
Effectiveness of Global Analysis in
Strict Independence-Based
Automatic Parallelization*
F. Bueno
M. García de la Banda
M. Hermenegi ldo

Facultad de Informática, UPM
28660-Boadilla del Monte, Madrid - Spain
{bueno,maria,herme}@fi.upm.es

Abstract
This paper presents a study of the effectiveness of global analysis in the
parallelization of logic programs using strict independence. A number of
well-known approximation domains are selected and tlieir usefulness for the
application in hand is explained. Also, methods for using the information
provided by such domains to improve parallelization are proposed. Local
and global analyses are built using these domains and such analyses are
embedded in a complete parallelizing compiler. Then, the performance of the
domains (and the system in general) is assessed for this application through
a number of experiments. We argüe that the results offer significant insight
into the characteristics of these domains, the demands of the application,
and the tradeoffs involved.

1 Introduction

Abstract Interpretation [8] aims at statically - i.e. at compile-time - inferring
information about run-time properties of programs. The purpose of the
process is generally to use such information to perform optimizations which
improve some characteristics of the program or its execution. However, only
a few studies have been reported which examine the performance of analyzers
in the actual optimization task they were designed for (notable exceptions
are [27, 24, 26]). This paper contributes to fill this gap, for a particular type
of optimization: automatic parallelization of logic programs based on strict
independence detection (see, for example, [12] and its references).

In a previous study [27, 13], we have reported on a first set of exper
iments in abstract interpretation-based program parallelization. However,
being essentially a feasibility study, that work necessarily had several short-
comings: it included only one domain (a simple depth-K/sharing domain); it

used a relatively simple basic parallelizer and analyzer (for example, no mul-
tivariance was implemented); and it presented the results only in terms of
program simplifications. Since then, several new parallelization algorithms
[20] and abstract analyses (i.e. domains and the associated abstract func-
tions) relevant to the application [25, 5, 16, 22, 21, 6] have been proposed.
Furthermore, a complete parallel platform [11], a set of performance eval-
uation tools [10], and a second-generation analysis framework [22, 23] have
become operational.

In this paper we report on the implementation of a wide collection of
such analyses (including a simple local analysis), describe their integration
into the parallelizing compiler and run-time system, and study their effi-
ciency, accuracy, and effectiveness in program parallelization. We propose
algorithms for the non-trivial task of exploiting the information provided by
each of the analyses in the application. The information gathered by the
analyzers is evaluated not only in terms of its accuracy, i.e. its ability to
determine the actual dependencies among the program variables, but also
of its effectiveness, measured in terms of code reduction and also in terms
of the ultimate performance of the parallelized programs, i.e. the speedup
obtained with respect to the sequential versión. We argüe that our work
not only assesses the importance of abstract interpretation in the task of
automatic parallelization, but also sheds new light on several subtle char-
acteristics of the domains (which give them their respective power) and on
their relationship to the parallelization process itself.

2 The &-Prolog System and Language

The analyses in the study have been integrated into the &-Prolog system
[11], which comprises a parallelizing compiler aimed at uncovering goal-level,
restricted (i.e., fork and join) independent and-parallelism and an execution
model/run-time system aimed at exploiting such parallelism. It is a complete
Prolog system, based on the SICStus Prolog implementation, offering full
compatibility with this system. Prolog code is parallelized automatically
by the compiler, in a user-transparent way. Compiler switches determine
whether or not code will be parallelized and through which type of analysis.

The &-Prolog language is essentially Prolog, with the addition of the
parallel conjunction operator "&" (used in place of ",'' - comma- when goals
are to be executed concurrently), a set of parallelism-related builtins, and a
number of synchronization primitives which allow expressing both restricted
and non-restricted parallelism. Combining these primitives with the Prolog
constructs, such as "->" (if-then-else), parallel execution of goals can be
conditionally triggered. For syntactic convenience an additional construct
is also provided: the Condiüonal Graph Expression (CGE). A CGE has
the general form (i-cond => goal\ & goal^ & . . . & goal^) where Lcond
is a sufficient condition for running goali in parallel under the appropriate
notion of independence, in our case strict independence. &-Prolog if-then-
else expressions and CGEs can be nested to créate richer execution graphs.
&-Prolog also allows programs to be parallelized manually.

3 Annotation Process

The automatic parallelization process is performed in the &-Prolog system as
follows. Firstly, if indicated by the user, the program is analyzed using one or
more global analyzers. Secondly, the annotators perform a source-to-source
transformation (referred to as the annotation) of the program in which the
body of each clause is annotated with parallel expressions. Such expressions
may include run-time tests which encode the notion of independence used.
Additionally the annotators can also invoke local (i.e. clause level) analyzers
to infer further information regarding the components of a clause.

The annotation process itself is divided into two subtasks. The first aims
at identifying dependencies between each two literals in a clause and generat-
ing the minimum number of tests which, when evaluated at run-time, ensure
the independence of the goals corresponding to such literals. The second task
aims at applying a particular strategy to obtain an optimal (under such a
strategy) parallel expression among all the possibilities detected previously,
hopefully further optimizing the number of tests. In the following we will
briefly explain both steps in the particular context of strict independence.

Note that , in general, side-effects cannot be allowed to execute freely
in parallel. In order to avoid their parallelization, the annotators use the
information derived by the analyzer described in [19] which propagates the
side-effect characteristic of builtins yielding side-effect procedures. None of
them are parallelized by the current implementation. Also, some limited
knowledge regarding the granularity of the goals, in particular the builtins,
is used. As a result builtins are not parallelized in general.

