
facultad de informática

universidad politécnica de madrid

On the Confluence of CHR Analytical
Semantics

Rémy Haemmerlé
Universidad Politécnica de Madrid &

IMDEA Software Institute, Spain

TR Number CLIP2/2014.0

On the Confluence of CHR Analytical Semantics

Technical Report Number: CLIP2/2014.0

July, 2014

ii

Abstract

In this technical note we study the confluence of the analytical semantics for Constraint Han-
dling Rules (CHR). In particular we demonstrate that confluence of CHR programs under the
classical multiset semantics implies confluence under this set-based semantics.

iii

Contents

1 The General Framework 1
1.1 States . 1
1.2 Programs . 1
1.3 Analytical Operation Semantics . 2
1.4 Monotony . 3

2 Limit Semantics 5
2.1 Minimal Operation Semantics . 5
2.2 Maximal Operation Semantics . 6

3 Confluence 7
3.1 Commutation of the limit semantics . 7
3.2 Multiset-based Confluence vs Set-based Confluence 9

References 12

iv

On the Confluence of CHR Analytical Semantics 1

In this technical note we present some results on the confluence of the analytical semantics
for Constraint Handling Rules (CHR) [3]. In paricular, the note contains the two following
contributions: In Section 3.1 we present different notions of confluence and show they are
equivalent. In Section 3.2 we demonstrate te confluence of CHR programs under the classical
multiset semantics implies confluence under this set-based semantics.

1 The General Framework

In this section, we introduce the syntax, the declarative semantics, and the analytical op-
erational semantics for CHR [2]. For this purpose, we will assume a language of (built-in)
constraints containing the equality =, ⊥, and > over some theory T . We define (user-defined)
atoms using a different set of predicate symbols.

In the following, variables will be denoted by lower case letters from the end of the alphabet,
such as x, y, z, . . . , while atoms and atomic constraints will be indicated by lowercase letters
from the beginning of the alphabet, such as a, b, c, d, . . . Sets of constraints and atoms will
be denoted by blackboard capital letters, such as A, B, C, D. By a slight abuse of notation,
we will confuse multisets and conjunctions of constraints and atoms, forget braces around such
multisets, and use commas for their unions.

1.1 States

A branch is a tuple (A|C), where A (the user store) is a finite multiset of user-defined atoms
and C (the built-in store) is a finite conjunction of atomic built-in constraints. Sets of branches
can be denoted by Greek letters, ∆ or Γ. By a slight abuse of notation, we will confuse multiset
of branches, forget braces around such multisets, and use semicolons for their unions. A state
is a tuple of 〈Γ〉~x where Γ is a multiset of branches and ~x (the global variables) a finite set of
variables. Unsurprisingly, the local variables of a state are those variables of the state that are
not global. States are always —implicitly— considered modulo alpha-conversion of their local
variables.

When no confusion can occur, we will syntactically merge user atoms and built-in constraints
within a branch. For the sake of conciseness, we will sometimes denote disjunctions of branches
within a state as a finite family. For instance, a state of the form

〈(A1|C1) ; . . . ; (An|Cn)〉~x

may be denoted by
〈
(Ai|Ci)i∈I

〉
~x
, where I stands for the set of indices {1, . . . , n}. The set of

all states will be denoted by Σ.

1.2 Programs

A program is a finite set of rules of the following form:

(r @ H ⇐⇒ G | (B1|C1); . . . ; (Bn|Cn))

where H (the head) is a nonempty set of atoms, G (the neck or guard) is a conjunction of
constraints, the (Bi|Ci) are branches forming the so-called body, and r is an identifier assumed

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 2

unique in the program. An empty guard > can be omitted with the symbol |. For the sake of
simplicity, we will always assume the guard and the body of a same rule share only variables
that appear in their head. Disjunctions of branches within the body of a rule may be denoted
by a finite family of branches in a way similar to branches within a state. The local variables
of a rule are those variables that appear free in the body but do not appear either in the head
or in the guard.

In the following, we distinguish special cases of rules.

