
Simulating Concurrent Behaviors with

Worst-Case Cost Bounds?

Elvira Albert1, Samir Genaim1, Miguel Gómez-Zamalloa1,
Einar Broch Johnsen2, Rudolf Schlatte2, and S. Lizeth Tapia Tarifa2

1 DSIC, Complutense University of Madrid, Spain
{elvira,samir.genaim,mzamalloa}@fdi.ucm.es
2 Department of Informatics, University of Oslo, Norway

{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. Modern software systems are increasingly being developed
for deployment on a range of architectures. For this purpose, it is inter-
esting to capture aspects of low-level deployment concerns in high-level
modeling languages. In this paper, an executable object-oriented mod-
eling language is extended with resource-restricted deployment compo-
nents. To analyze model behavior a formal methodology is proposed
to assess resource consumption, which balances the scalability of the
method and the reliability of the obtained results. The approach applies
to a general notion of resource, including traditional cost measures (e.g.,
time, memory) as well as concurrency-related measures (e.g., requests to
a server, spawned tasks). The main idea of our approach is to combine
reliable (but expensive) worst-case cost analysis of statically predictable
parts of the model with fast (but inherently incomplete) simulations of
the concurrent aspects in order to avoid the state-space explosion. The
approach is illustrated by the analysis of memory consumption.

1 Introduction

Software systems today are increasingly being developed to be highly con�g-
urable, not only with respect to the functionality provided by a speci�c instance
of the system but also with respect to the targeted deployment architecture. An
example of a development method is software product line engineering [20]. In or-
der to capture and analyze the intended deployment variability of such software,
formal models need to express and range over di�erent deployment scenarios.
For this purpose, it is interesting to re�ect aspects of low-level deployment in
high-level modeling languages. As our �rst contribution, in this paper, we pro-
pose a notion of resource-restricted deployment component for an executable

? This work was funded in part by the EU project FP7-231620 HATS

(http://www.hats-project.eu), by the Spanish Ministry of Science and Innova-
tion (MICINN) under the TIN-2008-05624 DOVES project, the HI2008-0153 (Acción
Integrada) project, the UCM-BSCH-GR35/10-A-910502 Research Group and by the
Madrid Regional Government under the S2009TIC-1465 PROMETIDOS project.



modeling language based on concurrent objects [8, 11, 14, 21, 24]. The main idea
of resource-restricted deployment components is that they are parametric in the
amount of resources they make available to their concurrently executing objects.
This way, di�erent deployment scenarios can be conveniently expressed at the
modeling level and a model may be analyzed for a range of deployment scenarios.

As our main contribution, we develop a novel approach for estimating the
resource consumption of this kind of resource-constrained concurrent executions
which is reasonably reliable and scalable. Resource consumption is in this sense a
way of understanding and debugging the model of the deployment components.
Our work is based on a general notion of resource, which associates a cost unit
to the program statements. Traditional resources are execution steps, time and
memory, but one may also consider more concurrency-related resources like the
number of tasks spawned, the number of requests to a server, etc.

The two main approaches to estimating resource consumption of a program
execution are static cost analysis and dynamic simulation (or monitoring). E�-
cient simulation techniques can analyze model behavior in di�erent deployment
scenarios, but simulations are carried out for particular input data. Hence, they
cannot guarantee the correctness of the model. Due to the non-determinism of
concurrent execution and the choice of inputs, possible errors may go undetected
in a simulation. Static cost (or resource usage) analysis aims at automatically
inferring a program's resource consumption statically, i.e., without running the
program. Such analysis must consider all possible execution paths and ensures
soundness, i.e., it guarantees that the program never exceeds the inferred re-
source consumption for any input data. While cost analysis for sequential lan-
guages exists, the problem has not yet been studied in the concurrent setting,
partly due to the inherent complexity of concurrency: the number of possible exe-
cution paths can be extremely large and the resulting outcome non-deterministic.
Statically analyzing the concurrent behaviors of our resource-restricted models
requires a full state space exploration and quickly becomes unrealistic.

In this paper, we propose to combine simulations with static techniques for
cost analysis, which allows classes of input values to be covered by a single
simulation. The main idea is to apply cost analysis to the sequential compu-
tations while simulation handles the concurrent system behavior. Our method
is developed for an abstract behavioral speci�cation language ABS, simplifying
Creol [11,14], which contains a functional level where computations are sequen-
tial and an concurrent object-oriented level based on concurrent objects. This
separation allows a concise and clean formalization of our technique. The com-
bination of simulation and static analysis, as proposed in this paper, suggests
a middle way between full state space exploration and simulating single paths,
which gives interesting insights into the behavior of concurrent systems.

Paper organization. Sec. 2 describes the ABS modeling language and the
running example. Sec. 3 discusses the worst-case cost analysis of the functional
parts of ABS. Sec. 4 introduces deployment components, which model resource-
containing runtime entities, and in Sec. 5 we apply our techniques to the running
example. Finally, Sec. 6 discusses related work and Sec. 7 concludes.