3.1 Identifying Dependenc ies

The presence of dependencies among goals depends directly on the no
tion of independence used. For concreteness, in this study we use strict
independence, which has been widely used in the literature (see e.g.
[7, 9, 14, 4, 18, 15, 17]). We follow mainly [12]. Two goals g\ and g% are said
to be strictly independent for a given substitution 6 iff vars(gi#) n vars((/2^)
= 0. The definition can be easily extended to a collection of goals and it can
also be applied to terms and substitutions without any change.

Given a collection of literals, gi,...,gn, we would like to genérate at
compile-time a condition i-cond which, when evaluated at run-time, guar-
antees the strict independence of the goals which are instantiations of such
literals. Consider conditions including "true", "false", or any set, inter-
preted as a conjunction, of one or more elements of the form ground(x),
and indep(x,y), where x and y can be goals, variables, or terms in gen
eral. Let ground(x) be true when x is ground and false otherwise. Let
indep(x, y) be true when x and y do not share variables and false other
wise. Given a set of literals (and no other information) a correct ijcond is
{ground(x)\x G SVG} U {indep(x,y)\(x,y) G SVI}, where SVG = {v |
Bi,j(i 7̂ j,v G vars(gi) nvars(gj))} and SVI = {(v,w) | v,w 0 SVG,
B¿, j(¿ < j,v G vars(gi),w G vars(gj))}.

Example 3.1 Consider the ¡iteráis a(w), b (x , y) , c (z ,y) . Possible se-
quences of ¡iteráis that can be considered for parallel execution and their
associated i-conds are:

Goals
a(w), b(x,y)
a(w) ,c(z ,y)
b (x , y) , c (z , y)
a(w), b (x , y) ,

c (z ,y)

SVG
0
0

{y}
{y}

SVI
{(w,x),(w,y)}
{(w,y),(w,z)}

{(w,x),(w,z),(x,z)}

i_cond
{indep(w, x), indep(w, y)}
{indep(w, y),indep(w, z)})
{ground(j), indep(x, z)}
{ground(j),indep(w, x),
indep(w, z),indep(x, z)}

In general a groundness check is less expensive than an independence
clieck. Thus, replacing independence cliecks with groundness checks is prefer-
able. Also, note that, for efficiency reasons, we can improve the conditions
further by grouping pairs in SVG and SVI.

The dependencies between literals in a clause can be represented as a
dependency graph, i.e. a directed acyclic graph where each node represents
a literal and each edge represents the dependency between the connected
literals. Edges are added following the left-to-right precedence relation given
by the clause body. A conditional dependency graph (CDG) is one in which
the edges are adorned with independence conditions. If those conditions are
satisfied, the dependency does not hold. In an unconditional dependency
graph (UDG) dependencies always
hold, i.e. conditions are always "false."
In our case, we will associate with each
edge which connects a pair of literals
the tests for their strict independence.
The following figure shows the CDG
for example 3.1.

a(w)

indep(w,x)

indep(w,y)

b(x,y)

indep(w,z),

indep(w,y)

c(z,y)

ground(y), indep(x,z)

3.2 Simplifying Dependencies

The tests generated in the process described above imply the strict inde
pendence of the literals for all possible substitutions, thus ensuring that the
goals resulting from the instantiations of such literals will also be strictly
independent. However, independence only needs to be ensured for those
substitutions that can appear in a given program. This observation is in
strumental when exploiting the results from static analysis in simplifying
dependencies.

The simplification process is based on identifying tests which are ensured
to either fail or succeed w.r.t. some information. We propose a method for
performing such simplification. For any clause C, the information known
at a program point i in C can be expressed in what we cali a domain of
interpretation GI for groundness and independence:^ a subset of the first
order logical theory, such that each element K of GI defined over the vari
ables in C is a set of formulae (interpreted as their conjunction) containing
only elements of the form ground(x) or indep(y, z),{x, y, z} C vars(C), and

Note that this domain can actually itself also be considered an abstract domain.

such that K \f false, and VK G GI: K D {ground(x) —> indep(x,y)\{x,y} C
ixirs(C)} U {ground(x) -B- meterá:, 2Í)|:Z: G ixirs(C)}. For the sake of sim-
plicity, in the rest of the paper this formula will be assumed to be part of
any K, although not explicitly written down.

For any program point i of a clause C where a test I¿ on the groundness
and independence of the clause variables is checked, the simplincation of
such test, based on an element K¿ G GI over the variables of C, is defined as
the refinement of T¿ to yield T¡ = improve(Ti, K¿), where:

{ true if Ki h Ti

false if 3t G T¿, K¿ I—ií
{t} U improve(Ti \ {t}, K{ U {t}) otherwise

Note that there is an implicit restriction on the selection of t G T¿ in
the above definition of improve since the order in which t is selected can
influence its result. We will avoid such non deterministic behavior by first
selecting groundness conditions (because of their lower cost at run-t ime) ,
then those which do not appear as the consequent in any atomic formula of
Ki, and then the rest. This will be done following a left-to-right selection
rule.

