsequent search for f(larry.G) produces f(larry,den)
instantiating G to den. In this way we conclude that den is a
grandchild of sam.

on the left of the two rules produces the two graphs
(sam) — f—> (Y) —f—> (G)

and
(sam) —f—> (Y) —m—> (G)

which are shown on the top halves of the nodes below the
root node.

Consider the left node just produced. The complex
graph

(sam) — f—> (Y) — f—> (G)

is decomposed into simpler graphs

0 T O T < D fsom\ J

V_y-n

e
s~-

^ ^

>r<

\ -<

£
^
v l v

)

Figure 3 : The Search Tree

Figure 2: The Data Base

The database can be graphically shown as in figure
2. The facts, shown on the bottom, represent persons
(marian) as nodes and relationships (mother of) as arcs in a
network model. Rules in the top of the figure are shown as
equivalences of graphs, in a consistent notation. The graph
to the left of the :- can be replaced by the graph to the right
of :- as indicated by the Horn clauses of the Prolog listing.

An OR-tree that gives all solutions to the query
g f (sam.G) .

is shown in figure 3. As we have seen Prolog using depth-
first search would generate the chain from the root to the
leftmost leaf. In our representation of the search for all
solutions, the query is shown as the root, and each resolution
step, that is, each search for that graph in the database and
rules, is shown by an arc below that node. A search is thus
conducted by a graph query. A match is found wherever this
graph can be embedded as a subgraph in the data base or in
the left side of a rule. The top half of each node is one
match to the goal shown on the bottom of the node above
that node. Thus, matching the subgraph

(sam)—gf—>(G)

(sam)—f—>(Y)

and
(Y)—f—>(G)

and the first simpler graph is chosen (depth-first search). We
write that graph in the bottom half of the node to indicate
that it is the next graph to be searched for. The match to
this search produces one result, which is

(s a m) — f — > (l a r r y)
shown in the top half of the node below the previous node.
We now decide which graph to search next. Traversing from
this new leaf towards the root, we collect all unused graphs,
finding

(Y)— f—>(G)
in the middle node. We make this our next search
comparand. We find the two results

(l a r r y) — f — > (d e n)

and

(l a r r y) — f — > (d o u g)

Transversing from the node
(l arry)—f—>(den)

rootward, we see no unsatisfied unknowns to be matched in
graphs, so this is a solution. Similarly, the node

(l a r r y) — f — > (d o u g)

is a solution. Following the right node below the root
produces the same search for

(sam)—f—>(Y)
giving the same answer

(s a m) — f — > (l a r r y)
as obtained earlier, but the search for

(la r ry)—m—>(G)

produces no matches. Since there are no matches, this
portion of the search is unsuccessful.

3 Sequential and Parallel Search: a Branch
and Bound Approach

The tree in figure 3 is clearly an OR tree. Each
"fan-out" below a node is an alternative solution to the
query stated at the bottom of the node. There are no "fan-
out" arcs representing an AND condition as in the
formulation given by [4] of the Prolog search tree: in our
simplified model we consider AND-trees now only in a
sequential way, in very much the same way Prolog does. We
will still discuss some AND-parallel extensions to the model
after presenting the OH. implementation.

Each chain from a leaf to the root is either a
solution to the query at the root or an unsuccessful search (a
"failure"). Each arc in a chain represents a decision made
towards the solution of the query or unsuccessful search.
This tree is basically a branching graph that represents the
enumeration of all solutions in a branch-and-bound
algorithm.

Some aspects of the problems involved in the
parallel implementation of logic programming are evident
upon inspection of this tree. Obviously, for NP-complete
problems, no matter how much parallelism we use, because
the number of processors is in reality fixed by limitations of
hardware, each processor still has a sub-problem that is NP-
complete. In addition, the scheduling problem makes it
impossible to always use the total number of processors
available in a useful manner. Thus, parallelism by itself
would seem not to render a solution to the problem of
building effective logic programming machines. However, a
solution for the general purpose parallel inference machine
has to exist: the existence and rather satisfactory operation
of the human brain gives us hope in this sense, and some
studies of the average complexity of search algorithms show
that in practice many problems that are NP-complete are
much better behaved in the average case (to the point of
sometimes being linear). This has been shown for depth-first
search algorithms with a suitable bound [14].

