
Data–flow Analysis of Standard Prolog Programs∗

F. Bueno D. Cabeza M. Hermenegildo G. Puebla †

Abstract

Abstract interpretation–based data–flow analysis of logic programs is, at this point, relatively well
understood from the point of view of general frameworks and abstract domains. On the other hand,
comparatively little attention has been given to the problems which arise when analysis of a full,
practical dialect of the Prolog language is attempted, and only few solutions to these problems have
been proposed to date. Such problems relate to dealing correctly with all builtins, including meta–
logical and extra–logical predicates, with dynamic predicates (where the program is modified during
execution), and with the absence of certain program text during compilation. Existing proposals for
dealing with such issues generally restrict in one way or another the classes of programs which can
be analyzed if the information from analysis is to be used for program optimization. This paper
attempts to fill this gap by considering a full dialect of Prolog, essentially following the recently
proposed ISO standard, pointing out the problems that may arise in the analysis of such a dialect,
and proposing a combination of known and novel solutions that together allow the correct analysis
of arbitrary programs using the full power of the language.

1 Introduction

Global program analysis, generally based on abstract interpretation [CC77], is becoming a practical tool
in logic program compilation, in which information about calls, answers, and substitutions at different
program points is computed statically [HWD92, VD92, MH92, SWY91, BGH94, Deb89b, Bru91, Deb92,
MSJ94, LV94]. Most proposals to date have concentrated on proposing general frameworks and suitable
abstract domains. On the other hand, comparatively little attention has been given to the problems which
arise when analysis of a full, practical language is attempted. Such problems relate to dealing correctly
with all builtins, including meta–logical, extra–logical, and dynamic predicates (where the program is
modified during execution). Often, problems also arise because not all the program code is accessible to
the analysis, as is the case for some builtins (meta–calls), some predicates (multifile and/or dynamic),
and some programs (multifile or modular).

Implementors of the analyses obviously have to somehow deal with such problems, and some of the
implemented analyses provide solutions for some problems. However, the few solutions which have been
published to date [VD92, Deb89a, HWD92, MH92, LRV94] generally restrict the use of builtin predicates
in one way or another (and thus the class of programs which can be analyzed) if the information from
analysis is to be used for program optimization.

This paper attempts to fill this gap. We consider the correct analysis of a full dialect of Prolog.
For concreteness, we essentially follow the recently proposed ISO draft standard [PRO94]. Although not
yet a standard, this seems an appropriate choice because it essentially gathers and unifies most of the
de-facto standard features present in current Prolog dialects. Our purpose is to review the features of the
language which pose problems to global analysis and propose alternative solutions for dealing with these
features. The most important objective is obviously to achieve correctness, but also as much accuracy
as possible. The proposed alternatives are a combination of known solutions when they are useful, and
novel solutions when the known ones are found lacking.

One of the motivations of our approach is that we would like to accommodate at the same time two
types of users. First, the naive user, which would like analysis to be as transparent as possible. Second,

∗This work was partially supported by ESPRIT Project #6707 ParForce, and CICYT Project IPL-D. The authors would
also like to thank M. Garćıa de la Banda, S. Debray, F. Ballesteros, M. Carro, S. Prestwich, S. Yan, and the anonymous
referees.
†Computer Science Department, Technical University of Madrid (UPM), Spain, {bueno, dcabeza, herme,

german}@fi.upm.es.

1



we would also like to cater for the advanced user, which may like to guide the analysis in difficult places
in order to obtain better optimizations. Thus, for each feature, we will propose solutions that require no
user input, but we will also propose solutions that allow the user to provide input to the analysis process.
This requires a clear interface to the analyzer at the program text level. Clearly, this need arises also for
example in the output of the analyzer when expressing the information gathered by the different analyses
supported. We start by proposing an interface, in the form of annotations, which is useful not only for
two–way communication between the user and the compiler, but also for the cooperation among different
analysis tools and for connecting analyses with other modules of the compiler.

We argue that the proposed set of solutions is the first one to allow the correct analysis of arbitrary
programs using the full power of the language without input from the user (while at the same time
allowing such input if so desired). Given the length limitations and the objective of addressing the full
language the presentation will be informal. Details can be found in [BCHP95].

2 Preliminaries and Notation

For simplicity we will assume that the abstract interpretation based analysis is constructed using the
“Galois insertion” approach [CC77], in which an abstract domain is used which has a lattice structure,
whose top value we will refer to by >, and its bottom value by ⊥. We will refer to the least upper bound
(lub) and greatest lower bound (glb) operators in the lattice by t and u, respectively. The abstract
computation proceeds using abstract counterparts of the concrete operations, the most relevant ones
being unification (mguα) and composition (◦α), which operate over abstract substitutions (α). Abstract
unification is however often also expressed as a function unifyα which computes the abstract mgu of two
concrete terms in the presence of a given abstract substitution.

We will call an abstract substitution α topmost w.r.t. a tuple (set) of variables ~x iff vars(α) = ~x and for
all other substitution α′ such that vars(α′) = ~x, α′ v α. An abstract substitution α referring to variables
~x is said to be topmost of another substitution α′, referring to the same variables, iff α ≡ α′ ◦α α′′, where
α′′ is the topmost substitution w.r.t. ~x.

Usually, a collecting semantics is used which attaches one or more (abstract) substitutions to program
points (such as, for example, the point just before or just after the call of a given literal — the call and
success substitutions for that literal). Traditionally, a distinction is made between top–down and bottom–
up analyses based on whether computation is performed starting at the queries or at the program facts.
These have in turn been associated with goal dependent and goal independent analyses, respectively.
However, recent results [GGL94, CGBH94] show that call dependence is not tied to a given form of
analysis. A goal dependent analysis associates abstract success substitutions to specific goals, in particular
to call patterns, i.e. pairs of a goal and an abstract call substitution which expresses how the goal is called.
Depending on the granularity of the analysis, one or more success substitutions can be computed for
different call patterns at the same program point. Goal independent analyses compute abstract success
substitutions for generic goals, regardless of the call substitution.

In general we will concentrate on top–down analyses, since they are at present the ones most frequently
used in optimizing compilers. However, we believe the techniques proposed are equally applicable to
bottom–up analyses. In the text, we consider in general goal dependent analyses, but point out solutions
for goal independent analyses where appropriate.

The pairs of call and success patterns computed by the analysis, be it top–down or bottom–up, goal
dependent or independent, will be denoted by AOTα(P ) for a given program P . A most general goal
pattern (or simply “goal pattern,” hereafter) of a predicate is a normalized goal for that predicate, i.e.
a goal whose predicate symbol and arity are those of the predicate and where all arguments are distinct
variables. In goal dependent analyses, for every call pattern of the form (goal pattern, call substitution)
of a program P there are one or more associated success substitutions which will be denoted hereafter by
AOTα(P, call pattern). The same holds for goal independent analysis, where the call pattern is simply
reduced to the goal pattern. By program we refer to the entire program text that the compiler has access
to, including any directives and annotations. The issues related to multifile and modular programs, and
interactive compilation, will be addressed in Section 5. In top–down analyses, annotations may support
the specification of given queries in the form of entry points and their call patterns; AOTα(P ) will then
be referred to these queries. The issue of determining the entry points and call patterns for which the
analysis is correct will be addressed in sections 3 and 5.

