Types, modes and so much more — the Prolog way

Manuel V. Hermenegildo!2, Jose F. Morales' 2,
Pedro Lopez-Garcia®?, and Manuel Carro!-2

! Universidad Politécnica de Madrid (UPM)
2 IMDEA Software Institute
3 Spanish Council for Scientific Research (CSIC)
{manuel.hermenegildo, josef.morales,pedro.lopez}@imdea.org

Abstract. We present in a tutorial way some ideas developed in the
context of the Ciao Prolog system that we believe could be useful for the
future evolution of Prolog. We concentrate primarily on one area: the use
of assertions with types, modes, and other properties, and how the unique
characteristics of Prolog have made early advances possible in the area
of combining static and dynamic language features. However, we also
address briefly some other issues related to extending the expressiveness
and functionality of the language.

Keywords: Prolog, Static Languages, Dynamic Languages, Types, Modes, As-
sertions, Verification, Testing, Test Generation, Language Extensions.

1 Combining in Prolog the best of the dynamic and
static language approaches

Prolog is a dynamically-typed language and this aspect, combined with the in-
trinsic power of the language, has arguably contributed to its continued relevance
and use in many applications. In fact, the environment in which much software
is developed nowadays, aligns well with the classical arguments for dynamic lan-
guages, and many of the currently most popular languages, such as Python,
JavaScript, Ruby, etc. (with Scheme and Prolog also in this class) are dynamic.

At the same time, detecting errors as early as possible at compile time, and
inferring properties required to optimize and parallelize programs are clearly
important issues in real-world applications, and thus, strong arguments can also
be made for static languages. For example, statically-typed logic and functional
languages (such as, e.g., Mercury [37] or Haskell [I7]) impose strong type-related
requirements such as that all types (and, when relevant, modes) have to be
defined explicitly or that all procedures have to be well-typed and well-moded.
An important argument supporting this approach is that types clarify interfaces
and meanings and facilitate programming in the large by making large programs
more maintainable and better documented. Also, the compiler can use the static

* Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-100 PRODIGY, and FJC2021-047102-1, by the Comunidad de Madrid pro-
gram P2018/TCS-4339 BLOQUES-CM, and by the Tezos foundation. The authors
would also like to thank the anonymous reviewers for very useful feedback.

information to generate more specialized code, which can be better in several
ways (e.g., performance-wise).

In the design of Ciao Prolog we certainly had the latter arguments in mind,
but we also wanted to retain the usefulness of standard Prolog for highly dynamic
scenarios, programming in the small, prototyping, developing simple scripts, or
simply for experimenting with the solution to a problem. We felt that strong typ-
ing and other related restrictions of statically-typed logic languages can some-
times get in the way in these contexts.

The solution we came up with —the Ciao assertions model— involves the
combination of a rich assertion language, allowing a very general class of (pos-
sibly undecidable) properties, and a novel methodology for dealing with such
assertions [BUI3I30I29/14], based on making a best effort to infer and check as-
sertions statically, using rigorous static analysis tools based on safe approrima-
tions, in particular via abstract interpretation [7]. This implies accepting that
complete verification or error detection may not always be possible and run-
time checks may be needed. This approach allows dealing in a uniform way with
a wide variety of properties which includes types [33/41], but also, e.g., rich
modes [25l24], determinacy [19], non-failure [94], sharing/aliasing, term linear-
ity, cost [26I35I20], etc., while at the same time allowing assertions to be optional.
The Ciao model and language design also allows for a smooth integration with
testing [2I]. Moreover, as (parts of) tests that can be verified at compile time
are eliminated, some tests can be passed without ever running them. Finally, the
model supports naturally assertion-based test case generation. In the following
we illustrate these aspects of the model through examples run on the systemE

1.1 The assertions model in action
While there are several ways to use the system, we will show screenshots of one

of the most convenient, which is to have the system running in the background
giving instant feedback as a program is opened or edited —we refer to this as the
“verifly” (“verification on the fly”) mode (see [34] for more details).

A first example. Consider the classic implementation of quick-sort in Fig. [1} If
no other information is provided, the exported predicate gsort/2 can be called
with arbitrarily instantiated terms as arguments (e.g., with a list of variables).
This implies that the library predicates =</2 and >/2 in partition/4 can also be
called with arbitrary terms and thus run-time errors are possible, since =</2 and
>/2 require their arguments to be bound to arithmetic expressions when called.
Even though there are no assertions in the program itself, the system is able to
warn that it cannot verify that the calls to =</2 and >/2 will not generate a
run-time error (note » symbol and code underlining in orange). This is the result
of a modular global analysis and a comparison of the information inferred for the
program points before the calls to =</2 and >/2 with the assertions that express
the calling restrictions for =</2 and >/2. Such assertions live in the libraries that
provide these standard predicates. Further details can be obtained by hovering
over the literal (Fig. [2).

! The examples are runnable in the Ciao playground »|; they have been developed with
version 1.22 of the system. Screenshots are from the Ciao Prolog Emacs interface.

https://ciao-lang.org/playground

gsort([], [1).
qsort([First|Rest],Result)
partition(Rest,First,Sm,Lg),
gsoxrt(Sm,SmS),
gsort(Lg,Lgs),
append(SmS, [First|LgS],Result).

partition([1,_,[1,[1).

spartition([X|Y],F,[X1Y1],Y2)
X =< F,
partition(Y,F,Y1,Y2).

spartition([X|Y],F,Y1,[XIY2])
X>F,
partition(Y,F,Y1,Y2).