Syntactic categories.

I in Interface type

D in Data type

x in Variable

e in Expression

b in Bool Expression

t in Ground Term

br in Branch

p in Pattern

De�nitions.

Dd ::= data D = Cons;

Cons ::= Co[(T )] | (Cons | Cons)

F ::= def T fn(T x) = e;
T ::= I | D
e ::= b | x | t | this | Co[(e)] | fn(e) | case e {br}
t ::= Co[(t)] | null

br ::= p⇒ e;
p ::= _ | x | t | Co[(p)]

Fig. 1. ABS syntax for the functional level. Terms e and x denote possibly empty lists
over the corresponding syntactic categories, and square brackets [ ] optional elements.
Boolean expressions b include comparison by equality, greater- and less-than operators.

2 A Language for Distributed Concurrent Objects

Our method is presented for ABS, an abstract behavioral speci�cation language
for distributed concurrent objects (simplifying Creol [11, 14] by excluding, e.g.,
class inheritance and dynamic class upgrades). Characteristic features of ABS
are that: (1) it allows abstracting from implementation details while remaining
executable; i.e., a functional sub-language over abstract data types is used to
specify internal, sequential computations; and (2) it provides �exible concurrency
and synchronization mechanisms by means of asynchronous method calls, release
points in method de�nitions, and cooperative scheduling of method activations.

Intuitively, concurrent ABS objects have dedicated processors and live in a
distributed environment with asynchronous and unordered communication. All
communication is between named objects, typed by interfaces, by means of asyn-
chronous method calls. (There is no remote �eld access.) Calls are asynchronous
as the caller may decide at runtime when to synchronize with the reply from a
call. Method calls may be seen as triggers of concurrent activity, spawning new
activities (so-called processes) in the called object. Active behavior, triggered
by an optional run method, is interleaved with passive behavior, triggered by
method calls. Thus, an object has a set of processes to be executed, which stem
from method activations. Among these, at most one process is active and the
others are suspended in a process pool. Process scheduling is non-deterministic,
but controlled by processor release points in a cooperative way.

An ABS model de�nes interfaces, classes, datatypes, and functions, and has
a main method to con�gure the initial state. Objects are dynamically created
instances of classes; their declared attributes are initialized to arbitrary type-
correct values, but may be rede�ned in an optional method init. This paper
assumes that models are well-typed, so method binding is guaranteed to succeed.

The functional level of ABS de�nes data types and functions, as shown in
Fig. 1. In data type declarations Dd , a data type D has at least one constructor
Cons, which has a name Co and a list of types T for its arguments. Func-
tion declarations F consist of a return type T , a function name fn, a list of
variable declarations x of types T , and an expression e. Expressions e include



Syntactic categories.

C,m in Names

g in Guard

s in Statement

De�nitions.

IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg { T x; s }
g ::= b | x? | g ∧ g | g ∨ g
s ::= s; s | x := rhs | release | await g | return e
| if b then { s } [else { s }] | while b { s } | skip

rhs ::= e | new C [(e)] | [e]!m(e) | x.get

Fig. 2. ABS syntax for the concurrent object level.

Boolean expressions b, variables x, (ground) terms t, the (read-only) variable
this which refers to the object's identi�er, constructor expressions Co(e), func-
tion expressions fn(e), and case expressions case e {br}. Ground terms t are
constructors applied to ground terms Co(t), and null. Case expressions have a
list of branches p ⇒ e, where p is a pattern. The branches are evaluated in the
listed order. Patterns include wild cards _, variables x, terms t, and constructor
patterns Co(p). Remark that expressions may refer to object references.

Example 1. Consider a polymorphic data type for sets and a function in which
checks if e is an a member of the set ss.

data Set<A> = EmptySet | Insert(A, Set<A>);
def Bool in<A>(Set<A> ss, A e) =

case ss {EmptySet => False ;
Insert(e, _) => True;
Insert(_, xs) => in(xs, e); };

The concurrent object level of ABS is given in Fig. 2. Here, an interface IF
has a name I and method signatures Sg . A class implements a list of interfaces,
specifying types for its instances; a class CL has a name C, interfaces I, class
parameters and state variables x of type T , and methods M (The attributes of
the class are both its parameters and state variables). A method signature Sg
declares the return type T of a method with name m and formal parameters
x of types T . M de�nes a method with signature Sg, a list of local variable
declarations x of types T , and a statement s. Statements may access attributes of
the current class, locally de�ned variables, and the method's formal parameters.

Right hand side expressions rhs include object creation new C(e), method
calls, and (pure) expressions e. Statements are standard for assignment x := rhs,
sequential composition s1; s2, and skip, if, while, and return constructs.
release unconditionally releases the processor, suspending the active process.
In await g, the guard g controls processor release and consists of Boolean
conditions b and return tests x? (see below). If g evaluates to false, the processor
is released and the process suspended. When the processor is idle, any enabled
process from the object's pool of suspended processes may be scheduled. Explicit
signaling is therefore redundant. Like expressions e, guards g are side-e�ect free.