2



3 Program Annotations

Annotations are assertions regarding a program that are introduced as part of its code. They can state
properties which hold for the program they appear in. In that case the annotations do not modify the
semantics of the non–annotated program. Rather, they reflect (often in an abstract way) an aspect of the
program meaning. They can also state properties of other programs whose text is not present but which
are to be composed with the present program. In that case such annotations reflect the semantics of the
composed program. Program annotations can be both input to and output from the analyzer. When
used as input, annotations are a way to provide the analyzer with additional information so that it can
generate more precise information. When used as output, they represent the information obtained by the
analyzer that will eventually be used by other parts of the compiler (including perhaps other analyzers)
or shown to the programmer.

Annotations refer to a given program point. We consider two general classes of program points: points
inside a clause (such as, for example, before or after the execution of a given goal — the “goal level”) and
points that refer to a whole predicate (such as, for example, before entering or after exiting a predicate
— the “predicate level”). At all levels annotations describe properties of the variables that appear in
the program (be it in the clause or in the arguments of a procedure). We will call the descriptions of
such properties declarations. In general, such descriptions must be done in some abstract way since often
it is necessary to represent an infinite number of concrete cases. Declarations should be written in a
syntax that is compatible with the language (in this case, Prolog) and, ideally, in a domain–independent
way. Thus, syntactically, declarations will in general be Prolog terms containing variables (or variable
designators). Such terms encode assertions about the state of such variables at run–time.

There are at least two ways of representing declarations which we will call “property oriented” and
“abstract domain oriented”. In a property oriented annotation framework, there are declarations for each
property that a given variable or set of variables may have. Examples of such declarations are:

mode(X,+) X is bound to a non–variable term
term(X,r(Y)) X is bound to term r(Y)

ground(X) X is bound to a ground term
free(X) X is bound to a free variable
depth(X,r/1) X is bound to a term r(_)

aliased(X,Y) X and Y are aliased
indep(X,Y) X and Y are not aliased
occur([X,Y]) the same variables occur in the terms bound to X and Y

true no information (the top substitution)
false the computation has failed (⊥)

For concreteness, and in order to avoid referring to any abstract domain in particular, we propose to use
such a framework. In addition to the terms such as those above we assume that declarations can also
be first order formulae formed by combining declarations with the connectives of first order logic. In the
following, we will assume that declarations are always in disjunctive normal form (i.e. they are simplified
in that way when being read). Comma and semicolon will denote, as usual, conjunction and disjunction,
respectively.

The property oriented approach presents two advantages. On one hand, it is easily extensible, pro-
vided one defines the semantics for the new properties one wants to add. On the other hand, it is also
independent from any abstract domain for analysis. One only needs to define the semantics of each
declaration, and, for each abstract domain, a translation into the corresponding abstract substitutions.
An alternative solution is to define declarations in an abstract domain oriented way, i.e. representing
declarations through some encoding in Prolog terms of the elements of the abstract domain used in the
analysis. For example, for the sharing domain [JL88]:

sharing([[X],[Y,Z]]) the sharing pattern among variables X,Y, Z is {{X}, {Y,Z}}

This is a simple enough solution but has the disadvantage that the meaning of such domains is often
difficult for users to understand. Also, the interface is bound to change any time the domain changes.
Although this approach can also be extended if more domains are to be incorporated for analysis, it
has two other disadvantages. The semantics and the translation functions mentioned above have to be

3



defined pairwise, i.e. one for each two different domains to be communicated. And, secondly, there can
exist several (possibly overlapping) properties declared, one for each different domain. In the property
oriented approach, additional properties that several domains might take advantage of are declared only
once. In any case, both approaches are compatible via the syntactic scheme proposed above (and in
the following) in that abstract substitutions can also be seen as “properties” by encapsulating abstract
substitutions for each domain in a different term.

3.1 Predicate Level: Entry Annotations

One class of predicate level annotations are entry annotations. They are specified using a directive style
syntax, as follows:

:- entry(goal pattern,declaration).

Declarations in entry annotations refer to the state of the variables appearing as arguments of calls to
the given predicate. These annotations simply state that calls to that predicate with the given abstract
call substitution may exist at execution time. For example, the annotation:

:- entry(p(X,Y), (ground(X),ground(Y)) ).

states that there can be a call to predicate p/2 in which its two arguments are ground. In general, several
annotations for the same predicate can be viewed as forming a disjunction. The entire single declaration
for a given predicate, once put in conjunctive normal form, can be seen as stating a number of alternative
ways in which the predicate can be called.

The idea of entry annotations is not novel. They are similar in purpose to other declarations which
have been previously proposed (also referred to as “mode,” “qmode,” “imode,” etc. declarations) to
guide different goal dependent analyses [HWD92, VD92, MH92, SWY91, BGH94, Deb89b, Bru91, MH92,
Deb92, MSJ94, LV94]. The name is due to VanRoy and we have kept it instead of the one used previously
by us (“qmode”), which we feel is less natural.

Entry annotations and goal dependent analysis. A crucial property of entry annotations, which
makes them useful in the goal dependent analyses mentioned above, is that they must be closed with
respect to outside calls. By this we mean that no call patterns other than those specified by the annotations
in the program may occur from outside the program text. I.e., the list of entry annotations includes all
calls that may occur to a program, apart from those which arise from the literals explicitly present in
the program text. Thus, for now, we assume that they define all entry points, and optionally, their call
patterns. Obviously this is not an issue in goal independent analyses.

Note that according to this definition, a program with no entry annotations is not a useful program
because none of its predicates may be called from outside, i.e. it is entirely dead code. There are two
alternatives in this situation: the first one is to simply issue a warning to the user. However, in our effort
to support the user who perhaps does not want to provide any information to the analyzer but still would
like it to do what it can, another alternative is to analyze the program but assuming that any predicate
may be called in any possible way from outside. This is equivalent to assuming an entry annotation for
each predicate in the program with the topmost substitution for the argument variables (i.e., true). On
the other hand, if any entry annotation is present (showing thus a will of the user to help the analysis)
then the list of them is assumed to be closed with respect to calls from outside the program text.

Entry annotations and multiple program specialization. When optimizing a program in the
presence of a multivariant analysis it is often convenient to create different versions of a predicate, through
a technique known as multiple specialization [Win92, PH95, VD92]. This allows implementing different
optimizations in each version. Each one of these versions generally receives an automatically generated
unique name in the multiply specialized program. However, in order to keep the multiple specialization
process transparent to the user, whenever more than one version is generated for a predicate which is a
declared entry point of the program (and, thus, appears in an entry directive), the original name of the
predicate is reserved for the version that will be called upon program query. However, if more than one
entry annotation appears for a predicate and different versions are used for different annotations, it is
obviously not possible to assign to all of them the original name of the predicate. There are two solutions

4



to this. The first one is to add a front end with the exported name and run–time tests to determine the
version to use. However, this implies run–time overhead. As an alternative we allow the entry directive
to have one more argument, which indicates the name to be used for the version corresponding to this
entry point. For example, given:

:- entry(mmultiply(A,B,C),ground([A,B]),mmultiply_ground).