• The so-called backward rules, which are those rules with the head repeated as an inde-
pendent branch in the body; that is to say, rules of the form:

(r @ H ⇐⇒ G | (B1|C1) ; . . . ; (Bn|Cn) ; (H|Gρ))

where ρ renames (fv(G) \ fv(H)) by fresh variables.
Such a rule can be written with the alternative syntax:

(r @ H⇐= G | (B1|C1) ; . . . ; (Bn|Cn))

• The so-called forward rules (or propagation rules), which are those rules with the head
repeated in each branch of the body; that is to say, rules of the form:

(r @ H ⇐⇒ G | (H,B1|Gρ,C1) ; . . . ; (H,Bn|Gρ,Cn))

where ρ renames (fv(G) \ fv(H)) by fresh variables.
Such a rule can be written with the alternative syntax:

(r @ H =⇒ G | (B1|C1) ; . . . ; (Bn|Cn))

Before considering the logical reading of programs, we introduce our running example. This
is an enhanced version of the classic CHR introductory example.

1.3 Analytical Operation Semantics

The operational semantics of our language can be represented by a simple transition relation
defined modulo a state equivalence.

Definition 1. Given two multiset of atoms (a1, . . . , am) and (b1, . . . , bn), we define an evidence
of the set-inclusion of (a1, . . . , am) into (b1, . . . , bn) as a conjunction of equality constraints
(a1 = bi1 ∧ · · · ∧ am = bim) where i1, . . . , im ⊆ {1, . . . , n}. Given two states 〈(Ai|Ci)i∈I〉~x and
〈(Bj |Dj)j∈J〉~y we will say that the branch (Ai|Ci) is covered by the branch (Bj |Dj) (i ∈ I and

j ∈ J), if the following implication holds:

T � Ci → ∃-(Ai,~x) (Dj ∧ Eij)

where Eij is an evidence of set-inclusion of Ai into Bj and with the side condition fv(Ai,Ci)∩
fv(Bj ,Dj) ⊆ ~x ∩ ~y.

The state subsumption is the least partial order w closed under alpha-renaming of local
variables that satisfies R w S if any branch of R is covered by some branch of S. The (set-
based) state equivalence is equivalence induced by the state subsumption, i.e., R ≡ S iff R w S
and S w R.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 3

In the following Σ≡ will denote the quotient set Σ by ≡ and [S] the equivalence class of the
state S by ≡.

Here follows some technical properties of the state equivalence.

Proposition 2. Let (A|C) and (B|D) be two constrained set of atoms, Γ a set of constrained
sets of atom, and x̄ a set of variables. The following properties hold:

1. For any renaming ρ with domain disjoint from x̄:

〈(A|C) ; Γ〉x̄ ≡ 〈(Aρ|Cρ) ; Γ〉x̄

2. For any variable y no free in ~x and any term t

〈(A|y= t,C) ; Γ〉x̄ ≡ 〈(A [y\t] |y= t,C) ; Γ〉x̄

3. If T � ∃-(A=B,x̄) (C)↔ ∃-(A=B,x̄) (D) then

〈(A;C) ; Γ〉x̄ ≡ 〈(B;D) ; Γ〉x̄

4. For any variable y not free in Γ: 〈Γ〉x̄ ≡ 〈Γ〉x̄y

5. 〈(|>) ; Γ〉x̄ ≡ 〈(|>)〉x̄ and 〈(A|⊥) ; Γ〉x̄ ≡ 〈Γ〉x̄

6. For all variables y and z and any term s.t. y /∈ fv(A,B, ~x):

〈(A [y\z] | z= t,B) ; Γ〉x̄ ≡ 〈(A [y\t] |z= t ∧ B) ; Γ〉x̄

Once the state equivalence has been stated, the operational semantics of our language can
be defined by a single rule.

Definition 3. Formally, the analytical operational semantics of a program P is the least binary
relation P−→ on Σ≡ satisfying the following rule:(

r @ H ⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ

[〈(H,A|G,D) ; Γ〉x̄] P−→
[〈

(Bi,A|G,Ci,D)i∈I ; Γ
〉
x̄

]
where ρ renames the local variables of P with fresh variables. P−→≡ will denoted the reflexive
closure of P−→ and P−→∗ the transitive closure of P−→≡ . For two states S and S′ we may also
write S P−→ S′ instead of [S] P−→ [S′].

