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Abstract

Linear logic Concurrent Constraint programming (LCC) is an extension of concurrent con-
straint programming (CC) where the constraint system is based on Girard’s linear logic instead
of the classical logic. In this paper we address the problem of program equivalence for this pro-
gramming framework. For this purpose, we present a structural operational semantics for LCC
based on a label transition system and investigate different notions of observational equivalences
inspired by the state of art of process algebras. Then, we demonstrate that the asynchronous
π-calculus can be viewed as simple syntactical restrictions of LCC. Finally we show LCC ob-
servational equivalences can be transposed straightforwardly to classical Concurrent Constraint
languages and Constraint Handling Rules, and investigate the resulting equivalences.
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1 Introduction

The class of Concurrent Constraint languages (briefly, CC) (Saraswat and Rinard 1990) was
introduced as a generalization of concurrent logic programming (Maher 1987) with constraint
logic programming (Jaffar and Lassez 1987). Nonetheless it has strong similarities with more
classical models of concurrency such as CCS, the CHAM, or the π-calculus. For example, its
semantics has been originally expressed by process algebras similar to CSS (Saraswat and Rinard
1990) or a later in the style of the CHAM (Fages, Ruet, and Soliman 2001). Furthermore, it
generalizes Actor model (Kahn and Saraswat 1990) and possesses the phenomenon of channel
mobility of the π-calculus (Laneve and Montanari 1992).

Nonetheless, any CC language differs from the usual models of concurrency because it relies
on a constraint system for specifying relationship (entailment) between messages (constraints),
which confers to it a “monotonic” essence. Indeed, in CC, processes can only add information by
posting constraints or checking that enough information is available to entail a guard. Linear
logic CC languages (briefly, LCC) (Saraswat and Lincoln 1992) have been introduced as a
generalization of CC in which processes can consume information by means of the ask operation,
hence breaking the monotonicity of CC. The main idea of this extension is to view the constraint
system as Girard’s linear logic (Girard 1987) theory instead of classical logic theory. It results
in a simple framework that unifies constraint programming and asynchronous process algebras.

Since the beginning of the nineties, the semantics foundation of LCC has been well studied
(See for instance (Best, de Boer, and Palamidessi 1997; Ruet and Fages 1997; Fages, Ruet, and
Soliman 2001; Haemmerlé, Fages, and Soliman 2007)), but surprisingly the formal comparison
with classical models of concurrency has received little attention. Indeed, during the same
period, the use of constraints in the context of concurrency seems to have received more than a
little attention. For instance, the fusion calculus (Parrow and Victor 1998) introduced at the end
of the nineties can be viewed as a generalization of the π-calculus with unification constraints.
Several hybrid process algebras with constraint mechanisms have also been proposed (See for
example, the π+-calculus (Dı́az, Rueda, and Valencia 1998), the extended CC of Gilbert and
Palamidessi (Gilbert and Palamidessi 2000), or the more recent CC-π (Buscemi and Montanari
2007; ?))

In this paper, we investigate observational equivalence for LCC. Here, we understand ob-
servational equivalence in a broad sense: two processes are observationally equivalent if, in
any environment, an external observer cannot possibly tell the difference when one process is
unplugged and the other one plugged in. In order to provide a relevant instantiation for this
intuitive definition, it is necessary to take into account the execution paradigm in which the
processes will be considered. Indeed, in CC frameworks there typically exist two possible exe-
cution paradigms: the “backtracking” paradigm (from logic programs), which allows reversible
executions, and the “committed choice” paradigm (from process algebras), which does not.In
the following, we propose the may testing equivalence and the barbed congruence, as natural
instances of observable equivalence for LCC when considered in these respective paradigms.
We propose also the logical equivalence and the labelled bisimulation that will provides simpler
characterization for the two former notions.

In order to define such equivalences, we will look at LCC from a point of view slightly
different from the classical one: Here constraints are not posted into a central blackboard
anymore, but they are processes that can migrate, merge, and emit as message a part of the
information they represent; meanwhile, ask processes just wait for messages that “logically”
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match their guards. Hence, it is possible to express the operational semantics of LCC by
an elegant labeled transition system (briefly, LTS). We then show that the asynchronous π-
calculus can be viewed as a sub-calculus of LCC, and that the usual π-calculus observational
equivalences are particular instances of the ones of LCC. Finally, we investigate particular
properties of LCC observational equivalences, when they are transposed into classical CC and
Constraints Handling Rules (CHR).

The paper is organized as follows. In Section 2, we introduce LCC in a generalized frame-
work with replication and without CC declarations as we have partially done in a previous
work (Haemmerlé, Fages, and Soliman 2007). We express the operational semantics of this
language by means of an LTS and show that linear logical semantics of LCC (Fages, Ruet, and
Soliman 2001) still holds, proving at the same time that the operational semantics proposed
here is coherent with the usual one. Section 3 presents different parametric equivalencies for
LCC processes, namely logical equivalence, may testing equivalence, labeled bisimulation, and
barbed congruence. In Section 4, we present a simple LCC interpretation of the asynchronous
π-calculus and prove that some of the equivalences we proposed in the previous section coincide
with the usual ones for this paradigm. Finally, in Section 5 we explain how LCC observational
equivalences can be transposed to classical CC and CHR using existing LCC interpretations of
CC and CHR, and investigate properties of resulting equivalences.

2 A process calculi semantics for Linear Logic CC

In this paper, we assume given a denumerable set V of variables, a denumerable set Σc of
predicate symbols (denoted by γ), and a denumerable set Σf of function and constant symbols.
First order terms built from V and Σf will be denoted by t. Sequences of variables or terms will
be denoted by bold face letters such as x or t. For an arbitrary formula A, fv(A) denotes the set
of free variables occurring in A, and A[x\t] represents A in which the occurrences of variables
x have been replaced by terms t (with the usual renaming of bound variables, avoiding variable
clashes).

2.1 Syntax

In this section, we give a presentation of LCC languages where declarations are replaced
by replication of guarded processes. Indeed, replicated asks generalize usual declarations to
closures with environment represented by the free variables in the ask (Haemmerlé, Fages, and
Soliman 2007). In LCC, we distinguish four syntactical categories as specified by the following
grammar:

c ::= 1 | 0 | γ(t) | c⊗ c | ∃x.c | !c (constraints)
α ::= τ | c | (x)c (LCC-actions)
G ::= ∀x(c→ P ) | G+G (LCC-guards)
P ::= c | P |P | ∃xP | !G | G (LCC-processes)

Constraints are formulas built from terms, constraint symbols, and the logical operators: 1
(true), 0 (false), the conjunction (⊗), the existential quantifier (∃), and the modality (!). The
three kinds of actions are the silent action τ , the input action c, which represents a constraint for
which a process waits, and the output action (x)c (x being the variables extruded by the action),
which represents the constraint posted by a process. The order of the extruded variables in an
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output message is irrelevant, hence if y is a permutation of the sequence x, we will consider
(x)c equal to (y)c. In LCC-processes, an overlined constraint c stands for asynchronous tell,
| for parallel composition, ∃ for variable hiding, → for blocking ask, + for guarded choice,
and ! for replication. As one can see, the syntax for LCC-processes does not include specific
construction for the null process. Indeed, this latter can be emulated by the trivial constraint
1, which represents no information.

For convenience, if x is empty, we will abbreviate ∀x(c→ P ) and (x)c as c→ P and c, respec-
tively. ∃xA will be a notation for ∃x1. . . ∃xnA if A is a constraint or an LCC-process and x is
the sequence of variables x1 . . . xn. Moreover, for any finite multiset of processes or logic formu-
las {A1, . . . , An}, we will use

⊗n
i=1Ai, Πn

i=1Ai, and Σni=1Ai as abbreviations forA1⊗ · · · ⊗Am,
A1| · · · |Am, and A1 + · · ·+An respectively. As usual, the existential and universal quantifiers in
constraints and LCC-processes are considered as variable binders. Conventionally, we consider
the variables x as free in any action of the form (x)c. We use ev(α) as an abbreviation for the
extruded variables of α (i.e. ev(α) = x, if α is an action of the form (x)c, ev(α) = ∅ otherwise).

LCC languages are parametrized by a (linear) constraint system, which is a pair (C,
C) where
C is the set of all constraints and 
C is a subset of C×C which defines the non-logical axioms
of the system. For a given constraint system (C,
C), the entailment relation `C is the smallest
relation containing 
C and closed by the rules of intuitionistic linear logic (See Appendix A).
We will use the notation Aa`CB to mean that both sequents A `C B and B `C A hold.

In this paper, we are interested in studying classes of LCC processes obtained by syntactical
restrictions on the constraints that they can use. These restrictions will simulate the power
the observer in LCC sub-calculi and/or the visibility limitations imposed by ad-hoc scope
mechanisms such as module systems. In practice, they will be specified by means of two subsets
of C, that will limit the possible constraints a process can respectively ask or tell. Formally for
all subsets D and E , we say that a process P is D-ask restricted (resp. E-tell restricted) if it
is obtained by the grammar for processes where any ask ∀x(c→ P ) (resp. any tell c) satisfies
(∃x.c) ∈ D (resp. c ∈ E). More generally, we say that P is a DE-process if P is both D-ask and
E-tell restricted.