Fig. 1. With no entry information, the system warns that it cannot verify that the

call to =</2 will not generate a run-time error.
partition([],_,[1,[1).
sartition([X|Y].F,[X]Y1l,Y2)
> At literal 1 could not verify assertion:
partition(Y,F,Y1,Y2).
#partition([X|Y1.F,YL, [X1Y2])
Fig. 2. Hovering over the clause the system shows a popup saying that it cannot verify
the assertions for =</2 (present in the library!).
H assertions,nativeprops odes]).. >

o QAU E 430X/«

gsort([1, [1).

gsort([First|Rest] ,Result)
partition(Rest,First,Sm,Lg),
gsort(Sm,SmS),
gsort(Lg,Lgs),
append(SmS, [First|LgS],Result).

partition([],_,[1,[1).

spartition([XIY].E.[X1Y1].Y2)
X =< F,
partition(Y,F,Y1,Y2).

spartition([XIY]1.E. Y1, [X1Y2])
X>F,
partition(Y,F,Y1,Y2).

Fig. 3. Adding information on how the exported predicate should be called the system
can infer that =</2 will be called correctly, and no warnings are flagged.

In Fig. [3] we have added an assertion for the exported predicate gsort/2
expressing that it should be called with its first argument bound to a list of
numbersﬂ Assuming this “entry” information, the system can verify that all the
calls to =</2 and >/2 are now correct (with their arguments bound to numbers in
this case), and thus no warnings are flagged. Note that in practice this assertion
may not be necessary since this information could be obtained from the analysis
of the caller(s) to this module.

Let us now add more assertions to the program, stating properties that we
want checked, as shown in Fig. [The assertion for predicate partition/4
(eighth line of Fig. |4 expresses, using modesﬂ that the first argument should be
bound to a list of numbers, and the second to a number, and that, for any termi-

2 Due to space limitations we present the assertion language through —hopefully
intuitive— examples. More complete descriptions of the assertion language can be
found in[12292].

3 See, e.g., [43] in this same volume for an introduction to modes.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cmodes%5D).%0A%0A%25%20With%20no%20information%20on%20the%20calls%20to%20qsort%2F2%2C%20the%20%0A%25%20the%20analyzer%20warns%20that%20it%20cannot%20ensure%20that%20%0A%25%20the%20calls%20to%20%3D%3C%2F2%20and%20%3E%2F2%20will%20not%20generate%20a%20%0A%25%20run-time%20error.%0A%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cmodes%5D).%0A%0A%25%20Adding%20information%20on%20how%20the%20exported%20predicate%20should%20%0A%25%20be%20called%2C%20the%20system%20can%20infer%20that%20%3D%3C%2F2%20and%20%3E%2F2%20will%20be%20%0A%25%20called%20correctly%2C%20and%20no%20warnings%20are%20flagged.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C_).%0A%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A

:- pred gsort(+list(num),-list(num)) + semidet. | 3

gsort([], [1).
qsort([First|Rest],Result)
partition(Rest,First,Sm,Lg),
qsort(Sm,SmS),
gsort(Lg,Les),
append (SmS, [First|LgS],Result).

:- pred partition(+list(num),+num,-list(num),-list(num)) + det.

partition([],_,[1,[]).

partition([X|Y],F, [X]Y¥1],Y2)
X =< F,
partition(Y,F,Y1,Y2).

partition([X|Y],F,Y1, [X|Y2])
X>F,
partition(Y,F,Y1,v2).Jl

Fig. 4. We add more assertions expressing various properties.
ed _gsort(+list(num),-1ist(num)) + semidet.

gsort([1, [1).

gsort([First|Rest] ,Result)
partition(Rest,First,Sm,Lg),
gsort(Sm,SmS),
gsort(Lg,Lgs),
append(SmS, [First|LgS],Result).

partition((1, ,[1.[]).

|

X =< F,
partition(Y,F,Y1,Y2).

X > F,
partition(Y,F,Y1,Y2).

Fig. 5. All the added assertions get verified by the system.

nating call meeting this call pattern: a) if the call succeeds, then the third and
fourth arguments will be bound to lists of numbers; and b) the call is determin-
istic, i.e., it will produce one solution exactly, property det in the + field (as in
Mercury [37]), which is inferred in CiaoPP as the conjunction of two properties:
1) the call does not (finitely) fail (property not_fails as in [94]) and 2) the
call will produce one solution at most (property is_det as in [I9]). Similarly,
the assertion for gqsort/2 expresses the expected calling pattern, and that the
call can have at most one answer, property semidet.

In the assertion model, modes are macros that serve as a shorthand for as-
sertions, in particular predicate-level assertions. These are in general of the form:
:- [Status] pred Head [: Pre] [=> Post 1 [+ Comp].
where Head denotes the predicate that the assertion applies to, and Pre and
Post are conjunctions of state property literals. Pre expresses properties that
hold when Head is called. Post states properties that hold if Head is called in
a state compatible with Pre and the call succeeds. Comp describes properties
of the whole computation such as determinism, non-failure, resource usage,
termination, etc., aso for calls that meet Pre. In particular, the modes for
gsort/2 in Fig. [4 are expanded by the modes package (see module declaration

in Fig. [3) to:
:- pred gsort(X,Y) : list(num,X) => list(num,Y) + semidet.