Also, depth-first search, though useful in single
processor implementations, does not lend itself easily to
parallel processing. Breadth-first search would seem to get a
great number of processors working on different independent
problems, but it tends to work near the root of the tree,
doing extra work before a solution is found.

An approach based on a branch-and-bound
algorithm seems more appropriate using best-first search
guided by a bound. Strictly speaking, a bound is a number
that is monotonic on each arc in any chain from root to leaf
(say it is monotonically increasing) and is a measure of the
goodness of the result so that the solution is sought with the
minimum value of this bound. Once a solution is found, its
bound can be used to cut off any searches on other chains if

their bound is greater than the one found. If a solution can
be found quickly, its bound can be used to save a lot of effort
in growing chains that cannot produce a better bound.

Parallel searching is possible in a branch-and-bound
problem and a number of schemes have been proposed [II].
From the point of view of implementation, suppose there are
n processors in a M1MD computer. As the tree is developed,
referring to the final form of the tree, at any time there is an
imaginary line or "wave front" cutting across the tree such
that all arcs rootward from this front are found and all arcs
leafward from it are to be found. Assume a number m > = n
of nodes are on this wave front, and corresponding to each

such node is a chain from it to the root of the tree. Each
such chain has a bound computed in some way from the
weights of the arcs in the chain. Each processor P. i —l..n

works on the n chains with the lowest bounds. A sorting
network like Batcher's ill could be used to sort the bounds,
assigning the n lowest bounds to the n processors and
communicating the associated chains to them to work on. A
sorting network is costly, and communication costs restrict
this approach, but a reasonable approximation is effectively
possible. Such a design is considered in section 6.

4 The Weighting Scheme

Considering the advantages of best-first searching
over depth-first or breadth-first searching, we have concluded
that a best-first search strategy is an attractive possibility
for use in a logic programming parallel computer. Of course,
the main question is: what is the bound that we can use for
this case?

The solution to this problem is not easy and we
presently have to settle for a compromise approach. We will
present a bound whith which we could feel comfortable about
in a theoretical way, but would have difficulty implementing
in hardware, and another that we can implement, but have
little theoretical basis for. We present the first bound and
the theory behind it, to define our computational
methodology (B-LOG) and to provide some basis in order to
justify the second heuristic bound that we will use in the B-
LOG machine.

Consider a tree that is constructed after obtaining
all complete solutions to all queries put to a database and set
of rules, assuming that each solution is equally likely, and
each decision is statistically independent of the others. The
root of this tree is the primeval query (?) and its descendants
are the roots of trees, like the tree in figure 3, that represent
the complete solutions to each such query. We attempt to
use as bounds in the branch and bound algorithm values
assigned to each chain from the root to the node being
considered, which have been computed from the
(unnormalized) probabilities of the arcs in the chain.

Let p(k) be the (unnormalized) probability that arc
k is in a successful solution in the following sense:

1. If an arc appears twice in a tree (as the arc from
(sam)-f- ->(Y) to (sam) - f -> (l a r ry) in figure 3),
they have the same (unnormalized) probability.
This is required if these probabilities are to be
stored in a database that is common to all
queries.

2. The probability of each chain representing a
successful solution must be equal to l / (the
number of successful solutions).

3. The probability of each chain representing an
unsuccessful search must be 0, for the bound to
be meaningful.

Note that with this definition once a node is arrived
at, the probabilities of the arcs coming out of the node are
independent of the path used to arrive at that node. This
process has thus a Markovian flavor but the unnormalization
of the probabilities prevents us from drawing any further
conclusions in this sense.

