
The Acyclicity Inference of COSTA
Samir Genaim

DSIC, Complutense University of Madrid (UCM), Spain
Damiano Zanardini

CLIP, DIA, Technical University of Madrid (UPM), Spain

1 Introduction

Programming languages with dynamic memory allocation, such as Java, allow creating and manipulating
cyclic data structures. The presence of cyclic data structures in the program memory (the heap) is a
challenging issue in the context of termination analysis [4, 5, 1, 14], resource usage analysis [15, 7, 2],
garbage collection [11], etc. Consider the loop “while (x!=null) do x:=x.next;”. If x points to an acyclic
data structure before the loop, then the depth of the data structure to which x points strictly decreases
after each iteration; therefore, the number of iterations is bounded by the initial depth of (the structure
pointed to by) x.

Automatic inference of such information is typically done by (1) abstracting the loop to a numeric
loop “while(x)← {x>0,x>x′},while(x′)”; and (2) bounding the number of iterations of the numeric
loop. The numeric loop means that, if the loop entry is reached with x pointing to a data structure with
depth x > 0, then it will eventually be reached again with x pointing to a structure with depth x′ < x.
The key point is that “x!=null” is abstracted to the condition x > 0, meaning that the depth of a non-null
variable cannot be 0; moreover, abstracting “x:=x.next” to x > x′ means that the depth decreases when
accessing fields. While the former is meaningful for any structure, the latter holds only if x is acyclic.
Therefore, acyclicity information is essential in order to apply such abstractions.

In mainstream programming languages with dynamic memory manipulation, data structures can only
be modified by means of field updates. If, before x. f :=y, x and y are guaranteed to point to disjoint parts
of the heap, then there is no possibility to create a cycle. On the other hand, if they are not disjoint, i.e.,
share a common part of the heap, then a cyclic structure might be created. This simple observation has
been used in previous work [12] in order to declare x and y, among others, as cyclic whenever they were
sharing before the update. Such approach is simple and efficient. However, there can be an important
loss of precision in typical programming patterns. E.g., consider “y:=x.next.next;x.next:=y;” (which
typically removes an element from a linked list), and let x be initially acyclic. After the first command, x
and y clearly share, so that they should be finally declared as cyclic, even if, clearly, they are not. When
considering x. f :=y, the precision of the acyclicity information can be improved if it is possible to know
how x and y share. There are four possible cases: (1) x and y alias; (2) x reaches y; (3) y reaches x; (4)
they both reach a common location. The update x:=y. f might create a cycle only in cases (1) and (3).

This abstract summarizes an acyclicity analysis which is based on the above observation as described
in [9]. The analysis has been first developed in [10]; more recent work [9] formalizes it in the theory
of abstract interpretation, and reports on an implementation for Java bytecode. The analysis defines an
abstract domain I τ

rc which captures the reachability information among program variables (i.e., whether
there can be a path in the heap from the location `v bound to some variable v and the location `w bound
to some w), and the acyclicity of data structures (i.e., whether there can be a cyclic path starting from
the location bound to some variable). A provably sound abstract semantics C τ

ζ
J K() of a simple object-

oriented language is developed, that works on I τ
rc, and can often guarantee the acyclicity of Directed

Acyclic Graphs (DAGs), which most likely will be considered as cyclic if only sharing, not reachability,
is taken into account. The semantics has been implemented in the COSTA [3] COSt and Termination
Analyzer as a component whose result is an essential information for proving the termination or inferring
the resource usage of programs.

1

2 The abstract domain

The analysis works on the reduced product of two abstract domains. The first domain captures may-
reachability, while the second deals with the may-be-cyclic property of variables. Let µ be a heap, ` ∈∈
dom(µ) be a location, L be the set of valid locations, and µ(`).frm be the set of locations corresponding
to the fields of the object located at ` The set of reachable locations from ` ∈ dom(µ) is R(µ, `)=∪
{Ri(µ, `) | i≥ 0}, where R0(µ, `)= rng(µ(`).frm)∩L (i.e., the locations reachable by directly accessing
the fields of `), and Ri+1(µ, `)=∪{rng(µ(`′).frm)∩L | `′ ∈ Ri(µ, `)} (the inductive case). The set of ε-
reachable locations from ` ∈ dom(µ) is Rε(µ, `)=R(µ, `)∪{`}. Note that ε-reachable locations include
the source location ` itself, while reachable locations do not (unless ` is reachable from itself through a
cycle). The rest of this section is developed in the context of a type environment τ which specifies the
type of variables at a given program point. The set Στ represents the states which are compatible with τ;
every state contains a frame φ (a function from variables to locations) and a heap µ .