:- entry(mmultiply(A,B,C),true,mmultiply_any).

if these two entries originate different versions, one would be called as mmultiply_ground/3 and the
other as mmultiply_any/3. Of course if two or more versions such as those above are collapsed into one,
this one will get the name of any of the entry points and, in order to allow calls to all the names given in
the annotations, binary clauses will be added to provide the other entry points to that same version. In
practice, both solutions can be used simultaneously: if multiple specialization is desired but with a single
entry point, a single entry directive should be supplied, which should express the cases in a disjunction.
In this way even if there are several versions for the predicate, there will only be one exported version,
and that one will keep the original name. Run–time tests will be used to determine the appropriate
version.

3.2 Predicate Level: Trust Annotations

In addition to the more standard entry annotations we propose a different kind of annotations at the
predicate level, trust annotations, which take the following form:

:- trust(goal pattern,call declaration,success declaration).

Declarations in trust annotations put in relation the call and the success patterns of calls to the given
predicate. These annotations can be read as follows: if a literal that corresponds to goal pattern is
executed and call declaration holds for the associated call substitution, then success declaration holds
for the associated success substitution. Thus, these annotations relate abstract call and success substi-
tutions. Note that call declaration can be empty (i.e., true). In this way, properties can be stated that
must always hold for the success substitution, no matter what the call substitution is. This is useful also
in goal independent analyses (and in this case it is equivalent to the “omode” declaration of [HWD92]).

Let (p(~x), α) denote the call pattern and α′ the success substitution of a given trust annotation of
a program P . The semantics of trust implies that ∀αc (αc v α ⇒ AOTα(P, (p(~x), αc)) v α′). I.e.,
for all call substitutions approximated by that of the given call pattern, their success substitutions are
approximated by that of the annotation. For this reason, the compiler will “trust” them. If the declaration
of one annotation is a disjunction, the lub of the different conjunctions will be used in place of α′ in the
above formula. If several annotations exist for the same call pattern, or several call patterns in these
annotations approximate the one actually occurring at a given point, the glb of the success substitutions
(as justified below) will be used.1 Note that this implies that, in contrast to entry annotations, several
trust annotations are assumed to form a conjunction. Also in contrast to entry annotations, the list of
trust annotations of a program does not have to be closed w.r.t. all possible call patterns occurring in
the program.

One of the main uses of trust annotations is in describing definitions of predicates that are not present
in the program text (we will return to this issue in greater length in sections 4.1 and 5). For example,
the following annotations describe the behavior of the predicate p/2 for two possible call patterns:

:- trust(p(X,Y), (ground(X),free(Y)) , (ground(X), ground(Y)) ).

:- trust(p(X,Y), (free(X),ground(Y)) , (free(X), ground(Y)) ).

This would allow performing the analysis even if the code for p/2 is not present provided that the calls
to p/2 that appear in the program conform to (i.e., are identical to or contained in) one of the two
call patterns in the trust annotations above. In that case the corresponding success information in the
annotation can be used (“trusted”) as success substitution.

In addition, trust annotations can be used to improve the analysis for example if it is observed that
for (one or more) call patterns the results of the analysis are inaccurate. However, note that the existence

1The same approach can be used to check the mutual consistency of the annotations: the result of the glb operation will
then be ⊥.

5



of such an annotation does not save analyzing the predicate for the corresponding call pattern: this is
still necessary in order to compute the abstract subtree underlying that call pattern, since it may contain
call patterns that do not occur elsewhere in the program. Otherwise the analysis would not be correct
(and neither any optimizations based on that information) for the predicates and goals in that subtree,
since there would be missing call patterns.

After having analyzed a literal for whose predicate a trust annotation exists, an interesting situation
arises in that, upon exit from the call, two abstract success patterns will be available for the call pattern
analyzed (or a comparable one): that computed by the analysis (say αs) and that given by the trust

annotation. As both the trust information and that generated by the analyzer must be correct, the
intersection of them (which may be more accurate than any of them) must also be correct. The intersection
among abstract substitutions (whose domain we have assumed has a lattice structure) is computed with
the glb operator, u.2 During analysis, for every abstract call substitution αc, with corresponding success
substitution αs, s.t. αc v α, αs is substituted by αs u α′, where α′ is the abstract success substitution
given by the trust annotation(s) which apply to αc. Therefore, AOTα(P, (p(~x), αc)) = αs u α′. Since
∀αs∀α′ (αsuα′ v αs∧αsuα′ v α′) correctness of the analysis within the trust semantics is guaranteed,
i.e. AOTα(P, (p(~x), αc)) v α′ and AOTα(P, (p(~x), αc)) v αs. Furthermore, accuracy is preserved. If
both the substitution in trust (i.e. α′) and the one computed during analysis (αs) are identical, this is
not an issue. If one of them is more particular, this one is preferred, and this is exactly the result of the
glb operation. If they have non–empty intersection, the most accurate information is their intersection,
thus αs u α′ is used, too. However, if their informations are incompatible, their intersection is empty,
and αs u α′ = ⊥. This is an error, because the analysis information must be correct, and the same thing
is assumed for the trust information. The analysis should give up and warn the user.

An obvious alternative to the scheme outlined above is to always use the information in the trust

annotation as success substitution, AOTα(P, (p(~x), αc)) = α′. In this case trust annotations must be
used with care, because if the information supplied is more general than what the analysis can obtain,
a loss of accuracy occurs. Also, note that, in addition to improving the substitution at the given point,
the trusted information can be used to improve previous patterns computed in the analysis. This might
be done by “propagating” the information backwards in the analysis process.

Although the use of entry (and omode) declarations has also been proposed for some purposes similar
to our trust annotations [VD92, HWD92], we believe that the use of trust annotations provides a
superior solution because they make it possible to relate several call patterns with their associated success
patterns.

3.3 Goal Level: Pragma Annotations

Annotations at the goal level refer to the state of the variables of the clause just at the point where the
annotation appears: between two literals, after the head of a clause or after the last literal of a clause.3

We propose reserving the literal pragma (as in [oBLdM92]) to enclose all necessary information referring
to a given program point in a clause. It takes the form:

..., goal1, pragma(declaration), goal2, ...

where the pragma information is valid before calling goal2 and also after calling goal1, that is, at the
success point for goal1 and at the call point of goal2. The intended meaning of pragma as part of the
program is the one given by “pragma(_).”, i.e., the inclusion of pragma annotations does not alter the
meaning of the program in any way.

The information given by pragma can refer to any of the variables in the clause. The information
is expressed using the same kind of declarations as in the predicate level annotations. This allows a
uniform format for the declarations of properties in annotations at both the predicate and the goal level.
However, pragma annotations allow to express certain assertions which predicate level annotations cannot,
due to the lack of the appropriate context. This is because they refer to relationships between variables

2Although this operation is not generally implemented in top–down analyzers, which compute the fixpoint upwards, we
believe that, in general, it is not difficult to implement, and a small burden when compared to the utility brought in by the
trust annotation.

3Similar annotations can be used at other levels of granularity, from between head unifications to even between low level
instructions, but we will limit the discussion for concreteness to goal–level program points.

6



in different goals, possibly including also existential variables of the clause. For example, the following
annotation:

p(X,Y) :- q(X,Z), pragma(ground(Z)), r(Z,Y).

states that in the clause above, after execution of q(X,Z), Z will always be bound to a ground term. This
cannot be expressed at the predicate level of p/2.