Communication in ABS is based on asynchronous method calls, denoted
o!m(e). (Local calls are written !m(e).) After asynchronously calling x := o!m(e),
the caller may proceed with its execution without blocking on the call. Here x
is a future variable, o is an object (an expression typed by an interface), and
e are expressions. A future variable x refers to a return value which has yet
to be computed. There are two operations on future variables, which control
external synchronization in ABS. First, a return test x? evaluates to false unless
the reply to the call can be retrieved. (Return tests are used in guards.) Second,
the return value is retrieved by the expression x.get, which blocks all execution
in the object until the return value is available. The statement sequence x :=
o!m(e); v := x.get encodes a blocking, synchronous call, abbreviated v :=
o.m(e), whereas the statement sequence x := o!m(e); await x?; v := x.get
encodes a non-blocking, preemptable call, abbreviated await v := o.m(e).

Example 2. Consider a model of a book shop where clients can order a list
of books for delivery to a country. Clients connect to the shop by calling
the getSession method of an Agent object. An Agent hands out Session
objects from a dynamically growing pool. Clients call the order method of their
Session instance, which calls the getInfo and confirmOrder methods of a
Database object shared between the di�erent sessions. Session objects return
to the agent's pool after an order is completed. (The full model is available in [5].)

interface Agent { Session getSession(); Unit free(Session session);}
interface Session {

OrderResult order(List<Bname> books, Cname country);}
interface Database {

DatabaseInfo getInfo(List<Bname> books, Cname country);
Bool confirmOrder(List<Bname> books); }

class DatabaseImp(Map<Bname,Binfo> bDB, Map<Cname,Cinfo> cDB)
implements Database {
DatabaseInfo getInfo(List<Bname> books, Cname country){
Map<Bname,Binfo> bOrder:=EmptyMap; Pair<Cname,Cinfo> cDestiny;
bOrder:=getBooks(bDB, books); cDestiny:=getCountry(cDB, country);
return Info(bOrder, cDestiny);} ...

In the model, a DatabaseImp class stores and handles the information about
the books available in the shop (in the bDB map) as well as information about
the delivery countries (in the cDB map). This class has a method getInfo;
given an order with a list of books and a destination country, the getInfo
method extracts information about book availability from bDB and shipping
information from cDB by means of function calls getBooks(bDB, books)
and getCountry(cDB, country) The result from the method call has type
DatabaseInfo, with a constructor of the form: Info(bOrder, cDestiny).

2.1 Operational Semantics

The operational semantics of ABS is presented as a transition system in an SOS
style [19]. Rules apply to subsets of con�gurations (the standard context rules
are not listed). For simplicity we assume that con�gurations can be reordered
to match the left hand side of the rules (i.e., matching is modulo associativity



and commutativity as in rewriting logic [18]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the application of transition rules in a run.

Con�gurations cn are sets of objects, invocation messages, and futures. The
associative and commutative union operator on con�gurations is denoted by
whitespace and the empty con�guration by ε. These con�gurations live inside
curly brackets; in the term {cn}, cn captures the entire con�guration. An object
is a term ob(o, C, a, p, q) where o is the object's identi�er and C its class, a an
attribute mapping representing the object's �elds, p an active process, and q a
pool of suspended processes. A process p consists of a mapping l of local variable
bindings and a list s of statements, denoted by {l|s} when convenient. In an
invocation message invoc(o, f,m, v), o is the callee, f the future to which the
call's result is returned, m the method name, and v the call's actual parameter
values. A future fut(f, v) has a identi�er f and a reply value v (which is ⊥
when the future's reply value has not been received). Values are object and
future identi�ers, Boolean expressions, and null (as well as expressions in the
functional language). For simplicity, classes are not represented explicitly in the
semantics, but may be seen as static tables.

Evaluating Expressions. Denote by σ(x) the value bound to x in a mapping
σ and by σ1 ◦ σ2 the composition of mappings σ1 and σ2. Given a substitution
σ and a con�guration cn, denote by [[e]]cnσ a con�uent and terminating reduction
system which reduces expressions e to data values. Let [[x?]]cnσ = true if [[x]]cnσ = f
and fut(f, v) ∈ cn for some value v 6= ⊥, otherwise [[x?]]cnσ = false. The remaining
cases are fairly straightforward, looking up values for declared variables in σ. For
brevity, we omit the reduction system for the functional level of ABS (for details,
see [5]) and simply denote by [[e]]εσ the evaluation of a guard or expression e in the
context of a substitution σ and a state con�guration cn (the state con�guration
is needed to evaluate future variables). The reduction of an expression always
happens in the context of a given process, object state, and con�guration. Thus,
σ = a ◦ l (the composition of the �elds a and the local variable bindings l), and
cn the current con�guration of the system (ignoring the object itself).

