
Task-Level Analysis for a Language
with async/finish Parallelism

Elvira Albert Puri Arenas
Samir Genaim

SIC, Complutense University of Madrid
E-28040, Madrid, Spain

{elvira,puri,samir}@clip.dia.fi.upm.es

Damiano Zanardini
DIA, Technical University of Madrid

E-28660, Boadilla del Monte, Madrid, Spain
damiano@clip.dia.fi.upm.es

Abstract
The task level of a program is the maximum number of tasks that
can be available (i.e., not finished nor suspended) simultaneously
during its execution for any input data. Static knowledge of the task
level is of utmost importance for understanding and debugging par-
allel programs as well as for guiding task schedulers. We present,
to the best of our knowledge, the first static analysis which infers
safe and precise approximations on the task level for a language
with async-finish parallelism. In parallel languages, async and
finish are basic constructs for, respectively, spawning tasks and
waiting until they terminate. They are the core of modern, paral-
lel, distributed languages like X10. Given a (parallel) program, our
analysis returns a task-level upper bound, i.e., a function on the
program’s input arguments that guarantees that the task level of the
program will never exceed its value along any execution. Our anal-
ysis provides a series of useful (over)approximations, going from
the total number of tasks spawned in the execution up to an accurate
estimation of the task level.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: [Concurrent Programming] Distributed programming,
Parallel programming; D.3 [Programming Languages]: [Formal
Definitions and Theory]

General Terms Algorithms, Languages, Theory, Verification

Keywords Parallelism, Static Analysis, Resource Consumption,
X10, Java

1. Introduction
As embedded systems increase in number, complexity, and diver-
sity, there is an increasing need of exploiting new hardware archi-
tectures, and scaling up to multicores and distributed systems built
from multicores. This brings to the embedded-systems area wide
interest in developing techniques that help in understanding, op-
timizing, debugging, finding optimal schedulings for parallel pro-
grams. Two of the key constructs for parallelism are async and
finish. The async{s} statement is a notation for spawning tasks:
the task s can run in parallel with any statements following it. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c© 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

finish{s} statement waits for termination of s and of all async
statement bodies started while executing s. In order to develop our
analysis, we consider a Turing-complete language with a minimal
syntax and a simple formal semantics. A program consists of a col-
lection of methods that all have access to a shared array. The body
of the method is a sequence of statements. Each statement can be
an assignment, conditional, loop, async, finish, or method call.
If we add some boilerplate syntax to a program, the result is an exe-
cutable X10 program. X10 [8] is a modern, parallel, distributed lan-
guage intended to be very easily accessible to Java programmers.
Note that, unlike in languages based on fork and join constructs,
async-finish programs are guaranteed to be deadlock-free [19].

Our objective is to present a clear and concise formalization
of the analysis on a simple imperative language that captures the
essence of standard parallelism constructs.

As our main contribution, we present a novel static analysis
which infers the task level of a parallel program, i.e., the maximum
number of available tasks (i.e., not finished nor suspended) which
can be run simultaneously along any execution of the program (pro-
vided that sufficient computing resources are available). A start-
ing point for our work is the observation that spawning parallel
tasks can be regarded as a resource consumed by a program. This
leads to the idea of adapting powerful techniques developed in re-
source analysis frameworks for sequential programs [5, 12, 13, 24]
in order to obtain sound task-level Upper Bounds (UBs) on par-
allel programs. Such adaptation is far from trivial since, among
other things, the task level of a program is not an accumulative re-
source, but rather it can increase and/or decrease along the execu-
tion. This renders direct application of cost analysis frameworks for
accumulative resources (such as time, total memory consumption,
etc.) unsuitable. We present our novel analysis to accurately (over)-
approximate the task level of a program in the following steps,
which are the main contributions of this work.

1. We first produce over-approximations of the total number of
tasks spawned along any execution of the program. This can be
done by lifting existing accumulative cost analyses developed
for sequential programs to the parallel setting. The results of
such analysis are sound w.r.t. any particular scheduling of tasks.

2. Secondly, we present a novel approach to approximate the peak
(or maximum) of live tasks, a resource which is not accumula-
tive. The challenge here is to come up with a technique which
over-approximates the peak of live tasks among all possible
states that might occur in any execution of the program.

3. As a further step, we refine the previous approach and approx-
imate the peak of available tasks, i.e., we exclude those tasks
which are alive but suspended, thus resulting in smaller UBs.

4. Then, we show how our task-level analysis can be improved
by first inferring the tasks that survive after the method returns,
i.e., those tasks that have been created during the execution of
m and can be available on return from m. This improvement
requires a more complex analysis but, when doable, leads to
strictly more precise bounds than those in points 2 and 3.

5. We report on a prototype implementation based on the COSTA
system [4], and experimentally evaluate it on a set of simplified
versions of applications from the X10 website that contain
interesting parallelism patterns.

2. Motivating Examples
In this section, we introduce by means of examples the main no-
tions that our task-level analysis over-approximates, and show the
results it can produce. These examples will also illustrate the fol-
lowing applications of our analysis: (1) It is useful for both under-
standing and debugging parallel programs. For instance, our anal-
ysis can infer a task-level upper bound which is larger (or smaller)
than the programmer’s expectations. This can clearly help finding
bugs in the program. Even more, the analysis results would be “un-
bounded” when an instruction which spawns new tasks is (wrongly)
placed within a loop which does not terminate. (2) The results are
also useful for optimizing and finding optimal deployment configu-
rations. For example, when parallelizing the program, it is not prof-
itable to have more processors than the inferred task level.

2.1 Total Tasks versus Live Tasks
The first example implements a parallel version of the Gauss elim-
ination algorithm. An invocation gaussian(n) applies the algorithm
on the matrix defined by the elements (i, j) where 0 ≤ i, j ≤ n−1.
It assumes that the two-dimensional array A is initialized with in-
teger values.

1 i n t A [] [] ;
2

3 vo id gau s s i a n (i n t n) {
4 f o r (i n t k=0;k<n ; k++) {
5 f i n i s h f o r (i n t j=k+1; j<n ; j++) async {
6 A[k , j]=A[k , j] /A[k , k] ;
7 }
8 f i n i s h f o r (i n t i=k+1; i<n ; i++) async {
9 f o r (i n t j=k+1; j<n ; j++)

10 A[i , j] :=A[i , j]−A[i , k]∗A[k , j]
11 }
12 }
13 }

The total number of tasks spawned by this method is quadratic on
n, since at each iteration of the outer loop, each of the inner loops
spawn (in the worst case) n− 1 tasks. Note that the loop at line 11
does not spawn any task. Our analysis accurately infers that at most
1 + 2n(n− 1) tasks will be spawned along an execution.

Due to the use of finish at line 5, it is ensured that before
entering the loop at line 8, all asynchronous tasks spawned at line 5
are finished. Likewise, all asynchronous tasks spawned by the loop
at line 8 must be finished before starting the next iteration of the
outer loop. Hence, in any execution of this program, the maximum
number of tasks that can be alive simultaneously (or peak of live
tasks) corresponds to the maximum of the tasks spawned by the
loops at lines 5 and 8. Our analysis precisely infers that the peak of
live tasks is n.

Observe that both the total and the peak number of live tasks are
useful pieces of information for the programmer. E.g., by compar-
ing the inferred upper bounds with the programmer’s expectations
we might detect bugs, as explained above.

2.2 Live Tasks versus Available Tasks
The following method implements the merge-sort algorithm. It
sorts the elements of the array A between the indexes from and to.
We omit the code of merge and only assume that it does not spawn
further tasks.