All the assertions in Fig. [d]indeed get verified by the system, which is shown
by underlying the assertions in green (Fig. 5, and again further information can

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20The%20system%20verifes%20the%20assertions%20and%20also%20that%20%0A%25%20%3D%3C%2F2%20and%20%3E%2F2%20are%20called%20correctly%20and%20will%20not%20%0A%25%20generate%20any%20run-time%20errors.%20%20%0A%25%20Try%20also%20generating%20the%20documentation%20for%20this%20file!%0A%0A%25%20If%20qsort%2F2%20is%20called%20with%20a%20list%20of%20numbers%2C%20it%20will%0A%25%20return%20a%20list%20of%20numbers%20and%20at%20most%20one%20solution.%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%25%20partition%2F4%20is%20called%20with%20a%20list%20of%20numbers%20and%20a%0A%25%20number%2C%20and%20it%20returns%20two%20lists%20of%20numbers%2C%20one%20solution%2C%0A%25%20and%20will%20never%20fail.%20%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%0A%20%20%20%20%20%20%20%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%25%20append%2F3%20is%20called%20with%20two%20lists%20of%20numbers%2C%20and%20will%0A%25%20return%20a%20list%20of%20numbers%2C%20and%20at%20most%20one%20solution.%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A

> Verified assertion:

:- check calls partition(A,B,_,_)
: (list(num,A), num(B)).

> Verified assertion:

:- check comp partition(A,B,C,D)
: (list(num,A), num(B))
+ det.

> Verified assertion:

:- check success partition(A,B,C,D)
: (list(num,A), num(B))
=> (list(num,C), list(num,D)).

Fig. 6. The popup shows that calls, computational/global properties, and success pat-
tern for partition/ are verified.

> Verified assertion:

:- check calls partition(A,B,_,_)
: (list(num,A), num(B)).

> Verified assertion:

:- check comp partition(A,B,C,D)
: (list(num,A), num(B))
+ det.

Fig. 7. Using modes/assertions in doccomments syntax (which are also verified).

Fig. 8. If we replace =</2 with </2 the system warns that partition/4 may fail.

be obtained in a popup (Fig. E[)El Fig. EI, shows again qsort/2 but now the as-
sertions are written as machine readable comments enabled by the doccomments
package. Such comments can contain embedded assertions, which are also veri-
fied. Here we use again modes and determinacy. This format is familiar to Prolog
programmers and compatible with any Prolog system without having to define
any operators for the assertion syntax.

4 Note that while, as mentioned before, the assertions in Fig. [4] use modes they are
represented internally in normal form and the popup message uses syntax close to
this form, where the computational properties and the state properties that must
hold upon success are split into separate (comp and success assertions respectively).

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%2Cdoccomments%5D).%0A%0A%25%20Describing%20predicates%20with%20modes%2Fassertions%20in%20doccomments%20syntax%0A%25%20(which%20also%20get%20verified%20by%20the%20system).%20Try%20also%20generating%20the%20%0A%25%20documentation%20for%20this%20file!%0A%0A%25!%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet%3A%20%0A%25%20%20Y%20is%20X%20sorted.%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%25!%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det%3A%20%0A%25%20%20Partitions%20a%20list%20into%20two%20lists%2C%20greater%20and%0A%25%20%20smaller%20than%20the%20pivot%20(second%20argument).%20%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%25!%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet%3A%20%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20If%20we%20have%20%3C%2F2%20and%20%3E%2F2%20in%20partition%2C%20the%20system%20warns%20%0A%25%20that%20partition%2F4%20is%20not%20guaranteed%20to%20not%20fail.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A

»2- pred gsort(+list(num),-list(num)) + semidet. | 3

gsort([], [1).
gsort([First|Rest],Result)
partition(Rest,First,Sm,Lg),
gsort(Sm,SmS),
gsort(Lg,Lgs),
append(SmS, [First|LgS],Result).

»1- pred partition(+list(num),+num,-1list(num),-1list(num)) + det.

partition([1,_,[1,[1).

spartition([XIY].E.[X1Y1].Y2)
X =< F,
partition(Y,F,Y1,Y2).

spartition([XIY]1.E. Y1, [X1Y2])
X >= F,

B partition(Y,F,Y1,Y2).

Fig. 9. If we replace >/2 with >=/2 the system warns that both partition/4 and

gsosrt/2 may not be deterministic.
:- regtype color/1. | 3
color(red).
color(green).
color(blue).

:- regtype colorlist/1.
colorlist([]).
colorlist([H|TI) color(H), colorlist(T).

:- prop sorted/1.

sorted([]).

sorted([_]).

sorted([X,Y|T]) X .>. Y, sorted([Y|T]). i

Fig. 10. Defining some properties which can then be used in assertions.
:- regtype color/1. »
color red | green | blue.

:- regtype colorlist/1.
colorlist [1 | [~color|~colorlist].

:- prop sorted/1.
sorted 11 C.1.
_sorted([X,YIT]) X .>. Y, sorted([Y|T]).]

Fig. 11. The properties of Fig. [I0] written in functional notation.