Transition Rules. Transition rules of the operational semantics transform
state con�gurations into new con�gurations, and are given in Fig. 3. We assume
given functions bind(o, f,m, v, C) which returns a process resulting from the
method activation of m in a class C with actual parameters v, callee o and
associated future f ; init(C) which returns a process initializing instances of class
C; and atts(C, v, o, n) which returns the initial state of an instance of class C
with class parameters v, identity o, and deployment component n. The predicate
fresh(n) asserts that a name n is globally unique (where n may be an identi�er
for an object or a future). Let idle denote any process {l|s} where s is an empty
statement list. Finally, we de�ne di�erent assignment rules for side e�ect free
expressions (assign1 and assign2 ), object creation (new-object), method calls
(async-call), and future dereferencing (read-fut). Rule skip consumes a skip in
the active process. Here and in the sequel, the variable s will match any (possibly
empty) statement list. Rules assign1 and assign2 assign the value of expression



(skip)

ob(o, C, a, {l|skip; s}, q)
→ ob(o, C, a, {l|s}, q)

(release)

ob(o, C, a, {l|release; s}, q)
→ ob(o, C, a, idle,

enqueue({l|s}, q))

(activate)

p = select(q, a, cn)

{ob(o, C, a, idle, q) cn}
→ {ob(o, C, a, p, q\p) cn}

(Async-Call)

o′ = [[e]]ε(a◦l) v = [[e]]ε(a◦l) fresh(f)

ob(o, C, a, {l|x := e!m(e); s}, q)
→ ob(o, C, a, {l|x := f ; s}, q)
invoc(o′, f,m, v) fut(f,⊥)

(New-Object)

fresh(o′) p = init(B) a′ = atts(B, [[e]]εa◦l, o
′, n)

ob(o, C, a, {l|x := new B(e); s}, q)
→ ob(o, C, a, {l|x := o′; s}, q)

ob(o′, B, a′, p, ∅)

(return)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, C, a, {l|return e; s}, q) fut(f,⊥)
→ ob(o, C, a, {l|s}, q) fut(f, v)

(Read-Fut)

v 6= ⊥ f = [[e]]ε(a◦l)
ob(o, C, a, {l|x := e.get; s}, q) fut(f, v)
→ ob(o, C, a, {l|x := v; s}, q) fut(f, v)

(Bind-Mtd)

p′ = bind(o, f,m, v, C)

ob(o, C, a, p, q)
invoc(o, f,m, v)

→ ob(o, C, a, p,
enqueue(p′, q))

(assign1)

x ∈ dom(l) v = [[e]]ε(a◦l)
ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a, {l[x 7→ v]|s}, q)

(assign2)

x ∈ dom(a) v = [[e]]ε(a◦l)
ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a[x 7→ v], {l|s}, q)

(await1)

¬[[g]]cn(a◦l)
{ob(o, C, a, {l|await g; s}, q) cn}

→ {ob(o, C, a, {l|release; await g; s}, q) cn}

(await2)

[[g]]cn(a◦l)
{ob(o, C, a, {l|await g; s}, q) cn}
→ {ob(o, C, a, {l|s}, q) cn}

Fig. 3. ABS Semantics

e to a variable x in the local variables l or in the �elds a, respectively. (We omit
the standard rules for if-then-else and while).

Process Suspension and Activation. Three operations are used to manipulate
a process pool q: enqueue(p, q) adds a process p to q, q \p removes p from q, and
select(q, a, cn, t) selects a process from q (which is idle if q is empty or no pro-
cess is ready [14]). The actual de�nitions are left unde�ned; di�erent de�nitions
correspond to di�erent process scheduling policies. Let ∅ denote the empty pool.
Rule release suspends the active process to the pool, leaving the active process
idle. Rule await1 consumes the await statement if the guard evaluates to true
in the current state of the object, rule await2 adds a release statement in order
to suspend the process if the guard evaluates to false. Rule activate selects a
process from the pool for execution if this process is ready to execute, i.e., if it
would not directly be resuspended or block the processor [14].

Communication and Object Creation. Rule async-call sends an invocation
message to o′ with the unique identity f (by the condition fresh(f)) of a new
future, the method namem, and actual parameters v. Note that the return value
of the new future f is unde�ned (i.e., ⊥). Rule bind-mtd consumes an invocation
method and places the process corresponding to the method activation in the
process pool of the callee. Note that a reserved local variable `destiny' is used
to store the identity of the future associated with the call. Rule return places



the return value into the call's associated future. Rule read-fut dereferences the
future f in the case where v 6= ⊥. Note that if this attribute is ⊥ the reduction
in this object is blocked. Finally, new-object creates a new object with a unique
identi�er o′. The object's �elds are given default values by atts(B, v, o′, n), ex-
tended with the actual values v for the class parameters and o′ for this. In order
to instantiate the remaining attributes, the process p is loaded (we assume that
this process reduces to idle if init(B) is unspeci�ed in the class de�nition, and
that it asynchronously calls run if the latter is speci�ed).