1.4 Monotony

The monotonicity is a fundamental property of any CC language. It means that of a transition
is possible, then the same transition is possible in any larger state (those state that contain
addition information in the form of atoms and constraints). In other word adding information
to a state cannot inhibit the applicability of a rule. In this section we defined formally this
notion and prove our language features it.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 4

To help reduce the level of verbosity we introduce three operators on states: The quantifica-
tion, the disjunction, and the conjunction of states are respectively defined as:

∃z̄.〈Γ〉x̄
def
= 〈Γ〉(x̄\z̄)

〈∆〉x̄⊕〈Γ〉ȳ
def
= 〈∆; Γ〉x̄ȳ

〈(Ai|Ci)i∈I〉x̄⊗〈(Bj |Dj)j∈J〉ȳ
def
= 〈(Ai,Bj |Ci,Dj)(i,j)∈I×J〉x̄ȳ

where
(

fv((Ai,Ci)i∈I) ∩ fv(fv((Bj ,Dj)j∈J

)
⊆ x̄ ∩ ȳ and fv (∆) ∩ fv (Γ) ⊆ x̄ ∩ ȳ.

It appears the set of states supplied with these operators form a lattice. By a slight abuse of
notation we will confuse > and ⊥ with the trivial state 〈(∅|>)〉 and the inconsistent state 〈∅〉
respectively.

Proposition 4. S ordered by w is a lattice, where ⊥ and > are respectivelly the suppremum
and the infimum of S, and ⊗ and ⊕ compute respectively the suppremum and the infimum of
two elements.

Proof. The reflexivity and the transitivity of w follows directly by reflexivity and the transitivity
of the logical implication. We know hence that w is a partial order relation. Now we have to
prove that (S ⊗ S′) and (S ⊕ S′) are respectively an infimum and a supremun for S and
S′. In other words we need to establish (1) ((S ⊗ S′) w S), (2) ((S ⊗ S′) w S′), (3) (S w
R & S w R′) implies (S w (R ⊗ R′)), (4) (S w (S ⊕ S′)), (5) (S′ w (S ⊕ S′)), and (6)
(S w R & S′ w R) implies ((S ⊕ S′) w R). For (1) and (2) it is sufficient to notice that
� (C ∧ C′) → ∃x̄

(
C ∧

(
A ⊆̇ (A,A′)

))
. For (3) note that if T � D → ∃~y(C ∧ (A ⊆̇ B)) and

T � D′ → ∃~y(C ∧ (A ⊆̇ B′)), then T � D ∧ D′ → ∃~y(C ∧ (A ⊆̇ (B,B′))). (5), (6), and (7)
follow directly by definition of w. To conclude just notice that for any state S, ⊥ w S w >
hold.

We will say that a binary relation R is monotone if it is stable with respect to disjunction,
conjunction, and quantification. Formally stability is defined as:

• R is ⊕-stable. if for all S, S′ ∈ Σ S R S′ implies (S ⊕R)R∗ (S′ ⊕R) for any state R.

• R is ⊗-stable, if for all S, S′ ∈ Σ S R S′ implies (S ⊗R)R∗ (S′ ⊗R) for any R.

• R is ∃-stable, if for all S, S′ ∈ Σ S R S′ implies (∃~x.S)R∗ (∃~x.S′) for any set of variable
~x.

where R∗ is the relfexive-transitive closure of R.