In Fig. we have replaced =</2 with </2 in the second clause of
partition/4, and the system warns that this predicate may fail. This is be-
cause the case where X=F is not “covered” by the “tests” of partition/4 [9/4].
Conversely, if we replace >/2 with >=/2 in the second clause of the original def-
inition of partition/4, Fig. [d] the system warns that the predicate may not
be deterministic. This is because the analyzer infers that not all the clauses of
partition/4 are pairwise mutually exclusive (in particular the second and third
clauses are not), and thus, multiple solutions may be obtained [19].

Defining properties. The reader may be wondering at this point where the
properties that are used in assertions (such as list (num)) come from. As men-
tioned before, such properties are typically written in Prolog and its extensions;
and they can also be built-in and/or defined and imported from system libraries
or in user code. Visibility is controlled by the module system as for any other
predicate. Fig. [10] shows some examples of definitions of properties. Two of
them are marked as regular types (regtype directive): color/1, defined as the
set of values {red, green, blue}, and colorlist/1, representing the infinite set
of lists whose elements are of color type. The third property is not a regular

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20If%20we%20have%20%3D%3C%2F2%20and%20%3E%3D%2F2%20in%20partition%2C%20the%20system%20warns%20%0A%25%20that%20both%20partition%2F4%20and%20qsort%2F2%20may%20not%20be%20deterministic.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%3D%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bcolor%2F1%2Ccolorlist%2F1%2Csorted%2F1%5D%2C%5Bassertions%2Cregtypes%2Cclpq%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20which%20can%20then%20be%20used%20%0A%25%20in%20assertions.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor(red).%0Acolor(green).%0Acolor(blue).%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist(%5B%5D).%0Acolorlist(%5BH%7CT%5D)%20%3A-%20color(H)%2C%20colorlist(T).%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted(%5B%5D).%0Asorted(%5B_%5D).%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20.%3E.%20Y%2C%20sorted(%5BY%7CT%5D).%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bcolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%2Cclpq%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functional%20syntax)%0A%25%20which%20can%20then%20be%20used%20in%20assertions.%20%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20.%3E.%20Y%2C%20sorted(%5BY%7CT%5D).%0A%0A

»o=

p(X) q(X).

»a=
q(M) M = red.

Fig. 12. An error is flagged in the success of p/1.
> False assertion:
:- check success p(X)
» => sorted(X).
because the success field is incompatible with inferred success:

[eterms] rt27(X)
with:

:- regtype rt27/1.

rt27(zed).

> Verified assertion:

:- check calls p(X).

:- prop sorted/1.

sorted 11 0.7

sorted([X,Y|T]) X > Y, sorted([Y|T]).

Fig. 13. Success and inferred properties (sorted/1 and red) are incompatible.

»:- pred p(X) sorted(X). | 2
p(X) a(X).

s X
q(M) =N

Fig. 14. New definition of predicate q/1 (and change in assertion).

type, but an arbitrary property (prop directive), representing the infinite set of
lists of numeric elements in descending order. Marking predicates as properties
allows them to be used in assertions, but they remain regular predicates, and
can be called as any other, and also used as run-time tests, to generate examples
(test cases), etc. For example:

?- colorlist(X).

Xx=117;
X = [red] ? ;
X = [red,red] ? ...

or, if we select breadth-first execution (useful here for fair generation):

?- colorlist(X).
[17?;

[red] ? ;
[green] ? ;
[bluel] ? ;
[red,red] ? ...

D4 D4 B P

Fig. [11] shows the same properties of Fig. [10| but written using functional nota-
tion. The definitions are equivalent, functional syntax being just syntactic sugar.

In Fig. [[2] we add some simple definitions for p/1 and q/1, and a pred asser-
tion for q/1, meaning “in all calls q(X) that succeed, X is instantiated on success
to a term of color type.” This is verified by the system. We have also added an
assertion for p/1 meaning “in all calls p(X) that succeed, X gets instantiated to
a term meeting the sorted property.” The system detects that such assertion
is false and shows the reason (Fig.[I3): the analyzer (with the eterms abstract
domain [41]) infers that on success X gets bound to red, expressed as the au-
tomatically inferred regular type rt27/1, and the system finds that rt27(X)
and sorted(X) are incompatible (empty intersection of the set of terms they
represent). In Fig. we have changed the definition of q/1 so that there is no

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bp%2F1%2Ccolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functional%20syntax)%0A%25%20which%20are%20then%20used%20in%20two%20simple%20assertions.%20The%20system%0A%25%20detects%20that%20property%20sorted%20is%20incompatible%20with%20the%20success%0A%25%20type%20of%20p%2F1.%0A%0A%3A-%20pred%20p(X)%20%3D%3E%20sorted(X).%0Ap(X)%20%3A-%20q(X).%0A%0A%3A-%20pred%20q(X)%20%3D%3E%20color(X).%0Aq(M)%20%3A-%20M%20%3D%20red.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20%3E%20Y%2C%20sorted(%5BY%7CT%5D).
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bp%2F1%2Ccolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functional%20syntax)%20which%0A%25%20are%20then%20used%20in%20two%20simple%20assertions.%20With%20the%20selected%20domains%0A%25%20sorted%2F1%20is%20not%20proved%20and%20will%20generate%20a%20run-time%20check%2C%20and%0A%25%20optionally%20initiate%20assertion-based%20test%20generation.%0A%0A%3A-%20pred%20p(X)%20%3D%3E%20sorted(X).%0Ap(X)%20%3A-%20q(X).%0A%0A%3A-%20pred%20q(X)%20%3D%3E%20list(X).%0Aq(M)%20%3A-%20M%20%3D%20%5B_%2C_%2C_%5D.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20%3E%20Y%2C%20sorted(%5BY%7CT%5D).