1 i n t A [] ;
2

3 vo id msort (i n t from , i n t to) {
4 i f (from < to) {
5 mid=(from+to) /2 ;
6 f i n i s h {
7 async msort (from , mid) ;
8 async msort (mid+1, to) ;
9 }

10 merge (from , to , mid) ;
11 }
12 }

The total number of tasks spawned by a call msort(from,to) is
bounded by 2 ∗ (to− from + 1)− 2. This upper bound is obtained
by proving that, in both recursive calls, the number of elements to
be sorted is decreased by half and, at each recursive call, two new
tasks are spawned.

For this example, we infer that the peak of live tasks and the total
number of tasks are identical. This is because the recursive calls are
performed within the scope of the finish construct. Thus, in the
worst case, all tasks can be alive simultaneously (though the current
task always blocks after launching the asynchronous calls). We can
improve the analysis result by proving that, at each recursive call,
after spawning the two asynchronous tasks, the current process
becomes inactive by suspending its execution until the spawned
tasks terminate. With this knowledge, our analysis accurately infers
that the peak of available tasks is at most to−from+1, which is
almost half of the one we obtained for live tasks.

2.3 Improving Available Tasks with Escape Information
Next example is a pre-order traversal of a binary tree where, for
each node i, we spawn two tasks: activity a (i) and activity b (i).
We omit the code of activity a and activity b and only assume
that they do not spawn further tasks. The binary tree is represented
using the array A, such that the nodes at positions 2∗i+1 and 2∗i+2
, respectively, are the left and right children of the node at position
i . The first argument n is the depth of the tree. The method is
supposed to be called with f(n,0).

1 i n t A [] ;
2

3 vo id f (i n t n , i n t i) {
4 i f (n > 0) {
5 f i n i s h {
6 async a c t i v i t y a (i) ;
7 async a c t i v i t y b (i) ;
8 }
9 f (n−1 ,2∗ i +1) ;

10 f (n−1 ,2∗ i +2) ;
11 }
12 }

By accumulating all asynchronous calls spawned along the execu-
tion, our analysis generates the upper bound 2 ∗ (2n − 1) + 1. As
expected, the obtained bound is exponential on the depth of the
tree due to the two recursive calls which traverse all nodes in the
tree. For the peak of available tasks, we can greatly improve the
task-level bound. In particular, we can see that the asynchronous
calls in lines 6 and 7 will be finished at line 8 before the recursive
calls. This means that, given a call to f, there are no tasks that sur-
vive after it returns, i.e., all tasks created during a call to f (directly
or transitively) are terminated before the execution of the call fin-

ishes. The use of surviving information during our analysis allows
proving that there cannot be more than 2 processes simultaneously
available. From the above examples, it should become clear that an
upper bound on the available tasks can be of utmost importance for
finding an optimal deployment configuration. For instance, in the
above example, it is not worth having more than 2 processors when
executing the code.

3. A Simplified X10-like Language
We develop our analysis on a representative subset of X10 [8], a
parallel language which is similar to Java in its sequential part, and
relies on the async/finish mechanism for parallelism. From X10,
we take:

• a Turing-complete core consisting of conditionals, loops, as-
signments and a single one-dimensional array;
• methods and method calls;
• the async and finish statements.

We omit many features from X10, including places, distributions
and clocks. Indeed, our simplified language is very similar to Feath-
erweight X10 [16] (FX10 for short), a subset of X10 which has
been proposed to develop formal analyses on X10. For the sake of
expressiveness, our language is richer than FX10 in that it allows
input parameters in method calls (in order to handle recursion), has
no restriction on conditional statements and has local variables. The
treatment of object fields is similar to (and simpler than) the treat-
ment of array accesses; details are omitted for simplicity.

3.1 The Recursive Intermediate Representation
As customary in the formalization of static analyses for realistic
languages, we develop our analysis on an intermediate represen-
tation (IR) of the language which allows us to provide a clearer
and more concise formalization. Similar representations are used
by other static analysis tools for Java (and Java bytecode) and .NET
[5, 10, 11, 21, 25]. Essentially, all these tools work by first building
the control flow graph (CFG) from the program, and then repre-
senting each block of the CFG in the intermediate language (in our
IR, by means of rules).

Methods in the original program are represented by one or
more procedures in the IR. A procedure is defined by one or
more guarded rules. The translation is as follows. Given a method,
each block in its CFG is represented by means of a guarded rule.
Guards state the conditions under which the corresponding block
can be executed (they contain the conditions in the edges of the
CFG). Each rule contains as arguments those variables that are
input values to the block. When the block has more than one
successor in the CFG, we just create a continuation procedure
and a corresponding call in the rule. Blocks in the continuation
will be in turn defined by means of guarded rules (with mutually
exclusive conditions). As a result, all forms of iteration in the
program are represented by means of recursive calls. The array
remains as a global variable in the IR. The process of obtaining the
intermediate representation from X10-like programs is completely
automatic. Since it is identical as for Java programs, we will not
go into the technical details of the transformation (we refer to any
of [5, 10, 11, 21, 25]) but just show the intuition by means of an
example.

EXAMPLE 3.1. Fig. 1 shows the intermediate representation for
the example in Sec. 2.1. This example shows an interesting aspect of
the IR: loops are detected and extracted in separate procedures as
described in [22]. It can be observed that within the rule gaussian
we invoke procedure for , which corresponds to the for-loop in line
4. Similarly, when entering the remaining for-loops in the program,

gaussian(n)←k :=0 , for(k ,n) for2 (k ,n, i)← i ≥ n
for(k ,n)← k ≥ n for2 (k ,n, i)← i < n,
for(k ,n)←k < n, j :=k + 1

j :=k + 1 , async{for2 .1 (k ,n, j , i)},
finish{for1 (k ,n, j)},i :=k+1 , i ′:=i + 1 ,
finish{for2 (k ,n, i)}, for2 (k ,n, i ′)
k ′:=k + 1 ,for(k ′,n) for2 .1 (k ,n, j , i)← j ≥ n

for1 (k ,n, j)← j ≥ n for2 .1 (k ,n, j , i)← j ≤ n,
for1 (k ,n, j)← j < n, op2 (k , j , i),
async{op1 (k , j)} j ′:=j + 1 ,
j ′:=j + 1 ,for1 (k ,n, j ′) for2 .1 (k ,n, j ′, i)

Figure 1. Recursive Intermediate Representation of Ex. in Sec. 2.1

we have calls in the IR to corresponding procedures defining them.
By looking at the two rules defining procedure for , we observe the
more interesting aspects of our IR: (1) rules contain as arguments
those variables that are input values to the scope of the loop;
(2) by means of guards, we distinguish the case of exiting the
loop (first rule) and entering the loop (second rule); (3) iteration
is transformed into recursion. Note that, in the IR, the finish
construct is applied on a single instruction. If there are several
instructions within the scope of finish in the original program,
we just create an auxiliary procedure which contains them all.

3.2 Syntax
A program in our intermediate representation consists of a set of
procedures, each of them defined by one or more guarded rules. In
the following, given any entity a, we use ā to denote the sequence
a1, . . . , an, n ≥ 1. A procedure p with k input arguments x̄ is
defined by rules which adhere to this grammar:

rule ::= p(x̄) ← g, b, . . . , b
g ::= true | exp op exp
b ::= y:=exp | A[y]:=exp | q(x̄) | async{q(x̄)} | finish{q(x̄)}

exp ::= y | d | A[y] | exp−exp | exp+exp | exp∗exp | exp/exp
op ::= > | < | ≤ | ≥ | = | 6=

where p(x̄) is the head of the rule; g is its guard, which specifies
conditions for the rule to be applicable; the sequence b, . . . , b is
the body of the rule; d is an integer; y is a variable name; q(x̄) is
a procedure call, async{q(x̄)} is an asynchronous procedure call,
and finish{q(x̄)} is a synchronized call. All variables are of type
integer. Computations work on a single shared memory given by
a one-dimensional array of integer values named A with indexes
0 . . . N−1. When the execution begins, input values are loaded into
all elements of the array. Thus, the array A is fully initialized for all
indices 0 . . . N − 1. In the examples, to simplify the presentation,
we use several (possibly multidimensional) arrays.