Reachability. Given a state σ = (φ ,µ) ∈ Στ containing a heap µ , a reference variable v is said to
reach w in σ if φ(w) ∈ R(µ,φ(v)). This means that, starting from v and applying at least one deref-
erence operation, it is possible to reach the object to which w points. Due to strong typing, τ puts
some restrictions on reachability; i.e., it might not be possible to have a heap where a variable of type
κ1 reaches one of type κ2. Following [13], a class κ2 ∈ K is said to be reachable from κ1 ∈ K if
there exists (φ ,µ) ∈ Στ , and two locations `,`′ ∈ dom(µ) s.t. (a) µ(`).tag = κ1 (where µ(`).tag is the
class tag of the object located at µ(`)); (b) µ(`′).tag = κ2; and (c) `′ ∈ R(µ, `). The reachability ab-
stract domain is the complete lattice I τ

r = 〈℘(Rτ),⊆, /0,Rτ ,∩,∪〉 where Rτ = {v w | v,w ∈ dom(τ)
the class τ(w) is reachable from the class τ(v)}. The abstraction and concretization functions ατ

r and γτ
r

are defined in the standard way. May-reach information is described by abstract values Ir ∈℘(Rτ). For
example, {x z,y z} describes those states where x and y may reach z. Note that a statement x y
does not prevent x and y from aliasing; instead, x can reach y and alias with it at the same time, e.g.,
when x, y, and x. f point to the same location. The top element Rτ is ατ

r (Στ), and represents all states
which are compatible with τ . The bottom element /0 models the set of all states where, for every two
reference variables v and w (possibly the same variable), v does not reach w. Intuitively, reachability is
a transitive property; i.e., if x reaches y and y reaches z, then x also reaches z. However, values in I τ

r
are not closed by transitivity: e.g., it is possible to have Ir = {x y,y z} which contains x y and y z,
but not x z. Such abstract value is a reasonable one, and approximates, for example, the execution of
“x=new C; y=new C; if (w>0) then x.f=y; else y.f=z;”.

Cyclicity. Given a state σ = (φ ,µ) ∈ Στ , a variable v is said to be cyclic in σ if there exists ` ∈
Rε(µ,φ(v)) such that ` ∈ R(µ, `). In other words, v is cyclic if it reaches some memory location
` (which can possibly be φ(v) itself) through which a cyclic path goes. The notion of cyclic class
is defined similarly to that of reachable classes [12]. The cyclicity domain is the dual of the non-
cyclicity domain of [12]. The abstract domain for cyclicity is represented as the complete lattice I τ

c =
〈℘(Y τ),⊆, /0,Y τ ,∩,∪〉 where Y τ = {	v | v ∈ τ,τ(v) is a cyclic class}. May-be-cyclic information is
described by abstract values Ic ∈℘(Y τ). E.g., {	x} represents states where no variable but x can be
cyclic. The top element Y τ corresponds to Στ ; the bottom /0 does not allow any variable to be cyclic.

The reduced product. As explained below, the abstract semantics uses reachability information in
order to detect cycles, and cyclicity information in order to produce, in some cases, reachability infor-
mation. Therefore, it makes sense to combine both kinds of information: in Abstract Interpretation, this
amounts to computing the reduced product [6] of the corresponding abstract domains. In the present

2

context, the reduced product can be computed by reducing the Cartesian product I τ
rc = I τ

r ×I τ
c . Ele-

ments of I τ
rc are pairs 〈Ir, Ic〉, where Ir and Ic contain, respectively, the may-reach and the may-be-cyclic

information. The abstraction and concretization functions are induced by those of I τ
c and I τ

r :