Since in our model the arcs represent statistically
independent decisions, the probability of a chain is the
product of the (unnormalized) probabilities of the arcs in it.
We are lead to define the bound of a chain as the product of
the (unnormalized) probabilities of the arcs in it. While this
would be a useful bound, it would require multiplications of
fractions. However, using logarithms, we could add rather
than multiply. Converting to logarithms, the bound of each
successful solution would still be equal to that of any other
successful solution.

In order to use the more efficient logarithm
implementation, we define the weight W(k) of an arc k to be
the negative of the logarithm (base 2) of the (unnormalized)
probability of the arc in the sense given above and we define
the bound B(n) of any chain n = (i,j,k,...) to be the sum of
weights of the arcs in the chain W(i)4-W(j)-fW(k)+.... As a
chain is built from the root, the bound is monotonically
increasing, since the logarithm of a fraction is negative and
we add the negative of these negative components, and all
successful solutions have the same bound. Thus, it properly
satisfies the requirements of the branch and bound algorithm.
Incidentally, the weight of an arc resembles the information
or "surprise" associated with making a decision, as quantized
in Information Theory, whether by coincidence or from some
very fundamental reason. In the solution process, the branch
and bound approach tries to minimize this "surprise",
seeking the most "obvious" solution.

However, do such probabilities exist? If N is the
number of both complete solutions and unsuccessful
solutions, and M arcs are used in them, we have N equations
in M unknowns to solve, which are linear equations
formulated in terms of the weights of the arcs. Since
M > > N we expect to have such bounds. Generally, there
may be many solutions, and any one will satisfy our branch-
and-bound requirement. However, pathological cases exist
where no solution is possible. For instance, if an unsuccessful

query has only arc A, then the weight of A must be infinity,
but if A is an arc in a successful solution, it may not have a
weight of infinity. In such a case, there are no weights.
When weights exist, we do have a properly formulated
branch and bound algorithm.

Of course, in a practical case, we do not want to
wait until all solutions to all queries have been found, and
then try to solve a large number of linear equations in a
larger number of unknowns to get the weights. This notions,
however, will serve as a guideline in constructing the
heuristic rules that we will actually use in a B-LOG machine.

As an illustration of the above described scheme,
consider the example in figure 3, as if that query were the
only one ever presented to the database. One valid set of
weights which can be verified by inspection is the following:
The arcs above (sam)—f—>(Y)—f—>(G) and both instances
of (sam)—f—>(larry) have probability 1, those above (larry)~
f—>(den) and (larry)—f—>(doug) have probability 1/2 and
that above (sam)—f—>(Y)~m—>(G) has probability 0. The
probability that a chain from root to leaf is a solution is the
product of the probabilities of each arc in the chain. Both
solutions have probabilities 1/2 and the unsuccessful solution
has probability 0. The weights of arcs with probabilities 0
would be infinity, of those with probability 1/2 would be 1,
and of those with probabilities 1 would be 0.

We define a B-LOG machine as a MIMD computer
that approximates a "best-first" search strategy on a logic
program, using weights in order to guide the search. These
weights will be updated with each query so that they will
eventually converge to be proportional to those described by
the theoretical model above as all queries are presented to
the database, as long as the contents of the database (except
for the actual weights) are not modified. We call it "best-
first" in quotes because it will be only "an approximation to
true best-first searching.

5 Search and Updating Strategies

The database (see figure 2) will be stored as a linked
list da ta structure, with blocks representing each Horn clause
(rule or fact), and pointers to blocks representing other rules
or facts in the database that can resolve the rule. During a
session, we aim to set the bounds of all successful queries to
the same constant, which we arbitrarily set to a number
N. The weights of the arcs in the search tree correspond to
weights on pointers in the database. Each pointer will have
an "unknown" weight, initialized to N + l (which will be
larger than a known solution that has a bound N). Some of
the arcs may have weights set by earlier queries, which we
will call "known" if they are set because of a successful