3.3 Semantics
Fig. 2 shows the operational semantics for X10-like programs in
the IR. It adapts the small-step operational semantics of FX10 [16]
to our syntax and extends it to handle the additional language
features discussed in the beginning of the section. It uses the binary
operator ‖ in the semantics of async and . in finish. A state
is a pair, consisting of the state of the array and a tree which
describes the code executing. Namely, it is of the form (A ; T)
where A : {0, . . . , N − 1} 7→ Z is an array of integers and T is an
execution tree defined by the following grammar:

T ::= T . T | T ‖ T | 〈id, instr , tv〉
where id ∈ N is a unique task identifier, instr is a sequence of in-
structions (as in Sec. 3.2) and tv :V7→Z is a partial map from the set
of variable names V to integers. The symbol ε denotes an empty se-
quence of instructions. We refer to the tuple 〈id, b̄, tv〉 as a record.

(1)
(A ; 〈id, ε, tv〉 . T)→ (A ; T)

(2)
(A ; T1)→ (A′ ; T ′1)

(A ; T1 . T2)→ (A′ ; T ′1 . T2)

(3)
(A ; 〈id, ε, tv〉 ‖ T)→ (A ; T)

(4)
(A ; T ‖ 〈id, ε, tv〉)→ (A ; T)

(5)
(A ; T1)→ (A′ ; T ′1)

(A ; T1 ‖ T2)→ (A′ ; T ′1 ‖ T2)

(6)
(A ; T2)→ (A′ ; T ′2)

(A ; T1 ‖ T2)→ (A′ ; T1 ‖ T ′2)

(7)
b ≡ x:=exp, v = eval(exp, tv , A)

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, instr , tv [x 7→ v]〉)

(8)
b ≡ A[x]:=exp, v = eval(exp, tv , A), n = tv(x), 0 ≤ n ≤ N− 1

(A ; 〈id, b · instr , tv〉)→ (A[n 7→ v] ; 〈id, instr , tv〉)

(9)
b ≡ q(x̄), r ≡ q(x̄′)← g, b1, · · · , bk �tv P, eval(g, tv ′, A) ≡ true
tv ′=tv ∪ {x′i 7→ tv(xi) | ∀x′i ∈ x̄′} ∪ {y 7→ 0 | ∀y ∈ vars(r) \ x̄′}

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, b1 · · · bk · instr , tv ′〉)

(10)
b ≡ async{q(x̄)}, id′ is a new identifier not used before

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id′, q(x̄), tv〉 ‖ 〈id, instr , tv〉)

(11)
b ≡ finish{q(x̄)}

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, q(x̄), tv〉 . 〈id, instr , tv〉)

Figure 2. Operational semantics

Executions start from an initial state of the form (A ; 〈1, p(x̄), tv〉),
where p is the entry procedure name, and the elements of the array
A and tv(xi) for all xi ∈ x̄ are initialized to some initial values. We
often view tv as a set {x1 7→ v1, · · · , xn 7→ vn} where each xi

is a variable name and each vi is an integer value. Executions are
regarded as traces of the form (A0 ; T0) → (A1 ; T1) → · · · →
(An ; Tn), sometimes denoted as (A0 ; T0) →∗ (An ; Tn). Infi-
nite traces correspond to non-terminating executions. We say that a
call to a procedure locally terminates if the execution of its proce-
dure’s body terminates, and we say that it globally terminates if, in
addition, all tasks it spawns terminate.

The left side of Fig. 2 contains the rules for dealing with paral-
lelism and synchronization. A tree T1 . T2 gives the semantics of
the finish statement. As shown in rule (2), T1 must complete ex-
ecution before moving on to executing T2, i.e., T1 must be reduced
to 〈id, ε, tv〉 in order to apply rule (1). Rules (3) and (4) remove
trees whose evaluation is completely finished whereas (5) and (6)
allow choosing trees T1 or T2 non-deterministically (i.e., there is
no assumption on the task scheduler).

The right side of Fig. 2 contains the rules for executing instruc-
tions. Intuitively, rule (7) accounts for all instructions in the se-
mantics which perform arithmetic and assignment operations. We
assume that eval(exp, tv , A) returns the evaluation of the arith-
metic expression exp using the values of the corresponding vari-
ables from tv and A in the standard way. Moreover, we assume that
it fails when trying to access A with an index which is not in the
range 0 . . . N−1. Rule (8) deals with assignments on A. After eval-
uating exp, the resulting value is stored in the position tv(x) of A.
Rule (9) corresponds to invoking a procedure q(x̄). It first takes a
rule r for q. The notation�tv means that we rename the rule vari-
ables so they will not clash with names already in the domain of tv .
Then, we generate a new variable mapping tv ′ which extends tv by
initializing the formal parameters x̄′ with the values of the actual
parameters x̄, and the remaining variables not in x̄ (i.e., vars(r)\x̄)
to 0. We require that the guard g of rule r is evaluated to true (as
usual, the values true and false can be simulated with 0 and non-0
integers). Rule (10) takes care of the async statement by spawning
a new task to be executed in parallel. Finally, rule (11) introduces
the operator . to wait for the termination of the task, when we
have a finish instruction.

EXAMPLE 3.2. As an example of how the semantics works, con-
sider the following simple program. For brevity, we ignore the code
of procedures q1, . . . , q5 and assume that they neither make directly
or indirectly any asynchronous call, nor modify the array.

p← async{q1}, finish{q}, 1©async{q2}, q3
q← async{q4}, async{q5}

The following derivation starts from the entry procedure p:
(A ; 〈1, p, tv〉)→
(A ; 〈1, async{q1} · finish{q} · async{q2} · q3, tv〉)→

∗1 (A ; 〈2, q1, tv〉 ‖ 〈1, finish{q} · async{q2} · q3, tv〉)→
∗2 (A ; 〈2, q1, tv〉 ‖ 〈1, q, tv〉 . 〈1, async{q2} · q3, tv〉)→

(A ; 〈2, q1, tv〉 ‖
〈1, async{q4} · async{q5}, tv〉 . 〈1, async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈1, async{q5}, tv〉) . 〈1, async{q2} · q3, tv〉)→

3 (A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈4, q5, tv〉 ‖ 〈1, ε, tv〉) . 〈1, async{q2} · q3, tv〉)→∗
(A ; 〈2, q1, tv〉 ‖ 〈1, ε, tv〉 . 〈1, async{q2} · q3, tv〉)→

∗3 (A ; 〈2, q1, tv〉 ‖ 〈1, async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, ε, tv〉)→∗ (A ; 〈2, ε, tv〉)

Note that since q1 is invoked asynchronously, p can continue to the
next statement at ∗1. However, when executing finish{q} at ∗2,
the execution of p blocks until q and its asynchronous sub-tasks q4
and q5 terminate, then resumes from the program point 1© (step ∗3).