Unfortunalty, the transition P−→ is not strictly monotone. It fact a transition in a state
may correspond to several transitions in the augmented states. That comes form the fact the
operational semantics is defined only on states in disjunctive normal form. Nevertheless all
is not lost. Indeed the several transitions need in the bigger state apply allways to different
branches. We can therefore defined a notion of transition that allows the application of a rule
to each different branches in one step. As shown by Proposition 6, this notion we call parallel
transition has the good property to be monotone.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 5

Example 5. Consider the program P built form the unique rule (r @ a⇐⇒ b). Clearly 〈(a)〉 P−→
〈(b)〉. Monotony would implies that for any state S, (〈(a)〉 ∧S) P−→ (〈(b)〉 ∧S). It is easy to very

the property does not hold for S ≡ 〈(c) ; (d)〉. Indeed (〈(a)〉 ∧ 〈(c) ; (d)〉) ≡ (〈(a, c) ; (a, d)〉) 6P−→
(〈(b, c) ; (b, d)〉) ≡ (〈(b)〉 ∧ 〈(c) ; (d)〉). In fact, a number of steps is equivalent to the number of
branches in S (2 for our counter examples) is necessary.

We can however recover a weak form of monotony by allowing parallel rewritting in distinct
branches.

The (disjunctive) parallel closure of given binary relation R over states is the least relation
R⊕ satisfying the following rule:

S1 R S′1 · · · Sn R S′n
∃x̄ (S ⊕ S1 ⊕ · · · ⊕ Sn)R⊕ ∃x̄ (S ⊕ S′1 ⊕ · · · ⊕ S′n)

Proposition 6 (Weak Monotonicity). The relation P−→⊕ is monotone.

The proof of the proposition used the two following lemmas.

Lemma 7. w and ≡ are monotone relations over states.

Proof. The ⊕-stability and the ⊗-stability of w are immediate since S is a lattice. For the ∃-
stability of w, just notice that if T � φ→ ∃-~xφ then for any set ȳ bigger than x̄ T � φ→ ∃-~yφ.
Hence we established the monotonicity of w. The monotonicity of ≡ is an immediate corollary
of the monotonicity of w

Lemma 8. If S P−→S′ then (R⊗ S) P−→⊕ (R⊗ S).

Proof. Let assume the rule applied is (r @ H ⇐⇒ G | (Bi|Ci)). By definition of P−→ , we know
that S and S′ are of the forms

• S ≡ 〈(H,A|G,D) ; Γ〉x̄
• S′ ≡

〈
(Bi,A|CiG,D)i∈I ; Γ

〉
x̄

We prove the case where R has a single branch.

By induction on the number of branches in R. The base case is immediate (R has no branch),
the result is immediate since 〈(∅|⊥)〉 ≡ R ≡ R ⊗ S ≡ R ⊗ S′. For the inductive case (R has
n+ 1 branches).

2 Limit Semantics

2.1 Minimal Operation Semantics

This section presents a restriction operational semantics, the so-called minimal semantics,
which under-approximate the general semantics in the sens of w. Those minimal operation

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 6

semantics prevent the rules from consuming any atoms in a branch: the result of each rule’s
application is stored in a new branch, while the original branches are kept intact.

Definition 9. The minimal (operational) semantics of a program P are given by the least
relation P−⇁ on Σ≡ satisfying the following rule:(

r @ H ⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ

[〈(H,A|G,D); Γ〉x̄] P−⇁
[〈

(Bi,A|G,Ci,D)i∈I ; (H,A|G,D); Γ
〉
x̄

]
where ρ renames the local variables of P with fresh variables. We will use P−⇁≡ to denote its
reflexive closure and P−⇁ ∗ its reflexive closure. For two states S and S′ we may also write
S P−⇁ S′ instead of [S] P−⇁ [S′].

The minimal semantics feature the property of (strong) monotonicity.

Proposition 10 (Monotonicity). For any program P containing a rule r, P−⇁r is monotone.

The following proposition justifies the name of the semantics. It basically states that the
minimal semantics underapproximate (in the sense of state subsumption) the general semantics.

Proposition 11. Let P be an arbitrary program and S, S′, and R be three states.

• (Soundness) If S P−⇁ S′ then S P−→ S′.

• (Completness) If R w R′ P−→ S, then there exists R′, such that R P−⇁∗ S′ v S′.

2.2 Maximal Operation Semantics

This section presents a restriction operational semantics, the so-called maximal semantics,
which over-approximate the general semantics in the sens of w.