γτ
rc(〈Ir, Ic〉) = γτ

r (Ir)∩ γτ
c (Ic) ατ

rc(I) = 〈ατ
r (I),ατ

c (I)〉

However, it can happen that two elements of I τ
rc are mapped to the same concrete element, which pre-

vents having a Galois insertion between I τ
rc and the concrete domain ℘(Στ). Computing the reduced

product deals exactly with this problem. In order to compute it, an equivalence relation ≡ has to be
defined, which satisfies I1

rc ≡ I2
rc iff γτ

rc(I
1
rc) = γτ

rc(I
2
rc). Functions γτ

rc and ατ
rc define a Galois insertion

between I τ
rc≡ and I τ

[, where I τ
rc≡ is I τ

rc equipped (reduced) with the equivalence relation. The equiv-
alence relation can be based on the following observation: For every I1

r , I2
r ∈ I τ

r and I1
c , I2

c ∈ I τ
c , the

concretization γτ
rc(〈I1

r , I1
c 〉) is equal to γτ

rc(〈I2
r , I2

c 〉) if and only if both conditions hold: (a) I1
c = I2

c ; and
(b) I1

r \{v v | 	v /∈ I1
c }= I2

r \{v v | 	v /∈ I2
c }. This means that: (a) may-be-cyclic information always

makes a difference as regards the set of concrete states; that is, adding a new statement 	v to Irc ∈I τ
rc

results in representing a larger set of states; and (b) adding a pair v v to Irc ∈ I τ
rc, when v cannot be

cyclic, does not make it represent more concrete states, since the acyclicity of v excludes that it can reach
itself. From now on, I τ

rc will be a shorthand for I τ
rc≡, where ≡ is left implicit.

Denotational semantics. Abstract denotations for expressions and commands are depicted in Fig. 1.
Possible sharing, possible aliasing and purity analysis are used as pre-existent components, i.e., pro-
grams are assumed to have been analyzed w.r.t. these properties. Two reference variables v and w share
in (φ/heap) iff Rε(µ,φ(v))∩Rε(µ,φ(w)) 6= /0; also, they alias if they point to the same location, namely,
if φ(v) = φ(w) ∈ dom(µ). The i-th argument of a method m is said to be pure if m does not update the
data structure to which the argument initially points. For sharing and purity, the analysis described in [8]
(based on [13]) is applied: with it, (1) it is possible to know if v might share with w at any program
point (denoted by the pair 〈v•w〉); and (2) for each method m, a denotation SHm is given: for a set of
pairs sh which safely describes the sharing between actual arguments in the input state, sh′ = SHm(I) is
such that (i) if 〈v•w〉 ∈ sh′, then v and w might share during the execution of m; and (ii) v̇i ∈ sh′ means
that the i-th argument might be non-pure. As for aliasing, it is assumed that, at each program point, the
pair 〈v·w〉 tells if v and w can alias. Importantly, any non-null reference variable shares and aliases with
itself; also, both are symmetric relations (i.e., 〈v•w〉 iff 〈w•v〉, and 〈v·w〉 iff 〈w·v〉). An abstract element
〈Ir, Ic〉 ∈I τ

rc will be represented by the set I = Ir∪ Ic; therefore, v w ∈ I and 	v ∈ I are shorthands for,
resp., v w∈ Ir and	v ∈ Ic. The operation ∃v.I (projection) removes any statement about v from I, while
I[v/w] (renaming) v to w in I. For the sake of simplicity, class-reachability and class-cyclicity are taken
into account implicitly: a new statement v w (resp., 	v) is not added to an abstract state if v w 6∈Rτ

(resp., 	v 6∈ Y τ). The abstract semantics has been proven to be sound; i.e., (1) whenever v reaches w in
a concrete state σ at a given program point, the statement v w is included in the abstract description I
of σ at the same program point; and (2) whenever v is cyclic in σ ,	v must be present in I. For a detailed
explanation of the abstract semantics and the proof of its correctness, the reader can refer to [9].

3 The analysis by examples

This section explains the behavior of the abstract semantics on a couple of interesting examples. The
semantics instruments the program code with abstract values In, where n is the line number. A statement
v w ∈ In means that v could reach w at line n, while 	v means that v could be cyclic.

Consider the class OrderedList depicted in Fig. 2. It implements an ordered linked list where head
points to the first element, and lastInserted points to the last element which has been inserted. The class

3

(1e) E τ

ζ
JnK(I) = E τ

ζ
JnullK(I) = E τ

ζ
Jnew κK(I) = I

(2e) E τ

ζ
JvK(I) = if τ(v)=int then I else I∪ I[v/ρ]

(3e) E τ

ζ
Jv. f K(I) = if f has type int then I else I∪ I′ where

I′=I[v/ρ]∪{w ρ | 〈w•v〉}∪{ρ ρ | 	v ∈ I}
(4e) E τ

ζ
Jexp1⊕ exp2K(I) = ∃ρ.E τ

ζ
Jexp2K(∃ρ.E τ

ζ
Jexp1K(I))