3 Worst-Case Cost Bounds

The goal of this section is to infer worst-case upper bounds (UBs) from the
(sequential) functions in our sub-language. This problem has been intensively
studied since the seminal paper on cost analysis [23]. Thus, instead of a formal
development, we illustrate the main steps of the analysis on the running example.

Size of terms. The cost of a function that traverses a term t usually depends
on the size of t, and not on the concrete data structure to which t is bound.
For instance, the cost of executing dom(map) (which returns the domain of
a map) depends on the size of map (the number of elements). Therefore, in
order to infer worst-case UBs, we �rst need to de�ne the meaning of size of a
term. This is done by using norms [7]. A norm is a function that maps terms
to their size. For instance, the term-size norm calculates the number of type
constructors in a given term, and is de�ned as |Co(t1, . . . , tn)|ts = 1+Σn

i=1|ti|ts ,
and, the term-depth norm calculates the depth of the term, and is de�ned as
|Co(t1, . . . , tn)|td = 1 + max(|t1|td , . . . , |tn|td). Consider the book shop model
described in Ex. 2; the database uses maps for storing information; a Map<A,
B> has two constructors Ins(Pair<A, B>, Map<A, B>) and EmptyMap (to represent
empty maps). For storing the information of a book sold by the shop, the model
uses a constructor of the form BInfo(Bquantity, Bweight, Bbackordertime) (A more
detailed description of this data type can be found in [5].). For a term:

t = Ins(Pair("b1",BInfo(5,1,2)),Ins(Pair("b2",BInfo(1,2,5)),EmptyMap))

which can represent the database of books in the shop, we have that |t|ts = 15
and |t|td = 5. Note that we count strings and numbers as type constructors.
Norms map a given variable x to itself in order to account for the size of the
term to which x is bounded. Any norm can be used in the analysis, depending
on the used data structures, w.l.o.g., we will use the term-size norm.

Size relations. The getBooks function (called from method getInfo in Ex. 2)
returns a sub-database (of booksDB) which contains only those books in books:

def Map getBooks(Map booksDB,List books) = case books {
Nil => EmptyMap;
Cons(b,t) => case in(dom(booksDB),b) {

False => getBooks(booksDB,t) ;
True => Ins(Pair(b,lookup(booksDB,b)),getBooks(booksDB,t)); };};



Function dom returns the set of keys of the mapping provided as argument,
in is the one of Ex. 1, and, lookup returns the value that corresponds to the
provided key in the provided mapping. Observe that the return value of dom
is passed on to function in. Since the cost of in is part of the total cost of
getBooks, we need to express its cost in terms of booksDB. This is possible
only if we know which is the relation between the returned value of dom and
its input value booksDB. This input-output relation (or a post-condition) is a
conjunction of (linear) constraints that describe a relation between the sizes of
the input parameters of the function and its return value, w.r.t. the selected
norm. E.g., ret ≤ map is a possible post-condition for function dom, where map
is the size of its input parameter and ret is the size of the returned term. We
apply existing techniques [6] to infer such relations for our functional language.
In what follows, we assume that IP includes a post-conditions 〈fn(x̄), ψ〉 for
each function, where ψ is a conjunction of (linear) constraints over x̄ and ret.

Cost Model. Cost analysis is typically parametric on the notion of cost model
M, i.e., on the resource that we want to measure [2]. Informally, a cost model
is a function that maps instructions to costs. Traditional cost models are: (1)
number of instructions, which maps all instructions to 1, i.e., M(b) = 1 for all
instructions b; and (2) memory consumption, which can be de�ned asMh(x =
t) = Mh(t) = mem(t) where mem(Co(t1, . . . , tn)) = Co + Σn

i=1mem(ti) and
mem(x) = 0. For any other instruction b we let Mh(b) = 0. The symbol Co
represents the amount of memory required for constructing a term of type Co.
Note that we estimate only the memory required for storing terms.

Upper bounds. In order to make the presentation simpler, we assume functions
are normalized such that nested expressions are �attened using let bindings.
Using this normal form, the evaluation of an expression e consists in evaluating
a sequence of sub-expressions of the form y = fn(x̄), y = t, match(y, t), fn(x̄),
t or x. We refer to such sequence as an execution path of e. In a static setting,
since variables are not assigned concrete values, and due to the use of case,
an expression e might have several execution paths. We denote the set of all
execution paths of e by paths(e). This set can be constructed from the abstract
syntax tree of e. Clearly, when estimating the cost of executing an expression e
we must consider all possible execution paths. In practice, we generate a set of
(recursive) equations where each equation accounts for the cost of one execution
path. Then, the solver of [1] is used in order to obtained a closed-form UB.

