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State of the Art

·

·

·

·Work on automatic cost analysis dates back to 1975,
with the seminal work of Wegbreit

His system was able to compute:

interesting results, but for
restricted class of functional programs

Seminal work on abstract interpretation [Cousot &
Cousot’77] mentions performance analysis as application

Since then, a number of analyses and systems have been
built which extend the capabilities of cost analysis:

functional programs [Le Metayer’88, Rosendahl’89,
Wadler’88, Sands’95, Benzinger’04, ..., Hofmann’10, ...]
logic programs [Debray and Lin’93,..., Navas et al.’07,...]
imperative programs [Adachi et al.’79, Albert et al.’07,
Gulwani’09, ...]
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A Classical Approach to Cost Analysis
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Static Analysis

Cost Relations

CRs Solver

Best/Worst Case
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A classical approach [Wegbreit’75] to cost analysis
consists of:
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A classical approach [Wegbreit’75] to cost analysis
consists of:

1. expressing the cost of a program part in terms
of other program parts, thus obtaining
recurrence relations

2. solving the relations by obtaining a closed-form
for the cost in terms of the input arguments

The current situation is that

Most work has concentrated on the 1st phase

difficulties of the 2nd phase have been overseen

usage of cost analysis requires both!

COSTA we address both phases.
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What do we expect from cost analysis?

·

·

·

·

stat ic void sort( int a[]) {

for ( int i=a.length -2; i>=0; i--) {

q© int j=i+1;

int value=a[i];

while ( j<a.length && a[j]<value) {
p© a[j-1]=a[j];

j++;

}

a[j-1]= value;

}

}
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Loops are extracted from the CFG of

the program and cost relations are

generated loop by loop

Extracting loops
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Global size analysis is performed in

order to infer how the sizes of data

change along execution

Size analysis
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cuting a program fragment in terms of

the cost of executing other fragments

Modular definition
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while ( x != nul l ) {

x = x.next;

}
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C(a,j)=0 {j>=a}

C(a,j)=0 {j<a}

C(a,j)=p+C(a,j-1) {j<a,j’=j+1}
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Second phase: Solving CRs

·

·

·

·
sort(a) =B(a, i) {i=a−2, a≥0}
B(a, i) =0 {i<0}
B(a, i) = q©+C (a, j)+B(a, i ′) {i≥0, j=i+1, i ′=i−1}
C (a, j) =0 {j≥a}
C (a, j) =0 {j<a}
C (a, j) = p©+C (a, j ′) {j<a, j ′=j+1}

Why not using directly Computer Algebra Systems?

CRs are not deterministic

CRs have multiple arguments

CRs have multiple (not mutually exclusive) equations

Thus, CRs often do not have an exact solution
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C (a, j) = p©+C (a, j ′) {j<a, j ′=j+1}

Why not using directly Computer Algebra Systems?

CRs are not deterministic

CRs have multiple arguments

CRs have multiple (not mutually exclusive) equations

Thus, CRs often do not have an exact solution

CAS can obtain an exact closed-form solution for:

P(0) = 0
P(n) = E + P(n − 1) + · · ·+ P(n − 1)

deterministic, 1 base-case, 1 recursive case, 1 argument
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Thus, CRs often do not have an exact solution

Several possible runs for C (10, 1)

C (10, 1)→ C (10, 2)
C (10, 1)→ C (10, 2)→ C (10, 3)
C (10, 1)→ C (10, 2)→ C (10, 3)→ C (10, 4)
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Why not using directly Computer Algebra Systems?

CRs are not deterministic

CRs have multiple arguments

CRs have multiple (not mutually exclusive) equations

Thus, CRs often do not have an exact solution

CAS CRs
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A Practical Upper Bound Solver (PUBS)
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• An evaluation for C (a0, j0) looks like:

p© p© p© p© p©

• How many has this chain ?p©

ϕ

We are seeking a (ranking) function f̂ that maps the
program states to integers, such that

∀i , j , j ′. ϕ |= f̂ (i , j)− f̂ (i , j ′) ≥ 1 ∧ f̂ (i , j) ≥ 0

There are automatic techniques for synthesizing such
functions [Sohn and Van Gelder 1991, Podelski and
Rybalchenko 2004]

Ranking function
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A Practical Upper Bound Solver (PUBS)