(5e) E τ

ζ
Jv0.m(v1, ..,vn)K(I) = ∪{I, Im, I3, I4} such that

v̄={v0, ..,vn} I0=∃(τ\v̄).I
Im = ∪ { (ζ (m)(I0[v̄/mi]))[mi/v̄,out/ρ] | m might be called here }
sh = {〈vi•v j〉 | vi,v j ∈ v̄ and 〈vi•v j〉}
sh′ = ∪{SHm(sh[v̄/mi])[mi/v̄,out/ρ] | m might be called here}
I1 = {w1 w2 | (vi v j∈Im)∧ (v̇i∈sh′)∧〈w1•vi〉∧ ((v j w2∈I)∨〈w2·v j〉)}
I2 = {w1 w2 | (〈vi•v j〉 ∈ sh)∧ (v̇i∈sh′)∧〈vi•w1〉∧ (v j w2 ∈ I)}
I3 = ∪{(I1∪I2)[v/ρ] | 〈v·ρ〉 after the call }
I4 = {	w | 〈w•v〉∧ (v̇∈sh′)∧ (v ∈ Im)}

(1c) C τ

ζ
Jv:=expK(I) = (∃v.E τ

ζ
JexpK(I))[ρ/v]

(2c) C τ

ζ
Jv. f :=expK(I) = ∃ρ.(I′∪ Ir ∪ Ic) where I′ = E τ

ζ
JexpK(I) and

Ir={w1 w2 | (〈w1·v〉∨ (w1 v ∈ I′))∧ (〈ρ·w2〉∨ (ρ w2 ∈ I′))}
Ic={	w | ((ρ v ∈ I′)∨〈ρ·v〉∨ (ρ ∈ I′))∧ (〈w·v〉∨ (w v ∈ I′))}

(3c) C τ

ζ

s
if exp then com1

else com2

{
(I) = C τ

ζ
Jcom1K(I)∪C τ

ζ
Jcom2K(I)

(4c) C τ

ζ
Jwhile exp do comK(I) = ξ (I) where ξ = l f p(λw.λ I.w(C τ

ζ
JcomK(I)))

(5c) C τ

ζ
Jreturn expK(I) = E τ

ζ
JexpK(I)[ρ/out]

(6c) C τ

ζ
Jcom1;com2K(I) = C τ

ζ
Jcom2K(C τ

ζ
Jcom1K(I))

Figure 1: Abstract denotations for expressions and commands

Node (not shown) implements a linked list in the usual way. The method insert adds a new element to
the ordered list: it takes an integer i , creates a new node n for i , looks for its position, adds it to the
list, and makes lastInserted point to the new node. Suppose insert appears inside a loop (for example,
when inserting into the ordered list elements which are stored in an array). The goal is to infer that a
call “x. insert (i)” never makes x cyclic. This is important since, if x cannot be proven to be acyclic
after insert , then it must be assumed to be cyclic from the second iteration of the loop on. This, in
turn, prevents from proving the termination of the loop at lines 10–12, since it might traverse a cycle.
The challenge in this example is to prove that the instructions at lines 16 and 17 do not make any data
structure cyclic. This is not trivial since this, p, and n share between each other at line 15; depending
on how they share, the corresponding data structures might become cyclic or remain acyclic. Consider
line 17: if there is a path (of length 0 or more) from n to p, then the data structures bound to them
become cyclic, while they remain acyclic in any other case. The present analysis is able to infer that
n and p share before line 17, but n does not reach p, which, in turn, guarantees that no data structure
ever becomes cyclic (as evident from the absence of any cyclicity statement 	v). Note that reachability
information is essential for proving acyclicity, since the mere information that p and n share, without
knowing how they do, requires to consider then as possibly cyclic, as done in [12].

As another example, consider the method mirror in Fig. 2, and suppose class Tree implements a
binary tree in the standard way, with fields left and right . The call mirror(t) exchanges the values
of left and right of each node in t . An initial state /0 is transformed by mirror as follows. The first
branch of the if (when t is null) does not change the initial denotation; on the other hand, when t is
different from null, line 7 adds t l; line 8 adds t r; line 9 adds again t r; and line 10 adds again t l.
Recursive calls mirror(l) and mirror(r) do not add any statement (since initially mirror ha a denotation

4

1 class OrderedLis t {
2 Node head , l a s t I n s e r t e d ;
3

4 void i n s e r t (i n t i) {
5 Node c , p , n ;
6 / / I6= /0
7 n :=new Node ; / / I7= /0
8 n . value := i ; / / I8= /0
9 c := th is . head ; / / I9={this c}