2.2 Operational semantics

In Table 1, we define, for a given constraint system (C,
C), the operational semantics of LCC
by means of an LTS. As usual, in process algebras this semantics uses a structural congruence.
This congruence, noted ≡C , is defined as the smallest equivalence satisfying α-renaming of
bound variables, commutativity and associativity for parallel composition, summation, and the
following identities:

P |1 ≡C P ∃z1 ≡C 1 ∃x∃yP ≡C ∃y∃xP !P ≡C P |!P
c⊗ da`Ce
c|d ≡C e

P ≡C P ′

P |Q ≡C P ′|Q
z /∈ fv(P )

P |∃zQ ≡C ∃z(P |Q)

P ≡C P ′

∃x.P ≡C ∃x.P ′

The side condition “c `C ∃y(d[x\t]⊗ e) is a most general choice” is a reasonable restriction,
that guarantees the transition does not weaken constraints within a process as can do the logical
entailment (For instance we want to avoid entailment such as !c `C c⊗1). It can be defined as:
For any constraint e′, all terms t′ and all variables y′ if c `C ∃y′(d[x\t′]⊗ e′) and ∃y′e′ `C ∃ye
hold, then so do ∃yd[x\t] `C ∃y′d[x\t′] and ∃ye `C ∃y′e′. In the constraint systems we will
consider in this article, such a deduction is always possible.
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P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q
P

α−→ Q
(cong)

P |G α−→ Q

P |(G+G′)
α−→ Q

(sum)

P
α−→C P ′ ev(α) ∩ fv(Q) = ∅

P |Q α−→C P ′|Q
(C-comp)

P
α−→C Q y /∈ fv(α)

∃yP α−→C ∃yQ
(C-rest)

c `C ∃x(d⊗ e) ∃xd `C ∃x′d′ xx′ ∩ fv(c) = ∅
c′ `C ∃x(d′ ⊗ e) is a most general choice

c
(x′)d′−−−−→C e

(C-out)
P

(x)c−−→C Q

∃yP (yx)c−−−→C Q
(C-ext)

c `C ∃y(d[x\t]⊗ e) y ∩ fv(c, d,A) = ∅
∃y(d[x\t]⊗ e) is a most general choice

c|∀x(d→ A)
τ−→C ∃y.(A[x\t]|e)

(C-sync) 1
c−→C c (C-in)

Table 1: Labeled transition system for Linear Logic CC

The notion of weak transition is defined classically:

(P
τ
=⇒C Q)

def⇐⇒ (P
τ−→
∗
C Q) (P

α
=⇒C Q)

def⇐⇒ (P
τ−→
∗
C
α−→C

τ−→
∗
C Q) (for α 6= τ)

In the asynchronous context of this paper, it seems natural to restrict the observation to
outputs. As argued by Amadio, Castellani, and Sangiorgi (1998), the intuition is that an
observer cannot know that a message he has sent has been actually received. Moreover, since
an observer has no way of knowing if the execution of a particular process is terminated unless
he receives a programmed acknowledgment, we will disregard classical (L)CC observables which
deal with termination such as success stores (Saraswat, Rinard, and Panangaden 1991; Fages,
Ruet, and Soliman 2001), and consider only accessible constraints (Haemmerlé, Fages, and
Soliman 2007). Formally for any set D ⊂ C, the set of D-accessible constraints for a process P
is defined as:

OD(P ) =
{

(∃x.c) ∈ D | there exists P ′ such that P
τ
=⇒C ∃x.(P ′|c)

}
The semantics we propose has important links with the one defined by Best, de Boer, and

Palamidessi (1997) but it is in some important aspects more general. In particular, the lan-
guage we consider provides replication and explicit operators for both universal and existential
quantifications, all of which are important features. Indeed, on the one hand replication and
existential quantification are crucial to internalize declarations and closures in processes (Haem-
merlé, Fages, and Soliman 2007); while, on the other hand universal quantification cannot be
emulated by tell processes in every constraint system, especially linear ones (Fages, Ruet, and
Soliman 2001). Another difference is that our system uses the asynchronous input rule as ini-
tially proposed by Honda and Yoshida (1995) for the π-calculus. This rule, which allows an
observer to do any input action at any time, is not designed to be observed directly but rather to
simplify bisimulation-based definitions within asynchronous frameworks (Amadio, Castellani,
and Sangiorgi 1998).

Example 2.1 (Dining philosophers). As suggested by Best, de Boer, and Palamidessi (1997),
the dining philosophers problem has an extremely simple solution in LCC. Here is an adaptation
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of the solution proposed by Ruet and Fages (1997). The atomic constraints are frk(i) and eat(j)
for i, j ∈ N, and `C is the trivial entailment relation. Assuming the following encoding for the

ith philosopher among n, a solution for the problem consists of the process Πn−1
i=0

(
Pni |frk(i)

)
.

Pni = !
(
frk(i)⊗ frk(i+1 mod n)→

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1)

)))
This solution suffers neither deadlock nor starvation problems: the system can always advance
to a different state, and at least one philosopher will eventually eat.

2.3 Logical semantics

In this section, we show that the results of logical semantics from LCC (Fages, Ruet, and
Soliman 2001; Haemmerlé, Fages, and Soliman 2007) can be shifted to the version of LCC we
propose in this paper. It will provide us with a powerful tool to reason about processes. It
is worth noting that the logical semantics proposed here is slightly different from the usual
one, since it uses an additional conjunction with >. As shown by the next theorem, this
modification is harmless when regarding accessible constraints, but yields a more relevant notion
of equivalence. (Refer to the discussion in Section 3.2.) Note the conjunction with > is not
necessary in case of translation of a parallel composition and hidings, since it commutes with
⊗ and ∃ (i.e. (A⊗>)⊗ (B ⊗>)a`CA⊗B ⊗> and ∃x(A⊗>)a`C∃x(A)⊗>).

Definition 2.2. Processes are translated into linear logic formulas as follows:

c† = c⊗> (P |Q)† = P † ⊗Q† (P +Q)† = (P † &Q†)⊗>
(!P )† = !(P †)⊗> (∃xP )† = ∃xP † (∀x(c→ P ))† = ∀x(c( P †)⊗>

Theorem 2.3 (Logical semantics). For any process P and set D of linear constraints,

OD(P ) =
{
d ∈ D | P † `C d†

}
.

3 Observational equivalence relations for Linear logic CC

In this section, we propose some equivalence relations for LCC-processes. Most of them are
related to the ones defined by Kobaychi and Yonezawa for ACL (Kobayashi and Yonezawa
1993), a concurrent linear logic language. It is worth noting that the important differences
between ACL and LCC make their work inapplicable to the framework we consider here. First,
the linear logic interpretation of process in both families of languages is dual. That is, in ACL,
A transits to B if B ` A whereas, in LCC, A transits to B if A ` B. Secondly, ACL provides
only recursion while recursion can be replaced by replication in LCC (Haemmerlé, Fages, and
Soliman 2007). Last but not least, LCC is parametrized by a constraint system that has no
equivalent in ACL.

3.1 Contexts and congruences

An important property of processes related by equivalences is their dependence on the en-
vironment. More precisely, two equivalent processes must be indistinguishable by an observer
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in any context (i.e. equivalences must be congruences). Formal contexts, written C[ ], are pro-
cesses with a special constant [ ], the hole. Putting a term P into the holes of a context C[ ] gives
the term noted C[P ]. In practice, we define all our congruences for evaluation contexts (Fournet
and Gonthier 2005), a particular class of contexts that describe environments that can commu-
nicate with an observed process and filter its messages but can neither substitute variables of
the process nor replicate it.

In this paper, without explicit statement of the contrary, all congruence properties will refer
to these contexts only. In particular, we will use the terminology “full congruence” to refer to
the congruence with respect to arbitrary contexts. In the framework of LCC, DE-contexts and
DE-congruence will refer to evaluation contexts and congruence built from DE-processes.

3.2 Logical equivalence

Strictly speaking, the first notion of equivalence we consider is not observational, but stems
naturally from the logical semantics of the language. Indeed, the logical semantics ensures
that processes with logically equivalent translations have the same accessible constraints. This
notion of equivalence is specially interesting since it can be proved using automated theorem
provers such as llprover (Tamura 1998).

Definition 3.1 (Logical equivalence). The (weak) logical equivalence on LCC-processes is
defined as:

P ˛C Q
def⇐⇒ P †a`CQ†

We call this equivalence “weak” because it is strictly less discriminating than the one we
would obtain using usual logical semantics of LCC. Nonetheless, the present definition is more
relevant since it does not distinguish Girard’s exponential connective, noted ! in Linear Logic,
from Milner’s replication, noted also ! in process algebras. Indeed, for any linear logic formula
A, !A ⊗ A ⊗ >a`!A ⊗ > holds, whereas !A ⊗ Aa`!A does not. The proposition we give next
states that the use of > does not break the congruence property of logical equivalence.

Proposition 3.2. Weak logical equivalence is a full congruence.

The proof is based on the following technical lemma, that shows weak logical equivalence is
a full-precongruence.

Lemma 3.3. For all processes P , Q, and any arbitrary context C, if P † `C Q†, then C[P ]† `C
C[Q]†.

3.3 May-testing equivalence

The following equivalence relates to testing semantics (Nicola and Hennessy 1984). We argue
that this relation provides a canonical notion of observational equivalence for LCC if considered
within the “backtracking” execution paradigm. Indeed, it is defined as the largest congruence
that respects accessible constraints. For the sake of generality, we defined may-testing in a
parametric way according to input/output filters.

Definition 3.4 (May-testing equivalence). Let D and E be two subsets of C. The may DE-
testing, 'DE , is the largest DE-congruence that respects D-accessible constraints, formally:
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P 'DE Q
def⇐⇒ for any evaluation DE-context C[ ], OD(C[P ]) = OD(C[Q]).

Quite naturally, logical equivalence implies any may testing equivalence relation. One can
use logical semantics and Theorem 3.2 to demonstrate it. It is worth noting that the inclusion
is strict. For instance, the processes c→ ∃x.P and ∃x.(c→ P ), where x is free in P and not
in c, are clearly equivalent with respect to any may testing equivalence but are not logically
equivalent in linear logic.

Example 3.5. Contrary to the processes in Theorem 2.1, the following implementation for the
ith dining philosopher does not use atomic consumptions of constraint conjunctions:

Qni = !
(
frk(i)→

(
frk(i+1 mod n)→

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1 mod n)

))))
Although the solutions built with such philosophers face deadlock and starvation problems, the
two implementations of philosopher cannot be distinguished by may-testing (i.e. for all i, n ∈ N,
Pni 'CC Qni ). Note that in the “backtracking” execution paradigm there is no reason to distin-
guish such processes. Indeed, the possibility of reversing executions makes deadlocks invisible
from an external point of view.