Pragma annotations are related to trust annotations in the sense that they give information that
should be trusted by the compiler. They are also related to entry, since a pragma annotation needs to
be exhaustive in the sense that its declaration specifies everything that can occur at the corresponding
program point. In the same way as with trust annotations, pragma annotations can be used to specify
the information at a program point after a particular predicate is called, but in this case for a particular
literal rather than for the whole predicate definition. As with trust, they can be used either for predicates
whose definition is not available, or to improve the information derived from the analysis of a particular
literal of that predicate. In the latter case again the literal and its corresponding subtree still needs to be
analyzed in order for the compiler to be able to perform optimizations, but the exit information can be
improved by the contents of the pragma annotation, if it is better than that obtained by the analysis. In
general, a similar set of cases regarding the respective accuracy of the inferred and declared information
as with the trust annotations applies.

4 Dealing with Standard Prolog

In the previous sections we have presented a number of user annotations and already addressed a number
of general issues in the practical analysis of programs. We now discuss different solutions for analyzing
the full standard Prolog language. In order to do so we have divided the complete set of builtins offered
by the language in several classes, which are treated in the following sections.

4.1 Builtins as Abstract Functions

Many Prolog builtins can be dealt with efficiently and accurately during analysis by means of functions
which capture their semantics. Such functions provide an (as accurate as possible) abstraction of every
success substitution for any call to the corresponding builtin. This applies also to goal independent
analyses, with minor modifications. It is interesting to note that the functions that describe builtin
predicates are very similar in spirit to trust annotations. This is not surprising, if builtins are seen
as Prolog predicates for which the code is not available. Since most of the treatment of builtins is
rather straightforward the presentation is very brief, concentrating only on a few, slightly more involved
cases, in order to allow space for discussing the more interesting cases of meta–logical and dynamic
predicates, which will be addressed in the following sections. In order to avoid reference to any particular
abstract domain any functions described will be given in terms of simple minded trust annotations.
For the reader interested in the details, the source code for the PLAI analyzer (available by ftp from
clip.dia.fi.upm.es) contains detailed functions for all Prolog builtins and for a large collection of well
known abstract domains.

Control flow predicates include true and repeat, which have a simple treatment: identity can be
used (i.e., they can be simply ignored). The abstraction of fail and halt is ⊥. For cut (!) it is also
possible to use the identity function (i.e., ignore it). This is certainly correct in that it only implies
that more cases than necessary will be computed in the analysis upon predicate exit, but may result
in some cases (specially if red cuts are used) in a certain loss of accuracy. This can be addressed by
using a semantics which keeps track of sequences, rather than sets, of substitutions, as shown in [LRV94].
Finally, exception handling can also be included in this class. The methods used by the different Prolog
dialects for this purpose have been unified in the Prolog standard into two builtins: catch and throw. We
propose a method for dealing with this new mechanism: note that, since analysis in general assumes that
execution can fail at any point, literals of the form catch(Goal,Catcher,Recovery) (where execution
starts in Goal and backtracks to Recovery if the exception described by Catcher occurs) can be safely
approximated by the disjunction (Goal;Recovery), and simply analyzed as a meta–call (see Section 4.2).
The correctness of this transformation is based on the fact that no new control paths can appear due to
an exception, since those paths are a subset of those considered by the analysis when it assumes that any

7



goal may fail. The builtin throw, which explicitly raises and exception, can then be approximated by the
identity function (i.e., ignored). Even more accurately, if we can determine statically that the exception
will be raised, then throw can in those cases be mapped to failure, i.e. ⊥.

The function corresponding to = is simply abstract unification. Specialized versions of the full abstract
unification function can be used for other builtins such as \=, functor, arg, univ (=..), and copy term.
Other term and string manipulation builtins are relatively straightforward to implement. Arithmetic
builtins and base type tests such as is, >, @>, integer, var, number, etc., usually also have a natural
mapping in the abstract domain considered. In fact, their incomplete implementation in Prolog is an in-
valuable source of information for the analyzer upon their exit (which assumes that the predicate did not
fail — failure is of course always considered as an alternative). For example, their mappings will include re-
lations such as “:- trust(is(X,Y),true,ground([X,Y])).” or “:- trust(var(X),true,free(X)).”
On the contrary, ==, \==, and their arithmetic counterparts, are somewhat more involved, and are im-
plemented (in the same way as with the term manipulation builtins above) by using specialized versions
of the abstract unification function.

Output from the program does not directly pose any problem since the related predicates do not
instantiate any variables or produce any other side effects beyond modifying external streams, whose
effect can only be seen during input to the program. Thus, identity can again be used in this case.
On the other hand, the external input cannot be determined beforehand. The main problem is that no
success substitution can be computed during analysis for the different call patterns to the builtins used
since the success substitution depends on the state of objects that are external to the Prolog system, such
as files or the user. Depending on the abstract domain, things can however be simple in some cases. For
example, for a domain tracking groundness, simple input builtins like get char can be easily abstracted
(it always produces ground input). But for more complex input predicates such as read and for more
complex domains this cannot be done. However, analysis can always proceed by simply assuming that
no information is available. In this case, the most general abstract substitution > is assumed as success
substitution for the call to the input predicate. In fact, analysis can do better by considering the topmost
abstract substitution w.r.t. the variables in its arguments, or, even better, the topmost substitution
of the call pattern w.r.t. those variables. The latter is preferred, since this type of topmost abstract
substitution is usually more accurate for some domains. For example, if a variable is known to be ground
in the call substitution, it will continue being ground in the success substitution. In addition, as always,
trust/pragma annotations may be given to improve from the topmost substitutions.

The treatment of directives is somewhat peculiar. The directive dynamic will be considered in Section
4.3. The directive multifile specifies that the definition of a predicate is not complete in the program.
Multifile predicates can therefore be treated as either dynamic or imported predicates — see Section
5. The directives include and ensure loaded must specify an accessible file, which can be read in and
analyzed together with the current program. The directive initialization specifies new, concrete entry
points to the program.

4.2 Meta–Predicates

Meta–predicates are predicates which use other predicates as arguments. All user defined meta–predicates
are in this class but their treatment can be reduced to the treatment of the meta–call builtins they use.
Such meta–calls are literals which call one of their arguments at run–time, converting at the time of the
call a term into a goal. Builtins in this class are not only call, but also bagof, findall, setof, negation
by failure, and once (single solution). Calls to the solution gathering builtins can be treated as normal
(meta–)calls since most analyzers are “collecting” in the sense that they always consider all solutions to
predicates. Negation by failure (\+) is also a meta–predicate, since \+ can be defined as

\+ X :- call(X), !, fail.

\+ X.

It can be dealt with by combining the treatment of cut with the treatment of meta–predicates. Single
solution (once) is also a meta–call and can be dealt with in a similar way as above since it is equivalent
to “once(X) :- call(X), !.”.

Since meta–call builtins convert a term into a goal, they can be difficult to deal with if it is not
possible to know at compile–time the exact nature of those terms [Deb89a, HWD92]. In particular, this
raises the following problems:

8



1. How to compute success substitutions for the calls to meta–call builtins.

2. How to compute the subtrees underlying calls to such builtins. Also, since from these subtrees new
calls (and new call patterns) can appear, which affect other parts of the program, the whole analysis
may not be correct.