4. Basic Definitions in Task Parallelism
We first introduce basic notions related to the task parallelism of a
program. They define the notions that later we want to approximate
by means of static analysis. First, we introduce two auxiliary defini-
tions to count the number of tasks that can be simultaneously alive
at some program point by means of the following function live(T)
which goes from the set of trees to the set of task identifiers ℘(N):

live(T1 ‖ T2) = live(T1) ∪ live(T2)
live(T1 . T2) = live(T1) ∪ live(T2)
live(〈id, ε, tv〉) = ∅
live(〈id, instr , tv〉) = {id}

Note that when a task does not have any further instruction to exe-
cute (third equation) it is not counted as alive. The above definition
includes tasks which are blocked, i.e., are not available in the cur-
rent state. For instance, for (S1 ‖ S2) . S3 such that each Si has
live(Si) = 1, the function live returns 3. However, the semantics
of . ensures that S3 is blocked, i.e., it remains suspended until
the execution of S1 ‖ S2 finishes. The function available counts
only the available tasks, i.e., live tasks which are not suspended. It
is defined as live except for available(T1 . T2) = available(T1).
Given a trace t ≡ T0→T1→· · ·→Tn, by relying on the above two
functions, we can define the following three important notions that
our analysis approximates:

• total(t). First, we define the total number of spawned tasks
along an execution, which corresponds to the total number of
tasks that have been started, as: total(t) = | ∪n

i=0 live(Ti)|
(here, |X| is the size of the setX). Note that this resource is ac-
cumulative, i.e., it always increases as the execution proceeds.
• peakLive(t). Another interesting notion is the peak of live

tasks, i.e., the maximum number of tasks that are simultane-
ously started and not finished. The function peakLive(t) is
defined as max({|live(T0)|, . . . , |live(Tn)}|). Note that this re-
source is not accumulative: instead, the number of live tasks can
increase or decrease at any state. Thus, in order to approximate
it, we need to observe all states and capture the maximum.
• peakAvailable(t). Similarly, we can define the peak of avail-

able tasks along the execution, i.e., the maximum number of
tasks that are simultaneously started and not blocked. Thus,
peakAvailable(t)=max({|available(T0)|, .., |available(Tn)|}.
We also refer to this notion as the task level of the execution,
the two definitions above being over-approximations of it.

EXAMPLE 4.1. By applying the above definitions to the deriva-
tion of Ex. 3.2, we have: total(t) = 5, peakLive(t) = 4 and
peakAvailable(t) = 3. Note that the difference between peakLive
and peakAvailable occurs in the state labeled 3. This is because,
after creating the new tasks, the task on which q is executing is alive
but blocked (hence not available).

5. Static Inference of Total Spawned Tasks
In the previous section, definitions assume a specific trace. Thus,
the program must be executed on a concrete input in order to
compute the functions. Now, we want to approximate these notions
statically, i.e., without executing the program, so that the results
will be valid for any input. In particular, by concentrating on the
total number of spawned tasks first, given p(x̄), the goal is to infer
pub(x̄), called task-level upper bound for p, which is a function on
input data guaranteeing that, given any concrete values v̄ for x̄, the
total number total(t) of tasks spawned along the trace t of p(v̄) not
greater than pub(v̄) + 1 (1 corresponds to the main task).

Since the total number of tasks is an accumulative resource,
in principle, any of the existing resource analysis frameworks that
count a particular form of accumulative resource (e.g., instructions
[12], total memory [13, 24], etc.) can be adapted to the total number
of spawned tasks by counting the instructions async that spawn
tasks and ignoring the rest. However, all above approaches deal
with sequential programs, and should be lifted to the parallel set-
ting. This is because, as we will see later, the resulting UB can be
affected by the fact that tasks can run in parallel. Among all pos-
sible resource analysis frameworks, we rely on the most traditional
one, proposed by Wegbreit [27] in 1975. As our first contribution,
we adapt such approach to infer sound results on the task level in a
parallel setting. The next three subsections present the main steps
of the analysis:

• First, we discuss in Sec. 5.1 the value abstraction component
which is used to infer inter-relations between the program vari-
ables. Interestingly, by losing information about the global data
during the value abstraction, we are able to ensure soundness of
the overall UBs in the parallel setting.
• Given the value relations, we proceed in Sec. 5.2 to define,

for our intermediate language, how to generate the recurrence
equations which define the spawned tasks.
• Finally, in Sec. 5.3, we briefly describe the process of obtaining

safe over-approximations from the generated recurrence equa-
tions by relying on existing solvers.

5.1 Value Abstraction
Given a rule, we describe how to generate a conjunction of (linear)
constraints (sometimes written as a set) that describes the relations
between the values of the rule’s variables at the different program
points. This information is later used, for example, to understand
how values change when moving from one procedure to another.
In particular, it is essential for bounding the number of recursive
calls (i.e., iterations of loops). The following definition presents the
notion of value abstraction for a given rule. In order to distinguish
between the values of a variable at different program points (inside
a single rule), rules are given in static single assignment (SSA)
form [6] (array accesses remain the same). The rules in Fig. 1
and in all remaining examples are in SSA. This transformation is
straightforward for a single rule, as rules do not have branching.

DEFINITION 5.1. Give a rule r≡p(x̄)←g, b1 . . . , bn in SSA form,
its value abstraction is ϕr = α(g) ∧ α(b1) ∧ · · · ∧ α(bn) where:

• α(y:=exp) = (y=exp) if exp is a linear expression which
does not involve arrays;
• α(exp1 op exp2)=(exp1 op exp2) if op ∈ {>,≥, <,≤,=}

and exp1 and exp2 are linear expressions not involving arrays;
• α(b) = true , otherwise.

For simplicity, the above abstraction ignores non-linear arithmetic
expressions by abstracting the corresponding instructions to un-
known (true). Non-linear arithmetic can be handled at the price of
performance using non-linear constraints manipulation techniques.

EXAMPLE 5.2. Applying Def. 5.1 on the second rule for “for” of
Fig. 1, we obtain as value abstraction {k<n, k′=k+1, j=k′, i=k′}.

An important point in the above abstraction is that data in the global
array A are ignored. This provides us correctness in the context of
parallel execution without requiring any other sophisticated heap
analysis for ensuring the independence [26] between tasks.

EXAMPLE 5.3. Consider the following program and observe that
when m invokes the two asynchronous calls, procedures p and q
might run in parallel depending on the underlying task scheduler.

m(n) ← async{p(0, n)}, async{q(n)}
p(i, n)← i ≥ A[n]
p(i, n)← i < A[n], async{q1}, i′:=i+ 1, p(i′, n)
q(n) ← A[n]:=A[n] + 1, q(n)

By looking at a complete execution of p in isolation (i.e., if it does
not interleave with that of q), we can see that a sound upper bound
on the number of tasks spawned by p is A[n] (the value of the n-the
element of the array). However, if the execution of q interleaves
with that of p, the execution of p might not terminate since q
increases the value of A[n]. Hence, the previous UB is not correct.

Our practical solution to avoid the above problem is to abstract in-
structions that involve global data (i.e., array elements) to unknown
(i.e., true). In the above case, the guard i < A[n] is abstracted to
true , so that the value of A[n] is lost. Hence, we will not be able
to infer an UB for the method. This does not mean that we cannot
analyze programs that use the array but rather that, when the UB
is a function of an array element, we cannot find it. In Sec. 11, we
discuss how to improve the accuracy by relying on a may-happen-
in-parallel analysis [16] in combination with a field-sensitive value
analysis [17]. It should be noted that the value abstraction is an in-
dependent component in our analysis and we can improve it regard-
less of the next components that we will introduce in what follows.
Also, when improving it, we can integrate advanced value abstrac-
tions for data structures such as path-length [21] or term value [18],
without any modification to the rest of our analysis.

5.2 Generation of Recurrence Equations
Given a program P and the value abstractions of its rules, a
recurrence-relation (RR) system for P is generated by applying
the following definition to all rules in the program.

DEFINITION 5.4 (total number of spawned tasks). Let r be a rule
of the form p(x̄) ← g, b1, . . . , bn, and ϕr be its corresponding
value relations as computed in Def. 5.1. Then, its total-tasks equa-
tion is defined as p(x̄) = Σn

i=1T (bi), ϕr , where
T (b) = 1 + q(x̄) if b = async{q(x̄)}
T (b) = q(x̄) if b = finish{q(x̄)}
T (b) = q(x̄) if b = q(x̄)
T (b) = 0 otherwise

The set of equations generated for a program P is denoted by SP .