search, or "infinity" if set by an unsuccessful search. If the
longest chain in a search tree is A arcs, we code "infinity" as
A*N. If a failed search occurs and it does not already have
an arc with infinite weight in the chain, we will set any one
of the unknown weights to infinity. The choice of which
weight to set to "infinity" is similar to the backtracking
problem in Prolog; we think it should be the unknown
nearest the leaf in the chain. If a solution to the query is
found, we will reset all unknown or infinite weights as
follows: if the known weights add up to a number greater
than N, set them to 0, else if there are k unknown or infinite
weights, set them equally so that the sum of weights is N
i.e. if the known weights add up to M, set them to (N-M)/k

Consider this example:
- B , C , D .

- E .
- F .
- G.

- H.

The set of Horn clauses shown above would have
the data structure in figure 4. Note that each clause is
represented by a block, and that just below each named
pointer is a weight. It may be recognized that these blocks

are much like inverted files kept for each rule. The updating
process for this data structure will be similar to the updating
process for inverted flies. This substantial increase in
databa.sc size and update complexity is needed so that
weights can lie maintained for each arc, in order to use
" best-fust" searching.

Consider evaluating a query in a single processor
using the B-LOG methodology See figure 4 for an instance
of the weights. We will consider the parallel approach in the
next section. When a query "?:-A" appears, it will match the
first clause (provided unification succeeds). The next search
could be for 13 (with two possible matches) or C or D (with
one match each). Examining the bounds of each chain
obtained so far (which are just the weights of each of the
four pointers), B-LOG will choose the chain with the least
bound (which is the pointer with the least weight). The
second pointer to B has the lowest weight (3). Then the Bs
will be chosen for the first fan-out below the node
representing A in the search tree, and the right side of the
Horn clause of the second B would be searched. The bounds
associated with the chain to F (the sum of the weights of the
second B and of F) would be compared with the bounds
(which are the weights) of the first B, of C and of D. The
first B is chosen because its weight is lowest and a new chain
is grown from the root node to the first B. Note that the
next search from the first B is similar to a breadth-first
search.

Figure 4: A Linked List Structure

A different set of weights would cause a different
order of search. Suppose the weight of the first B pointer is
the Horn clause for A (middle of figure 4 were 1 rather than
0. Then the Bs would be chosen for the first branch of the
search tree, as before. But the Horn clause B:-E would be
expanded next, before the second B would be chosen, because
the sum of weights for this chain (2) would be lowest. This
appears to be a depth-first search, as in PROLOG. In
general, the "best" chain would be expanded first, rather
than depth-first or breadth-first.

We reflect on the probabilities and the weights
related to them. It, is tempting to normalize the probabilities
of arcs out of a node. For instance, we might, make all the
probabilities of arcs away from node A sum up to 1. This
"best-first" methodology, however, compares bounds which
are weights of arcs out of node A with those out of nodes B,
C and so on. The weights are thus defined in terms of the
probabilities of an arc in any solution to the query, that is.
they are globally ra.ther than locally defined. Also note that
the weights are stored with the pointers, rather than at the
beginning of each block. This speeds up the search process
because we can decide whether we wish to retrieve another
block by examining these weights, before we access the block
from the slow secondary storage.

As long as no infinite weights are reset to known

weights and the sum of known weights does not exceed N,
this heuristic yields one possible solution to the branch and
bound algorithm (the weights will be proportional to those of
the algorithmic approach). When these anomalies appear, it
appears too hard to completely correct the entire data base,
and we may not be able to do so anyhow. Still, we must
remember that all we are doing is trying to keep a loi of
processors busy doing useful things when we use this
"bound". We must keep in mind that the algorithm is only
a guide to this end, and small deviations from the theoretical
model will reduce efficiency, but the correct solution(s) will
still be found.

This heuristic employs some adaptive control
strategy. If a successful query is found, the next search will
try this path early and if an unsuccessful search is detected,
its path will be avoided until all the others have been
attempted. Especially where a user tries a second and third
query that is similar to the first one with some minor
changes, later searches should become more efficient.