De�nition 1. Given a function def T fn(T x) = e, its cost relation (CR)
is de�ned as follows: for each execution path p ≡ b1, . . . , bn ∈ paths(e), we
de�ne an equation 〈fn(x̄) = Σn

i=1M(bi) + fni1(x̄i1) + · · ·+ fnik(x̄ik),∧ni=1ϕi〉
where fni1(x̄i1), . . . , fnik(x̄ik) are all function calls in p; and ϕi ≡ y = |t|ts
if bi ≡ y = t, and ϕi ≡ ψ[ret/y] if bi ≡ y = f(x̄) and 〈f(x̄), ψ〉 ∈ IP , otherwise
ϕi = true. The CR system of a given program the set of all CRs of its functions.

Example 3. The following is the CR of getBooks w.r.t the cost model mem:



getBooks(a, b) = EmptyMap {b = 1}
getBooks(a, b) = dom(a)+in(d, e)+getBooks(a, g) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}
getBooks(a, b) = Pair+Ins+dom(a)+in(d, e) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}

+ lookup(a, e)+getBooks(a, g)

The �rst equation can be read as �the memory consumption of getBooks is one
EmptyMap constructor if the size of b is 1�. Equations for functions in, lookup
and dom are not shown due to space limitations and have resp. constant, zero
and linear memory consumptions. Solving the above CR results in the UB

getBooks(a, b) = EmptyMap+nat( b−1
2

)∗(nat(a−1
4

)∗Ins+EmptySet+max(True,False))

Replacing, for example, EmptyMap, Ins, True and False by 1 results in

getBooks(a, b) = 1 + nat( b−1
2

) ∗ (2 + nat(a−1
4

))

4 Deployment components

Deployment components make quanti�able deployment-level resources explicitly
available in the modeling language. A deployment component allows the logi-
cal execution environment of concurrent objects to be mapped to a model of
physical resources, by specifying an abstract execution context which is shared
between a number of concurrently executing objects. The resources available to a
deployment component are shared between the component's objects. An object
may get and return resources from and to its deployment component. Thus, the
deployment components impose a resource-restricted execution context for their
concurrently executing objects, but not a communication topology as objects
still communicate directly with each other independent of the components.

Resource-restricted deployment components are integrated in the modeling
language as follows. Let variables x of type Component refer to deployment
components and allow deployment components to be statically created by the
statement x:=component(r) in the main method, which allocates a given quan-
tity of resources r to the component x (capturing the resource constraint of
x). Resources are modeled by a data type Resource which extends the natu-
ral numbers with an �unbounded resource� ω. Resource allocation and usage is
captured by resource addition and subtraction, where ω+n = ω and ω−n = ω.

Concurrent objects residing on components, may grow dynamically. All ob-
jects are created inside a deployment component. The syntax for object creation
is extended with an optional clause to specify the targeted deployment com-
ponent in the expression new C(e)@ x. This expresses that the new C object
will reside in the component x. Objects generated without an @ clause reside
in the same component as their parent object. Thus the behavior of an ABS
model which does not statically declare additional deployment components can
be captured by a root deployment component with ω resources.

Example 4. Consider the book shop model described in Ex. 2 instantiated inside
deployment components:

Component c := component(200);
Database db := new DataBaseImp(...) @ c;
Agent agent := new AgentImp(db) @ c;



Rule cost free

assign1, assign2 cost(e) |vp| − |v|
Read-Fut max (cost(e), |v|) 0
Bind-Mtd P + |v| −(P + |v|)
Async-Call cost(e) + |f | 0
New-Object-Create O + P + |v| −(O + P + |v|)

Table 1. The non-trivial cost functions of memory-constrained ABS semantics. All
identi�ers are the same as in the corresponding rule of Fig. 3, except vp (old value of
a variable), |v| (size of term v), P (size of a process), and O (size of an object).

The Session objects created and handed out by the Agent object will then
be created inside c as well, without further changes to the model.

The execution inside a component d with r resources can be understood as
follows. An object o residing in d may execute a transition step with cost c if

� o can execute the step in a context with unbounded resources, and
� c ≤ r; i.e., the cost of executing the step does not exclude the transition in
an execution context restricted to r resources.

After the execution of the transition step, the object may return free resources to
its deployment component. Thus, for each transition rule the resources needed to
apply this rule to a state t, resulting in a state t′, can be characterized in terms of
two functions over the state space, one computing the cost of the transition form
t to t′ and one computing the free resources after the transition. The allocation
and return of resources for objects in a deployment component will depend on
the speci�c cost model M for the considered resource, so the exact de�nitions
of costM(t, t′) and freeM(t, t′) depend onM.

Example 5. Table 1 shows the costM(t, t′) and freeM(t, t′) functions for the mem-
ory cost model of the ABS semantics, using the symbols of Fig. 3. There are some
subtle details in these functions � for example, message invocations and future
variables are considered to be outside any one deployment component, so the
memory required to execute the Read-Fut rule can be larger than evaluat-
ing the future variable expression e since the deployment component must have
enough memory to accommodate the incoming value v. Also, object creation
a�ects two places, so was split into two rules, similar to method invocation.