The first problem is easier to solve: the same approach as for input builtins can be used, i.e., using
appropriate topmost substitutions. Note that this is in fact enough for goal independent analyses, for
which the second problem is not relevant. However, for goal dependent analyses the second problem
needs to be solved in some way.

A more general solution to both problems is possible if knowledge regarding the terms to be converted
is available at compile–time. Clearly, if the term (functor and arguments) is given in the program text
(this is often the case for example in many uses of bagof, findall, setof, \+, and once), then the meta–
call can be analyzed in a straightforward way. If the term is not obvious from the text of the program
the nature of the term being used in the meta–call can sometimes be inferred via a type, or depth-k
or, in general, state of instantiation analysis, as proposed in [Deb89a]. As a result of such an analysis
perhaps the actual term to be called can be determined, in which case the treatment outlined above
applies. If the exact term cannot be statically found but at least its main functor can be determined
as a result of some analysis, then, since the predicate that will be called at run–time is known, it is
sufficient for analysis to enter only this predicate using the appropriate projection of the current abstract
call substitution on the variables involved in the call. We will call the first class completely determined
meta–calls and the second one partially determined meta–calls. These classes distinguish subclasses of the
fully determined predicates defined in [Deb89a]. Following [Deb89a] we will refer to the cases where the
meta–term is unknown as undetermined meta–calls.4 In [Deb89a] certain interesting types of programs
are characterized which allow the static determination of this generally undecidable property. Relying
exclusively on program analysis, as in [Deb89a], however has the disadvantage that it restricts the class
of programs which can be optimized to those which are fully determined.

Since our aim is to analyze all programs, we provide a number of solutions for dealing with undeter-
mined meta–calls. The first and simplest solution is to issue a warning if an undetermined meta–call is
found and ask the user to provide information regarding the meta–terms. This can be easily done via
pragma annotations. For example, the following annotation:

..., pragma(( term(X,p(Y)) ; term(X,q(Z)) )), call(X), ...,

states that the term called in the meta–call is either p(Y) or q(Z). Note also that this is in some way
similar to giving entry mode information for the p/1 and q/1 predicates. This suggests another solution
to the problem, which has been used before in Aquarius [VD92], in MA3 [WHD88], and in previous
versions of the PLAI analyzer [BGCH93]. The idea (cast in the terms of our discussion) is to take the
position that meta–calls are external calls. Then, since entry annotations have to be closed with respect
to external calls it is the user’s responsibility to declare any entry points and patterns to predicates
which can be “meta–called” via entry annotations. However, if no multiple specialization is used, only
one variant is generated for each predicate. This variant will be more or less optimized depending on the
accuracy of the information supplied by the user. If the types of calls that can appear in the meta–calls
are very general, then nearly all opportunities for optimization will be lost. It can also be very tedious
for the user to give information for all the possible new calls.

The above solutions have the disadvantage of putting the burden on the user — something that we
would like to avoid at least for naive users. We propose two alternative solutions that are completely
transparent to the user. The first is to simply observe that fully undetermined meta–calls do not com-
pletely preclude analysis of the program. Having solved the first problem above (the success substitution
of the meta–call) the second can be tackled by simply assuming that there are unknown call patterns,
and thus any of the predicates in the program may be called (either from the meta–call or from within
its subtree). This means that analysis may still proceed but topmost call patterns must be assumed
for all predicates. This is similar to performing a goal independent analysis and it may allow some op-
timizations, but it will probably preclude others. However, if program multiple specialization is done,

4Note, however, that if at run–time the meta–call is still undetermined an error will be reported. Similarly, if it can be
determined at compile–time that the argument of the meta–call is, for example, free an error should also be reported.

9



a non–optimized version of the program should exist (since all the predicates in the program must be
prepared to receive any input value), but other optimized versions could be inferred.

Finally, we propose another, complete solution which has none of the problems of the solutions above
and can cover all meta–calls, with the only penalty of some cost in code size. The key idea is to compile
essentially two versions of the program — one that is a straightforward compilation of the original program
(although any optimizations possible with a goal independent analysis may be introduced), and another
that is analyzed assuming that the only possible calls to each predicate are those that appear explicitly in
the program, including completely determined meta–calls. This version will contain all the optimizations,
which will be performed ignoring the effect of undetermined meta–calls. Predicates in this more optimized
version are renamed in an appropriate way (we will assume for simplicity that it is by using the prefix
“opt ”). Calling from undetermined meta–calls into the more optimized version of the program (which
will possibly be unprepared for the call patterns created by such meta–calls) is avoided by making such
calls call the less optimized version of the program. This will take place automatically because the terms
that will be built at run–time will use the names of the original predicates. When a predicate in the
original program is called, it will also call predicates in the original program. Thus, correctness of a
transformation such as the following is guaranteed. Assume that call(X) is an undetermined meta–call.
If a clause

p(...) :- q(...), call(X), r(...).

appears in the program, the following clause is added:

opt_p(...) :- opt_q(...), call(X), opt_r(...).

The top–level rewrites calls which have been declared as entry points to the program so that the
optimized version is accessed. Note that this also solves (if needed) the general problem of answering
queries that have not been declared as entry points: they simply access the less optimized version of
the program. If the top–level does also check the call patterns, then it guarantees that only the entry
patterns used in the analysis will be executed. For the declared entry patterns, execution will start in
the optimized program and will move to the original program to compute a resolution subtree each time
an undetermined meta–call is executed. Upon return from the undetermined meta–call, execution will
go back to the optimized program.

Meta–calls that are fully determined (either by declaration or as a result of analysis) can be incor-
porated into the program text and will call the more optimized version. Analysis will have taken into
account the call patterns produced by such calls since at analysis time fully determined meta–calls are
entered and analyzed as normal calls. I.e., for example, the following transformation will take place:

..., pragma(term(X, p(Y) )), call(X), ..., =⇒ ..., opt_p(Y), ...,

Meta–calls that are partially determined, such as, for example,

..., pragma(depth(X,p/1)), call(X), ...

are a special case. One solution is not to rename them. In that case they will be treated as undetermined
meta–calls. Alternatively, the effect of these calls, which is much more isolated than that of undetermined
calls, may be taken into account during the analysis by using appropriate call patterns as explained before.
It is also necessary in that case to ensure that the optimized program will be entered upon reaching a
partially determined meta–call. This can be done dynamically, using a special version of call/1 or by
providing binary predicates which transform the calls into new predicates which perform a mapping of
the original terms (known from the analysis) into the renamed ones. Using this idea the example above
may be transformed into:

..., opt_call(X), ...

opt_call(p(X)) :- opt_p(X).

The impact of the optimizations performed in the renamed copy of the program will depend on the time
that execution stays in each of the versions. Therefore, the relative computational load of undetermined
meta–calls w.r.t. the whole program will condition the benefits of the optimizations achieved. The only
drawback with this solution is that it implies keeping two full copies of the program, although only in
case there are undetermined meta–calls. In cases where code space is a pressing issue, the user should be
given the choice of turning this copying on and off.