3.4 Labeled Bisimulation

In the framework of process algebra, bisimulation-based equivalence relations are the most
commonly used notion of equivalence. Contrary to testing equivalence and barbed congruence
presented in the next subsection, the labeled bisimulation proofs do not require explicit context
closure. Indeed, as shows Theorem 3.7, congruence is not a requirement but a derived property.
Hence, the proofs can be established by coinduction, by considering only few steps. As we have
done for may-testing, our definition of bisimulation is parametrized by input and output filters.

Definition 3.6 (Labeled bisimulation). Let D and E be two subsets of C. A action is DE-
relevant for a process Q if it is either a silent action, or an input action in E, or an output
action of the form (x)c with (∃x.c) ∈ D and x ∩ fv(Q) = ∅. A symmetrical relation R is

a DE-bisimulation if for all P , P ′, Q, α such that PRQ, P
α−→C P ′, and α is DE-relevant

for Q, there exists Q’ such that Q
α
=⇒C Q′ and P ′RQ′. The largest DE-bisimulation is called

DE-bisimilarity and is denoted with ≈DE .

Theorem 3.7. For all sets of constraints D and E, the DE-bisimilarity is a DE-congruence.

3.5 Barbed congruence

Barbed bisimulation has been introduced by Milner and Sangiorgi (1992) as an uniform way
to describe bisimulation-based equivalences for any calculus. From the definition of observables
we give in Section 2.2, we derive a notion of barbed bisimulation in the standard way. As
with many other barbed bisimulations, the obtained equivalence is too rough. For example, no
barbed bisimulation distinguishes between processes 1 and c → P (with 0C c), which exhibit
clearly different behaviours when they are put in parallel with a constraint stronger than c. For
this reason, we refine our bisimulation by enforcing congruence property following Fournet and
Gonthier (2005). The resulting relation yields an instance of the intuitive notion of observational
equivalence for LCC considered within the “committed-choice” paradigm.
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Definition 3.8 (Barbed congruence). Let D and E be two subsets of C. A symmetrical relation

R is a DE-barbed bisimulation if for all P , P ′, Q such that PRQ, and P
τ−→C P ′, then there

exists Q’ such that OD(P ) ⊆ OD(Q), Q
τ
=⇒C Q′ and P ′RQ′. The barbed DE-congruence,

written ∼=DE , is the largest DE-congruence that is a DE-barbed bisimulation.

Clearly, barbed DE-congruence is more precise than may DE-testing equivalence. It is worth
noting that it is in general strictly distinct from logical equivalence. For instance, c→ ∃x.P
and ∃x.(c→ P ) are CC-barbed congruent but not logically equivalent, while c→ d→ 1 and
c⊗ d→ 1 are logically equivalent but not barbed congruent. In general, direct proofs of barbed
congruence are tedious since they require explicit context closure. Fortunately, the barbed
congruence coincides with labeled bisimulation. Barbed congruence can therefore be established
by simpler proofs based on the coinductive principle of labeled bisimulation.

Theorem 3.9. For all sets of constraints D and E, ∼=DE and ≈DE coincide.

Example 3.10. The encoding of philosophers proposed in the two previous examples cannot be
distinguished by may-testing. Nonetheless their behavior can be separated by barbed congruence.
For instance, one can disprove P 3

1
∼=CC Q3

1. The following implementation refines the one of
Theorem 3.5 by allowing a philosopher to put back the first fork he takes:

Rni =!
(
frk(i)→

(
frk(i)+frk(i+1 mod n)→

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1 mod n)

))))
Although, solutions built with this latter implementation of philosophers still faces starvation
problems, the external behaviour of these philosophers cannot be distinguished anymore from
the ones of Theorem 2.1, i.e. Pni

∼=CC Rni for any i, n ∈ N.

3.6 A hierarchy of equivalences for Linear CC

Figure 1 summarizes the relationship between all process equivalence relations we have dis-
cussed so far. All solid lines represent inclusions which are in the general case strict, equivalences
at the bottom being more discriminatiing than the ones at the top. In this figure, D and E
stands for arbitrary subsets of C.

may DE-testing equiv. 'DE

may CC-testing equiv. 'CC barbed DE-cong.
and DE-bisim.

∼=DE =≈DE

barbed CC-cong.
and CC-bisimi.

∼=CC =≈CClogical equiv. ˛C

structural cong.≡C

Figure 1: Inclusion of process equivalence relations in LCC

4 LCC a natural generalization of asynchronous calculi

In this section, we show that LCC language generalizes asynchronous π-calculus. The asyn-
chronous π-calculus is a variant of the π-calculus where the emission is non-blocking. In practice,
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it is obtained by a simple syntactical restriction prohibiting output prefixing.

4.1 Syntax and Operational Semantics of the asynchronous π-calculus

We briefly recall the syntax of the asynchronous π-calculus. Our notations and definitions
are mostly standard. For convenience, we will use a denumerable subset of LCC variables as
channel names. In this language, three syntactical categories are distinguished as specified by
the following grammar:

α ::= τ | x̄y | x̄(y) | (y)x(y) (π-actions)
G ::= τ.P | x(y).P | !P (π-guards)
P ::= 0 | x̄y | P |P | νxP | G (π-processes)

A π-calculus process (or π-process for short) is one of the following: the null process 0, the
silent prefix τ.P , the message reception x(y).P , the asynchronous emission x̄y, the parallel
composition of processes P |Q, the replication of processes !P , or the scope restriction νyP .
Both input prefix x(y).P and restriction νy.P bind the variable y in P . Abbreviations fv(α)
and bv(α) are defined for the π-actions in the following way:

fv((y)x̄(y)) = {x} fv(x̄(y)) = fv(xy) = {x, y} bv(x̄(y)) = {y} bv(x̄y) = bv(xy) = ∅

The operational semantics is based on the structural congruence ≡π, defined as the small-
est congruence satisfying α-renaming of bound variables, commutativity and associativity for
parallel composition, together with the following identities:

P |0 ≡π P νx0 ≡π 0 νxνyP ≡π νyνxP !P ≡π !P |P z /∈ fv(P )

P |νzQ ≡π νz(P |Q)

Labeled reduction step
α−−→π of the pure asynchronous π-calculus is the smallest relation on

processes that meets the rules of Table 2 together with rule (cong) as defined for LCC in Table 1.
The notion of weak transition for the π-calculus, ⇒π is defined classically.

τ.P
τ−−→π P (π-τ) 0

xz−−→π x̄z (π-in) x̄y
x̄y−−→π 0 (π-out)

P
α−−→π P

′ ev(α) ∩ fv(Q) = ∅

P |Q α−−→π P ′|Q
(π-comp) x̄z|x(y).P

τ−−→π P [y\z] (π-sync)

P
x̄y−−→π Q x 6= y

νyP
x̄(y)−−−−→π Q

(π-outex)
P

α−−→π Q x /∈ fv(α) ∪ ev(α)

νxP
α−−→π νxQ

(π-rest)

Table 2: Labeled transition system for the asynchronous π-calculus

4.2 Observational equivalence relations for asynchronous π-calculus

We recall now some classical observational equivalence relations for the asynchronous π-
calculus. As for LCC we will need a notion of context. In particular, the evaluation contexts
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of the π-calculus (or π-contexts, for short) are given by the following grammar, where Q stands
for an arbitrary π-process:

Cπ[ ] = [ ] | (Q|Cπ[ ]) | (Cπ[ ]|Q) | νx.Cπ

The basic observation predicate is the commitment on x, ⇓x̄, that detects whether a process P
emits a message on the name x, that is formally:

P ⇓x̄
def⇐⇒ there exist a π-process Q and a name y s.t.P

x̄y
=⇒π Q or P

x̄(y)
==⇒π Q

All the observational equivalence relations we consider have been studied by Fournet and
Gonthier (Fournet and Gonthier 2005):

• The may testing equivalence is the largest congruence, 'π, respecting ⇓x̄, that is P 'π Q
if for any evaluation π-context C[ ] and any name x, C[P ] ⇓x̄ is equivalent to C[Q] ⇓x̄.

• The labeled bisimilarity is the largest symmetrical relation, ≈π, verifying P ≈π Q, P
α−→π

P ′ and ev(α) ∩ fv(Q) = ∅ implies there exists Q′ such that Q
α
=⇒π Q

′ and P ′ ≈π Q′.

• A barbed bisimulation is a symmetrical relation R verifying whenever PRQ:

– P ⇓x̄ implies Q ⇓x̄
– P

τ
=⇒π P

′ implies the existence of a Q′ such taht Q
τ
=⇒π Q

′ and P ′RQ′.

• The barbed congruence is the largest congruence, ∼=π, that is a barbed bisimulation.

4.3 LCC interpretation of the pure asynchronous π-calculus

We propose now a very simple interpretation of the asynchronous π-calculus into LCC fol-
lowing the preliminary ideas of Soliman (Soliman 2003).

Definition 4.1 (LCC Interpretation of the asynchronous π-calculus). Let Cπ be the trivial
constraint system (i.e. a constraint system without non-logical axioms), based on the predicate
alphabet Σc = {γ}. The LCC-interpretation J Kπ of π-actions and π-processes as is defined
recursively as:

JτKπ =τ JxyKπ =γ(x, y) Jx̄(y)Kπ =γ(x, y) J(y)x̄(y)Kπ =(y)γ(x, y)

J0Kπ =1 Jx̄zKπ =γ(x, z) Jτ.P Kπ =1→ JP Kπ Jx(y).P Kπ =∀y(γ(x, y)→ JP Kπ)

J!P Kπ =!JP Kπ JνxP Kπ =∃xJP Kπ JP |QKπ =JP Kπ|JQKπ

It can be noted that this mapping is completely compositional and does not need fresh names.
Furthermore, the replacement of declarations by replicated asks leads to a translation where each
construct of the π-calculus is mapped to a unique construct of LCC. In fact, we can consider this
interpretation enforces a syntactical restriction on LCC processes, by allowing synchronization
only on constraints of the form ∃y.γ(x, y). Formally, assuming Dπ = {1} ∪ {∃y.γ(x, y) | xy ∈
V∧x 6= y} and Eπ = {1}∪{γ(x, y) | xy ∈ V} , the co-domain of J Kπ is precisely the set of DπEπ-
processes. Furthermore, the following results ensure that there is a one-to-one correspondence
between transitions of the two formalisms.
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Theorem 4.2. For all two π-processes P and Q and any π-action α we have:

P
α−→π Q if and only if JP Kπ

JαKπ−−−→Cπ JQKπ.