In order to make the above described convergence
possible we have to provide a strategy for maintaining and
updating the weights in the B-LOG machine. One important
issue at this point is to determine the scope and extent of
these changes. To do so, we will introduce the concept of
session. A session is defined as succession of queries during
which no permanent updating of weights is done in the global
database in secondary storage. During a session, weight
updates are kept in a separate buffer or in local copies of the
subset of the graph being used in primary memory.

The user declares the end of the current and the
beginning of a new session when the next query is not related
to the previous queries. At the end of the session the global
database will be updated in a "conservative" way, e.g., no
infinities will override previous non-infinite weights, while
other weights will be modified in the direction indicated by
the results of the session. This less drastic modification will
provide an improved initial condition at the beginning of the
new session. Averaging of modifications over different
sessions is thus achieved, hopefully facilitating convergence
to the theoretical model.

Other bounds may be used, and some perhaps may
show more useful than the one defined for the B-LOG model.
For example, conditional probabilities (conditional
information) might be added to the model, since a decision
should depend on what has been previously decided, but
maintaining the database in this model is clearly more
difficult than our approach. We thus feel that this model is

http://databa.sc

both simple and useful enough to justify its application in
our first approach to an effective parallel implementation of
logic programming.

6 T h e Paral le l C o m p u t e r And Da tabase
Machine

We now consider the storage of the database and
rules, and the design of a processor for B-LOG. This parallel
computer will have one or more database machines, and one
or more processors, connected by some interconnection
network. We consider the database machine first, then the
processor, and finally we comment on the interconnection
network.

Although we have worked on a powerful database
processor (CASSM [5|), we consider that a disk-only based
processor will be loo slow for the evaluation of the heuristic
described in the previous section. Still, the database will
necessarily be large. Even the storage of rules will take a lot
of space, as pointers to other rules and facts will be stored
for each rule in a similar way to an inverted file. An
immediate consequence of this fact is that there is little
reason to have a separate database for rules a,nd for facts as
in PRISM [3|. A compromise solution uses data base
machines to do some of the retrieval of portions of the graph,
while fast processors do the main processing in the heuristic
search inside this local subgraph. This is illustrated in figure
5.

In that figure we can see how the database (that is,
the graph) is partitioned into a number of database
processors (semantic paging disks, described below). There
are also a number of processors with local memories, which
contain copies of small subsets of the global graph. These
processors use these subsets to work on their portions of the
search tree. When a new node is needed for expansion the
semantic paging disks will provide the appropriate subset of
the graph, while the minimum seeking network will select the
most likely candidate taking into consideration the current
set of weights. At any given point in time, the search tree is
distributed over a number of processors, each of them
working on different parts of it, and the database is
distributed over a number of semantic paging disks that
search concurrently for new nodes for expansion. If a
processor finds its chains to greater bounds than the other
processors, it can stop its work on the subtree in it and
transfer another chain with lower bounds into it, as the top
processor does in figure 5.

Thus, the basic task of the database machine is to
store a graph, implemented using pointers, and to extract a,
subgraph consisting of some selected nodes and all nodes
within some Hamming distance of the selected nodes. We
have described a "semantic paging disk" [12] (SPD) that
works on pointers, and is well suited to this approach. Data
so extracted is included into the processor memory, as in a
paging scheme in virtual memory. However, rather than
organizing data in fixed size pages, data is semantically
organized in terms of a graph, and a page is a subgraph
defined by the state of the process at run time. The earlier
paper describes such a machine. However, since then, cheap
RAM has made a cache attractive in a disk system, and the
use of a cache simplifies the design of this machine. We
summarize this cache oriented SPD below (see figure 6).