·

·

·

·
sort(a) =B(a, i) {i=a−2, a≥0}
B(a, i) =0 {i<0}
B(a, i) = q©+C (a, j)+B(a, i ′) {i≥0, j=i+1, i ′=i−1}
C (a, j) =0 {j≥a}
C (a, j) =0 {j<a}
C (a, j) = p©+C (a, j ′) {j<a, j ′=j+1}

• An evaluation for C (a0, j0) looks like:

p© p© p© p© p©

• How many has this chain ?p©

f̂ (a0, j0) = nat(a0 − j0)
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can take in terms of the initial values 〈a0, i0〉?
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• There are at most nat(i0 + 1) circles (ranking function)

• B(a0, i0) = [ q©+ p©∗nat(a0−1)]∗nat(i0+1)

sort(a0) = [ q©+ p©∗nat(a0−1)]∗nat(a0−1)

Worst-case UB for sort
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Summary: Generation of Cost Relations

Cost relations: common target of cost analyzers for any
programming language (widely applicable)

Transformation of relations into direct recursion form (using
the technique of partial evaluation)

Bound the maximum number of iterations for all recursive
relations (ranking functions)

Maximize the cost of iterations (relying on invariants and PIP)

Upper bounds of polynomial, logarithmic, exponential
complexity (any combitation of those elementary costs)

Combined with CAS to obtain more precise lower bounds

References: SAS’08, JAR’11, VMCAI’11
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Result of combining the two phases

Theorem (soundness)

Let P(x̄) be a method,

R the resource we are measuring,

UB(x̄) the upper bound computed from P.

For any valid input v̄ , if there exists a trace t from P(v̄), then we

ensure UB(v̄) ≥ R(t)
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Advanced Topics in Current Research

·

·

·

·

Non-cumulative types of resources (memory)

Certification of results

Handling the shared memory (heap)

Modularity, incrementality of analysis

Concurrency in cost analysis

Implementing a cost analyzer
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Non-Cumulative Resources

Total memory consumption (ignoring GC):

Without GC it is a cumulative resource.
General cost analyis framework directly applicable.

Peak of memory consumption:

With GC the memory consumption increases and decreases
along the execution (maximum among all states).
GC is unpredictable ⇒ We need to assume some
characteristics of it.

“When” it is applied (scope-based vs. ideal)
“What” it is removed (reachability vs. liveness)

Assumption: scope-based GC based on reachability

Scoped memory managers are common.
Useful for estimating consumption in systems with
stack-allocation.
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Memory Consumption with Scope-based GC

·

·

·

·
class Tree {

int data;

Tree left;

Tree right;

void print() {

System.out.println("data="+data);
1© // new StringBuffer(...)

if ( left != null ) left.print;
2© if ( right != null ) right.print;

}

}
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cost analysis - peak resource consumptions

·

·

·

·
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Example (Scope-based GC)

·

·

·

·
class Tree {

int data;

Tree left;

Tree right;

void print() {

System.out.println("data="+data);
1© // new StringBuffer(...)

if ( left != null ) left.print;
2© if ( right != null ) right.print;

}

}
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{t > 1, t > t ′, t > t ′′}

Upper Bound on Peak:

^print
ub(t) = t ∗ s(SB)

• What does it mean that e is an upper bound on
the peak heap consumption?

1. If we set the memory limit to e; and

2. Assume that GC will always collect unreachable
objects upon method’s return; then

3. The program will execute without running out of
memory.
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Verification of Resource Guarantees

Resource guarantees allow being certain that programs will
run within the indicated amount of resources, but who
guarantees that the inferred upper bounds are correct?

The goal is to formally verify the correctness of the upper
bounds inferred by COSTA

Possible approaches:

Perform full-blown verification of COSTA
Formally verify the results obtained by COSTA

Selected alternative: construct a validating tool which, after
every run of COSTA, formally confirms results are correct

COSTA ⇒ Generates the upper bounds
KeY ⇒ Verifies the correctness of the upper bounds

Elvira Albert, UCM Resource Consumption Bounds 17/22



Verification of Resource Guarantees

Resource guarantees allow being certain that programs will
run within the indicated amount of resources, but who
guarantees that the inferred upper bounds are correct?