Building this formula includes translating information from the domain
used in the analysis to the GI domain and may be non-trivial. In Section
4 we present algorithms for building this formula for each of the domains
for global analysis used in our experiments. However, in order to illustrate
the dependency simplincation process, we now introduce the other type of
analysis used in our experiments and the simplincation algorithm for it, and
apply it to an example.
Local Analys i s
Local analysis considers each clause in isolation. The information inferred
is based on knowledge regarding the semantics of the builtins and the free
nature of the first oceurrences of variables. This derived information can
be directly expressed in terms of elements of the GI domain. Consider a
clause C and the set Fv\ of variables not oceurring in head(C). Then K\ =
{^ground(x) | x G Fv\} U {indep(x,y) | x G Fv\,x ^ y,y G vars(C)}. The
analysis proceeds left to right with the gi goals in the body of C. Assume we
have obtained K¿, then KÍ+\ will be obtained from K¿ and g.¡ in the following
way:

• Fvi+i = FVÍ \ vars(gi)

• if gi is not a builtin KÍ+\ = K¿ \ ({->ground(x)\x G vars(gi)} U
{indep(x,y)\{x,y} nvars(gi) ^ 0 A {x,y} \vars(gi) % Fvi+i})

• if gi is a builtin, let ngi be the representation for the semantics of gi
in GI. Then K¿ + I = (K¿ \ Incons) U ngi where Incons is the minimum
formula s.t. K¿ U K9Í h false and (K¿ \ Incons) U K9Í \f false

E x a m p l e 3.2 let us illustrate the simplification of dependencies. Con
sider the sequence of literals in example 3.1, augmented with a builtin:

b(x,y) c(z,y)

w i s x+1, a(w) , b (x , y) , c (z , y) . The semantics of i s / 2 ensures that
both x and w are ground after executing the builtin. Since this informa-
tion is downwards closed, the local analysis will be able to derive that this
holds not only just after the execution of the builtin, but also at every
point in the clause to the right of it. a(w)
Thus Ki = {ground(x),ground(w)}
for all points i > 1. The CDG for the
same literals of example 3.1 becomes,
by applying the improve function with í J > í J
this information, the following one: ground(y)

3.3 Building Parallel Expressions

Given a clause, several possible annotations are possible. Different heuristic
algorithms implement different strategies to select among all possible parallel
expressions for a given clause. The study of such algorithms is beyond the
scope of this paper (see [2] for such a study). Herein, and unless otherwise
noted, we will use the MEL algorithm [20], which was also the one used in
previous studies [27, 13]. This algorithm tries to find points in the body of
a clause where it can be split into different parallel expressions (i.e. where
edges labeled as "false" appear) without changing the order given by the
original clause and without building nested parallel expressions. At such
points the clause body is broken into two, a CGE is built for the right
part of the sequence split, and the process continúes with the left part.
Once an expression has been built, it can be further simplified, unless it is
unconditional. Based on the local or global information, the overall condition
built by the annotation algorithm can possibly be reduced again.

Example 3.3 Consider the sequence of literals in example 3.1, augmented
with a different builtin: y = f (x , z) , a(w), b (x , y) , c (z , y) . Now the
analysis can derive tu = {ground(x) Aground(z) -H- ground(y)} for all points
i > 1. Although the CDG does not vary, the annotation of the literals is:
y = f (x , z) , (ground(y) => a(w) & b(x,y) & c (z , y)) ; the test being
simpler than the one in example 3.1 which corresponds to this annotation.

4 Global Analysis-Based Test Simplification

The analyzers we have studied include the ASub domain of S0ndergaard
[25] with the abstract functions presented in [5]; the Sharing domain of
Jacobs and Langen [16] with the abstract functions presented in [22]; the
Sharing+Freeness abstract domain and abstract functions defined in [21],
and also the combination of the domains ASub with Sharing and ASub with
Sharing+Freeness presented by Codish et al in [6]. They have all been em-
bedded in PLAI [22, 23], one of the components of the &-Prolog system
compiler, which is a domain independent analysis framework implemented
in Prolog, and based on the model of Bruynooghe [1] with the optimizations
described in [22, 23].

4 .1 ASub D o m a i n

The domain ASub was defined for inferring groundness, sharing, and linearity
information. The abstract domain approximates this information by combin-
ing two components: definite groundness information is described by means
of a set of program variables D\ = 2 P V a r ; possible (pair) sharing information
is described by symmetric binary relations on PVar D<¿ = 2 (-P V a r x P V a r-) . The
concretization function, •jASub '• ASub —> 2Sub, is defined for an abstract sub-
stitution (G,R) £ ASub as follows: jASub(G,R) approximates all concrete
substitutions 0 such that for every (x, y) £ PVar2: x £ G =>• ground(x0),x ^
y A vars(x6) n vars(y0) ^ 0 =>• x R y, and x R x =>• linear(x0).

Consider an abstract substitution A¿ £ ASub for program point i of a
clause C. The contents of the corresponding K¿ G G7" are as follows:

• ground(x) \í x £ G

• indep(x, y) if x R y

Note that in this case K¿ does not contain either ^ground(x) ñor -^indep(x, y)
for any {x,y} C vars(C), thus no tests in the CDG can ever be reduced to
false with only this information.

E x a m p l e 4.1 Consider a clause C such that vars(C) = {x,y,z,v,w} and
an abstract substitution A = ({x},{(z,w),(z,v)}). The corresponding K will
be: {ground(x),indep(y, z), indep(y, w), indep(y, v), indep(w,v)}.