The theorem and the simplicity of the interpretation emphasizes that the π-calculus is syntac-
tically and semantically a subcalculus of LCC. The only transition of LCC that is not captured
by the π-calculus semantics is the simultaneous emission of messages (i.e. a constraint of the
form γ(x1, y1) ⊗ · · · ⊗ γ(xn, yn)). We argue that observing simultaneous emission is not rel-
evant in asynchronous context where the observer has no way of knowing the order in which
the messages have been emitted. In fact, the LCC constraint system makes messages behave
similarly to molecules within the CHAM (i.e. messages can combine by “cooling” and dissociate
by “heating” (Berry and Boudol 1992)).

The following theorem states that may testing equivalence, labeled bisimilarity, and barbed
congruence are instances of equivalence relations we defined for LCC.

Theorem 4.3. Let Dπ = {∃y.γ(x, y) | x ∈ V \ {y}} and D?π = Dπ ∪ {γ(x, y) | xy ∈ V}. For all
π-processes P and Q we have:

(i) P 'π Q if and only if JP Kπ 'DπCπ JQKπ.

(ii) P ≈π Q if and only if JP Kπ ≈D?πCπ JQKπ.

(iii) P ∼=π Q if and only if JP Kπ ∼=DπCπ JQKπ.

5 Observational equivalence relations for CC framework

5.1 Observational equivalence relations for classical CC

LCC languages are refinements of CC languages. Indeed the monotonicity of the CC store
can simply be restored with the exponential connective ! of linear logic, allowing duplication
of hypotheses and thus avoiding constraint consumption during synchronization (Fages, Ruet,
and Soliman 2001). Hence, all the observational equivalence relations we defined for LCC can
be transposed effortless to classical CC. That is particularly interesting, since few attempts can
be found in the literature to endow CC with process equivalence techniques.

In order to further discuss properties of the resulting relations, we will not enter into the
details of a particular encoding of CC into LCC, but just assume that the encoding of classical
constraints respects two reasonable properties. We will say that a linear constraint c is classical
within the linear constraint system C (or C-classical for short), if it can be both logically
weakened (i.e. c `C 1), and deduced without weakening the hypotheses (i.e. for any d, if
d `C c ⊗ >, then d `C c ⊗ d). We note Cc the set of C-classical constraints. Assuming that
processes deal with classical constraints, we are able to prove some interesting laws. It must be
underlined that, in the full generality of LCC, none of them holds.

Proposition 5.1. Let c, c′, d, and d′ be four C-classical constraints satisfying c `C c′ and
d `C d′. For any constraint e, all variables x not free in d, and all processes P and Q, the
following relations hold:

Report No. CLIP5/2011.0 May, 2011



Toward Observational Equivalences for Linear Logic Concurrent Constraint Languages 12

(1) ∀x
(
c→c′

) ∼=CC 1 (2) ∀x (c→e) ∼=CC ∀x (c→c⊗ e)
(3) ∀x (c→e) ∼=CC ∀x (c→c⊗ e) (4)

((
c′→d

)
|
(
c→d′

)) ∼=CC (c′→d)
(5) (d→∀x (e→P )) ∼=C ∀x (d⊗ e→P ) (6) ! (c→P ) ∼=CC (c→ !P )
(7) ((c→P ) | (c→Q)) ∼=CC (c→(P |Q)) (8) (c→G+ c→H) ∼=CC (c→(G+H))

The proof of the propositions relies on the following lemma, that states a process emits
classical constraints without weaken itself.

Lemma 5.2. Let D and E be two sets of constraints, P and P ′ two processes and c a C-classical

constraint. If P
c−→C P ′ then P ≡C P ′.

The may-testing relation 'Cc coincides with an equivalence used by Saraswat to connect op-
erational and denotational semantics of CC (Saraswat, Rinard, and Panangaden 1991). Weaker
versions of laws (1) to (6) are proved indirectly for this relation. Saraswat has also defined a
bisimulation semantics for CC (Saraswat and Rinard 1990). The bisimulation he proposed is

strong (i.e. it is based on
α−→C instead of

α
=⇒C), and is therefore maybe too discriminative for

an asynchronous framework such as CC. For instance, none of the above laws, except (2), can
hold for any reasonable notion of strong bisimulation. This difference aside, Saraswat’s bisim-
ulation seems still too discriminative. Indeed, on contrary to ∼=CcCc , it distinguishes processes
like (x<1→c) | (x<2→c) and (x<2→c) | (x<2→c) (where x < y is the usual arithmetic in-
equality constraint), whereas there is no reasonable justification to do so (in both strong and
weak case).

5.2 Observational equivalence relations for CHR

The Constraint Handling Rules (CHR) programming language (Frühwirth 2009) is a multiset
rewriting language over first-order terms with constraints over arbitrary mathematical struc-
tures. Initially introduced for programming constraint solvers, CHR has evolved since to a
programming language in its own right.

5.2.1 Constraint Handling Rules Syntax

The formalization of CHR assumes a language of built-in constraints containing the equality
=, false, and true over some theory CT and defines user-defined constraints using a different
set of predicate symbols. We require the non-logical axioms of CT to be formulas of the form
∀(C→ ∃Z.D), where both C and D stand for possibly empty conjunctions of built-in constraints.
Constraint theories satisfying such requirements correspond to Saraswat’s simple constraints
systems (1991).

A CHR program is a finite set of eponymous rules of the form (r @ K\H⇐⇒ G | C,B), where
K, H are multisets of user-defined constraints, called kept head and removed head respectively,
G is a conjunction of built-in constraints called guard, C is a conjunction of built-in constraints,
B is a multiset of user-defined constraints, and r is an arbitrary identifier assumed unique in
the program called rule name. Rules where both heads are empty are prohibited. The empty
guard true can be omitted together with the symbol |. Similarly, empty keptheads can be
omitted together with the symbol \. Propagation rules (i.e.rules with empty removed head)
can be written using the alternative syntax: r @ K =⇒ G | C,B. A state is a tuple 〈C;E;X〉,
where C is a multiset of CHR constraints, E is a conjunction of built-in constraints,and X is a
set of variables.
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Built-in const. (c1 ∧ · · · ∧ cn)× = !c1 ⊗ · · ·⊗!cn
CHR const. (d1, . . . , dn)× = d1 ⊗ · · · ⊗ dn
Rules r @ (K\H ⇐⇒ G | B)× = !∀(K×⊗H×⊗G× → ∃Y (K×⊗G×⊗ B×))
Program {r1, . . . , rn}× = r×1 | · · · |r×n
State 〈E;C;X〉◦ = ∃ (E×⊗ C×)

where Y = (fv(G,B) \ fv(H,K)) and Z = (fv(E,C) \X).

Table 3: Translation from CHR to LCC

5.2.2 From Constraints Handling Rules to Linear Logic CC

In a recent paper, Martinez (2010) has proposed a translation from CHR to a subset of LCC
(and vice versa), that preserves language semantics with strong bisimilarity. This result allows
us to transpose straightforwardly our different notions of observational equivalence to CHR.
To the best of our knowledge, it is the first attempt to provide CHR with such equivalence
techniques.

In Table 3, we recall Martinez’s LCC interpretation of basic CHR constructs. A CHR state
σ together with a CHR program P are interpreted as the process (σ×|P×). The constraint
theory, CT , is translated using a standard translation of intuitionistic logic into linear logic.
More precisely, in the remainder of this section, (C,
C) is the constraint system, where C is
built from the built-in and CHR constraints and 
C is defined by : (∀(C → ∃D)) ∈ CT if and
only C× `C ∃XD×.

We do not recall the operational semantics of CHR, but use translations of CHR as particular
instances of LCC processes. Thanks to Martinez’s semantics preservation theorem (2010), we
can do so without loss of generality as long as the CHR abstract semantics is concerned. In
fact, we know that for any CHR state σ and any CHR program P, (σ×,P×)

τ
=⇒C Q if and only

if σ can be rewritten by P (w.r.t. CHR abstract semantics) to a state σ′ s.t. Q ≡ (σ′×,P×).

For the sake of conciseness, we will write σ 7→P σ′ for (σ×|P×)
τ
=⇒C (σ×|P×).

5.2.3 Confluence up-to

Confluence is an important property for CHR programs, which ensures that any computation
for a goal results in the same final state (i.e. modulo the structural equivalence ≡C) no matter
which of the applicable rules are used. Here we propose a straightforward extension, called
confluence up-to, where structural equivalence is replaced by an observational one. The resulting
notion differs form the so-called observable confluence (Duck, Stuckey, and Sulzmann 2007) in
the following sense: Observable confluence consists of proving that a program is confluent on
an interesting subset of the states, while confluence up-to consists of proving that a (possibly
nowhere confluent) program is apparently confluent to an external observer.

Definition 5.3 (Confluence up-to). Let D and E be two sets of linear constraints. A CHR
program P is confluent up to ∼=DE if whenever σ 7→∗P σ1 and σ 7→∗P σ2, there exist σ1 and σ2

such that σ1 7→∗P σ′1, σ2 7→∗P σ′2, and (σ′×1 |P×) ∼=DE (σ′×2 |P×).

The following proposition states that CHR transitions w.r.t. a confluent program are not
observable by any barbed congruences obsevring only classical constraints. The choice of limit-
ing observation to classical constraints makes sens since CHR programs are usually embedded
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in a (host language) module that prohibs an external observer synchronizing on internal CHR
constraints; the observer can only post CHR constraints using the module interface. As it is
the case for Theorem 5.1, the proof relies on Theorem 5.2.

Proposition 5.4. Let Cc be a set of C-classical constraints and D a set of linear constraints.
If P is confluent up to ∼=CcD then (σ×|P×)

τ
=⇒C P implies (σ×|P×)∼=CcDP .