The goal is to formally verify the correctness of the upper
bounds inferred by COSTA

Possible approaches:

Perform full-blown verification of COSTA
Formally verify the results obtained by COSTA

Selected alternative: construct a validating tool which, after
every run of COSTA, formally confirms results are correct

COSTA ⇒ Generates the upper bounds
KeY ⇒ Verifies the correctness of the upper bounds

Elvira Albert, UCM Resource Consumption Bounds 17/22



Verification of Resource Guarantees

Resource guarantees allow being certain that programs will
run within the indicated amount of resources, but who
guarantees that the inferred upper bounds are correct?

The goal is to formally verify the correctness of the upper
bounds inferred by COSTA

Possible approaches:

Perform full-blown verification of COSTA
Formally verify the results obtained by COSTA

Selected alternative: construct a validating tool which, after
every run of COSTA, formally confirms results are correct

COSTA ⇒ Generates the upper bounds
KeY ⇒ Verifies the correctness of the upper bounds

Elvira Albert, UCM Resource Consumption Bounds 17/22



Verification of Resource Guarantees

Resource guarantees allow being certain that programs will
run within the indicated amount of resources, but who
guarantees that the inferred upper bounds are correct?

The goal is to formally verify the correctness of the upper
bounds inferred by COSTA

Possible approaches:

Perform full-blown verification of COSTA
Formally verify the results obtained by COSTA

Selected alternative: construct a validating tool which, after
every run of COSTA, formally confirms results are correct

COSTA ⇒ Generates the upper bounds
KeY ⇒ Verifies the correctness of the upper bounds

Elvira Albert, UCM Resource Consumption Bounds 17/22



COSTA and KeY

COSTA: Inferring Upper Bounds
The basic components for inferring bounds for loops

Ranking functions,
Size relations and
Loop invariants

KeY: Verifying Upper Bounds

A Development Tool Supporting Formal Analysis of Software
Verification Backend: automated interactive theorem prover
Java Card Dynamic Logic, and Symbolic Execution
JML is used for specifications

COSTA +KeY:
COSTA outputs JML annotations on the Java source
KeY reads annotated Java source code to verify the correctness
of all JML annotations, and generates a formal proof
The process is fully automatic
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Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)
Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }

KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)

Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }
KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

//@ decreases (1*n) >= 0 ? (1*n) : 0;

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)

Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }
KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

//@ decreases (1*n) >= 0 ? (1*n) : 0;

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)
Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }

KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

//@ decreases (1*n) >= 0 ? (1*n) : 0;

//@ ghost int gh n = n; ghost int gh x = x;

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)
Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }

KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

//@ decreases (1*n) >= 0 ? (1*n) : 0;

//@ ghost int gh n = n; ghost int gh x = x;

//@ loop invariant gh n-n >= 0 && x-gh x>=0 && · · · ;

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)
Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }

KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



Example

·

·

·

·int f( int n) {

int x=0;

while (n>0) {

x += n;

n--;

}

return x;

}

//@ decreases (1*n) >= 0 ? (1*n) : 0;

//@ ghost int gh n = n; ghost int gh x = x;

//@ loop invariant gh n-n >= 0 && x-gh x>=0 && · · · ;

COSTA infers the Upper Bound f (n) = 7 + 7 ∗ nat(n)

Ranking function: nat(n)
Invariant: { n’-n>0 ∧ x-x’ > 0 ∧ · · · }

KeY is used to verify the annotated program

Elvira Albert, UCM Resource Consumption Bounds 19/22



The COSTA System

TOOL DEMO
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Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode

PUBS (the CRs solver) made the difference
based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level

COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading

Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Conclusions

Cost Analysis
generate cost relations from real programs
solve different forms of recurrence relations

COSTA – COSt and Termination Analyzer for Java bytecode
PUBS (the CRs solver) made the difference

based on program analysis techniques
widely applicable
can use CAS to improve precision

non-cumulative resource: garbage collection, X10 task-level
COSTABS – A recent extension for concurrent objects, a
concurrency model which is simpler than Java multithreading
Eclipse Plugin, web-interface, and command-line

Future Directions
handle Java multithreaded programs
handle cyclic data structures
average case, and distribution

Elvira Albert, UCM Resource Consumption Bounds 21/22



Credits - the COSTA team

http://costa.ls.fi.upm.es

Elvira Albert
Diego Alonso
Puri Arenas
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