4 .2 Sharing D o m a i n

The Sharing domain was proposed for inferring groundness and sharing in-

formation. The abstract domain, Sharing = 2 , keeps track of set shar
ing. The concretization function is defined in terms of the occurrences of
a variable U in a substitution: occs(6,U) = {x £ dom(0)\U £ vars(x0)}.
If occs(6, U) = V then 0 maps the variables in V to terms which share the
variable U. The concretization function ^sharing '• Sharing —> 2Sub is defined
as jsharing(X) = {9 £ Sub \ \/U £ Var. occs(0, U) £ A}.

Intuitively, each set in the abstract substitution containing variables
vi,...,vn represents the fact that there may be one or more shared vari
ables occurring in the terms to which vi,..., vn are bound. If a variable v
does not occur in any set, then there is no variable that may occur in the
terms to which v is bound and thus those terms are deñnitely ground. If
a variable v appears only in a singleton set, then the terms to which it is
bound may contain only variables which do not appear in any other term.

Consider an abstract substitution A¿ £ Sharing for program point i of a
clause C. The contents of the corresponding K¿ £ GI is as follows:

• ground(x) if \/S £ A, : x 0 S

• indep(x, y) if VS1 £ A¡ : x £ S —>• y 0 S

• ground(x\) A ... A ground(xn) —> ground(y) if VS1 £ A¿ : if y £ S
then {xi,... ,xn} fl S ^ 0

• ground(x\) A . . . A ground(xn) —> indep(y, z) if \/S G A, : if {y, z} C S
then {xi,... ,xn} fl S 7̂ 0

• indep(xi,y\) A . . . A indep(xn, yn) —> ground(z) if ÑAS G A, : if z G <S
then 3j G [l,n], {xj,yj} C 5

• indep(xi,y\)A.. .Aindep(xn,yn) —> indep(w, z) if VS" G A, : if {io,z} C
S1 then 3j G [l,n], {^j,yj} ^ S1

Each implication can be derived by eliminating the required sets in A,
so that the antecedent of the implication holds, and then looking for new
ground(x) or indep(x,y) which now become true. As in ASub, no tests in
the CDG can ever be reduced to false with only this information.

Example 4.2 Consider the clause C in which vars(C) = {x,y,z,v,w}
and the abstract substitution A = {{y},{z,w},{z,v}}. The correspond-
ing K will be {ground(x),indep(y,z),indep(y,w),indep(y,v),indep(w,v),
ground(z) -H- ground(w) A ground(v),indep(z,v) A indep(z,w) —>
ground(z),indep(z,v) —> ground(v),indep(z,w) —> ground(w)}. Note that
K contains all the information derived in example 4-1 plus that provided by
the power of the set sharing information regarding groundness propagation.

4.3 Sharing+Freeness D o m a i n

The Sharing+Freeness domain aims at inferring groundness, sharing, and

freeness information. It combines two components: one Sh = 22 is
the same as the sharing domain; the other Fr = 2P V a r encodes freeness
information. The concretization function ^ypr : Fr —> 2Sub is defined as
7Fr(A/r) = {0 G Sub | \¡x G PVar : if x G A/r then free(xO)}.

Consider an abstract substitution A, G Sharing+Freeness for program
point i of clause C. Then m is formed by the following tests, in addition to
those for Xsh G Sharing presented in the previous section:

• -^ground(x) if x G A/r

• ~^indep(x, y) if y G A/r and VS" G \sh : if y G S then x G S

• ground(x\)A.. .Aground(xn) —> ~^indep(y,z) if z G \¡r and VS1 G Xsh '•
if {y, z} fl S = {z} then {xi,..., xn} fl S ^ 0 and BS G Xsh {y, z} C S

• indep(xi,y\) A . . . A indep(xn,yn) —> ~^indep(y, z) if z G X¡r and \/S G
As/j : if {y,z} H S = {z} then 3j G [l,n], {íCj,yj} C S and 3S" G
Kh {y,z} ^ S

The intuition behind each implication is as before. The main difference
is that now updating the abstraction A¿ for the antecedent to hold can cré
ate an "incoherent" abstraction. In this case K¿ allows the simplincation of
conditions which will always fail. This is an extra gained precisión in addi
tion to that which comes out of the synergistic interaction between the two
components of Sharing+Freeness.

E x a m p l e 4 .3 Consider the same clame C as in J^.2 and the same shar-
ing component As/j = {{y}, {z,w}, {z, v}} . Consider the jre.ene.ss component
Xfr = {w}. The corresponding K will be the result of adding the following for
múlete to the one obtained in the example above: {^ground(w), ^indep(z, w)}.
This information, in addition to that derived by Xsh, makes K I—<ground(z).

Note that in the example above -¡ground(z) was derived even though
z 0 Xfr. This is a subtle characteristic of the Sharing+Freeness domain which
gives it a signincant part of its power. Furthermore, although not directly
related to strict independence, the Sharing+Freeness abstract domain is also
able to infer defmite non freeness for non ground variables.

4.4 Combined Domains

As mentioned before, we have also considered the evaluation the analyz-
ers resulting from the combination of the ASub and Sharing and ASub and
Sharing+Freeness domains. The information approximated by such domains
can be used to simplify the CDG simply by translating the information in-
ferred by each domain into the GI domain, conjoining the resulting KS, and
applying the techniques described in previous sections.