»f- pred p(X) sorted(X).
> Could not verify assertion:
:- check success p(X)
®» => sorted(X).
because
incompatible_type_f_fixed:sorted(X)

could not be derived from inferred success:
[eterms] rt27(X)

with:

:- regtype rt27/1.
rt27([A,B,C]) :-

texm(A),
texm(B),
texm(C).
_[shfr] native_props:mshare([[X]]) d
Fig. 15. Just a warning: sorted could not be verified (with selected domains).
»3=_module nrev/2 assertions,fsyntax,nativeprops]). >

pred nrev(A.B (list(num, A var (B
+ (det, terminates, steps_o(length(A))).

nrev([]) 1.
nrev([H|L]) ~conc(~nrev(L),[H]).

conc([], L) L.
conc([H|L], K) [H| ~conc(L,K) 1.

Fig. 16. An example with more complex properties, a cost error is flagged.

==.mod E nre errions,isyntax,natlveprops

#H- pred nrev(A.B) : (list(num,A), var(B)) - 1list(B)
> False assertion:
:- check comp nrev(A,B)
: (list(num,A), var(B))
+ (det, terminates, steps_o(length(A))).
because the comp field is incompatible with inferred comp:
[generic_comp] steps_lb(B.5%exp(length(A),2)+1.5%x1length(A)+1),steps_ub(0.5%exp(l
ength(A),2)+1.5%xlength(A)+1)
> Verified assertion:
:- check calls nrev(A,B)
: (list(num,A), var(B)).
> Verified assertion:
:- check success nrev(A,B)
: (list(num,A), var(B))
=> list(B).

Fig. 17. The system reminds us that nrev/2 is of course quadratic, not linear.

incompatibility, and now the system simply warns (Fig. that it cannot verify
the assertion for p/1. The success type rt27(X) inferred for p/1 (lists of three ar-
bitrary terms) and sorted(X) are now compatible, and thus no error is flagged.
However, rt27(X) does not imply sorted(X) for all X’s, and thus sorted(X) is
not verified (with the default set of abstract domains). In this case the system
will (optionally) introduce a run-time check so that sorted(X) is tested when
p/1 is called. Furthermore, the system can run unit tests or generate test cases
(in this case arbitrary terms) automatically to exercise such run-time tests.

An example with more complex properties (also using the functional syn-
tax package) is shown in Fig. It includes a user-provided assertion stating
(among other properties) that the cost of nrev/2 in resolution steps, for calls to
nrev(A, B) with A a ground list and B a free variable, should be linear in the
length of the (input) argument A (O(length(A)), property steps_o(length(A))
in the + field. The system can infer that this is false and underlines it in red.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20flags%20a%20(cost)%20error%20reminding%20us%20that%20%0A%25%20nrev%2F2%20is%20quadratic%2C%20not%20linear.%20%0A%25%20(Requires%20cost-related%20domains.)%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20length(A)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_o(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A

+(detterm1natessteps o(exp(length(A) 2))).

nrev([]1) 1
nrev([HIL]) ~conc(~nrev(L),[H]).

conc([1, L) L.
conc([H|L], K) [H | ~conc(L,K)].

a

Flg 18 Wlth the cost expression ﬁxed all propertles are now verified.

>

r2z pred nrev(A,B) : (list(num,A), var(B)) 1ist(B)

+ (det, terminates, steps_o(exp(length(A),2))).

nrev([]) 1o
nrev([HIL]) ~conc(~nrev(L),[H]).

> False assert:l.on
- check comp conc(A,B,C)
+ (det, terminates, steps_ub(length(A))).
because the comp field is incompatible with inferred comp:
[generic_comp] steps_lb(length(A)+1),steps_ub(length(A)+1)

Fig. 19. If we change the assertion for conc/3 from complexity order (_o) to upper
bound (_ub) then the system ﬂags that length(A) is not a correct upper bound.

riz.module

pred _nxev(A.B 1
+ (det, terminates, steps o(exp(length(A) 2)))-

nrev([]) .
nrev([H|L]) ~conc(~nrev(L),[H]).

H-_pxed conc(A,.B,.C
> Verified assertion:
:- check comp conc(A,B,C)
+ (det, terminates, steps_ub(length(A)+1)).

Fig. 20. With the cost expression fixed all properties are now verified.

The popup, Fig. [I7] explains that the stated worst case asymptotic complexity
is incompatible with the quadratic lower bound cost inferred by the analyzer (in
fact: = length(A) +3 5 length(A) + 1, see the steps_1b property). If we Change
the assertlon to spec1fy a quadratic upper bound, it is now proven. see Fig. |1
which also shows verification of the assertion for predicate conc/3 and determl—
nacy and termination properties. In Fig. we have changed the assertion
for conc/3 from complexity order (_o) to a concrete upper bound (_ub), and
the system detects the error: length(A) is not a correct upper bound because,
as shown in the popup, it is incompatible with the lower bound length(A) + 1
inferred by the analyzer [8I35]. Fig. [20|shows that if we change the upper bound
to length(A) + 1, then the assertion is verified.