As corollary, we obtain that barbed congruences and may-testing equivalences conincide
when they observe only classical (i.e. built-in) constraints. This supports the intuitive idea
that a confluent program has the same meaning in the “backtracking” and the “commited
choice” exuction paradigms – bearing in mind that both relations are the respective instances
of observation equivalences for these paradigms.

Corollary 5.5. Let Cc be a set of C-classical constraints. Let P and P ′ be two CHR pro-
grams confluent up to ∼=CcD. For all states σ and σ′, (σ×|P×) 'CcD (σ′×|P ′×) if and only if
(σ×|P×) ∼=CcD (σ′×|P ′×)

5.2.4 Application

Observational equivalences are commonly used to prove correctness of a realistic (or efficient)
implementation w.r.t. a given specification. See, for instance, numerous examples in Milner’s
book (1989). Here, we illustrate such a use in the context of CHR. For instance, let us assume
given the following specification program Ps:

symmetry @ eq(x, y) =⇒ eq(y, x)
transitivity @ eq(x, y), eq(y, z) =⇒ eq(y, z)
decompose @ eq(t(xf , xl, xr), t(yf , yl, yr)) =⇒ xf = yf , eq(xl, yl), eq(xr, yr)

One can be easily convinced that this program specifies a Rational Terms (RT) solver limited
to labelled binary trees: A binary node is represented by a term t(xf , xl, xr), where xf is a label
(or functor), and xl, xr are the left and right subtrees, respectively. Here, we aim at providing a
program observationally equivalent to Ps that is usable in practice. As argued previously, since
a CHR solver is typically isolated in a host module, it is reasonable to restrict the power of the
observer such that it cannot observe CHR constraints and can post only public (or exported)
CHR constraints. Hence, we choose Cc and Ceqc = Cc ∪ Ceq (where Ceq is the set of constraints
of the form eq(s, t)) as input and output filters, respectively. Since CHR is a committed choice
language, we have to provide a program CcCeqc -barbed congruent with Ps.

A possible implementation for the RT problem has been proposed by Frühwirth (2009). This
program uses extra-logical constraints such as var/1. Here we prefer writing pure programs,
since the status of the extra-logical constraints is not firmly defined in the theoretical semantics.
For this reason, we propose the program Pi given below. To solve the problem, this program
roughly emulates Prolog’s unification algorithm (Aı̈t-Kaci 1991) – a constraint eq(t, s) encodes
an equations to be solved, and a constraint x _ t encodes the unification (or the binding) of a
variable x with a term t. We argue that Pi is more realistic than Ps since it terminates under
the refined semantics of CHR (Duck et al. 2004) – which selects rules in the syntactical order
whereas Ps has no terminating derivation.
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reflex @ eq(x, x) ⇐⇒ true.
decompose @ eq(t(xf , xl, xr), t(yf , yl, yr)) ⇐⇒ xf = yf , eq(xl, yl), eq(xr, yr).
orient @ eq(t(xf , xl, xr), y) ⇐⇒ eq(y, t(xf , xl, xr)).
deref left @ x _ z\eq(x, y) ⇐⇒ eq(z, y)
deref right @ y _ z\eq(x, y) ⇐⇒ eq(x, z)
unif @ eq(x, y) ⇐⇒ x _ y.

Unfortunately, Pi is not CcCeqc -barbed congruent with the specification Ps. For instance, for
any σs s.t. 〈eq(x, t(a, y, z)), eq(x, t(a, y, z)), true, ∅〉 7→∗Ps σs, we have false ∈ OCc(σ×s |P×s ), but
for σi = 〈x _ t(a, y, z)), x _ t(a, y, z)), true, ∅〉, we have 〈eq(x, t(a, y, z)), eq(x, t(a, y, z)), true, ∅〉 7→∗Pi
σi and false /∈ OCc(σ×i |P

×
i ). One simple idea to circumvent this problem is to “complete” Pi

(Abdennadher and Frühwirth 1998) (i.e. to make it confluent by adding new rules). For in-
stance, one can add at the end of Pi the following rules. Intuitively these rules “repair” states
that do not respect the binding invariant (i.e. only variables are bound, only once, and not to
themselves), which is normally preserved by the refined semantics – as far as the observer do
not performed built-in unification.

repair1 @ t(xf , xl, xr) _ y ⇐⇒ eq(y, t(xf , xl, xr)).
repair2 @ x _ y\x _ z ⇐⇒ eq(x, z).
repair3 @ x _ x ⇐⇒ true.

The resulting program P?i is confluent up to ∼=CcCeqc and CcCeqc -barbed congruent with Ps.
The proof can be sketched as follows: Assume the function ( )eq defined on atomic constraints
as ceq = eq(t, s) if c is of the form (t _ s), or ceq = c otherwise. Consider the relation
R = {(P×|c), (P×|ceq)|c ∈ C} where ()eq is extended to non-atomic constraints in the straight-
forward way. First, we prove by coindutive reasoning on the transition from (P×|c) that R
is a CcCeqc -bismulation, or thanks to Theorem 3.9 a CcCeqc -barbed congruence. Then, by using
a straightforward extension of strong confluence for abstract rewritting system (Huet 1980),
we show that P?i is confluent up to R, i.e., confluent up to ∼=CcCeqc . Finally, we demonstrate
by a structural induction on the CcCeqc -contexts that P?i 'CcCeqc Ps, or thanks to Theorem 5.5,
P?i ∼=CcCeqc Ps.

Therefore, P?i is a correct implementation of Ps. But, since we have proven that P?i is
also confluent, we know it can be interpreted under any rule selection strategy (in particular,
under the one of the refined semantics) without loosing completeness. For this reason, and
because the “repair” rules are never called under the refined semantics as long as the observer
does not performed built-in unification, Pi interpreted in the refined semantics is also a correct
implementation of Ps. Note that Frühwirth’s RT also cannot deal with built-in unifications
because of the non-monotonicity of extra-logical constraints, while P?i can.

To the best of our knowledge, the only existing notion of equivalence for CHR programs that
can be related to observation equivalences is the so-called operational equivalence (Abdennadher
and Frühwirth 1999). This notion means that given two confluent and terminating programs,
the computation of a query in both programs terminates in the same state. Nonetheless, we
argue that observable equivalences are more general than operational equivalence, since they
can also be applied to programs such as P∗i which is non-terminating, non-confluent, and whose
final states contain distinct CHR constraints
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6 Conclusion

In the first part of this paper we have defined and investigated a structural operational
semantics for LCC with quantified ask and replication. In light of this new semantics, we have
proposed and studied several observational equivalence relations. To the best of our knowledge,
it is the first attempt to provide LCC with such tools, even though it was identified early on as
a worthwhile goal of investigation by Ruet (Ruet and Fages 1997).

In the second part of this paper, we related LCC and its observational equivalence to asyn-
chronous process and CC frameworks. In particular, we have shown that the asynchronous
π-calculi can be viewed as subcalculi of LCC. We have shown, moreover, that some of the
usual observational equivalence relations defined for this calculus are particular instances of the
ones we have defined for LCC. Finally, we have shown that LCC observational equivalences
can be transposed straightforwardly to classical CC and CHR. We have demonstrated some
interesting properties of the resulting equivalences. In particular, we have studied the relation
between barbed-congruence and confluence of CHR programs. We illustrated also how barbed-
congruence can be used to prove realistic implementation constraint solvers w.r.t. a simple
specification.

An immediate further work could be to investigate the properties of the observational equiv-
alence relations presented here. For instance, establishing sufficient conditions to ensure that
observational equivalences are full congruences would be interesting. It should also be worth-
while to formally compare LCC with more exotic asynchronous calculi, such as hybrid process
calculi with constraints (Dı́az, Rueda, and Valencia 1998; Parrow and Victor 1998; Gilbert and
Palamidessi 2000; Buscemi and Montanari 2007) or extended calculi with security primitives
(Abadi, Fournet, and Gonthier 2000), where the linear constraint system would play a more
prominent role. Finally, the further investigation of CHR bisimulation seems promising.
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A Intuitionistic linear logic sequent calculus

A ` A Γ ` A ∆, A ` B
∆,Γ ` B

Γ ` A
Γ,1 ` A

` 1 Γ ` > Γ,0 ` A

Γ, A,B ` C
Γ, A⊗B ` C

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

Γ ` A
Γ ` A⊕B

Γ, A ` C Γ, B ` C
Γ, A⊕B ` C

Γ ` B
Γ ` A⊕B

Γ ` A ∆, B ` C
∆,Γ, A( B ` C

Γ, A ` B
Γ ` A( B

Γ, A ` C
Γ, A&B ` C

Γ, B ` C
Γ, A&B ` C

Γ ` A Γ ` B
Γ ` A&B

Γ, A ` B
Γ, !A ` B

!Γ ` A
!Γ ` !A

Γ, !A, !A ` B
Γ, !A ` B

Γ ` B
Γ, !A ` B

Γ, A[t/x] ` B
Γ,∀xA ` B

Γ ` A
Γ ` ∀xA

x 6∈ fv(Γ)
Γ, A ` B

Γ,∃xA ` B
x 6∈ fv(yΓ, B)

Γ ` A[t/x]

Γ ` ∃xA

Report No. CLIP5/2011.0 May, 2011



Toward Observational Equivalences for Linear Logic Concurrent Constraint Languages 19

B Proofs

B.1 Preliminaries

In this section, we show the proof tree of a transition can always be assumed to be in a special
form, we call normal. This preliminary result will simplify nomber of proofs.

For any rule (?), let (?≡) be the meta-rule (i.e. composition of atomic rules) obtained by
composition (form bottom to top) of (cong) following by (?), e.g. (C-sync≡) and (C-comp≡),
are notations for the respective following meta-rules.