5 Experimental Results

A relatively wide range of programs has been used as benchmarks. Due to
lack of space, they are not discussed here (see f t p : / / c l i p . d i a . f i . u p m . e s) .
Instead, we have selected a representative collection, for which the following
table gives (in our view) more
insight into the complexity of
each of them, useful for the in-
terpretation of the results. Av,
Mv are respectively the aver-
age and máximum number of
variables in each clause ana-
lyzed (dead code is not consid
ered) ; Ps is the total number of
predicates analyzed; S, and M
are respectively the percentage
of simply and mutually recur-
sive predicates; Gs is the total
number of different goals solved
in analyzing the program, i.e.,
the total number of syntacti-
cally different calis.

5.1 Efficiency Resul ts

The following table presents the efficiency results in terms of analy-
sis times as well as the time needed to compile the benchmark under

Bench.

aiakl
ann
bid
boyer
browse
deriv
fib
hanoiapp
mmatrix
oceur
peephole
qplan
qsortapp
read
serialize
tak
warplan
witt

Av

4.58
3.17
2.20
2.36
2.63
3.70
2.00
4.25
3.17
3.12
3.15
3.18
3.29
4.20
4.18
7.00
2.47
4.57

Mv

9
14

7
7
5
5
6
9
7
6
7

16
7

13
7

10
7

18

Ps

7
65
19
26
8
1
1
2
3
4

26
46

3
24

5
1

29
77

S

57
20
31

3
62

100
100
100
100
75

7
32

100
12
80

100
31
35

M

0
36

0
23
25

0
0
0
0
0

46
28

0
33

0
0

17
22

Gs

9
73
27
29

9
1
1
3
3
4

28
51
4

47
7
1

36
96

http://jre.ene.ss
ftp://clip.dia.fi.upm.es

SICStus Prolog (Prol. column) in seconds (SparcStation 10, one proces-
sor, SICStus 2.1, native code). It shows for each benchmark and analyzer

the average times out
of ten executions. In
the following, S (set
sharing) denotes the
analyzer based on
the Sharing domain,
P (pair sharing) de
notes
the analyzer based
on the ASub domain,
SF (set sharing +
freeness) denotes the
analyzer based on the
Sharing+Freeness do
main, and P.S and
P.SF denote the an
alyzers based on the
combined domains.

Bench.

aiakl
ann
bid
boyer
browse
deriv
fib
hanoiapp
mmatrix
occur
peephole
qplan
qsortapp
read
serialize
tak
warplan
witt

Average
Prol.
0.17
1.76
0.46
1.12
0.38
0.21
0.03
0.11
0.07
0.34
1.36
1.68
0.08
1.07
0.20
0.04
0.80
1.86

S
0.20

19.40
0.32
3.56
0.13
0.06
0.01
0.03
0.03
0.04
5.45
1.54
0.04
2.09
2.26
0.02

15.71
1.98

P
0.43
5.54
0.27
1.38
0.17
0.05
0.01
0.03
0.03
0.03
2.54

11.52
0.05
1.89
0.23
0.02
5.02

16.24

SF
0.22

10.50
0.36
4.17
0.15
0.07
0.02
0.04
0.03
0.05
3.94
1.84
0.05
2.35
0.62
0.02
8.71
2.26

P.S
0.32

16.37
0.46
2.91
0.21
0.09
0.02
0.06
0.04
0.06
7.00
2.60
0.08
2.99
0.52
0.02

15.74
2.87

P.SF
0.37

17.68
0.56
3.65
0.24
0.11
0.02
0.07
0.05
0.07
7.45
3.36
0.09
3.51
0.67
0.04

17.68
3.42

5.2 Effectiveness Results: Static Tests

One way to measure the accuracy and effectiveness of the information pro-
vided by abstract interpretation-based analyzers is to count the number of
CGEs which actually result in parallelism, the number of these which are
unconditional, and the number of groundness and independence tests in the
remaining CGEs, which provides an idea of the overhead introduced in the
program. The benchmarks have been parallelized in the following different
situations: without any kind of information (N in the table), with infor
mation from the local analysis (L), and with that provided by each of the
global analyzers. The results are shown in tables 1 and 2. The results for
the combined analyzers are in most cases the same as those for the best of
the analyzers being combined. Only the exceptions are shown. Note that to
obtain the results we inhibited local analysis so as to measure the power of
the global analyzers by themselves.

5.3 Effectiveness Results: Dynamic Tests

An arguably better way of measuring the effectiveness of the annotators is
to measure the speedup achieved: the ratio of the parallel execution time of
the program to that of the sequential program. Since we are interested in
the quality of the parallelization process, and not in the characteristics of
a particular run-time system, this should ideally be done for an unbounded
number of processors and in a controlled environment. Such ideal paral
lel execution time has been obtained using the simulation tool IDRA [10].
This tool takes as input a real execution trace file of a parallel program
run on the &-Prolog system (i.e., an encoded description of the events that

Bench.
Program

aiakl
ann
bid
boyer
browse
deriv
fib
hanoiapp
mmatrix
occur
peephole
qplan
qsortapp
read
serialize
tak
warplan
witt