1.2 Discussion

We argue that this assertion model greatly enhances the power of Prolog for pro-
gramming both in the small and in the large, combining effectively the advan-
tages of the of dynamically- and statically-typed languages. It preserves the dy-
namic language features while at the same time providing safety guarantees and

5 An upper bound [35]26] is also inferred, equal to the lower bound (Fig. .

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20(cost%20domains%20%0A%25%20required%20for%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_o(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20but%20flags%20an%20error%20%0A%25%20since%20length(A)%20is%20not%20a%20strict%20upper%20bound%20for%20conc%2F3%3B%20%0A%25%20it%20is%20length(A)%2B1%20(cost%20domains%20required%20for%20the%20%0A%25%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_ub(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20including%20the%20%0A%25%20upper%20bound%20for%20conc%2F3%20(cost%20domains%20required%20for%20the%20%0A%25%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_ub(length(A)%2B1)).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.

the capability of achieving the performance and efficiency of static systems [6].
The novel combination of assertion language, properties, run-time checking, test-
ing, etc. generates many new synergies.

We believe that a good part of the power of the approach (and perhaps why
this approach was first proposed in the context of Prolog) arises from character-
istics of the logic programming paradigm and the Prolog language in particular.
For example, as we have seen, the fact that Prolog allows writing many properties
(including types) in the source language is instrumental in allowing assertions
which cannot be statically verified to be easily used as run-time checks, allowing
users to obtain benefits even if a certain property cannot be verified at com-
pile time. As another example, the reversibility of properties written in Prolog
allows generating test cases automatically from assertions, without having to in-
vent new concepts or to implement any new functionality, since “property-based
testing” comes for free in this approach and thus did not need to be invented.
Another contributing factor is that it was in the Prolog community that formal
static analysis techniques, in particular abstract interpretation, flourished first,
during the 80’s and 90’s [I0], leading quite naturally to the development in the
mid-90’s of the Ciao model.

The practical relevance of the combination of static and dynamic features
brought about by this approach is illustrated by the many other languages and
frameworks which have been proposed more recently, aiming at bringing together
both worlds, using similar ideas. This includes, e.g., the work on gradual typ-
ing [B6I3T40] and liquid types [32142]. Pfenning’s et al.’s early work on refinement
types [28] and practical dependent types [44] was seminal in this context and also
uses abstract interpretation or constraint solving, but stays on the decidable side
and is thus not combined with run-time checking or testing. Another example
is the recent work on verifying contracts [39/I8I23I27]. Prolog pioneered and is
continuing to push the state of the art in this area. However, although some
Prolog systems have introduced run-time checks or testing, there is still much
work in this area that could become more widely adopted.

2 Making Prolog even more extensible, to support
multiple features in a modular way

The future evolution of Prolog should arguably seek increasing the power
and expressiveness of the language and its tools to make it even simpler
to solve progressively more complex problems. This means continuing in the
path exemplified by the addition of, e.g., constraints, concurrency/parallelism,
tabling [38], assertions (as discussed previously), or (to name a more recent
addition) s(CASP) [IIII]. As also advocated by Gupta et al. [II], it is also
desirable to have systems that support all these and additional future extensions
within the same implementation.

However, the syntactic and semantic elegance and simplicity of Prolog con-
trasts with (or may perhaps be thanks to) the implementation sophistication of

10

state-of-the-art Prolog systems, and this can potentially complicate the task of
incorporating new functionality to the language.

Fortunately, many good ideas have progressively allowed making extensions
in less painful ways. For example, attributed variables, pioneered by Holzbaur
and Neumerkel in SICStus [I6], made it much easier to add constraint systems
to standard Prologs, and in a largely portable way.

Ciao Prolog introduced new mechanisms for language extension, such
as more principled and modular versions of the term expansion facilitiesﬂ spe-
cial features in the module system, and the notion of packages, which offer a
clean distinction between compile-time and runtime extensions [5]. This is es-
sential for global analysis (necessary for the assertion model and optimization),
separate/incremental compilation, and language bootstrapping —in fact, most
of Ciao, including its abstract machine, is defined in Prolog [22]. These ideas
have allowed building the complete system starting from a small kernel in a
layered way into a multiparadigm language, while having all built-ins and
extensions (constraints, different search rules, functions, higher-order, predicate
abstractions, lazyness, concurrency, s(CASP), etc.) as optional features that can
be activated, deactivated, or combined on a per module basis. Even if for effi-
ciency some such predicates (including for example the cut) may be implemented
internally and supported natively in the virtual machine and compiler, none of
them are considered builtins and their visibility can be controlled, including for
example choosing to not load any impure ones, or to redefine them. This modular
design allows moving from pure LP, where, e.g., no impure builtins are visible,
to full ISO Prolog by specifying the set of imported modules, and going well
beyond that into a multi-paradigm language, while maintaining full backwards
compatibility with standard Prolog. Being able to travel these paths is also very
useful in an educational context (see, for example, [I5] also in this volume).

We believe that future systems should build further on these extensibility-
oriented ideas and that the advocated modularity and separation of concerns are
fundamental to Prolog’s future evolution. Key features here are advanced module
systems and the technology to bridge the gap between the dynamic and static ap-
proaches. They can facilitate adding more declarative features and more
advanced reasoning capabilities to Prolog, while providing guarantees
and increasing performance. This is specially relevant in a world where pro-
grams can be generated by learning systems and need to be modified and verified
before use, and where they run on multi-core and heterogeneous computing de-
vices, with complex specialized data representations to make optimal usage of
the memory hierarchy. This can greatly benefit from more declarative program
specifications (e.g., Prolog programs) and establishing a "dialogue" between pro-
grammers and the compiler (e.g., via the assertion language).