10



4.3 Database Manipulation and Dynamic Predicates

Database manipulation builtins include assert, retract, abolish, and clause. These builtins (with
the exception of clause) affect the program itself by adding to or removing clauses from it. Predicates
that can be affected by such builtins are called dynamic predicates and must usually be declared as such
in modern Prolog implementations (and this is also the case in the ISO standard). The idea of modifying
the program during execution might appear to run, in principle, conceptually counter to the idea of
static analysis. However, all is certainly not lost and there are still quite a number of opportunities for
optimizing dynamic programs. The potential problems created by the use of the database manipulation
builtins are threefold:

1. The literals in the body of the new clauses that are added dynamically to the program can produce
new and different call patterns not considered during analysis. This has to somehow be taken into
account for the analysis to be correct. We will call this the “extra call pattern” problem.

2. How to compute success substitutions for literals which call dynamic predicates. Even if abstract
success substitutions can be computed from any static definition of the predicate which may be
available at compile–time, it may change during program execution. We will call this the “dynamic
literal success substitution” problem.

3. How to compute success substitutions for the calls to the database manipulation builtins themselves.
We will call this the “database builtin success substitution” problem.

Note that clause —which can be viewed as a special case of retract— does not modify the database and
thus clearly only has the third problem above. Note also that the second and third problems above can
always be solved by taking appropriate topmost success substitutions, as before. We will propose later
some better solutions for these two problems. But first, we will concentrate on the extra call pattern
problem which is by far the most serious and difficult to solve.

Solving the extra call pattern problem. As in the case of meta–calls, the extra call pattern problem
does not affect goal independent analyses, since such analyses do not rely on particular call patterns. Note
also that, at least from the correctness point of view, the extra call pattern problem only arises from the
use of assert, but not from the use of abolish or retract.5 These predicates do not introduce new
clauses in the program, and thus they do not introduce any new call patterns. On the other hand, it is
conceivable that more accuracy could be obtained if these predicates were analyzed more precisely since
removing clauses may remove call patterns which in turn could make the analysis more precise.6

The assert predicate is much more problematic, since it can introduce new clauses and through them
new call patterns. The problem is compounded by the fact that asserted clauses can call predicates which
are not declared as dynamic, and thus the effect is not confined to dynamic predicates. In any case, and
as pointed out in [Deb89a], not all uses of assert are equally damaging. To distinguish these uses, we
propose to divide dynamic predicates into the following types:

memo only facts which are logical consequences of the program itself are asserted
data only facts are asserted, or, if clauses are asserted, they are never called

(i.e., only read with clause or retract).
local call the dynamic predicate only calls other dynamic predicates
global call default

The first two classes correspond to the unit–assertive and green–assertive predicates of [Deb89a], except
that we have slightly extended the unit–assertive type by also considering in this type arbitrary predicates
which are asserted/retracted but never called. These can be simply considered as a set of facts for the
predicate symbol :-/2.

The advantage of data predicates is that they are guaranteed to produce no new call patterns and
therefore they are safe with respect to the extra call pattern problem.7 This is also the case for memo

5We do not mean intelligent analyses which can infer success or failure of some goals, because these analyses are not in
general correct in the presence of dynamic predicates.

6See the discussion on incremental analysis at the end of the section for a general solution to this problem.
7In fact, the builtins record and recorded provide the functionality of data predicates but without the need for dynamic

declarations and without affecting global analysis. However, those builtins are now absent from the Prolog standard.

11



predicates since they only assert facts.8 Other dynamic predicates that are interesting with respect to
the extra call pattern problem are local call predicates. If all dynamic predicates are of this type,
then the analysis of the static program is correct except for the clauses defining the dynamic predicates
themselves. Analysis can even ignore the clauses defining such predicates. Optimizations can then be
performed over the program text except for those clauses, which in any case may not be such a big loss
since in some systems such clauses are not compiled, but rather interpreted.

While the classification mentioned above is useful, two problems remain. The first one is how to detect
that dynamic procedures are in the classes that are easy to analyze (dynamic predicates in principle need
to be assumed in the global call class). This can be done through analysis for certain programs,
as shown in [Deb89a], but, as in the case of meta–calls, this does not offer a solution in all cases.
An obvious alternative is to allow the user to express such a classification directly. For this purpose
we propose to enrich the dynamic directive as follows: “:- dynamic(predicate spec,declared type).”,
where the declared types are those mentioned above. Standard dynamic directives are assumed to be of
the global call type.

Still, the general case in which global call dynamic predicates appear in the program (either because
insufficient information is given by the user, because the type of certain predicates could not be determined
statically, or simply because certain dynamic predicates are really of the global call type) needs to be
addressed. The problem is then similar to that which appeared with undetermined meta–calls. In fact,
the calls that appear in the bodies of asserted clauses can be seen as undetermined meta–calls, and similar
solutions apply.

The simplest solution in order to cater for the naive user is, as before, to resort to analyzing all
predicates for topmost call patterns. This can be time consuming and prevent some optimizations, but is
always correct and implies no user burden. There is also again the alternative, used in Aquarius [VD92],
in MA3 [WHD88], and in previous versions of the PLAI analyzer [MH92, BGCH93], of viewing calls from
asserted clauses as external calls and make it the user’s responsibility to declare any extra calls produced
by dynamic predicates via entry annotations. The disadvantage here is again the burden on the user,
and the advantage potentially better optimization.

Finally, we propose a similar solution to the last one proposed in the case of the undetermined meta–
calls: it involves again having two copies of the program, one with few optimizations (based perhaps
on a topmost call pattern analysis for all predicates) and one with the full optimizations (based on an
analysis ignoring any clauses not present in the program), as explained in Section 4.2. There we showed
how meta–calls would directly use the less optimized version due to the renaming mechanism. The same
applies here. Whenever a clause for a dynamic predicate is asserted, the literals in its body will use
the original (less optimized) predicates, which have been compiled for any call pattern. In this way
correctness is always guaranteed. The discussion regarding the relevance of the optimizations is the same
as in Section 4.2. In fact, the static clauses of the dynamic predicates themselves are subject to the
same treatment as the rest of the program. Clearly, this solution can be combined with the previously
mentioned optimizations when particular cases can be identified.

Solving the dynamic literal success substitution problem. If only abolish and retract are
used in the program, the abstract success substitutions of the static clauses of the dynamic predicates are
a safe approximation of the run–time success substitutions. However, a loss of accuracy can occur, as the
abstract success substitution for the remaining clauses (if any) may be more particular. In the presence of
assert, as mentioned before, it is always possible to generate a correct (but possibly inaccurate) success
substitution for dynamic literals by using appropriate topmost abstract substitutions. This is correct
but may introduce some inaccuracy. If the user knows how the dynamic predicates are going to behave,
valuable information regarding the success substitutions for the predicate can be given via trust/pragma
annotations. Finally, note that in the case of memo predicates (and for certain properties) this problem is
avoided since the success substitutions computed from the static program are correct.

Solving the database builtin success substitution problem. This problem does not affect assert
and abolish since the success substitution for calls to these builtins is the same as the call substitution.
On the other hand, success substitutions for retract (and clause) are more difficult to obtain. However,

8Note however that certain analyses, and specially cost analyses which are affected by program execution time, need to
treat these predicates specially.

12



appropriate topmost substitutions can always be safely used. In the special case of dynamic predicates
of the memo class, and if the term used as argument in the call to retract or clause is at least partially
determined, abstract counterparts of the static clauses of the program can be used as approximations in
order to compute a more precise success substitution (see [BCHP95] for more details).