Total CGEs
N
2

28
8
3
9
5
1
1
2
3

11
31

1
2
2
1

16
39

L
2

14
6
2
5
4
1
1
2
3
2

20
1
1
1
1

11
24

S
2

26
8
3
5
4
1
1
2
2

11
31

1
2
2
1

14
39

P
2

26
8
3
5
4
1
1
2
2

11
31

1
2
2
1

14
39

SF
2

12
5
2
4
4
1
1
2
2
2

18
1
1
1
1
9

24

Uncond. CGEs
N
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

L
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
1
2

s
0
0
3
0
0
0
1
0
0
1
1
3
0
1
0
0
0
5

P
0
0
5
0
0
4
1
0
2
2
1
3
0
1
0
0
0
5

SF
2
0
5
0
0
4
1
1
2
2
1

16
1
1
0
1
1

22

P.S | P.SF

6 |

| 1

11 |

Table 1: Results for Effectiveness — Static Tests

Bench.
Program

aiakl
ann
bid
boyer
browse
deriv
fib
hanoiapp
mmatrix
occur
peephole
qplan
qsortapp
read
serialize
tak
warplan
witt

Conditions: ground/indep
N

7/5
76/129

9/22
5/4

9/25
5/16
0/4
7/0
2/8
2/9

23/13
62/196

5/1
2/7
4/7
6/6

28/22
107/287

L
0/10
14/36
7/12
4/2
3/9

4/16
0/0
2/1
2/8
2/5
3/4

13/57
0/1
1/6
0/4
0/0

14/11
20/135

S
5/0

60/38
5/7
5/1
4/3
0/4
0/0
3/0
0/2
0/1

14/10
53/7
4/0
1/0
4/5
3/0

25/15
64/24

P
5/0

60/19
5/0
5/0
4/3
0/0
0/0
3/0
0/0
0/0
14/6

61/42
4/0
1/0
4/0
3/0

25/11
98/43

SF
0/0

6/14
0/0
4/1
2/2
0/0
0/0
0/0
0/0
0/0
1/2
2/1
0/0
0/0
0/1
0/0
11/7
0/2

P.S | P.SF

60/18 |

1 4/°

53/1 |

1 °/°

64/4 |

Table 2: Results for Effectiveness — Static Tests

occurred during such execution) and the time for its sequential execution,
and computes the achievable speedup for any number of processors. For the
benchmarks used, and up to 10 processors, the results obtained with IDRA
and those of the actual implementation are within 5% [10], so only the IDRA
results are presented. For larger numbers of processors the speedup of the
actual system understandably gets gradually smaller than that computed by
IDRA. Unfortunately, the lower speedup also tends to hide the differences

between the different parallelizations. Since this is not due to the paral-
lelization itself, but rather to the characteristics of the particular versión of
the parallel system and scheduler, we feel that the IDRA results are more
illustrative, and have chosen to show them instead. They are given, for a
representative subset of the benchmarks, in Figure 1. For each benchmark
a diagram with speedup curves obtained with IDRA is shown. Each curve
represents the speedup achievable for the parallelized versión of the program
obtained with the M E L annotator in one of the situations shown in the
static tests. A curve has been labeled with more than one situation when
either the resulting parallelized programs were identical or the differences
among the speedups obtained were negligible (i.e., impossible to distinguish
by looking at the diagram).

6 Discussion and Conclusions

The efficiency results in terms of time required by the analysis suggest that
the analysis process is reasonably efficient (all the analysis code is written in
Prolog). Typically, the analysis takes less than 2 or 3 seconds and is within
the same order of magnitude as the SICStus compilation time (note that
the SICStus compiler code is more mature and optimized than our analysis
code). The longest execution (Sharing for ann) takes 19.40 seconds which is
still reasonable, considering the complexity of the benchmark. When com-
paring the analysis times for each analyzer, the results appear inconclusive
due to the high number of parameters involved which, for simplicity, are not
shown: number of specializations, of iterations in each computation, etc.

For example, the above mentioned parameters have similar valúes in a
number of cases represented by bid, deriv, fib, hanoiapp, mmatrix, occur,
qsortapp, and tak. In these cases the relative complexity of the analyzers is
then clearly renected in the figures in the table: the abstract operations of
the Sharing+Freeness analysis are more complex than those of Sharing (since
it has an additional component) and these in turn are much more complex
than those of ASub. However, in general the tradeoffs are much more com
plex than implied by the complexity of the abstract operations. The impor-
tant intervening factor is accuracy. An accurate analysis generally produces
smaller abstract substitutions and also affects the fixpoint computation by
reducing the number of iterations, specializations, etc. This effect can be ob-
served in aiakl, qplan, and witt in which the lack of groundness propagation
in the ASub analyzer affects the accuracy. In these benchmarks, the total
number of iterations within fixpoint computations for ASub is approximately
6.5 times that of the other analyzers, and in the last two benchmarks the
number of specializations increases by 2.5 times. Conversely, there are other
cases (e.g., ann, boyer, serialize and warplan) in which the Sharing or the
Sharing+Freeness analyzers take much longer than ASub due to the lack of
(accurate) linearity information. These shortcomings are alleviated in the
corresponding combined domains, so that the time is less than the expected
sum of the times of each original component.

Memory consumption has also been studied. Although lack of space

Benchinark: aiakl Benchmark: bid Benchmark: boyer

Number of Processors
• P*SF/SF

P*S/P/S/N

^ ~
^ - 1 T

</)rA^Z = o

J Number of Processors
-m— P*SF/SF
—•— P*S/P

0.8-
J

'
'

'
'

'
i i

Number of Processors
• P*SF/SF/L

P*S/S/P/N

Benchmark: deriv Benchmark: mmatrix

10 13 16 19 22 25
Number of Processors

- P*SF/P*S/SF/P

4 7 10 13 16 19 22 25
Number of Processors

- P*SF/P*S/SF/P
• S
• L/N

25.0

22.5-

20.0

17.5

15.0

1 , 3

-

Benchmark: occur

13 16 19 22 25
Number of Processors

• P*SF/P*S/SF/P

Benchmark: ann

1 0 1
Numb erofProcessors

— P*S
-m— P*SF/SF

1...