10 while (c != nul l && c . value< i) do
11 p := c ; / / I11={this c, this p}
12 c := c . next ; / / I12={this c, this p, p c}
13 / / I13={this c, this p, p c}
14 n . next := c ; / / I14={this c, this p, p c,n c}
15 i f (p=nul l) then
16 th is . head :=n ; / / I16=I15∪{this n}
17 else p . next :=n ; / / I17=I15∪{this n, p n}
18 / / I18=I16∪ I17=I17
19 th is . l a s t I n s e r t e d :=n ; / / I19=I18
20 }
21 }

1 void m i r r o r (Tree t) {
2 Tree l , r ;
3

4 i f (t =nul l) then
5 return 0;
6 else
7 l := t . l e f t ;
8 r := t . r i g h t ;
9 t . l e f t := r ;

10 t . r i g h t := l ;
11 m i r r o r (l) ;
12 m i r r o r (r) ;
13 }
1 Node connect () {
2 Node c= th is ;
3

4 while (c . next != nul l) do
5 c := c . next ;
6 c . next := th is ;
7 return c ;
8 }

Figure 2: The running example and the analysis results (in comments).

/0) Projecting {t l, t r} on t and out results in /0, so that ξ (/0) does not change, and there is no need for
another iteration. It can be concluded that, as expected, mirroring the tree does not make it cyclic.

Finally, consider the method connect, defined in the class Node. A call l .connect() with l acyclic
makes the last element of l point to l , so that it becomes cyclic. It also returns a reference to the last
element in the list. An initial state /0 is transformed by connect as follows. Line 2 does not add any
statements, while line 5 in the loop adds this curr. Another iteration of the loop does not change
anything, so that the loop is exited with {this curr}. Since this is now reaching curr, line 6 adds
{curr this, curr curr, this this}, and {	curr,	this}. Finally, line 7 clones curr to out. In conclusion,
the analysis correctly infers that l .connect() makes both l and the return value cyclic (i.e., statements 	l

and 	out are produced).
The result of the abstract semantics for the above examples has been taken from the outcome of the

implementation in the COSTA [3] COSt and Termination Analyzer on the Java bytecode version of these
programs. The acyclicity analysis is a component of the system which is used in order to help to infer
statically the termination of a program or information about its resource consumption. For example,
suppose that, as pointed out above, insert is called inside a Java-style loop like

1 for (i =0; i <n ; i ++) { l . i n s e r t (a [i]) ; }

where the content of an array is copied to the ordered list. If l cannot be proven to be acyclic on exit from
insert , then the list must be considered as possibly cyclic when entering the for loop the second time.
This implies that the loop at line 10–12 in the code of insert could be non-terminating from the second
iteration of the for. On the other hand, COSTA can prove that this code is terminating since the acyclicity
analysis guarantees that the list is always acyclic, so that every iteration of the for loop terminates.

5

References
[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination Analysis of Java

Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.
[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode. In ESOP,

LNCS 4421, pages 157–172. Springer, 2007.
[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Implementation of a

Cost and Termination Analyzer for Java Bytecode. In FMCO’07, number 5382 in LNCS, pages 113–133.
Springer, 2008.

[4] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs for programs with shape-
shifting heaps. In Proc. CAV, 2006.

[5] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In PLDI, 2006.
[6] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In POPL’79, pages 269–282.

ACM, 1979.
[7] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM TOPLAS, 15(5):826–875, November

1993.
[8] S. Genaim and F. Spoto. Constancy analysis. In 10th Workshop on Formal Techniques for Java-like Programs,

July 2008.
[9] S. Genaim and D. Zanardini. The acyclicity inference of COSTA. In 11th International Workshop on Termi-

nation, July 2010.
[10] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape analysis for heap-directed pointers

in c. In POPL, pages 1–15, 1996.
[11] R. Jones and R. Lins. Garbage collection: algorithms for automatic dynamic memory management. John

Wiley & Sons, Inc., New York, NY, USA, 1996.
[12] S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation into Boolean Functions. In

VMCAI, LNCS 3855. Springer, 2006.
[13] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In SAS, number 3672 in LNCS,

pages 320–335, 2005.
[14] F. Spoto, F. Mesnard, and É. Payet. A Termination Analyser for Java Bytecode based on Path-Length. ACM

TOPLAS, 32(3), 2010.
[15] B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9), 1975.

6

	Introduction
	The abstract domain
	The analysis by examples