Summary and other approaches. In conclusion, we have studied several ways in which optimizations
based on static analysis can still be guaranteed correct for dynamic programs. In particular, we have
proposed a technique (keeping two copies of the program with different levels of optimization) whereby
the most serious problem of the appearance of extra call patterns is solved in a very general way, without
putting any extra burden on the user, and at only the cost of some code space. This, in combination
with any of the other techniques for solving the other two simpler problems, offers a solution that is
general enough to deal with any kind of programs, without burdening the user, in contrast with previous
solutions, which rely on identifying certain classes of programs, e.g., [Deb89a], or on programmer supplied
annotations [VD92, WHD88].

There is still another, quite different and interesting solution to the problem of dynamic predicates,
which is based on incremental global analysis [HPMS95]. Note that in order to implement assert

some systems include a copy of the full compiler at run–time. The idea would be to also include the
(incremental) global analyzer and the analysis information for the program, computed for the static part
of the program. The program is in principle optimized using this information but the optimizer is also
assumed to be incremental. After each non–trivial assertion or retraction (ground facts and simple facts,
and clauses which can be determined not to affect the previously inferred information may be treated
specially) the incremental global analysis and optimizer are rerun and any affected parts of the program
reanalyzed (and reoptimized). This has the advantage of having fully optimized code at all times, at the
cost of increasing the cost of calls to database manipulation predicates and of executable size. A system
along these lines has been built by us for a parallelizing compiler. The results presented in [HPMS95]
show that such a reanalysis can be made in a very small fraction of the normal compilation time.

5 Program Modules

Up to now we have assumed a single program text (in one or more files). However, programs are obviously
normally better developed in a modular fashion. In this section we address the issues of modularity and
also to some extent interactive development. The main problem with studying the impact of modularity
in analysis (and the reason we have left the issue until this section) is the lack of even a de-facto standard.
There have been many proposals for module systems in logic programming languages (see [BLM94]). For
concreteness, however, we will focus on the module system proposed in the new draft ISO standard
[PRO95]. In this standard, the module interface is static, i.e. each module in the program must declare
the procedures it exports.9 This is done using the module directive. A module can only be compiled
if all the module interfaces for the predicates it imports are defined, even if the actual code is not yet
available. Imported predicates have to be declared also.

As already pointed out in [HWD92] module directives have the nice property that they provide the
entry points for the analysis of a module for free. Thus, if we assume for now that the program consists
of only one module with its module directive and there are no entry declarations, we can safely assume
that the only entry points are the exported predicates. Analysis simply needs to start at the procedures
corresponding to such points with appropriate topmost abstract substitutions. In line with our previous
assumptions, if any entry annotations are present for such exported predicates, they will be assumed
to be closed with respect to external calls. Then, analysis will start at the exported predicates with the
substitutions declared in the entry annotations if available (and topmost otherwise).

In the general case where there are multiple modules, the analysis of literals which call imported pred-
icates requires new approaches, some of which are discussed in the following paragraphs. One advantage
of modules is that they help encapsulate the propagation of complex situations such as with global_call

dynamic predicates.

9This is in contrast with other module systems used in some Prolog implementations that allow entering the code in
modules at arbitrary points other than those declared as exported. This defeats the purpose of modules. We will not discuss
such module systems since the corresponding programs in general need to be treated as non modular programs from the
point of view of analysis.

13



Compositional Analysis. Modular analyses based on compositional semantics (such as, for example,
that of [CDG93]) can be used to analyze programs split in modules. Such analyses leave the abstract
substitutions for the predicates whose definitions are not available open, in the sense that some represen-
tation of the literals and their interaction with the abstract substitution is incorporated as a handle into
the substitutions themselves. Once the corresponding module is analyzed and the (abstract) semantics
of such open predicates known, substitutions can be composed via these handles. The main drawback of
this interesting approach is that the result of the analysis is not definite if there are open predicates. In
principle, this would force some optimizations to be delayed until the final composed semantics is known,
which in general can only be done when the code for all modules is available. Therefore, although analysis
can be performed for each module separately, optimizations (and thus, compilation) cannot in principle
use the global information.

Incremental Analysis. A different approach is by means of the previously mentioned technique of
incremental analysis (e.g. [HPMS95]). Each call to a predicate not declared in the module being analyzed
is mapped to ⊥. Each time a new predicate is analyzed, the information obtained is applied directly to the
parts of the analysis where this information may be relevant. The information obtained with incremental
analysis is conservative: it is correct and optimal. By optimal we mean that if we put together in
a single module the code for all modules (with the necessary renaming to avoid name clashes) and
analyze it in the traditional way, we obtain the same information as with incremental analysis. However,
incremental analysis, in a very similar way to the previous solution, is only useful for optimization if
the code for all modules is available. The information obtained for one isolated module is partial and
in principle cannot be used to optimize a module independently of others, thus precluding its use for
modular optimization from the point of view of software engineering. On the other hand, if optimization
is also made incremental, as mentioned in previous sections, then this does present a solution to the
general problem: modules are optimized as much as possible assuming no knowledge of the other modules.
Optimizations will be correct with respect to the partial information available at that time. Upon module
composition incremental reanalysis and reoptimization will make the composed optimized program always
correct.

Note that Prolog compilers are incremental in the sense that at any point in time new clauses can
be compiled into the program – this allows a powerful interactive development environment. Another
advantage of incremental analysis (aided by incremental optimization) is that it allows the combination
of full interactive program development with full global analysis based optimization.

Trust–Enhanced Module Interface. We propose yet another approach which is based on the fact
that in [PRO95] imported predicates have to be declared in the module importing them and such a
module can only be compiled if all the module interfaces for the predicates it imports are defined, even
if the actual code is not yet available. Note that the same happens for most languages with modules
(e.g., Modula). When such languages have some kind of global analysis (e.g., type checking) the module
interface also includes suitable declarations. For data–flow analysis we propose to augment the module
interface definition so that it may include trust annotations for the exported predicates. Each call to a
predicate not defined in the module being analyzed but exported by some module interface is in principle
mapped to appropriate topmost substitutions. But if in the module interface there are one or more trust
annotations applicable to the call pattern, such annotations will be used instead. Any call to a predicate
not defined in that module and not present in any of the module interfaces can be safely mapped to
⊥ during analysis (this corresponds to mapping program errors to failure – note that error can also be
treated alternatively as a first class element in the analysis). The advantages are that we do not need
the code for other modules and also that we can perform optimizations using the (inaccurate) analysis
information obtained in this way.

Analysis using the trust–enhanced interface is correct. However, the fact that we may assume > for
those calls that are imported from other modules makes this analysis procedure suboptimal. This can
be avoided if the programmer provides trust annotations that are as accurate as possible for imported
predicates. The disadvantage of this method is that it requires the trust–enhanced interface for each
module. However, note that the process of generating these trust annotations can be automated. In a
given module, if the programmer has provided no trust annotation suitable for our purposes, we assume
topmost substitutions for the imported predicates. Whenever the module is analyzed, the call/success–

14



patterns for each exported predicate in the module which are obtained by the analysis are written out in
the module interface as trust annotations. From there, they will be seen by other modules during their
analysis and will improve their exported information. A global fixpoint can be reached in a distributed
way even if different modules are being developed by different programmers at different times and running
the analysis only locally, provided that, as required by the module system, the module interfaces (but
not necessarily the code) are always made visible to other modules.