EXAMPLE 5.5. By applying the above definition to the rules of
Fig. 1, we obtain the following set of total tasks equations:
gaussian(n) = for(k ,n) {k=0}
for(k ,n) = 0 {k ≥ n}
for(k ,n) = {k < n, k′ = k + 1,

for1 (n, j)+for2 (k ,n, i)+for(k ′,n) j = k′, i = k′}
for1 (n, j) = 0 {j ≥ n}
for1 (n, j) = 1 + for1 (n, j ′) {j < n, j′ = j + 1}
for2 (k ,n, i) = 0 {i ≥ n}
for2 (k ,n, i) = {i < n, i′ = i+ 1,

1 + for2 .1 (n, j) + for2 (k ,n, i ′) j = k + 1}
for2 .1 (n, j) = 0 {j ≥ n}
for2 .1 (n, j) = for2 .1 (n, j ′) {j < n, j′ = j + 1}

The only rules in Fig. 1 which contain async are the second ones
in for1 and for2 . Their corresponding equations accumulate 1 for
such instruction. Value relations are transformed into linear con-
straints attached to the equations. They contain the applicability
conditions for the rules and how the values of variables change
when moving from one procedure to another.

5.3 Closed-form Upper Bounds
Once the RR are generated, a worst-case cost analyzer uses a solver
in order to obtain closed-form UBs, i.e., cost expressions without
recurrences. Traditionally, cost analyzers rely on computer alge-
bra systems (e.g., MAXIMA, MAPLE) to solve the obtained recur-
rences. As other advanced systems [23], ours includes a dedicated
solver, called PUBS [2], in order to be able to handle more types of
RR. The technical details of the process of obtaining a cost expres-
sion from the RR are not explained in the paper, as the presented
analysis does not require any adaptation for this part in the general
framework. Given a RR p(x̄), we denote by pub(x̄) its closed-form
UB, which is a cost expression of the following form (and could be
obtained by any of the above solvers):

e ≡ q|nat(l)| log(nat(l) + 1)|e ∗ e|e+ e|2nat(l)|max(e, . . . , e)

where q is positive rational number, l is a linear expression, and
function nat is defined as nat(v)= max({v, 0}).

EXAMPLE 5.6. As usual, UBs are obtained by first computing UBs
for cost relations which do not depend on any other relation and
continuing by replacing the computed UBs on the equations which
call such relations. The solutions for the equations in Ex. 5.5 are:

for2 .1 (n, j) = 0 ∈ O(1)
for2 (k ,n, i) = n−i ∈ O(n−i)
for1 (n, j) = n−j ∈ O(n−j)
for(k ,n) = 2 (n−k)(n−k−1) ∈ O((n−k)2)
gaussian(n) = 2n(n−1) ∈ O(n2)

As intuitively explained in Sec. 2.1, the UB we obtain for the method
gaussian is quadratic on n. We will add 1 to this UB in order to
count the task in which the initial call gaussian(n) is executing.

The following theorem states the soundness of our total tasks anal-
ysis. Intuitively, the main issue is to prove that derivations in the
equations of Def. 5.4 capture all possible paths in a parallel ex-
ecution of the program (and, due to the over-approximation in the
value abstraction, possibly more). We assume soundness of the UBs
solver. In the following theorems, 1 is added to the UB in order to
count the current task on which the initial call is executed.

THEOREM 5.7. Let P be a program with an entry procedure p,
and let pub(x̄) be a closed-form UB function for p(x̄) ∈ SP . Then,
for any trace t ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn), it holds that
pub(v̄) + 1 ≥ total(t), where v = tv(x̄).

6. Inference of Peak of Live Tasks
The previous section over-approximated total, which is an accu-
mulative resource (Sec. 4). In this section, our goal is to over-
approximate live, a non-accumulative resource that might increase
and/or decrease along execution. The main difference is that,
in accumulative resources, one can just consider for the over-
approximation the resource consumption in the final state. This
is what traditional RR (like those in Def. 5.4) do. However, in the
case of non-accumulative resources, one aims at observing all states
where the consumption can be maximal, not only the final one. For
our particular resource (the task level), an important observation
is that it is enough to approximate the behavior of the program
around the program points in which the number of tasks can de-
crease, i.e., when reaching a finish. Such points can be detected
syntactically from the program. The key idea of our analysis is to
introduce a disjunction between the task level just before executing
each finish and the task level reached after the finish resumes
execution. The peak is the maximum of both disjuncts.

EXAMPLE 6.1. Consider again Ex. 3.2. The peak of live tasks can
be found as the maximum of the following two scenarios:

1. peak before finish{q} globally terminates: 1 for async{q1},
plus the peak of live tasks of q (which is 2); and

2. peak after finish is executed: 1 for async{q1}, since it might
still be alive at 1©, plus 1 for async{q2} and 0 for q3.

Note that, in scenario 2, we do not count the tasks created during
the execution of q since finish guarantees that they are not alive
when we reach program point 1©. In summary, the peak of live tasks
when executing p is 3. Additionally, we add 1 for the task in which
p is running. This coincides what we have obtained in Ex. 4.1 for a
particular trace.

Next definition presents a novel form of RR, called peak-live equa-
tions, which over-approximates the peak of live tasks along any
execution of the program, according to the above intuition.

DEFINITION 6.2 (peak-live equations). Let r be a rule p(x̄) ←
g, b1, . . . , bn in SSA form and ϕr its corresponding value ab-
straction. Then, its equation for the peak of live tasks is p̂(x̄) =
P(b1, . . . , bn), ϕr , where P is defined recursively as follows:

P(ε) = 0
P(b · instr) = 1 + q̂(z̄) + P(instr) if b=async{q(z̄)}
P(b · instr) = max(q̂(z̄),P(instr)) if b=finish{q(z̄)}
P(b · instr) = q̂(z̄) + P(instr) if b=q(z̄)
P(b · instr) = P(instr) otherwise

The set of equations generated for a program P is denoted by ŜP .

Intuitively, in the above definition, we transform the peak of tasks
for a given (non-empty) sequence of instructions by transforming
each instruction as follows: (i) when we find an async{q(x̄)}
statement, we count one new task plus the peak of tasks created
along the execution of q(x̄); (ii) in the case of finish{q(x̄)}, since

it is ensured that all tasks created during the execution of q(x̄) are
terminated, we take the maximum between the peak reached during
the execution of q(x̄) and the peak reached after executing the
finish{q(x̄)}; (iii) when we find a method call, we accumulate
the peak reached during its execution with the continuation; and
(iv) the remaining instructions are ignored.

EXAMPLE 6.3. Let us first see the equations generated for the
simple program of Ex. 6.1. Note that, as there are no variables,
all ϕr are simply true and can be ignored.

p̂ = 1 + q̂1 + max(q̂, 1 + q̂2 + q̂3)
q̂ = 1 + q̂4 + 1 + q̂5

In order to solve the above recurrence equations, the max oper-
ator can be eliminated by transforming the equation into several
non-deterministic equations, e.g., p̂(x̄) = A + max(B,C), ϕ is
translated into the two equations p̂(x̄) = A + B,ϕ and p̂(x̄) =
A+ C,ϕ. Solving the above equations, under the assumption that
q̂i = 0 for all 1 ≤ i ≤ 5, results in q̂ = 2 and p̂ = 3. In this ex-
ample, the accuracy gain of live w.r.t. total is just constant but, in
general, it can be much larger. For instance, the peak live equations
for the example in Sec. 2.1 are:

ˆgaussian(n) = ˆfor(k ,n) {k=0}
ˆfor(k ,n) = 0 {k≥n}
ˆfor(k ,n) = max{ ˆfor1 (n, j),max{ ˆfor2 (k ,n, i), ˆfor(k ′,n)}}

{k<n, k ′=k+1 , j=k ′, i=k ′}
ˆfor1 (n, j) = 0 {j≥n}
ˆfor1 (n, j) = 1+ ˆfor1 (n, j ′) {j<n, j ′=j+1}
ˆfor2 (k ,n, i) = 0 {i≥n}
ˆfor2 (k ,n, i) = 1+ ˆfor2 (k ,n, i ′) {i<n, i ′=i+1 , j=k+1}

The solution of ˆfor1 and ˆfor2 is like in Ex. 5.6. After replacing them
in the second equation of ˆfor and eliminating max, we obtain the
peak live UB ˆgaussian(n) = n − 1 ∈ O(n). Note that the total
UB was quadratic on n. Again, we should add 1 to count the task
in which the initial call is being executed.