5 See again [43] for in introduction to term expansion in Prolog.

11

References

10.

11.

12.

13.

14.

15.

Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint Answer Set
Programming without Grounding. Theory and Practice of Logic Programming
18(3-4), 337-354 (2018). https://doi.org/10.1017/5S1471068418000285

Bueno, F., Carro, M., Hermenegildo, M.V., Lopez-Garcia, P., (Eds.), J.F.M.: The
Ciao System. Ref. Manual (v1.22). Tech. rep. (April 2023), available at http:
//ciao-lang.org

Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M.V.,
Maluszynski, J., Puebla, G.: On the Role of Semantic Approximations in Valida-
tion and Diagnosis of Constraint Logic Programs. In: Proc. of the 3rd Int’l. WS on
Automated Debugging—AADEBUG. pp. 155-170. U. Linkdping Press (May 1997)
Bueno, F., Lopez-Garcia, P., Hermenegildo, M.V.: Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In: FLOPS’04. pp. 100-116. No. 2998
in LNCS, Springer-Verlag (2004)

Cabeza, D., Hermenegildo, M.V.: A New Module System for Prolog. In: Inter-
national Conference on Computational Logic, CL2000. pp. 131-148. No. 1861 in
LNAI, Springer-Verlag (July 2000)

Carro, M., Morales, J., Muller, H., Puebla, G., Hermenegildo, M.V.: High-Level
Languages for Small Devices: A Case Study. In: Flautner, K., Kim, T. (eds.) Com-
pilers, Architecture, and Synthesis for Embedded Systems. pp. 271-281. ACM
Press / Sheridan (October 2006)

Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: ACM
Symposium on Principles of Programming Languages (POPL’77). pp. 238-252.
ACM Press (1977). https://doi.org/10.1145/512950.512973

Debray, S.K., Lopez-Garcia, P., Hermenegildo, M.V., Lin, N.W.: Lower Bound
Cost Estimation for Logic Programs. In: ILPS’97. pp. 291-305. MIT Press (1997)
Debray, S., Lopez-Garcia, P., Hermenegildo, M.V.: Non-Failure Analysis for Logic
Programs. In: ICLP’97. pp. 48-62. MIT Press (1997)

Giacobazzi, R., Ranzato, F.: History of abstract interpretation. IEEE Ann. Hist.
Comput. 44(2), 33-43 (2022), https://doi.org/10.1109/MAHC.2021.3133136
Gupta, G., Salazar, E., Arias, J., Basu, K., Varanasi, S., Carro, M.: Prolog: Past,
Present, and Future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS,
Springer (July 2023)

Hermenegildo, M.V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J.,
Puebla, G.: An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming 12(1-2), 219-252 (January 2012). https://doi.org/10.1
017/S1471068411000457, http://arxiv.org/abs/1102.5497

Hermenegildo, M.V., Puebla, G., Bueno, F.: Using Global Analysis, Partial Specifi-
cations, and an Extensible Assertion Language for Program Validation and Debug-
ging. In: The Logic Programming Paradigm: a 25—-Year Perspective, pp. 161-192.
Springer-Verlag (1999)

Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1-2), 115-140
(October 2005). https://doi.org/10.1016/j.scico.2005.02.006
Hermenegildo, M., Morales, J., Lopez-Garcia, P.: Some Thoughts on How to Teach
Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,

12

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
http://ciao-lang.org
http://ciao-lang.org
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
http://arxiv.org/abs/1102.5497
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1016/j.scico.2005.02.006

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July
2023), http://cliplab.org/papers/TeachingProlog-PrologBook.pdf

Holzbaur, C.: Metastructures vs. Attributed Variables in the Context of Extensible
Unification. In: Int’l. Symposium on Programming Language Implementation and
Logic Programming. pp. 260-268. No. 631 in LNCS, Springer Verlag (Aug 1992)
Hudak, P., Peyton-Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guz-
man, M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R.,
Partain, W., Peterson, J.: Report on the Programming Language Haskell. Haskell
Special Issue, ACM Sigplan Notices 27(5), 1-164 (1992)

Logozzo et al., F.: Clousot. http://msdn.microsoft.com/en-us/devlabs/dd491
992.aspx (Accessed: 2018)

Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Automatic Inference of Deter-
minacy and Mutual Exclusion for Logic Programs Using Mode and Type Analyses.
New Generation Computing 28(2), 117-206 (2010)

Lopez-Garcia, P., Klemen, M., Liqat, U., Hermenegildo, M.V.: A General Frame-
work for Static Profiling of Parametric Resource Usage. TPLP (ICLP’16 Special
Issue) 16(5-6), 849-865 (2016). https://doi.org/10.1017/51471068416000442
Mera, E., Lopez-Garcia, P., Hermenegildo, M.V.: Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In: 25th Int’l. Con-
ference on Logic Programming (ICLP’09). LNCS, vol. 5649, pp. 281-295. Springer-
Verlag (July 2009)