Summary. In practice it may be useful to use a combination of incremental analysis and the trust–
enhanced module interface for programs split in modules. The trust–enhanced interface can be used
during the development phase of a modular program to compile modules independently. However, as
hinted at before, the use of the trust–enhanced interface does not always guarantee that the analysis
information obtained once the analysis of all modules converges is optimal. We believe, however, that
analysis information is most important once the actual code for all modules is present and the resulting
composed program is compiled. At this moment, incremental analysis can be used to analyze modules
loading them one after the other. Annotations which appear in the code of the modules will be used, but
trust annotations in module interfaces might be ignored at this point. In this way we will obtain the
most accurate analysis information.

Multifile predicates (those defined over more than one file or module) also need to be treated in a
special way. They can be easily identified due to the multifile declaration. They are similar to dynamic

predicates (and also imported predicates) in that if we analyze a module independently of others, some of
the code of a predicate is missing. We can treat such predicates as dynamic predicates and assume topmost
substitutions as their abstract success substitutions unless there is a trust annotation for them. When
the whole program composed of several modules is compiled, we can again use incremental analysis.
At that point, clauses for predicates are added to the analysis using incremental addition [HPMS95]
(regardless of whether these clauses belong to different modules).

A case also worth discussing is that of libraries. Usually utility libraries provide predicates with
an intended use. These predicates can be used by many different modules, even belonging to different
programs. For such library files we can use the automatic generation of trust annotations after analysis
to provide information regarding the exported predicates. This is done for all the different uses and the
generated trust annotations are stored in the library interface. With this scheme it is not necessary to
analyze a library predicate when it is used in different programs. Instead, it is only analyzed once, and
the information stored in the trust annotation is used from then on. If new uses of the library predicates
arise for a given program, the library code can be reanalyzed and recompiled for that use, keeping track
of this new use for future compilations. An alternative approach to the analysis of libraries is to perform
a goal independent analysis for them, coupled with a goal dependent analysis for the particular call
patterns used in the program [CGBH94].

6 Conclusions

We have proposed a number of techniques for the analysis of a dialect of the Prolog language, essentially
following the recently proposed ISO standard. We argue that these solutions, when considered as a whole,
provide a means for the analysis and optimization of the full language. This can be done without any
input from the user, even in the difficult cases of dynamic programs, albeit at some loss of optimization
and/or increase in code size. We have also introduced several types of program annotations that can be
used to both increase the accuracy and efficiency of the analysis and to express its results. We have also
discussed software engineering issues such as modular program development. The proposed techniques
offer different trade–offs between accuracy, analysis cost, and user involvement. While we feel there is still
plenty of work left in achieving more accurate analysis of many features (such as, for example, cut) we
argue that the presented combination of known and novel techniques is the most comprehensive solution
to date for the correct analysis of arbitrary programs using the full power of the language.

15



References

[BCHP95] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis of Prolog
Programs with Extra-Logical Features. Technical Report CLIP2/95.0, Computer Science
Dept., Technical U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte,
Madrid-Spain, March 1995.

[BGCH93] F. Bueno, M. Garćıa de la Banda, D. Cabeza, and M. Hermenegildo. The &–Prolog Compiler
System — Automatic Parallelization Tools for LP. Technical Report CLIP5/93.0, Computer
Science Dept., Technical U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla
del Monte, Madrid-Spain, June 1993.

[BGH94] F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis in
Strict Independence-Based Automatic Program Parallelization. In International Symposium
on Logic Programming, pages 320–336. MIT Press, November 1994.

[BLM94] M. Bugliesi, E. Lamma, and P. Mello. Modularity in Logic Programming. Journal of Logic
Programming, 19–20:443–502, July 1994.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programming, 10:91–124, 1991.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints. In ACM Symposium on
Principles of Programming Languages (POPL’77). ACM Press, 1977.

[CDG93] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modular Logic Pro-
grams. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL’93, pages 451–464, Charleston, South Carolina, 1993. ACM.

[CGBH94] M. Codish, M. Garćıa de la Banda, M. Bruynooghe, and M. Hermenegildo. Goal Dependent
vs Goal Independent Analysis of Logic Programs. In F. Pfenning, editor, Fifth International
Conference on Logic Programming and Automated Reasoning, number 822 in LNAI, pages
305–320, Kiev, Ukraine, July 1994. Springer-Verlag.

[Deb89a] S. K. Debray. Flow analysis of dynamic logic programs. Journal of Logic Programming,
7(2):149–176, September 1989.

[Deb89b] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. ACM
Transactions on Programming Languages and Systems, 11(3):418–450, 1989.

[Deb92] S. K. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Interpretation,
volume 13(1–2). North-Holland, July 1992.

[GGL94] M. Gabbrielli, R. Giacobazzi, and G. Levi. Goal independency and call patterns in the
analysis of logic programs. In ACM Symposium on Applied Computing, pages 394–399. ACM
Press, 1994.

[HPMS95] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Logic
Programs. In International Conference on Logic Programming, pages 797–811. MIT Press,
June 1995.

[HWD92] M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical Com-
pilation Tool. Journal of Logic Programming, 13(4):349–367, August 1992.

[JL88] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284–297, 1988.

[LRV94] B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation Framework
Which Accurately Handles Prolog Search–Rule and the Cut. In International Symposium on
Logic Programming, pages 157–171. MIT Press, November 1994.

16



[LV94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog. ACM Transactions on Programming Languages and
Systems, 16(1):35–101, 1994.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315–347, July 1992.

[MSJ94] K. Marriott, H. Søndergaard, and N.D. Jones. Denotational Abstract Interpretation of Logic
Programs. ACM Transactions on Programming Languages and Systems, 16(3):607–648, 1994.

[oBLdM92] University of Bristol, Katholieke Universiteit Leuven, and Universidad Politécnica de Madrid.
Interface between the prince prolog analysers and the compiler. Technical Report
KUL/PRINCE/92.1, Katholieke Universiteit Leuven, October 1992.

[PH95] G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic Pro-
grams. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based
Program Manipulation, pages 77–87. ACM Press, June 1995.

[PRO94] International Organization for Standardization, National Physical Laboratory, Teddington,
Middlesex, England. PROLOG. ISO/IEC DIS 13211 — Part 1: General Core, 1994.

[PRO95] International Organization for Standardization, National Physical Laboratory, Teddington,
Middlesex, England. PROLOG. Working Draft 7.0 X3J17/95/1 — Part 2: Modules, 1995.

[SWY91] V. Santos Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Supporting Full
Prolog on the Basic Andorra Model. In K. Furukawa, editor, 1991 International Conference
on Logic Programming, pages 443–456. MIT Press, June 1991.

[VD92] P. Van Roy and A.M. Despain. High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine, pages 54–68, January 1992.

[WHD88] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis
of Logic Programs. In Fifth International Conference and Symposium on Logic Programming,
pages 684–699. MIT Press, August 1988.

[Win92] W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics. Journal
of Logic Programming, 13(2 and 3):259–290, July 1992.

17