The following theorem states that the solutions of the equations
generated in Def. 6.2 is a sound approximation of peakLive.

THEOREM 6.4. Let P be a program with an entry procedure p,
and let p̂ub(x̄) be a closed-form UB function p̂(x̄) ∈ ŜP . Then,
for any trace t ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that
p̂ub(v̄) + 1 ≥ peakLive(t) where v̄ = tv(v̄).

7. Inference of Peak of Available Tasks
The goal of this section is to accurately approximate peakAvailable,
or the task level properly said. Note that, when inferring peakLive
in the previous section, we have possibly included tasks which are
alive but suspended. For the applications discussed in Sec. 2, it is
clearly useful to exclude suspended tasks from the peak: e.g., it is
not worth allocating suspended tasks in a separate processor.

EXAMPLE 7.1. Consider again the program of Ex. 6.1, and recall
that, in Ex. 6.3, we inferred that the peak of live tasks is p̂ = 3
(plus 1 for the task in which p is running). However, during the
execution of p, the maximum number of tasks which are available
(not suspended) is just 3. This is because the task in which p is
executing is only available until it reaches the call async{q5}; as
soon as q5 is invoked asynchronously, p suspends and has to wait
for q4 and q5 to terminate before proceeding to program point 1©.

In general, it is not easy to detect when tasks are blocked, since
the execution of finish{p(x̄)} often spawns asynchronous calls
but also executes other instructions. Therefore, the task in which
finish{p(x̄)} is executed does not always block. However, in

cases where the last instruction of p(x̄) (directly or indirectly) is
an asynchronous call, we have a behavior similar to the above
example, i.e,, at the same time the task in which finish{p(x̄)}
is executing suspends and another task starts. Many of these cases
can be syntactically detected and treated in a special way. In what
follows, we explain how to handle a common pattern in which
p(x̄) consists of only asynchronous calls, as in the above example.
In order to keep the task-level analysis as simple as possible, we
introduce an auxiliary construct in the language, called finish-
-async, by means of the following program transformation.

DEFINITION 7.2 (finish-async). Given an instruction of the
form finish{p(x̄)}, if p is defined by a single rule of the form
p(x̄) ← async{q1(x̄1)}, . . . , async{qn(x̄n)}, then we replace
the original instruction by finish−async{q1(x̄1), . . . , qn(x̄n)}.

Well-known transformations such as unfolding can be used to de-
tect the above pattern in the presence of intermediate rules, so
that the transformation can be applied more often. For instance,
if we have, p ← q, . . . , async{qn} where q is defined as q ←
async{q1}, we need to unfold the body of q in order to be able
to introduce the finish-async construct. Luckily, this is a well-
studied problem in the field of partial evaluation [15], and existing
unfolding strategies can be directly applied to our context.

DEFINITION 7.3 (peak-available equations). The peak-available
equations extend those of Def. 6.2 with the additional case
P(b · instr) = max(n−1 + q̂1(z̄1)+ · · ·+q̂n(z̄n),P(instr))

which is applied when b = finish−async{q1(z̄1), . . . , qn(z̄n)}.

EXAMPLE 7.4. Applying the finish-async transformation on
the program of Ex. 3.2 results in the following rule for p

p← async{q1}, finish−async{q4, q5}, async{q2}, q3
Applying Def. 7.3, we obtain the following peak-available equa-
tion: p̂ = 1+ q̂1+max(1+ q̂4+ q̂5, 1+ q̂2+ q̂3). Solving the above
equation, under the assumption that q̂i = 0 for all 1 ≤ i ≤ 5, re-
sults in p̂ = 2. Therefore, at most p̂+1 = 3 tasks might be available
at the same time. The improvement achieved by the peak-available
equations w.r.t. the live ones can be significant. For instance, con-
sider the IR for program in Sec. 2.2:
msort(from, to)← from ≥ to.
msort(from, to)← from < to,mid :=(from + to)/2 ,

finish−async{msort(from,mid),msort(mid + 1 , to)}
merge(from, to,mid).

We show at the top (resp., bottom) the equations obtained by apply-
ing Def. 6.2 (resp., Defs. 7.2 and 7.3) to the above rules:

ˆmsort(f , t) = 0 {f ≥ t}
ˆmsort(f , t) = max(ˆaux(f , t ,m ′), ˆmerge(f , t ,m ′))

{f<t , 2m ′=f +t}
ˆaux(f , t ,m) = 2+ ˆmsort(f ,m)+ ˆmsort(m ′, t) {m ′=m+1}
ˆmsort(f , t) = 0 {f≥t}
ˆmsort(f , t) =

max(1+ ˆmsort(f ,m ′)+ ˆmsort(m ′′, t), ˆmerge(f , t ,m ′))
{f<t , 2m ′=f +t ,m ′′=m ′+1}

As pointed out in Sec. 2.2, the solution for the equations at the top
is 2∗(t−f+1)−2, while for the ones at the bottom is (t−f+1).
Clearly, available tasks are a most useful piece of information when
deciding how to distribute the execution.

The following theorem states the soundness of Def. 7.3 when rules
are transformed using Def. 7.2.

THEOREM 7.5. Let P be a program with an entry procedure p,
and let p̂ub(x̄) be a closed-form UB function for p̂(x̄) ∈ ŜP where

ŜP is the cost relation generated after applying the finish-
-async transformation of Def. 7.2. Then, for any trace t ≡
(A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that p̂ub(v̄) + 1 ≥
peakAvailable(t), where v̄ = tv(x̄).

8. Improving with Surviving Tasks
In this section, our goal is to improve the accuracy of the UBs
we have obtained in the previous sections by beholding which
tasks survive after the method returns. The number of surviving
tasks from a (normal) method call q(x̄) refers to the number of
tasks created during the execution of q which are alive after its
local termination. Such surviving tasks could start their execution
even after the local termination of q(x̄). For an asynchronous call
async{p(x̄)}, the number of tasks that can survive after p returns,
in principle, bounded by its peak, and, for finish{q(x̄)}, is 0
by definition. In this section, we use this information in order to
improve the peak of live and available tasks. We use the term “peak
of tasks” to refer to any of the two (alive or available).

EXAMPLE 8.1. Consider the following program:
m← p, 1©async{q}
p← async{q}, finish{h}, async{q}
h← async{q}, async{q}, async{q}

and assume that q does not contain asynchronous calls. By Def. 7.3,
we generate the following equations for the peak of available tasks:

m̂ = p̂+ 1 + q̂
p̂ = 1 + q̂ + max(2 + q̂ + q̂ + q̂, 1 + q̂)

which, since q̂ = 0, are solved to m̂ = 4. Let us explain how we
can refine this peak using surviving information. While the peak
of available tasks when executing p is 3, only 2 tasks can survive
after p returns, i.e., they can be available after program point 1©.
The idea is that the peak of available tasks for m (ignoring the
task in which m is being executed) can be defined as the maximum
of the following two scenarios: (a) the peak of the tasks while
executing p or (b) those that survive after p returns plus 1 for the
last asynchronous call inm. This will lead to 3, which improves the
previous peak by 1.