P ≡C P ′ P ′
τ−→C Q′

(C-sync)
Q′ ≡C Q

P
τ−→C Q

(cong)

P ≡C P ′
π

P ′
τ−→C Q′

(C-comp)
Q′ ≡C Q

P
τ−→C Q

(cong)

We said that a (meta-)rules (?) permutes with a (meta-)rule (•) if :

For any

π

P ′
τ−→C Q′

(•)

P
τ−→C Q

(?) there exists a proof of the form

π

P ′′
τ−→C Q′′

(?)

P
τ−→C Q

(•)

We said that a (meta-)rules (?) merges with a (meta-)rule (•) if :

For any

π

P ′
τ−→C Q′

(?)

P
τ−→C Q

(•) there exists a proof of the form
π

P
τ−→C Q

(?)

Remark B.1. (C-comp≡) permutes with (C-rest≡) and (C-out≡ex). (sum≡) permutes with (C-
rest≡) and (C-comp≡). (C-sync≡), (C-comp≡), (C-rest≡), and (sum≡) merge with (cong).
(C-comp≡) merges with itself.

For any meta-rule (•), (•)∗ stands for an arbitrary number of successive applications of the
rules (•).

Lemma B.2. Let P and Q be two processes without summation. If P
α−→C Q is a valid

transition, then it has a proof of one of the three following forms:

P ′′
τ−→C Q′′

(C-sync≡)

P ′′
τ−→C Q′′

(C-sum≡)∗

P ′
τ−→C Q′

(C-comp≡)

P
τ−→C Q

(C-rest≡)∗

P ′′
c−→C Q′′

(C-in≡)∗

P ′
c−→C Q′

(C-comp≡)

P
c−→C Q

(C-rest≡)∗

P ′′′
(z′′′)c′′′−−−−−→C Q′′′

(C-out≡)

P ′′
(z′′)c′′−−−−→C Q′′

(C-comp≡)∗

P ′
(z′)c′−−−→C Q′

(C-out≡ex)∗

P
(z)c−−→C Q

(C-rest≡)∗

Proof. First, notice that any proof tree of P
τ−→C Q can be transformed straightforwardly into

a proof using only (cong), (C-comp≡), (C-sync≡), (C-rest≡), (sum≡), (C-out≡ex), (C-out≡), and
(C-in≡) by inserting a rule (cong) between each rule. The resulting tree can be transformed
into an other one of the expected form by applying remark B.1 as much as possible.
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Lemma B.3 (Normal form proof). Let P and Q be two processes without summation. If

P
α−→C Q is a valid transition, then it has a proof of one of the three following forms:

c `C ∃y(dk[xk\t]⊗ e)
c|∀xk(dk → Qk)

τ−→C ∃y (e|Qk[xk\t])
(C-sync)

c|Σj∈J∀xj(dj → Qj)
τ−→C ∃y (e|Qk[xk\t])

(C-sum)
∗

Πi∈IGi|c|Σj∈J∀xj(dj → Qj)
τ−→C ∃y (Πi∈IGi|e|Qk[xk\t])

(C-comp≡)

∃z (Πi∈IGi|c|Σj∈J∀xj(dj → Qj))
τ−→C ∃zy (Πi∈IGi|e|Qk[xk\t])

(C-rest)
∗

P
τ−→C Q

(cong)

1
c−→C c

(C-in)

P ′
c−→C P ′|c

(C-comp≡)

∃zP ′ c−→C ∃z(P ′|c)
(C-rest)

∗

P
c−→C Q

(cong)

c `C ∃x(d⊗ e)

c
(x)d−−−→C e

(C-out)

c|P ′ (x)d−−−→C e|P ′
(C-comp≡)

∃y (c|P ′) (x)d−−−→C e|P ′
(C-outex)

∗

∃zy (c|P ′) (x)d−−−→C ∃z (e|P ′)
(C-rest)

∗

P
(x)d−−−→C

(cong)

, where I and J are two disjoint finite sets of indices and k ∈ J , the G′i stand for possibly
replicated guards, y /∈ fv(Πi∈IGi), and x ∩ z = ∅.

Proof. The case are by induction on the number of application of (C-rest≡), (sum≡), and (C-
outex) in the proof π obtain by the previous lemma.

B.2 Proofs of Section 2. (A process calculi semantics for Linear Logic CC)

The proof of this section are tedious but follows quite straightforwardly the proofs of logical
semantics of (Ruet and Fages 1997; Fages, Ruet, and Soliman 2001; Haemmerlé, Fages, and
Soliman 2007).

Lemma B.4. If P
α−→C Q then ev(α) ∩ fv(P ) = ∅.

Proof. By induction on the proof of P
α−→C Q.

Proposition B.5 (Soundness). For all processes P and Q the four following propositions hold:

(i) If P ≡C Q then P †a`CQ†.

(ii) If P
(x)c−−→C Q then P † `C (∃x(c⊗Q))†.

(iii) If P
τ−→C Q then P † `C Q†.

Proof. (i) is by induction on the derivation tree of ≡C . Other cases are by induction on the

derivation tree of P
α−→C Q.
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Proposition B.6 (Completeness). For any multiset of processes Γ, any constraint c, and all
variables x:

If Γ† `C ∃x.c† then there exists P such that Π(Γ)
(x)c
==⇒C P

W. e prove the more general result:

If Γ† `C c or Γ† `C c⊗>, then Π(Γ)
τ
=⇒C ∃x(d|P ) with ∃x.d `C c

by induction on the proof π of Γ† `C c or Γ† `C c†:

• π is a axiom. Γ is a multiset of constraints, that is Π(Γ) ≡C
⊗

(Γ)|1.

• π ends with a cut (without lost of generality we can assume the cuts deal only with
non-logical axioms):

Γ† `C c `C d
Γ† `C d or

c `C c′ Γ†, c′ `C d
Γ†, c `C d or

c `C c′ Γ†, c′ `C d⊗>
Γ†, c `C d⊗>

The first case is immediate. For the two other cases, we know, by induction hypothesis,
that (π(Γ)|c′) τ

=⇒C ∃x.(d|P ) with ∃xd `C d′. Just notice that any ask which can be waken
up by c′ can be by c.

• π ends with a right introduction of ⊗:

Γ† `C c ∆ `C d
Γ†,∆† `C c⊗ d

or
Γ† `C c ∆ `C >
Γ†,∆† `C c⊗>

For the left hand side case, we know by induction hypothesis that Π(Γ)
τ
=⇒C ∃x(c′|P )

and Π(∆)
τ
=⇒C ∃y(d′|Q) with ∃xc′ `C c, ∃yd′ `C d. Without lost og generality we can

assume that x ∩ fv(c, d′, Q) = ∅ and y ∩ fv(d, c, P ) = ∅. By monotony of
τ−→C , we get

Π(∆,Γ)
τ
=⇒C ∃x(c′|P )|Π(∆)

τ
=⇒C ∃x(c′|P )|∃y(d′|Q) that is using structural congruence

Π(∆,Γ)
τ
=⇒C ∃xy(c′ ⊗ d′|P |Q). It is straightforward to check that ∃xy(c′ ⊗ d′) `C c ⊗ d.

the right hand side case is trivial.

• π ends with a left introduction of ∃:

Γ†, A† `C c
Γ†,∃x.A† `C c

x 6∈ fv(Γ, c) or
Γ†, A† `C c⊗>

Γ†,∃x.A† `C c⊗>
x 6∈ fv(Γ, c)

By induction hypothesis, we get that A|Π(Γ)
τ
=⇒C ∃x(d|P ) with ∃x.d `C c and without

lost of generality x ∩ fv(c) = ∅. We conclude using (C-ext) rule.

• π ends with a left introduction of ( :

Γ† ` d ∆†, A† ` c
Γ†,∆†, d( A† `C c

or
Γ† ` d ∆†, A† ` c⊗>
Γ†,∆†, d( A† `C c⊗>

By induction hypothesis, we know that Π(Γ)
τ
=⇒C ∃x(d′|P ) and (ii) Π(∆)|A τ

=⇒C ∃y(c′|Q).

Without lost of generality we suppose that x ∩ y = ∅. By monotony of
τ−→C and using

the rules (C-sync) and C-rest), we get: Π(Γ,∆)
τ
=⇒C ∃x(d′|P )|Π(∆) ≡C ∃xd′|P |Π(∆)

τ
=⇒C

∃x(c′|Q|P ).
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• ends with a left introduction of ∀:
Γ,∀xA ` c

Γ, A[x\t] ` c
or

Γ,∀xA ` c⊗>
Γ, A[x\t] ` c⊗>

A is necessarily the translation of an ask of the form d → B. It is straightforward to
check that if d[x\t]→ B[x\t] can be reduced then ∀x(d→ B) can be reduced too.

• π ends with a dereliction: There are two subcases:

Γ†, A† `C c
Γ†, !A† `C c

or
Γ†, A† `C c⊗>
Γ†, !A† `C c⊗>

!A is either the translation of a constraint or a replicated guard. The former subcase is im-
mediate since any ask that can be waken by a constraint c can be waken up by the stronger
constraint !c. For the latter case we have by induction hypothesis Π(Γ, A)

τ−→C ∃xc′|P . If

A reduces during these derivation, then we infer using (repl) rules, and monotony of
τ−→C ,

Π(Γ, !A)
τ−→C ∃xc′|P |!A. It it does not reduce we infer Π(Γ)

τ−→C ∃xc′|Q with P ≡C A|Q
that is Π(Γ, !A)

τ−→C ∃xc′|Q|!A.

• π ends with a contraction: there are two subcases

Γ†, !A†, !A† `C c
Γ†, !A† `C c

or
Γ†, !A†, !A† `C c⊗>

Γ†, !A† `C c⊗>

As in the previous case !A is either the translation of a constraint or a replicated guards.
The former subcase is trivial since any ask that can be waken up by a constraint !c⊗!c can
be waken up by a constraint !c. The second one is trivial since any constraint consumed
by two instances of the same guard can be consumed by only one of this instance.

• Other cases are straightforward consequence of the induction hypothesis. �

Proof of Theorem 2.3. The theorem is direct corollary of the two previous lemmas.