SEARCH TREE DATABASE

PROCESSORS SEMANTIC PAGING DISKS

Figure 5: Parallel Computing Environment

The SPD consists of one or more search processors
(SP). Each SP has one or more tracks (a moving head disk
would have all the tracks on a surface in an SP), a read-write
head and associated drivers and amplifiers, a random access
memory (a cache) able to hold a track's data, and logic to
implement the actions described below. The blocks of the
linked list are stored in variable length records, which have a
block number that is defined to be the number of blocks
above it in the track. The contents of a block contain some
data (possibly ASCII characters) and named and weighted
pointers (name, pointer to another block, weight) as in figure
4. The pointers are the block numbers of the blocks pointed
to. As the cache is loaded from a track, the location in the

• C h a i n

cylinder

v. v •*.) surface

Bus

Figure 6: A Semantic Paging Disk (SPD)

cache of the beginning of each block is noted and tags for
marking the blocks are provided in a table. The logic is able
to

1. Search the data in a block associatively and mark
the blocks.

2. Follow all pointers, or only pointers with specified
names, from marked blocks to other blocks and
mark them.

3. Output, replace, insert and delete words in a
marked block.

Using (1), we can find some blocks. Using (2) N times
successively, we can find all blocks within Hamming distance
N from the nodes we found. Using (3), we can output or
update the database.

Where more than one SP is used, they can work
independently (MIMI) mode) or interdependently (SIMD
mode). In SIMD mode, all SPs work on the same track on
their surface (a cylinder), and the tracks in a cylinder are
presumed ordered in a chain. A global block number is
defined for each record (block), and can be computed when
the cache in each SI' is loaded. It is the number of records
above its record in the current track, plus the number of
records m all (he tracks above this track. The pointer
becomes a pair (cylinder number, global pointer). If the
pointer is to the cylinder that is cached, communication and
hardware, between the SPs can find which SP a global pointer
is in, and the SP can mark the record. The associative
search operation (1) and the pointer transfer (2) can be
performed simultaneously in all SPs that are connected in
SIMD mode. If the pointer is to another cylinder, pointer
transfer is handled by saving the pointer until the other
cylinder is loaded into the cache. The control of the SPM is
simplified: all the external processor needs to know is which

cylinder(s) to search on all SPs, not where the data is on such
cylinders. Garbage collection between tracks in a cylinder
can be done in the Si's without interacting with external
processors. A paper more fully describing this device is in
preparation.

The processor in turn will obtain data from the
SPDs, storing it in its local memory. The design of the
processor should avoid the "von Neumann bottleneck" even
in the operation of its controller. In our approach, we
propose to use an inference driven scheme for the execution
of the controller: recall that in the CDC 6600 [2], a
scoreboard is used to keep busy a collection of adders,
multipliers and the like, and resolves the use of variables
from one operation that are needed in another operation.
We should build some specialized units, for example, to
instantiate variables. When a unit has completed its
operation, it should consult the scoreboard to determine what
operation it can do next. The actual design of this units is
presently one of our main areas of research(a) . The idea is
to define a local interpreter of the B-LOG language in terms
of production rules. We then implement each unitary action
in a hardware unit and use a scoreboard to schedule their
use. Note that a single processor will thus be multitasked,
able to develop several chains of the search tree at one time.
Also, the delays due to disk access can be compensated for by-
developing other chains that are not waiting for the slow

(a)After this paper was submitted for review Graham
[9; proposed a similar concept.

disk. This may also be the correct design approach for an
effective (pipelined) uniprocessor approach, and this is
another point we are presently studying further.

One possible bottleneck that our preliminary
analysis shows is that a multitasked processor will spend a
lot of time copying data received from the disk, and data in
its own memory, as new chains in the search tree are
sprouted. This is a consequence of the very peculiar character
of the logic variable, since most structure sharing schemes
are difficult to implement in parallel [16]. Thus, the processor
memory should be designed to write multiply, as well as
singly in the normal sense of a random access memory.
Using a shift register inside the memory, along side the
address decoder, the shift register threading through each
successive word in RAM, multiple writes can be effected. By
setting several bits in the shift register (using the decoder),
we can write the contents of all words that have a 1 in the
shift register. We could then shift the whole bit pattern down
one location so that we can write the next word of each copy-
in one memory access. Continuing this operation, a block of
data can be copied many times into memory for example to
assist in multitasking.