DEFINITION 8.2 (surviving tasks). Consider a program P with
an entry procedure p, and a trace t = (A ; 〈1, p(x̄), tv〉) →∗
(An ; Tn) such that p locally terminates before reaching Tn.
The number of surviving tasks from p in t can be defined as
surviving(p) = |available(Tn)|.

The following definition presents a novel form of equations, called
combined peak/surviving equations, which take advantage of static
knowledge on the surviving tasks in order to approximate the peak
of tasks more accurately. Given a procedure p(x̄), the main idea is
to set up two kinds of relations: (1) the peak equations p̂(x̄), which
define the peak of tasks reached during the execution of p; and (2)
the surviving equations p̌(x̄), which define the surviving tasks from
a call to p(x̄). The definitions are mutually recursive.

DEFINITION 8.3 (combined peak/surviving equations). Let r be a
rule, and ϕr be its corresponding value abstraction as in Def. 6.2.
The combined peak/surviving equations for r consist of its surviv-
ing equation p̌(x̄) =

Pn
i=1 E(bi), ϕr , where:

E(b) = 1 + q̂(z̄) if b = async{q(z̄)}
E(b) = q̌(z̄) if b = q(z̄)
E(b) = 0 otherwise

and its peak equation which is like in Def. 7.3, but letting P(b ·
instr) be max(q̂(z̄), q̌(z̄) + P(instr)) when b = q(z̄).

Observe that this equation modifies Def. 6.2 in the case of a syn-
chronous call in order to take advantage of the surviving infor-
mation. In the surviving equation, we distinguish three cases: (i)

in asynchronous calls, the new task can survive, as well as any
(the peak) tasks created by the callee; (ii) in synchronous calls,
tasks escaping from such call are counted; (iii) the other instruc-
tions are mapped to 0 (e.g., we are sure that nothing survives after
finish{s}).

EXAMPLE 8.4. The solution of the following combined equations,
obtained by applying Def. 8.3 to the rules of Ex. 8.1, corresponds
to the improved peak UB, as explained in Ex. 8.1:

m̂ = max(p̂, p̌+1+q̂) m̌ = p̌+1+q̂
p̂ = 1+q̂+ max(2+q̂+q̂+q̂, 1+q̂) p̌ = 1+q̂+1+q̂

In the above example, the accuracy gain is constant. In general,
it can be much larger (even in complexity order). Consider the
program in Sec. 2.3 whose intermediate representation is:
f(n, i)← n≤0
f(n, i)← n>0, finish−async{activity a(i), activity b(i)},

n′:=n− 1, i′:=2 ∗ i+ 1, i′′:=2i+ 2,
f(n′, i′), f(n′, i′′)

By applying Def. 8.3, we obtain the equations:

f̌(n, i) = 0 {n≤0}
f̌(n, i) = f̌(n′, i′) + f̌(n′, i′′) ϕ

f̂(n, i) = 0 {n≤0}
f̂(n, i) = max(1 + ˆactivity a(i) + ˆactivity b(i),

max(f̂(n′, i′), f̌(n′, i′) + max(f̂(n′, i′′), f̌(n′, i′′))) ϕ

where the condition ϕ is {n>0, n′=n−1, i′=2i+1, i′′=2i+2},
and ˆactivity a(i) = ˆactivity b(i) = 0. Since f̌(n, i) is solved
to 0, the solution to the combined equations is the constant 1. Note
that, applying Def. 5.4, we obtain the exponential bound shown
in Sec. 2.3. Applying either Def. 6.2 or Def. 7.3, we obtain an
exponential bound as well. Hence, the solution of the combined
equations is much more accurate than all previous solutions.

Soundness states that p̂ and p̌ correctly approximate the peak of
available tasks and the surviving tasks, respectively.

THEOREM 8.5. Let P have an entry procedure p, and q be defined
in P . Let p̂ub(x̄) be a closed-form UB function for its combined
peak/surviving equations. Given a trace t ≡ (A0 ; 〈1, p(x̄), tv〉)→∗
(An ; Tn). Then, letting v̄ = tv(x̄), it holds that (1) p̂ub(v̄) + 1 ≥
peakAvailable(t); and (2) p̌ub(v̄) + 1 ≥ surviving(t).

Note that, if we use the peak equations as in Def. 6.2, instead of
point (1) above, it holds that p̂ub(v̄) + 1 ≥ peakLive(t).

We note that the this improvement might come at the price of
efficiency and effectiveness of the analysis. As regards efficiency,
the fact that for each procedure in the program, we generate two
sets of equations increases the analysis time. In particular, the
time required to infer closed-form UBs for the combined relations
almost doubles. As regards effectiveness, the fact that the definition
of both relations is mutually recursive can make their solving more
complex. Nonetheless, the mutual recursion disappears in many
cases (e.g., when the number of surviving tasks is constant). Also,
certain solvers can solve such kind of recursion. After solving the
equations, the obtained UBs are guaranteed to be strictly more
precise than those obtained in the previous sections.

9. Experimental Results
We have implemented our technique within the COSTA System,
a COSt and Termination Analyzer for Java bytecode which can
be tried out online at http://costa.ls.fi.upm.es/costa by
choosing the example folder “x10” in the analyzer. The experi-
mental evaluation has been performed on a set of small but rep-
resentative X10 programs (available at the X10 website http://

UT/ UA/ UE ms # UT/ UA/ UE ms
1 (N−1)(logN) 500 2 61441N+61441 310

(N−1)(logN) 310 61441N+61441 270
N−1 450 61569 460

3 2048N+48 240 4 2N−1−1 200
2048N+48 260 2N−1−1 210
1024N+16 390 2N−1−1 240

5 kN3+3kN2+kN 830 6 50 ∗ (2N+2000) 170
(k+1)N3+(k+2) 760 max(N, 2000) 170
N2+(k+1)N

(k+1)N3+(2k+3) 1340 max(N, 2000) 210
N2+(k+3)N+1

7 10N1N2 2680 8 N 100
10N1N2 1780 1 90

N1N2 +N1 2850 1 140

Table 1. Benchmarks: 1 ArraySum (1044 Kb); 2 CUDABlackSc-
holes (1071); 3 FRASimpleDist (1134); 4 Fib (717); 5 HeatTrans-
fer v1 (1913); 6 KMeansDist (1124); 7 PLU 2 C (8520); 8 method
print()V of SparseMat (706).

x10-lang.org/) containing interesting parallelism patterns. The
implementation includes existing tools developed for Java which
translate the original program into the IR. Concretely, the examples
have been first (manually) translated from X10 to Java, preserving
the structure of the parallelism. From this point on, the analysis
is fully automatic. In some cases, purely numerical computations
have been omitted (e.g., most of the method doBlackScholes in
CUDABlackScholes), and pieces of code which manipulate data
structures in a way that is specific to X10 have been simplified.
Places have been ignored. Also, to avoid virtual invocations that of-
ten complicates the analysis, we sometimes translate calls o.m() to
m(o), and define m as a static method. Finally, async and finish
statements have been simulated (only for the sake of the analysis,
not for actual execution in the JVM) by means of special method
calls. Overall, the translation is done in such a way that the Java
code arguably preserves the properties of interest.

The results are shown in Table 1. For each benchmark, the total
number UT of spawned tasks (first row), the peak UA of live tasks
(second row), and the refined peak UE of live tasks using surviving
information (third row) are inferred. We do not add 1 for the initial
task. Most examples take as input a numerical parameter, which is
a measure of the size of the problem. Such parameter is usually
taken to be the length of the array of String which is the argument
of the main method, and appears as N in the table (N1 and N2 if
the input consists of two parameters). In two cases, UA is better
than UT, meaning that the analysis was able to infer that some
tasks cannot be alive at the same time. Moreover, UE improves on
UA in four examples, thus showing the usefulness of considering
surviving information. The table also shows (next to the name of
the benchmark) the size in Kbytes of the (transformed) .class file,
and the total analysis time ms in milliseconds.