0.8-j

n r

Benchmark: hanoiapp

4

Benchmark: hanoiapp cdg

Number of Processors
P*SF/SF

- P*S/P/S
P*SF/SF

• P*S/P/S

Figure 1: Results for Effectiveness — Dynamic Tests

forces us to omit the results, it is worth noting some points. First, high
memory consumption often indicates a long execution time and vice versa.
This is specially true when considering the global stack, where most of the
memory consumption takes place. The fact that the analyzers do not con
sume much heap space has been a big surprise considering the heavy use of
the datábase performed during the analysis. Second, local and choice-point
stacks and trail consumption is negligible. Since global stack consumption
is related to the size of the substitutions each analyzer handles, it can be

concluded that the size of the (representations of the) abstract substitutions
dominates the consumption of memory (and time) by the analyzers.

Regarding the effectiveness of the information inferred by each analyzer,
there are two key issues to be studied: whether the results of the analysis
are effective in eliminating CGEs which have a test that will always fail, and
whether they are effective in eliminating tests that will always succeed. With
respect to the first point, tables 1 and 2 show that definite non-groundness
and definite sharing, achieved in the case of the Sharing+Freeness analysis
due to the combination of sharing and freeness, is quite effective. While
Sharing and ASub can only help in eliminating CGEs by identifying dead
code (which is not parallelized) the local analysis (unable to detect dead
code) is able to eliminate more CGEs than either of them in a fair number
of cases: ann, bid, boyer, peephole, qplan, warplan, witt. Sharing+Freeness
proves to be the most accurate, giving always the least number of CGEs. It
is important to note that although some elimination of CGEs was expected
at the beginning of the study, the actual impact of the results of this type
of analysis is quite surprising: the Sharing+Freeness analysis can reduce the
number of CGEs in 16 out of 23 benchmarks (the complete set used), and
the reduction is often of half or more of the CGEs created without analysis.

However, it is when considering the simplification of the conditions in the
CGEs that global analysis shows its power: even in the cases where Sharing
or ASub have to deal with more CGEs than the local analysis, the total num
ber of tests is usually less. Regarding the comparison among the different
global analyzers, it is clear that ASub is better than Sharing (at least for in-
dependence checks, though not for groundness!) and that Sharing+Freeness
is the best in terms of accuracy, although often at a cost in analysis time.
This can be surprising when noticing that the sharing information provided
by ASub is usually more accurate than that of Sharing+Freeness as shown
in [6]. This apparent contradiction is solved when considering the amount
of information provided by the set sharing information, already pointed out
when translating this information into the GI domain, which allows the an-
notators to significantly simplify the tests for parallelization. The combined
analyzers always obtain the same number of tests as those of the best of
the analyzers combined, and, in a few cases, slightly better results are ob-
tained. The number of tests obtained by ASub is reduced when combined
with Sharing in three cases: ann, qplan, and witt. This is not surprising since
the last two are in the class of programs for which ASub loses information.
In the case of ann, the advantage is due to the ability of the Sharing domain
to infer independence of two variables from the independence of others, an
ability which ASub lacks. There are two exceptions for Sharing+Freeness
combined with ASub: serialize, and boyer. In both of them an indepen
dence check is eliminated, thanks to the more accurate linearity information
provided by ASub.

An important conclusión from the study is the importance of non-
groundness information in addition to that of sharing and groundness. The
Sharing+Freeness domain turns out to be quite sufficient in this sense, offer-
ing acceptable results in most cases. However, in some cases the results from

Sharing+Freeness can be improved by coupling it with the ASub domain, a
combination which gives the absolute best results for the domains consid-
ered. ASub and Sharing gave reasonable and similar overall results, with a
relatively large advantage for one or the other in some cases.

Finally, we discuss the effectiveness of the analysis process in terms of
actual speedups obtained from the parallelization of the program. Note that
the results include the overhead of running the independence checks and
thus slow-downs can be observed. The first observation is that speedups
obtained for a given benchmark do reflect in some ways the accuracy re
sults. Accordingly, the overall results favor the Sharing+Freeness analysis.
This can also be observed in the number of unconditional CGEs. However,
there are exceptions to this. In particular, in the case of ann, better re
sults can be observed for all other analyzers except local! The reason for
this is interesting: it is due to a particular clause being annotated in two
different ways. With most of the analyzers, a CGE with a groundness test
is built. The better information obtained by the Sharing+Freeness analysis
allows eliminating this CGE because its test will always fail, and a new CGE
with a number of independence checks is then built. It turns out that all
tests will ultimately fail at run-time. However, with Sharing+Freeness the
independence test, which turns out to be much more complex, is performed.
The other analyzers, being less accurate, do not eliminate the groundness
test, which turns out to fail early and thus give better performance. Both
ASub and the local analysis perform as well as Sharing+Freeness in some
cases. Sharing also behaves sometimes as well as Sharing+Freeness, but in
those cases ASub also does. Thus, ASub also proves to be quite powerful.