As far as the interconnection network (connecting
processors together and processors to database machines) is
concerned, it should support bursty traffic from the database
machines, and a circuit to determine the minimum value of
several bounds produced by the processors. Bursty traffic is
well handled by a network that uses packet switching to find
paths, and circuit switching to move the data. This scheme
is used in the CEDAR machine 18], according to Gajski. The
sorting network suggested in section 2 is probably lightly
used since a processor will have to perform a lot of work, and
wait for slow I /O, between times that it uses the sorting
network; instead, a circuit that determines the minimum,
and a priority circuit to arbitrate among several waiting
processors to determine which will process the minimum,
would be adequate Several circuits have been presented
which can very efficiently find a minimum, one of which is a
tree where each node selects the minimum of its descendants
and passes that to its parent. A priority circuit can be
implemented in a tree-shaped carry-lookahcad circuit. A
linear cost non-rectanguiar banyan can implement these
mechanisms, and this is another of our current subjects of
research.

The parallel B-LOG machine will thus appear to
work in the following way. Each of N processors has the
capability of supporting M tasks at the same time. Each
processor keeps track of the weights of the chains it has
found and is able to send the minimum bound into a
minimum seeking network. Initially, one processor is given
the initial query, which it sends to the SPDs to page in part
of the graph to work on. The other processors use the
minimum seeking network to wait for some chain to work on.
As chains become available, they are sent to the awaiting
processors. The priority network assigns a minimum to just
one awaiting processor at a time. Thus, initially, the tree is
searched breadth-first to get all processors working. This is
done with only one task in each processor. After all
processors have been given work to do, the minimum seeking
network keeps track of the lowest bound of the chains not
yet expanded. Ignoring communication costs, when a task
completes its extension of a chain, it will acquire a new
chain, as determined by the minimum seeking network, and
work on it. However, this would generate excessive traffic
through the interconnection network. We choose a value D.
which reflects the communication cost of moving a chain. If
the minimum over the network is D lower than the minimum

of the tasks in a processor, the freed task would acquire the
chain through the network, else it would work on the
minimum chain given by some task in its own processor. D
can be modified at run time, based on the measured
communication overhead.

7 Exploiting Other Sources of Parallelism

We have presented our model based on the OR-tree
representation of the Logic Programming search space
introduced in section 3. In this sense our model represents an
intelligent, bound guided implementation of OR-parallelism
as defined by Conery and Kibler [4]. OR-parallelism is
specially effective in speeding up non-deterministic programs,
specially when more than one solution is needed. Search-
parallelism is also implemented very effectively in the
semantic paging scheme through the use of several SPD's
working concurrently.

Another source of parallelism present in logic
programs is AND-parallelism, that is, the concurrent
execution of several goals within a clause body. AND-
parallelism can be very effective in speeding up highly
deterministic programs, specially if only one solution is
needed. In general our model could also support AND-
parallelism, but some special cases have to be taken into
account.

Its inclusion is a relatively simple issue for
conjunctions of goals which do not share variables and the
same basic model described in the preceding sections can be
used in this cases. Unfortunately this case is not as common
as desired. Calls which share variables can be executed in
sequence using the same scheme as Prolog. Alternatively a
join algorithm can be applied. In our implementation a
highly efficient semi-join algorithm can use the marking
capabilities of the SPD's.

Also, at run time, many of the dependencies
apparent at compile time can disappear because of the
particular bindings of the variables at the time the call is
made [6]. A run-time analysis can thus grant the maximum
level of parallelism but the support needed can result in high
overhead [7]. An alternative to this approach is to do
extensive data dependency analysis at compile-time. Similar
extensions are being considered in our model but are left for
future implementation.