B.3 Proofs of Section 3. (Observational equivalence relations for Linear logic CC)

B.3.1 Proofs of Section 3.2. (Logical equivalence)

Proof of ??. y induction on the proof of Γ `C P † ⊗ > one can show that the relation on
intuitionistic linear logic formulas {(

⊗
(Γ), P ) | Γ `C P † ⊗ >} is a full precongruence. The

conclusion is then straightforward.

B.3.2 Proofs of Section 3.4. (Labeled Bisimulation)

Note that both structural equivalence and transition are stable by renaming.

Lemma B.7 (Stability under renaming). Let P and Q be two processes, α be an action, and
ρ be a renaming. We have:

(1) If P ≡C Q, then Pρ ≡C Qρ (2) If P
α−→C Q, then Pρ

αρ−−→C Qρ
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Proof. Let σ be a renaming. We proceed by induction on the proof tree pi of P ≡C Q and
P

α−→C Q:

• The cases for structural equivalence are obvious.

• The cases where π ends with a rule (cong), (sum), (C-ext), or (C-out) are direct by
induction hypothesis.

• π ends with a rule (C-rest)

P
α−→C Q x /∈ fv(α)

∃xP α−→C ∃xQ
Let y′ be a fresh variable and ρ = [yy′\y′y]. We have:

P
α−→C Q =⇒ Pρσ

αρσ−−→C Qρσ by induction hypothesis

=⇒ Pρσ
ασ−−→C Qρσ because y /∈ fv(α)

=⇒ ∃y′.(Pρσ)
ασ−−→C ∃y′.Q(ρσ) by (C-rest) and y′ /∈ fv(ασ)

=⇒ (∃y′.Pρ)σ
ασ−−→C (∃y′.Qρ)σ because y′ is fresh

=⇒ ∃y.(P )σ
ασ−−→C (∃y.Q)σ by α-renaming

• π ends with a rule (C-comp): Just note that if ev(α)∩ fv(Q) = ∅ then ev(ασ)∩ fv(Qσ) = ∅
and use induction hypothesis.

• π ends with a rule (C-sync):

c `C ∃y(d[x\t]⊗ e) y ∩ (d, P ) = ∅
c|∀x(d→ P )

τ−→C ∃y.(P [x\t]|e)

Let x′ and y′ two sequences of fresh variables of same length that x and y respectively.
Let ρx = [xx′\x′x] and ρy = [yy′\y′y]. We have:

c `C ∃y(d[x\t]⊗ e)
=⇒ c `C ∃y(dρx[x′\t]⊗ e)
=⇒ c `C ∃y′(dρx[x′\t]ρy ⊗ eρy) by α-renaming

=⇒ c `C ∃y′(dρx[x′\tρy]⊗ eρy) because y ∩ fv(d) = ∅ and y′ are fresh

=⇒ cσ `C ∃y′(dρx[x′\tρy]⊗ eρy)σ by stability of logical implication

=⇒ cσ `C ∃y′(dρxσ[x′\tρyσ]⊗ eρyσ) since x′ are fresh

P ≡C (c|∀x(d→ P ))σ

≡C cσ|∀x′(dρx → Pρx)σ ≡C by α-renaming

≡C cσ|∀x′(dρxσ → Pρxσ) because x′ are fresh
τ−→C ∃y′(Pρxσ[x′\tρyσ]⊗ eρyσ) because cσ `C ∃y′(dρxσ[x′\tρyσ]⊗ eρyσ)

≡C ∃y′(Pρx[x′\tρy]⊗ eρy)σ because x′ are fresh

≡C ∃y′(Pρx[x′\t]ρy ⊗ eρy)σ because y ∩ fv(P ) = ∅ and y′ are fresh

≡C ∃y(Pρx[x′\t]⊗ e)σ by α-renaming

≡C ∃y(P [x\t]⊗ e)σ
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• π ends with a rule (C-in): trivial.

Lemma B.8. Let D and E be a two sets of constraints.

1. If P ≈DE Q holds, then for any renaming ρ Pρ ≈DE Qρ holds.

2. ≈DE is an equivalence relation.

3. If P1
τ
=⇒C P2

τ
=⇒C P3 and P1

∼=DE P3, holds then so do P1
∼=DE P2.

4. If P ≈DE Q holds, then for any c ∈ E, P |c ≈DE Q|c.

5. If P ≈DE Q holds, then for any x ∈ V, ∃xP ≈DE ∃xQ holds.

6. If P ≈DE Q holds, then for any DE-guard G, P |G ≈DE Q|G holds.

Proof. case 1. Using Theorem B.7, it is straightforward to show that {(Pρ,Qρ) | P ≈DE Q}
is a DE-bisimulation.

case 2. The symmetry and reflexivity of ≈DE are obvious. For transitivity we show that the
following relation is a DE-bisimulation.

{(P,Q) | there exists R such that P ≈DE R and R ≈DE Q}

Let R such that P ≈DE R, R ≈DE Q and P
α−→C P ′. The case of silent or input action is

trivial. If α = (z)c, then, assuming that ρ = [z\z′] is a renaming with fresh variables. We

infer, using case (i), there exists R′ and Q′ such that of Rρ
(z′)cρ
===⇒C R′ρ and Qρ

(z′)cρ
===⇒C Q′ρ

with Pρ ≈DE R′ρ and R′ρ ≈DE Q′ρ. Using once more case (i) with ρ−1 we conclude that

Q
(z)c
==⇒C Q′ with P ≈DE R′ and R′ ≈DE Q′.

case 3. It is sufficient to show that the following relation is a DE-bisimulation.{
(P1, P2) | P1

τ
=⇒C P2

τ
=⇒C P3 and P1 ≈DE P3

}
The proof is straightforward using transitivity of ≈DE (i.e.case 2).

case 4 Let P ≈DE Q. We have:

P
c−→C (P |c) by def. of

c−→C
=⇒ Q

τ
=⇒C Q1

c−→C (Q1|c)
τ
=⇒C Q2 ∧ (P |c) ≈DE Q2 by def. of ≈DE

=⇒ Q
c−→C (Q|c) τ

=⇒C (Q1|c)
τ
=⇒C Q2

=⇒ P
τ
=⇒C P1

c−→C (P1|c)
τ
=⇒C P2

τ
=⇒C P3 ∧ (Q|c) ≈DE P2 ∧ Q2 ≈ P3 by def. of ≈DE

=⇒ P
τ
=⇒C (P |c) τ

=⇒C P2
τ
=⇒C P3 ∧ P |c ≈DE P3 by trans. of ≈DE

=⇒ (P |c) ≈DE P2 by case 3

=⇒ (P |c) ≈ (Q|c) by trans. of ≈DE
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case 5 We show that the following relation is a DE-bisimulation up to ≈DE .

{(∃xP,∃xQ) | P ≈DE Q}

Let ∃xP α−→C P ′. If α is an silent action or a output action with x /∈ ev(α), then the
result is trivial.

If α = (xy)d, we can infer by Theorem B.3 that the proof tree of ∃xP α−→C P ′ is of the
form:

c `C ∃y(d′ ⊗ e) ∃yd′ `C ∃y2d
′

c
(y2)d−−−→C e

(C-out)

c|P ′′ (y2)d−−−→C e|P ′′
(C-comp≡)

∃y1 (c|P ′′) (y2)d−−−→C e|P ′′
(C-outex)

∗

∃zxy1 (e|P ′′) (xy1y2)d−−−−−−→C ∃z (e|P ′′)
(C-rest)

∗

∃xP (xy)d−−−→C P ′
(cong)

From this, it is easy to infer the tree:

c `C ∃y(d′ ⊗ e) ∃yd′ `C ∃xy2d
′

c
(xy2)d−−−−→C e

(C-out)

c|P ′′ (xy2)d−−−−→C e|P ′′
(C-comp≡)

∃y1 (c|P ′′) (xy2)d−−−−→C e|P ′′
(C-outex)

∗

∃zy1 (e|P ′′) (y1xy2)d−−−−−−→C ∃z (e|P ′′)
(C-rest)

∗

P
(xy)d−−−→C P ′

(cong)

Hence, we get by hypotheses, the existence a process Q′ such that Q
(xy)d−−−→C Q′ i.e.

∃xQ (xy)d−−−→C Q′ with P ′ ≈DE Q′.
The case of input action is easily inferred thanks to case 1.

case 6. We show that the following relation is a DE-bisimulation. By Theorem B.3, the proof

of ∃x.(P |G)
τ−→C P ′ is of the form:

{(∃x(P |G),∃x(Q|G)) | P ≈DE Q}

Let P
α−→C P ′. The only non trivial case is when α = τ and the reduced ask is in G. By

Theorem B.3, we get P
(x)d[z\t]−−−−−−→C P ′′, G

d[z\t]−−−−→C (G′|R[z\t]) with P ′ ≡C ∃y(P ′′|G) and

P ′ ≡C ∃x∃y(P ′′|G′|R[z\t]). By definition of ≈DE , we have Q
(x)c−−→C Q′′ with P ′′ ≈DE Q′′,

that is Q′′∃x∃y[Q′′|G′|R[z\t]) with P ′ ≡C ∃x∃y[Q′′|G′|R[z\t]).

Proof of Theorem 3.7. From Theorem B.8, one can infer that DE-bisimilarity is closed by eval-
uation DE-context.

We can related logical equivalence and bisimulation if the compared processes do contain
neither asks nor choices.
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Remark B.9. Let P and Q two LCC-agent built form tell, parallel composition and scope
restriction. P ˛C Q iff P ≈CC Q

B.3.3 Proofs of Section 3.5. (Barbed congruence)

Proof of Theorem 3.9. We prove ∼=DE ⊂≈DE by establishing that ∼=DE is a DE-bisimulation.
Let P ∼=DE Q and P

α−→C P ′. The cases of silent or output action are direct. For input action
just use the fact that ∼=DE is a DE-congruence. For the other inclusion, is straightforward to
prove that ≈DE is a DE-barbed bisimulation. By Theorem 3.7, we get that ≈DE is a DE-
congruence. Hence we conclude that ≈DE is barbed DE-congruence.