Morales, J., Carro, M., Hermenegildo, M.V.: Description and Optimization of Ab-
stract Machines in a Dialect of Prolog. Theory and Practice of Logic Programming
16(1), 1-58 (January 2016). https://doi.org/doi: 10.1017/S1471068414000672
MSR: Code contracts. http://research.microsoft.com/en-us/projects/cont
racts/| (Accessed: 2018)

Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In: ICLP’91. pp.
49-63. MIT Press (June 1991)

Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. JLP 13(2/3), 315-347 (July 1992)

Navas, J., Mera, E., Lopez-Garcia, P., Hermenegildo, M.: User-Definable Resource
Bounds Analysis for Logic Programs. In: Proc. of ICLP’07. LNCS, vol. 4670, pp.
348-363. Springer (2007). https://doi.org/10.1007/978-3-540-74610-2_24
Nguyen, P.C., Tobin-Hochstadt, S., Van Horn, D.: Soft Contract Verification. In:
Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming. pp. 139-152. ICFP 14, ACM, New York, NY, USA (2014). https:
//doi.org/10.1145/2628136.2628156

Pfenning, F.: Dependent types in logic programming. In: Pfenning, F. (ed.) Types
in Logic Programming, pp. 285-311. The MIT Press (1992)

Puebla, G., Bueno, F., Hermenegildo, M.V.: An Assertion Language for Constraint
Logic Programs. In: Analysis and Visualization Tools for Constraint Programming,
pp. 23-61. No. 1870 in LNCS, Springer-Verlag (2000). https://doi.org/10.100
7/10722311_2

Puebla, G., Bueno, F., Hermenegildo, M.V.: Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In: Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99). pp. 273-292. No. 1817 in
LNCS, Springer-Verlag (March 2000). https://doi.org/10.1007/10720327_16
Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & Efficient
Gradual Typing for TypeScript. In: 42nd POPL. pp. 167-180. ACM (January
2015)

13

http://cliplab.org/papers/TeachingProlog-PrologBook.pdf
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
https://doi.org/10.1017/S1471068416000442
https://doi.org/10.1017/S1471068416000442
https://doi.org/doi:10.1017/S1471068414000672
https://doi.org/doi:10.1017/S1471068414000672
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008. pp. 159-169. ACM (2008). https://doi.org/10.1145/1375581.1375602,
https://doi.org/10.1145/1375581.1375602

Saglam, H., Gallagher, J.: Approximating Constraint Logic Programs Using Poly-
morphic Types and Regular Descriptions. Technical Report CSTR-95-17, Dep. of
Computer Science, U. of Bristol, Bristol BS8 1TR (1995)

Sanchez-Ordaz, M., Garcia-Contreras, 1., Perez-Carrasco, V., Morales, J.F., Lopez-
Garcia, P., Hermenegildo, M.V.: Verifly: On-the-fly Assertion Checking via Incre-
mentality. Theory and Practice of Logic Programming 21(6), 768-784 (September
2021). https://doi.org/10.1017/S1471068421000430, http://arxiv.org/abs/
2106.07045, special Issue on ICLP’21

Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource Usage Analysis of
Logic Programs via Abstract Interpretation Using Sized Types. TPLP, ICLP’14
Special Tssue 14(4-5), 739-754 (2014). https: //doi.org/10.1017/5S14710684140
0057X

Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Scheme and
Functional Programming Workshop. pp. 81-92 (2006)

Somogyi, Z., Henderson, F., Conway, T.: The Execution Algorithm of Mercury: an
Efficient Purely Declarative Logic Programming Language. JLP 29(1-3), 17-64
(October 1996)

Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.
Theory and Practice of Logic Programming 12(1-2), 157-187 (Jan 2012). https:
//doi.org/10.1017/S1471068411000500

Takikawa, A., Feltey, D., Dean, E., Flatt, M., Findler, R.B., Tobin-Hochstadt,
S., Felleisen, M.: Towards Practical Gradual Typing. In: Boyland, J.T. (ed.) 29th
European Conference on Object-Oriented Programming, ECOOP 2015, July 5-
10, 2015, Prague, Czech Republic. LIPIcs, vol. 37, pp. 4-27. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015), https://doi.org/10.4230/LIPIcs.ECO
OP.2015.4, http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
Tobin-Hochstadt, S., Felleisen, M.: The Design and Implementation of Typed
Scheme. In: POPL. pp. 395-406. ACM (2008)

Vaucheret, C., Bueno, F.: More Precise yet Efficient Type Inference for Logic Pro-
grams. In: SAS’02. pp. 102-116. No. 2477 in LNCS, Springer (2002)

Vazou, N., Tanter, E., Horn, D.V.: Gradual liquid type inference. Proc. ACM
Program. Lang. 2(OOPSLA), 132:1-132:25 (2018). https://doi.org/10.1145/32
76502, https://doi.org/10.1145/3276502

Warren, D.S.: Introduction to Prolog. In: Warren, D.S.,; Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS, Springer (July 2023)

Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W.,
Aiken, A. (eds.) POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA,
January 20-22, 1999. pp. 214-227. ACM (1999). https://doi.org/10.1145/2925
40.292560, https://doi.org/10.1145/292540.292560

14

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1017/S1471068421000430
https://doi.org/10.1017/S1471068421000430
http://arxiv.org/abs/2106.07045
http://arxiv.org/abs/2106.07045
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3276502
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560

	Types, modes and so much more – the Prolog way