Although, as mentioned before, studying the tradeoffs among the dif
ferent annotators is beyond the scope of this paper, MEL and CDG offer
generally similar results, with an edge for MEL when not much informa
tion from global analysis is available (this is why it was used in the present
study), and some advantage for CDG in the converse case. The curves for
hanoiapp (parallelized using MEL) and hanoiapp-cdg (parallelized using
CDG) illustrate this point.

A final issue is the importance that a few checks may have. This was
already mentioned for ann but is also a factor elsewhere. In deriv, the
important differences in speedups are due to only four independence checks.
In occur a significant difference can be observed between Sharing+Freeness
and no analysis that is only due to two groundness and four independence
checks. And in mmatrix the significant difference between Sharing+Freeness
and ASub is due to only two independence checks. On the other hand in aiakl
and bid no significant difference in speedup is observed despite variations of
ten independence and five groundness checks respectively.

In summary, the experiments confirm the importance of global data-flow
analysis in the parallelization task. Inevitably, also small speedups (or even
slow-downs) are obtained for some benchmarks, such as aiakl, bid and boyer
due to their lack of parallelism based on strict independence. We hope that
using more general independence conditions, such as, for example, non-strict
independence [12, 3], will allow us to extract parallelism in even more cases.

References

[1] M. Bruynooghe. A Practical Framework for the Abstract Interpretation
of Logic Programs. Journal of Logic Programming, 10:91-124, 1991.

[2] F. Bueno, M. García de la Banda, and M. Hermenegildo. A Comparative
Study of Methods for Automatic Compile-time Parallelization of Logic
Programs. In PASCO'94- World Scientific, September 1994.

[3] D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent
And-parallelism Using Sharing and Freeness Information. In Int. Static
Analysis Symposium, Namur, Belgium, September 1994. To appear.

[4] J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic
Programs Based on Static Data Dependency Analysis. In Compcon
Spring '85, pages 218-225, February 1985.

[5] M. Codish, D. Dams, and E. Yardeni. Derivation and Safety of an
Abstract Unification Algorithm for Groundness and Aliasing Analysis.
In ICLP'91, pages 79-96, Paris, France, June 1991. MIT Press.

[6] M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining
Domains. In ACM PEPM'94, pages 194-206. ACM, June 1993.

[7] J. S. Conery. Parallel Execution of Logic Programs. Kluwer Academic
Publishers, 1987.

[8] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In ACM POPL'94, pages 238-252, 1977.

[9] D. DeGroot. Restricted AND-Parallelism. In Int. Conf. on Fifth Gen
eración Computer Systems, pages 471-478. Tokyo, November 1984.

[10] M. J. Fernández, M. Carro, and M. Hermenegildo. IDeal Resource Allo-
cation (IDRA): A Technique for Computing Accurate Ideal Speedups in
Parallel Logic Languages. TR FIM26.3/AI/92,C.S. Dept., UPM. 1992.

[11] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting
Independent And-Parallelism. New Generation Computing, 9(3,4):233-
257, 1991.

[12] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efñciency, and Compile-
Time Conditions. Journal of Logic Programming, 1994. To appear.

[13] M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programming, 13(4):349-
367, August 1992.

[14] M. V. Hermenegildo. An Abstract Machine Based Execution Model for
Computer Architecture Design and Efficient Implementation of Logic
Programs in Parallel. PhD thesis, U. of Texas at Austin, August 1986.

[15] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted
And-Parallelism. In ESOP'88, pages 284-297, 1988.

[16] D. Jacobs and A. Langen. Accurate and Efficient Approximation of
Variable Aliasing in Logic Programs. In NACLP'89. MIT Press, Octo-
ber 1989.

[17] L. Kale. Completeness and Full Parallelism of Parallel Logic Program-
ming Schemes. In IEEE SLP'87, pages 125-133. IEEE, August 1987.

[18] Y.-J. Lin. A Parallel Implementation of Logic Programs. PhD thesis,
Dept. of Computer Science, University of Texas at Austin, August 1988.

[19] K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods
for Supporting Side Effects in Independent/Restricted And-parallelism.
In ICLP'89, pages 80-101. MIT Press, June 1989.

[20] K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL
Methods for Automatic Compile-time Parallelization of Logic Programs
for Independent And-parallelism. In ICLP'90, pages 221-237. MIT
Press, June 1990.

[21] K. Muthukumar and M. Hermenegildo. Combined Determination of
Sharing and Freeness of Program Variables Through Abstract Interpre-
tation. In ICLP'91, pages 49-63. MIT Press, June 1991.

[22] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of
Variable Dependency Using Abstract Interpretation. Journal of Logic
Programming, 13(2 and 3):315-347, July 1992.

[23] K. Muthukumar and M.V. Hermenegildo. Deriving A Fixpoint Compu-
tation Algorithm for Top-down Abstract Interpretation of Logic Pro
grams. TR ACT-DC-153-90, MCC, Austin, TX. April 1990.

[24] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Anal-
ysis for an Optimizing Prolog Compiler. In NACLP'90, pages 501-515.
MIT Press, October 1990.

[25] H. Sondergaard. An application of abstract interpretation of logic pro
grams: occur check reduction. In ESOP'86, LNCS 123, pages 327-338.
Springer-Verlag, 1986.

[26] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC.
In ICLP'90, pages 174-189. MIT Press, June 1990.

[27] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of
Global Flow Analysis of Logic Programs. In JICSLP'88, pages 684-
699, Seattle, Washington, August 1988. MIT Press.