Semantics of Resource Constrained Execution. Let M be a cost model. The
operational semantics ofM-constrained execution in deployment components is
de�ned as a small-step operational semantics, extending the semantics of ABS
given in Sec. 2.1 to resource-sensitive runtime con�gurations forM. We assume
given functions costM(t, t′) and freeM(t, t′).

Let −→ denote the single-step reduction relation of the ABS semantics, de-
�ned in Sec. 2.1. A resource-constrained run of an ABS model consists of zero or
more applications of a transition relation −→M, which is de�ned by the context



(Context)

mycomp(o) = id costM(o msg, o′ msg′ con�g
′
) ≤ r

o msg −→ o′ msg′ con�g
′

r′ = r + freeM(o msg, o′ msg′ con�g
′
)

{comp(id, r) o msg config} −→M {comp(id, r′) o′ msg′ config config
′}

Fig. 4. An operational semantics for resource-constrained deployment components

(assign1-rsc)

x ∈ dom(l) v = [[e]]ε(a◦l) vp = l(x) cost(e) ≤ r mycomp(o) = dc

dc(r) ob(o, C, a, {l|x := e; s}, q)
→ dc(r + |vp| − |v|) ob(o, C, a, {l[x 7→ v]|s}, q)

Fig. 5. Resource-aware assignment rule, with an object ob and deployment component
dc. The assignment statement is only executed if e can be evaluated with the current
r, which is adjusted afterwards.

rule given in Fig. 4. Runtime con�gurations are extended with the representation
of deployment components comp(id, r), where id is the identi�er of the compo-
nent and r its currently available resources. Each object has a �eld mycomp,
instantiated to its deployment component at creation time (we omit the rede-
�ned object creation rule). Let con�g denote a set of objects and futures. The
context rule expresses how an object o may evolve to o′ given a set of invoca-
tion messages msg in the context of a deployment component with r available
resources. Since o may consume an invocation message and create new objects,
futures, or invocation messages, the right hand side of the rule returns o′ with a

possibly di�erent set of messages msg′ and a con�guration con�g
′
.

5 Simulation and Experimental Results

To validate the approach presented in this paper, an interpreter for the ABS lan-
guage was augmented with a resource constraint model that simulates systems
with limited memory. The semantics of this ABS interpreter is given in rewriting
logic [18] and executes on the Maude platform [10]. Note that the semantics of
Sec. 4, when implemented directly, leads to a signi�cant amount of backtracking
in an actual simulation. For this reason, our Maude interpreter was modi�ed to
incorporate deployment components and use the costs of Table 1 for the execu-
tion of statements. One such modi�ed rule is shown in Fig. 5: An assignment to x
can only proceed if the cost of evaluating the right-hand side e of the assignment
statement is less than the currently free memory r. In this case, x is bound to
the new value v, and r is adjusted using Table 1 (here, the di�erence between v
and the previous value vp). All other transition rules which evaluate expressions
are modi�ed in the same way.

Simulation results. Deployment component declarations were added to the
book shop model described in Ex. 2, restricting the memory available to all
objects of type Database, Agent, and Session (i.e., the server part of the
model). Cost functions were computed for all functions in the model, as described



0

100

200

300

400

1 2 3 4 5 6 0

50

100

150

200

Time

Fig. 6. Final and peak memory use as a function of the size of input (left) and pro-
gression of memory use for execution using input size 2 (right).

in Sec. 3 (UBs for all functions in the book shop model can be found in [5]).
With this interpreter, creating a deployment component with too little memory
leads to the expected deadlock.

To obtain quantitative results, the interpreter was instrumented to record
current memory r and peak memory usage r+cost(s) during the evaluation of its
resource-aware rules. This instrumentation yields both maximum resource usage
and a time series of memory usage for a simulation run. Fig. 6 (left) shows the
peak intermediate memory usage and memory use at the end of the simulation for
various input sizes (i.e., how often to run book orders of constant size). Fig. 6
(right) shows the memory use over time of one single run of the model. The
�peaks� in the right-hand side graph occur during evaluation of functions with
large intermediate memory usage (the blue line represents memory use between
execution steps, when the transient memory has been freed again).

6 Related Work

Static cost inference for sequential programming languages has recently received
considerable attention. A cost analysis for Java bytecode has been developed
in [2], for C++ in [12], and for functional programs in [13]. Our approach for
inferring cost for the functional part of ABS is based on [2], which follows the
classical approach of [23]. Inference of worst-case UBs on the memory usage
of Java like programs with garbage collection is studied in [4]. The analysis
accounts for memory freed by garbage collection, and thus infers more tight
and realistic bounds. The analysis supports several GC schemes. The analysis
of [13] supports inference of memory usage, and accounts for memory freed by
destructive matching. In [16] live heap space analysis for a concurrent language
has been proposed. However it uses a very limited model of shared memory.
Recently, a cost analysis for X10 programs [9] has been developed [3], which infers
UBs on the number of tasks that can be running in parallel. The concurrency
primitives of X10 are similar to ABS, but X10 is not based on concurrent objects.