B.4 Proofs of Section 4. (LCC a natural generalization of asynchronous calculi)

Proposition B.10 (Soundness). For all π-processes P and Q and any π-action α, we have:

(i) If P ≡π Q then JP Kπ ≡Cπ JQKπ. (ii) If P
α−→π Q then JP Kπ

JαKπ−−−→Cπ JQKπ.

Proof. (i) is immediate since each rule defining ≡m has a counterpart in the definition of

≡Cm . For (ii) we proceed by case on the transition P
α−→π Q. We focus only on the non

trivial cases. For the rule (cong) we just use case (i). For the rules (π-comp) and (π-
rest), we notice that bv(α) = bv(JαKπ) and apply counterpart rules. For (π-silent) rule we

notice that for any π-process R we have Jτ.RKπ = (1→ JRKπ) ≡Cm (1→ JRKπ|1)
τ−→Cm

(JRKπ|1) ≡Cm JRKπ. For (π-sync) we remark that for any π-process R we have Jx(z).R|x̄yKπ =

(γ(x, y)→ JRKπ|γ(x, z))
τ−→Cm (JRKπ[y\z]|1) ≡Cm JR[y\z]Kπ.

Proposition B.11 (Completeness). For any π-process P , any LCC process Q, any constraint
c, and all variables x, we have:

(i) If JP Kπ ≡Cπ ∃z.(Q|c) then P ≡π νz(P ′|Πn
i=1x̄iyi), Q ≡Cπ JP ′Kπ and ca`Cπ

⊗n
i=1 γ(xi, yi)

(ii) If JP Kπ
(z)c−−→C Q then P ≡π νz′(P ′|Πn

i=1x̄iyi), Q ≡Cπ JP ′Kπ,
⊗n

i=1 γ(xi, yi) `Cπ c

(iii) If JP Kπ
τ−→C Q′ then P

τ−→π Q with JQKπ ≡Cπ Q′.

Proof. (i) is by induction on P . (ii) are straightforward by case (i) and Theorem B.3.

For (iii), by case (i) and Theorem B.3, we infer

• JP Kπ ≡Cπ ∃z (Πi∈IJGiKπ|c|∀x(d→ JP ′Kπ))

• Q ≡Cπ ∃zy (Πi∈IJGiKπ|e|JP ′Kπ[x\t])

• ca`Cπ
⊗

j∈J γ(xj , yj) `Cπ ∃y (d[x\t]⊗ e)

There are two subcases:

• ∀x(d→ JP ′Kπ) is the translation of the silent prefix: We have x = ∅ and x = 1,
that is P ≡m νz

(
Πm
i=1Gi|Πn

j=1x̄jyj |τ.P ′
)
. Since c `Cπ ∃y(1 ⊗ e) is a most general

choice, we infer ea`Cπc and y = ∅. It is straightforward to verify that P
τ−→m Q′ =

νz
(
Πm
i=1Gi|Πn

j=1x̄jyj |P ′
)

and JQ′Kπ≡Cπ Q′
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• ∀x(d→ JP ′Kπ) is the translation of the input prefix: We have x = y′, and c = γ(x′, y′),
that P ≡m νz

(
Πm
i=1Gi|Πn

j=1x̄jyj |x̄′(y′).P ′
)
. We infer (x′, t) = (xj , yj) for some j ∈

1, . . . , n; w.l.o.g. we choose j = 1. Since c `Cπ ∃y(γ(x1, y1)[y′\t] ⊗ e) is a most general

choice for, we infer ea`CπΠn
j=2 and y = ∅. It is straightforward to verify that P

τ−→m Q′=

νz
(
Πm
i=1Gi|Πn

j=2x̄jyj |P ′[y′\yj ]
)

and JQ′Kπ ≡Cπ Q′.

Proof of Theorem 4.2. Direct by Theorems B.10 and B.11.

We defined two relations, we will use in the following proofs:

≈JπK
def
= {(JP Kπ, JQKπ) | P ≈π Q}

∼=JπK
def
= {(P,Q) | P ≈Cπ JP ′Kπ ∧ P

′ ∼=m Q′ ∧ JQ′Kπ ≈Cπ Q}

Let Dπ = {∃y.γ(x, y) | x ∈ V \ {y}} and Eπ = ∪{γ(x, y) | xy ∈ V} and D?π = Dπ ∪ Eπ. Form
the observation that the co-domain of J Kπ is precisely the set of DπEπ-processes, we deduce the
following lemma.

Lemma B.12. (i) If R is a congruence on π-processes then {(JP ′Kπ, JQKπ) | PRQ} is a DπEπ-
congruence. (ii) If R′ is a DπEπ-congruence, then {(P,Q) | JP KπR′JQKπ} is a π-congruence.

Proof of Theorem 4.3. We prove each case independently.

case (i) The “if” direction is straightforward by Theorem 4.2, case (ii) of Theorem B.12, and
the fact that any DπCπ-congruence is obviously a DπEπ-congruence.

For the “only if” direction, by Theorem B.9, we infer, that for anyDπCπ-contextD[ ], there
exists a DπCπ-context D′[ ] such that for any P , D[P ] ≈Cπ D′[P ], that is ODπ (D[P ]) =
ODπ (D′[P ]). Hence it is sufficient to prove that if P 'π Q then JP Kπ 'DπEπ JQKπ. That
can be infer straightforwardly form Theorem 4.2, case (i) of Theorem B.12.

case (ii) The “if” direction is corollary of Theorem 4.2. For the “only if” direction, it is
sufficient to show that the relation ≈JπK is a D?πCπ-bisimulation up to ≡Cπ . Let assume

that JP Kπ ≈JπK JQKπ and JP Kπ
α−→Cπ P ′. There are three cases according the type of the

action α:

• (silent action) α = τ . Direct by case (iii) of Theorem B.11.

• (input action). α = c ∈ Cπ. By Theorem B.11, we infer P ′ ≡Cπ JP Kπ|c with
ca`C∃z.

⊗n
i=1 γ(xi, yi). By Theorem B.9, Theorem 3.7, and Theorem B.11 (case

(i)), we have P ′ ≡Cπ JP |νzΠn
i=1x̄iyiKπ. Since ≈π is stable by parallel composition

(See the proof of Fournet and Gonthier (Fournet and Gonthier 2005)), we have
P |νzΠn

i=1x̄iyi ≈π Q|νzΠn
i=1x̄iyi. By Theorems 3.7, B.9 and B.10, (case (i)) we have

JP Kπ|c ≈JπK JQKπ|c. To conclude, notice that obviously JQKπ
c−→Cπ JQKπ|c.

• (output action). We have α = (z)γ(x, y) with x 6= z. By Theorem B.11, we infer the

existence of a π-process P ′′ such that P ≡π νz(P ′′|x̄y), that is either P
x̄y−→π νz(P

′′)

(if z 6= y) or P
x̄(y)−−−→π (P ′′) (if z = y). By definition of ≈π we infer the existence of

Q′ such that Q
x̄y−→π Q

′ and Q′ ≈ ∃zP ′′ (if z 6= y) or Q
x̄(y)−−−→π Q

′ and Q′ ≈ P ′′ (if
z = y). The conclusion is then obvious by Theorem B.10.
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case (iii) As for may-testing case, the “if” direction of the barbed congruence is direct by
Theorem 4.2 and case (ii) of Theorem B.12. For the “only if” direction, it is sufficient to
show that ∼=JπK is (a) a DπCπ-barbed bisimulation and (b) a DπCπ-congruence

(a) Let P ≈Cπ JP ′Kπ ∧P ′ ∼=m Q′ ∧ JQ′Kπ ≈Cπ Q. We have to show that (1) if P
τ−→Cπ P ′′

then Q
τ
=⇒Cπ Q′′ with P ′′ ∼=JπK Q

′′, and (2) and ODπ (P ) ⊂ ODπ (Q). For (1), notice
that by ≈Cπ is more discriminative that ≈DπCπ and use case (ii), Theorem 4.2, and
coinduction hypothesis. For (2), let assume α ∈ OA(P ), that is α ∈ ODm(JP ′Kπ). We

have α = (y)γ(x, y) for some distinct x, y. By Theorem B.11, we have either P ′
x̄y−→m

P ′′′, or P
x̄(y)−−−→m P ′′′ (for some π-process P ′′′), that is P ′ ⇓x̄, or by definition of ∼=m,

Q′ ⇓x̄. By Theorem B.11, we infer JQ′Kπ
γ(x,y)−−−−→Cm Q′′′ or JQ′Kπ

(y)γ(x,y)−−−−−−→Cm Q′′′ for
some LCC-process Q′′′, that is, by definition of ≈Cπ , (∃y.γ(x, y)) ∈ ODπCπ (Q).

(b) Since∼=π is a by definition a π-congruence, we have, by Theorem B.12 that {(JP Kπ, JQKπ) |
P ∼=m Q} is a DπEπ-congruence. Since moreover ≈Cπ is clearly a DπEπ-congruence,
we infer ∼=JπK is a DπEπ-congruence. By Theorem B.9 and Theorem 3.7, we conclude
that ∼=JπK is a DπCπ-congruence.

B.5 Proofs of Section 5. (Observational equivalence relations for CC framework)

Proof of Theorem 5.4. We show the following relation is a CC-bisimulation, the result follows
by Theorem 3.9 up to ≡C

{((σ×1 |P×), (σ×2 |P×)) | there exist σ′1 and σ′2 such that σ1
P−→∗aσ′1 ∼=CcD σ′2

P←−∗aσ2}

This is easily proved using the confluence of P and Theorem 5.2.

Proof of Theorem 5.5. It is sufficient to show that the following relation is a CcD-bisimulation
up to ≡C .

{((σ×|P×), (σ′×|P ′×)) | (σ×|P×) 'CcD (σ′×|P ′×)

Let (σ×|P×)
α−→C (σ×1 |P×) and ((σ×|P×), (σ′×|P ′×)). The case of alpha = τ by Theorem 5.4.

For the case α = c ∈ D, use the fact that 'CcD is a CcD-congruence. For the case of α = (x)c
with (∃xc) ∈ C use Theorem 5.2.
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