8 C o n c l u s i o n s

We have presented a methodology for parallel
processing of logic programming, and sketched a parallel
processor that could implement this methodology. Further
work is in progress in most areas: definition of the semantics
of the B-LOG language, design of the data structures and
processing units needed in its implementation, design of the
database machine and the interconnection network, and
evaluation of alternative bound generation and updating
algorithms. Several schemes for supporting AND-parallelism
are also being considered. In addition, we are analyzing
specific applications in the context of this methodology. The
validity of our present approach, specially in the choice of
the bound generation and update algorithm, can be verified
in this way.

B-LOG offers an alternative to Prolog's sequentially
oriented depth-first search, without giving up completeness
by incorporating control annotations. At the same time, it
tries to overcome the combinatorial explosion of other search
strategies which are not driven by heuristics. We thus feel
that it can be the foundation for a resolution-complete and
effective parallel implementation of logic programming.

References

[1] K. E. Batcher.
Sorting Networks and Their Application.
AFIPS Conf. Proc. 32:307-314, 1968.

[2] James E. Thornton.
Parallel operation in the Control Data 6600.
Computer Structures: Readings and Examples.
McGraw-Hill, 1971.

[3] U.S. Chakravarthy, S. Kasif, M. Kohly, J. Minker, and
D. Cao.
Logic Programming on ZMOB: A Highly Parallel

Machine
Proceedings of the 1982 Conference on Parallel

Processing :347-349, 1982.
IEEE Press, New York.

[4] J.S. Conery and D.F. Kibler.
Parallel Interpretation of Logic Programs.
In Proc. of the ACM Conference on Functional

Programming Languages and Computer Architecture,
pages 163-170. October, 1981.

[5] Copeland, G.P., Lipovski, G. J., Su, S. Y.
The architecture of CASSM: a cellular system for non-

numeric processing.
Proceedings of the 1st. annual symposium on computer

architecture :121-128, 1973.
[6] J.S. Conery. •

The AND/OR Process Model for Parallel
Interpretation of Logic I-rograms.

PhD thesis, The University of California at Irvine, 1983.
Technical Report 204.

[7] Doug DeGroot.
Restricted And-Parallelism.
Int 7 Conf. on Fifth Generation Computer Systems,

November, 1984.
[8] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh.

CEDAR- A Large Scale Multiprocessor.
Proc. of the Int 'I Conf. on Parallel ftocessing :524-529,

1983.

[9] C. J. Graham.
Providing Architectural Support for Expert Systems.
Computer Architecture News 12(5):12-19, 1984

[10] Kowalski, R.A.
Predicate Logic as a Programming Language.
Proc. IFIPS 74 ,1974.

[11] Kumar, V. and Kanal, L. N.
Parallel Branch-and-Bound Formulations for AND/OR

Tree Search.
IEEE transactions on pattern analysis and machine

intelligence 6:768-778, November, 1984.
[12] G. J. Lipovski.

Semantic Paging on Intelligent Disks.
Fourth Workshop on Computer Architecture for Non-

numeric Processing , 1978.
[13] Pereira, L.M., E. C. N. Pereira, and D. H. D. Warren.

User's Guide to DECsystem-10 Prolog
Dept. of Artificial Intelligence, Univ. of Edinburgh, 1978

[14] Harold S. Stone.
The Average Complexity of Depth-First Search.
IBM Research Report #RC 10717 (#48044) 9/6/84.

[15] Sunichi Uchida.
Towards a New Generation Computer Architecture:

Research and Development Plan for Computer
Architecture in the 5th. Gen. Computer Project.

Technical Report TR-001, ICOT-Institute for New
Generation Computer Technology, July, 1982.

[16] D.S. Warren.
Efficient Prolog Memory Management for Flexible

Control Strategies.
1984 International Symposium on Logic IVogramming,

Atlantic City, pages 198-203. IEEE Computer Society
Press, Silver Spring, MD, February, 1984.