The so-called maximal semantics prevent rules from consume their heads. Furthermore, they
never create more branches than the body of a rule imposes. We argue that this captures the
pure forward chaining transitions of the general semantics.

Definition 12. The maximal (operational) semantics of a program P are given by the least
relation P−⇀ on Σ≡ satisfying the following rule:(

r @ H ⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ

[〈(H,A|G,D); Γ〉x̄] P−⇀
[〈

(H,Bi,A|G,Ci,D)i∈I ; Γ
〉
x̄

]
where ρ renames the local variables of P with fresh variables. We will use P−⇀≡ to denote its
reflexive closure and P−⇀∗ its reflexive-transitive closure. For two states S and S′ we may also
write S P−⇀ S′ instead of [S] P−⇀ [S′].

As the general operational semantics, the maximal one feature a weak form of monotonicity.

Proposition 13 (Weak Monotonicity). For any program P containing a rule r, P−⇀⊕r is mono-
tone.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 7

S

S1 S2

S′

*
1

*
2

*
2

*
1

Figure 1: Commutation

S

S1 S2

S′

* *

* *

Figure 2: Confluence

S

S1 S2

S′1wS2

* *

* *

Figure 3: Commutation up to w

The following proposition states that the maximal semantics overapproximate the general
semantics.

Proposition 14. Let P be a program and S, S′, and R be three states.

• (Soundness) If S P−⇀ S′ then S P−→ S′.

• (Completness) If R w R′ P−→ S then there exists S′ such that R P−⇀∗ S′ w S.

3 Confluence

Confluence refers to the fact that two finite computations starting from a common state can
always be prolonged so as to eventually meet in a common state again. Because it justifies the
use of committed choices for the rules application we are interested by defining a proper notion
of confluence for programs. For this purpose we will extend the decreasing diagrams criterion
on we recently proposes for classical CHR.

From the point of view of abstract rewriting system, two rewrite →1 and →2 commute if
(←−∗2 · −→∗1) ⊆ (−→∗1 · ←−∗2) holds. A rewrite is confluent if it commutes with itself. (Figures 1
and 2 represent graphically the two notions.) Concretely we will say that a program P is
confluent if so is P−→.

3.1 Commutation of the limit semantics

Before interesting ourselves in a concrete way to establish confluence of programs with respect
to the general semantics, we show that confluence can be reformulate into an interesting notion
of commutation with respect to the limit semantics. the intuition about this new notion can be
understood has a formal way proving the limit semantics of a program do not contradict each
other.

Definition 15 (Commutation of the limit semantics). The limit semantics of a program P
commute up to w if for all states S, R and T such that S P−⇁∗R and S P−⇀∗ T there exist two
states R′ and T ′ such that R P−⇀∗R′ and S P−⇁∗ T ′ and R′ w T ′. The definition is graphically
represented at Figure 3.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 8

The following theorem states that the commutation of the limit semantics of a program P is
equivalent to the general confluence P.

Theorem 16. Let P be CHR∨ program. The following properties are equivalent:

(i) P is confluent.

(ii) The limits semantics of a program P commute up to w.

(iii) For any peak R P←−∗ S (P−→ · w)∗ T there is a valley R (P−→ · w)∗ S′ P←−∗ T .

The proof of the theorem use the following lemma. This latter states that P−→r S can be
permuted with w and v.

Lemma 17. Let P be a CHR∨ program. For all states R, S, and T the following properties
holds:

(i) If R P−→ S w T then there exists S′ s.t R w S′ P−→⊕ T .

(ii) If R w S P−→T then there exists S′ s.t. R P−→r S
′ w T .

(iii) If R P−→ S v T then there exists S′ s.t. R v S′ P−→T .

(iv) If R v S P−→T then there exists S′ s.t. R P−→⊕ S′ v T .

Proof. Using the monotony of P−→ and the fact that S is a lattice we have: For case (i), R w
(R⊗T) P−→⊕r (S⊗T) ≡ T . For case (ii), R ≡ (R⊕ S) P−→ r (R⊕ T) w T . For case (iii),
R v (R⊕ T) P−→r (S ⊕ T) ≡ T . Finally for case (iv), R ≡ (R⊗ S) P−→⊕r (R⊗ T) v T .