Formal resource modeling happens mainly in the embedded domain. For ex-
ample, Verhoef et al. [22] use the timed VDM++ to model processing time,



schedulability and bandwidth resources for distributed embedded systems, but
their approach is less general and not used for memory consumption. Johnsen
et al. modeled processing resources in the context of deployment components in
previous work [15], but this work does not use cost analysis methods. There is
not much work combining static cost analysis and simulation to analyze resource
usage. However, Künzli et al. [17] combine exact simulation and arrival curves to
model processing costs, decreasing the needed simulation time by using arrival
curves in their simulations to abstract from some of the components in a Sys-
temC model of speci�c hardware. In contrast, we use cost analysis to generalize
simulations on abstract, formally de�ned object-oriented models.

7 Discussion

Software is increasingly being developed to be con�gured for di�erent architec-
tures, which may be restricted in the resources they provide to the software.
Therefore, it is interesting to capture aspects of low-level deployment concerns
at the abstraction level of a software modeling language. In this paper, we have
shown how a formally de�ned executable concurrent object-oriented modeling
language can be extended with a notion of deployment component, which im-
poses a resource-constraint on the execution of objects in the model.

In order to validate the behavior of the resource-restricted model, we propose
to combine static cost analysis with simulations. This combination is achieved by
applying static cost analysis to the sequential parts of the modeling language, for
which practical cost analysis methods exist, while using simulation for the con-
current part, for which static approaches would lead to a state-space explosion.
Thus, the complexity of applying static cost analysis to concurrent executions is
avoided, and, in addition, we obtain better results than concrete simulations be-
cause the sequential parts of the model are simulated by the worst-case bounds.
The technique is demonstrated for memory consumption analysis on an example.
The analysis of memory consumption considered here could be strengthened by
allowing explicit scheduling and garbage collection policies to be included in the
model. This is left for future work.

Another interesting issue is how resource analysis carries over from executable
models to generated code. A code generator from ABS to Java is under devel-
opment that translates user de�ned abstract data types in ABS into object
structures. Hence, the symbolic UBs inferred for memory consumption of the
ABS models correspond to bounds on the number of objects in the correspond-
ing Java code. Note that it might not be possible to �nd similar correlations
for other cost models such as the number of execution steps. Another line of
interesting future work is to set up actual measurements on generated code and
use these results to pro�le our analysis approach for a given cost model.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 42(6):161�203, 2011.



2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Proc. ESOP'07, LNCS 4421, pages 157�172. Springer, 2007.

3. E. Albert, P. Arenas, S. Genaim, and D. Zanardini. Task-Level Analysis for a
Language with Async-Finish parallelism. In LCTES. ACM Press, April 2011.

4. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric Inference of Memory
Requirements for Garbage Collected Languages. In ISMM, ACM Press, 2010.

5. E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and S. L.
Tapia Tarifa. Simulating concurrent behaviors with worst-case cost bounds. Re-
search Report 403, Dept. of Informatics, Univ. of Oslo, Jan. 2011.
http://einarj.at.ifi.uio.no/Papers/rr403.pdf

6. F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In
LOPSTR, LNCS 1207, pages 204�223. Springer, 1997.

7. A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by
Exploiting Term Properties. In TAPSOFT, LNCS 494.. Springer, 1991.

8. D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.
9. P. Charles, C. Grotho�, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform
Cluster computing. In OOPSLA, pages 519�538. ACM, 2005.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude - A High-Performance Logical Framework, LNCS 4350.
Springer, 2007.

11. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP'07, LNCS 4421, pages 316�330. Springer, 2007.

12. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and E�cient Static
Estimation of Program Computational Complexity. In POPL, ACM 2009.

13. J Ho�mann, Klaus Aehlig, and M. Hofmann. Multivariate amortized resource
analysis. In POPL, pages 357�370, ACM 2011.

14. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35�58, 2007.

15. E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dynamic resource
reallocation between deployment components. In Proc. ICFEM, LNCS 6447, pages
646�661. Springer, 2010.

16. M. Kero, P. Pietrzak, and N. J. Live Heap Space Bounds for Real-Time Systems.
In APLAS, LNCS 6461, pages 287�303. Springer, 2010.

17. S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and formal
methods for system-level performance analysis. In DATE, pages 236�241. European
Design and Automation Association, 2006.

18. J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theo-
retical Computer Science, 96:73�155, 1992.

19. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic

and Algebraic Programming, 60�61:17�139, 2004.
20. K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, 2005.
21. J. Schäfer and A. Poetzsch-He�ter. JCoBox: Generalizing active objects to con-

current components. In Proc. ECOOP 2010, LNCS 6183. Springer, 2010.
22. M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed

embedded real-time systems with VDM++. In Proc. FM 2006, LNCS 4085, pages
147�162. Springer, 2006.

23. B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.
24. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. OOP-

SLA'05, pages 439�453. ACM Press, 2005