Proof of Theorem 16.

• (i) =⇒ (ii).
If R P↽−∗ S P−⇀∗ T .
Then R P←−∗ S P−→∗ T (by soundness of P−⇁ and P−⇀).
Then R P−→∗ · P←−∗ T (by hypothesis).
Then R P−⇀∗ · w · P↽−∗ T (by completeness of P−⇁ and P−⇀).

• (ii) =⇒ (iii).
If R P←−∗ S (P−→ · w)∗ T
Then R P←−∗ S P−→∗ · w T (by Lemma 17).
Then there exist R′ and T ′ s.t. RwR′ P↽−∗ S P−⇀∗ T ′wT

(by completeness of P−⇁ and P−⇀).
Then R w R′ P−⇀∗ · w · P↽−∗ T ′ w T (by hypothesis).
Then R w R′ P−→∗ · w · P←−∗ T ′ w T (by soundness of P−⇁ and P−⇀).
Then R P−→∗ · w · P←−∗ T (by Lemma 17).
Then R (P−→ · w)∗ · P←−∗ T (by reflexivity of w).

• (iii) =⇒ (i).
If R P←−∗ S P−→∗ T .
Then by hypothesis there exist two states U and V such that

R (P−→ · w)∗ U P←−∗ T and R P−→∗ V (v · P←−)∗ T .

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 9

Then by Lemma 17 there exist two states U ′ and V ′ such that
R w U ′ P−→∗ U P←−∗ T and R P−→∗ V P←−∗ V ′ v T .

Then finally because Σ is a lattice and P−→∗ is monotone,
R ≡ (R⊕ U ′) P−→∗ (U ⊕ V) P←−∗ (T ⊕ V ′) ≡ T .

3.2 Multiset-based Confluence vs Set-based Confluence

In this section we show that classical multiset-based confluence [1] requires strictly stronger
requirements that the analytical set-based confluence. This implies that multiset-based con-
fluence implies the set-based one. This also provide a simple technique to prove confluence of
programs when run under the set-based semantics.

The muliset-based equivalence is the least relation ≡m satisfying the rule:

T �
∧

i∈I
((
Ci → ∃-(Ai,~x) (Di ∧ Ai =Bi)

)
∧
(
Di → ∃-(Bi,~y) (Ci ∧ Bi =Ai)

))
〈(Ai|Ci)i∈I〉~x ≡m 〈(Bi|Di)i∈I〉~y

with the side condition fv(Ai,Ci) ∩ fv(Bi,Di) ⊆ ~x ∩ ~y. In the following Σm will denote the
quotient set Σ by ≡m and [S]m the equivalence class of the state S by ≡m.

The multiset-based operational semantics of a non-disjunctive program P is the least binary

relation
P

on Σ≡ satisfying the following rule:

(r @ H ⇐⇒ G | (B|C) ; Γ) ∈ Pρ

[〈(H,A|G,D) ; Γ〉x̄]
m

P
[〈(B,A|G,C,D)〉x̄]

m

where ρ renames the local variables of P with fresh variables.
P ≡ will denoted the reflexive

closure of
P

and
P ∗ the transitive closure of

P ≡. For two states S and S′ we may also

write S
P

S′ instead of [S]m
P

[S′]m.

Lemma 18. Let P be a program confluent with respect to the multiset-based semantics. For
any state S, S′, S1 and S2 and S2 such that

S1
P ∗ S v S′ P ∗ S2

there exist states Sc, S′1, and S′2 such that

S1 w S′1
P ∗ Sc

P ∗ S′2 v S2

Proof. Let assume

S ≡m 〈(A|C)〉~x
P ∗ 〈(A′|C′)〉~x ≡m S1

S′ ≡m 〈(B|D)〉~x
P ∗ 〈(B′|D′)〉~x ≡m S2

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 10

Since S v S′, A = {a1, . . . , am}, B = {b1, . . . , bn} for some a1, . . . , am, b1, . . . , bn such that:

T � D→ ∃-B,~x (C ∧ a1 = bj1 ∧ · · · ∧ am = bjm) with j1, . . . , jm ⊆ {1, . . . , n}

Now letR = 〈(An|C)〉~x (where An is the repetition n times of A). Then for S′1 =
〈(
A′n|C′ρ2, . . . ,C′ρn

)〉
~x

and S′2 = 〈An \ {ai1 , . . . , ain},B′|C,D′〉~x (where each ρi renames fv(A′,C′) \ fv(A,C) with dis-
tinct fresh variables), we have:

S1 v S′1
P ∗ R

P ∗ S′2 v S2

Then by confluence of
P

, there exists Sc such that:

S1 v S′1
P ∗ Sc

P ∗ S′2 v S2

We define binary relations
P

and
P

as

P
=

(
v · P ∗ · v

)
P

=

(
w · P ∗ · w

)

Lemma 19. (
P ∗ · P ∗) ⊆ (

P ∗ · P ∗)

Proof. Tanks to Lemma 18 and transitivity of w we infer easily that

(
P · P) ⊆ (

P · P)

We shall conclude using Hindley’s Lemma (See Exercise 1.3.6 in Terese’s book [4]).

Lemma 20. For all states R, S,the following properties holds:

(i) If R P−⇁ S then there exists R′ and S′ such that R ≡s R
′ P S′ ≡s S

(ii) If R P−⇀ S then there exists R′ and S′ such that R ≡s R
′ P S′ ≡s S

Proof. We prove the proposition independently:

(i) By def. of P−⇁ we have:

•
(
r @ H ⇐⇒ G | (Bi|Ci)i∈I

)
∈ Pρ

• R ≡s 〈(H,A|G,D); Γ〉x̄,

• S ≡s

〈
(Bi,A|G,Ci,D)i∈I ; (H,A|D); Γ

〉
x̄
.

Therefore we have:

R ≡s 〈(H,A|G,D); (H,A|G,D); Γ〉x̄
P 〈

(Bi,A|G,Ci,D)i∈I ; (H,A|D); Γ
〉
x̄
≡s S

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 11

(ii) By def. of P−⇀ we have:

•
(
r @ H ⇐⇒ G | (Bi|Ci)i∈I

)
∈ Pρ

• R ≡s 〈(H,A|G,D); Γ〉x̄
• S ≡s

〈
(H,Bi,A|G,Ci,D)i∈I ; Γ

〉
x̄

Therefore we have:

R ≡s 〈(H,H,A|G,D); Γ〉x̄
P 〈

(H,Bi,A|G,Ci,D)i∈I ; Γ
〉
x̄
≡s S

Theorem 21. If P is confluent with respect to the multiset semantics, then it is confluent with
respect to the set semantics.

Proof. If S1
P↽−∗ S P−⇀∗ S2,

then S1
P ∗ S

P ∗ S2 (by Lemma 20),

then S1
P ∗ S′

P ∗ S2 (by Lemma 19),

then S1 (v · P−⇀ · v)
∗
S′ (w · P↽− · w)

∗
S2 (by Propositions 11 and 14),

then S1
P−⇀∗ · v · P↽−∗ S2 (by Lemma 17),

then P is confluent with respect to the set semantics (by Theorem 16).

It is worth noting the opposite does not holds in the sens there is program confluent with
respect to the set-based semantics which are not confluent with respect to the multiset-based
semantics.

Report No. CLIP2/2014.0 July, 2014

On the Confluence of CHR Analytical Semantics 12

References

1. S. Abdennadher, T. Frühwirth, and H. Meuss. On confluence of Constraint Handling Rules.
In CP, LNCS 1118:1–15. Springer, 1996.

2. T. Frühwirth. Constraint Handling Rules. Cambridge, 2009.

3. R. Haemmerlé. On Combining Backward and Forward Chaining in Constraint Logic Pro-
gramming. In PPDP’14. ACM Press, 2014.

4. Terese. Term Rewriting Systems. Cambridge University Press, 2003.

Report No. CLIP2/2014.0 July, 2014