Let us explain the results in more detail. ArraySum is interesting
because the sum is executed many times under different assump-
tions about the number of tasks which are going to be spawned: at
each iteration, this number is multiplied by 2 (starting from 1) until
a threshold N is reached (note that the X10 code uses a constant
threshold 4, so that our version is, in some sense, more general).
The result is that at most N−1 tasks are spawned at each one of
the logN iterations, thus giving a total of (logN)∗(N−1) tasks.
On the other hand, due to the finish statement which wraps each
iteration, only N−1 tasks can be alive at the same time, thus giv-

ing such number as UE. Note that the analysis of live tasks needs
surviving information in order to get the linear upper bound.

In CUDABlackScholes, N is the number of iterations which is
the constant 512 in the original program. It can be seen that UT is
bigger since every iteration is performed inside a finish statement,
so that tasks created in different iterations cannot be alive at the
same time. The UB of Fib is exponential due to the structure of the
recursive calls. The total number and the peak number of tasks are
equal; indeed, all spawned tasks can be alive at the same time.

In HeatTransfer v1, the UB is cubic in all cases, since the op-
erations on the data structures spawn a cubic number of tasks, and
all tasks are alive at the same time since a single finish statement
wraps this part of the code. The difference (not in the order of mag-
nitude) between the UBs is due to the different loss of precision
when solving the equations. The number of iterations of the loop
in run() depends on the guard delta<epsilon on double numbers.
This bound is unpredictable by most state-of-the-art static analyz-
ers, so that the program has been modified in order to iterate a fixed
number of times k. In KMeansDist, the constants 2000 and 50 ap-
pearing in the UBs are constants in the X10 code, while N is a
measure of the size of the data structure. In the biggest example
PLU 2 C, considering surviving information allows to remove a
constant factor 10 which is a constant in the program code.

Overall, we argue that, although our implementation is still a
prototype, the experiments show that our approach is promising and
leads (fully automatically) to reasonably accurate task-level UBs.

10. Related Work
As regards the language, several subsets of X10 [1, 16, 20] have
been defined in the literature. For the parallel part of the language,
the subset we consider is like FX10 [16], while the sequential part
is richer since not handling recursion would have been an impor-
tant restriction for the task-level analysis. The majority of related
work around the X10 language is on may-happen-in-parallel anal-
ysis [16] and determinism [26]. This is a complementary line of
research to ours, in the sense that we can use the results of such
analyses to improve ours, as we will discuss in Sec. 11.

Due to our interpretation of the task level of a program as
a resource consumed along its execution, our work is more di-
rectly related to cost-analysis (or resource-usage-analysis) frame-
works [3, 5, 12, 13, 24]. All such frameworks assume a sequential
execution model. Moreover, they often are applied to measure accu-
mulative resources. Another non-accumulative resource is memory
consumption in the presence of garbage collection. There has been
a respectable development in heap space analysis for Java-like and
functional languages [5, 7, 9, 14, 24] during the last years. Among
them, our work is more related to those that rely on RR [5, 24].
Still, heap space bounds are fundamentally different from task-level
bounds as, in the case of memory, the challenge is to model the be-
havior of the garbage collector at the level of the cost equations. In
our case, the challenge is to handle concurrency and to capture in
the equations the states in which tasks terminate.

11. Conclusions and Future Work
We have presented a novel static analysis to approximate the task
level of parallel X10-like programs. Our approach is based by
the view that the task level of a program is a particular (non-
accumulative) resource consumed along its (parallel) execution.
Existing cost-analysis frameworks assume a standard sequential
programming model on resources which are typically accumula-
tive. It is clear that both these deviations from existing frameworks
add significant complexity to the problem of inferring task-level
bounds. Our key contribution is the generation of task-level recur-
rence relations that soundly and accurately approximate the task
level of the program in the parallel setting. An important obser-

vation (and a side-effect contribution of our work, and due to the
characteristics of X10) is that obtaining an UB from the RR implies
bounding the number of iterations of loops in the original X10 pro-
gram. Therefore, our work indirectly provides a global termination
analysis for X10 programs. In other words, if the analysis finds a
task-level UB, it is guaranteed that the original X10 program ter-
minates for any input data.

The abstraction performed by the value analysis component,
though simple, ensures that the UBs obtained are sound for any
particular task scheduler. One direction for future work is to im-
prove the precision of the analysis by enriching the value analysis
assuming a particular scheduling. To do this, we first need to make
some assumption on the policy which establishes which tasks run in
parallel. Then, we can reuse existing may-happen-in-parallel anal-
yses [16] which specifically treat the async-finish constructs of
X10. The output of such analysis annotates each instruction with
the set of instructions that can be executed in parallel with it. One
could then prove that the fragments of code which might be exe-
cuted in parallel are independent [26] (i.e., they do not read/write
on the same global data). In such case, we can then use existing
field-sensitive value analyses [17] developed for similar languages
in order to improve the precision of our UBs.

As another direction for future work, we plan to extend our
analysis to the full X10 language. In particular, we believe that
handling places can give us some interesting results. This requires
enhancing the async construct as async{s, id}, with the identifier
id of the server encharged of running the task s asynchronously.
An interesting application of our analysis in this setting is to infer
the throughput of the different servers of the system, which could
be very useful to balance the workload in distributed applications.

Our approach can be easily adapted to count the peak at a
program point, i.e., the maximum number of tasks that can be alive
(or available) in parallel at that specific program point. Suppose that
the program point of interest is a©, then we can modify Def. 6.2 as
follows: we add P(a© · instr) = 1 + P(instr), and remove the
constant 1 from the equation of async. Such information is useful,
for example, when, at the program point of interest, we query a
server: the obtained UB indicates the load of the server.

Acknowledgments
This work was funded in part by the Information & Communi-
cation Technologies program of the European Commission, Fu-
ture and Emerging Technologies (FET), under the ICT-231620
HATS project, by the Spanish Ministry of Science and Inno-
vation (MICINN) under the TIN-2008-05624 DOVES project,
the HI2008-0153 (Acción Integrada) project, the UCM-BSCH-
GR58/08-910502 Research Group and by the Madrid Regional
Government under the S2009TIC-1465 PROMETIDOS project.

References
[1] M. Abadi and G. D. Plotkin. A model of cooperative threads. In Proc.

of POPL’09, pages 29–40. ACM, 2009.
[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper

Bounds in Static Cost Analysis. Journal of Automated Reasoning,
46(2):161–203, 2011.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Java Bytecode. In Proc. of ESOP’07, volume 4421 of
LNCS, pages 157–172. Springer, 2007.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
COSTA: Design and Implementation of a Cost and Termination Ana-
lyzer for Java Bytecode. In Proc. of FMCO’07, volume 5382 of LNCS,
pages 113–133. Springer, 2008.

[5] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric Inference
of Memory Requirements for Garbage Collected Languages. In Proc.
of ISMM’10, pages 121–130. ACM Press, 2010.

[6] A. W. Appel. Ssa is Functional Programming. SIGPLAN Notices,
33(4):17–20, 1998.

[7] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Paramet-
ric Prediction of Heap Memory Requirements. In Proc. of ISMM’08,
pages 141–150. ACM Press, 2008.

[8] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-Oriented
Approach to Non-Uniform Cluster computing. In Proc. of OOP-
SLA’05, pages 519–538. ACM, 2005.

[9] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. In Proc. of ISMM’08,
pages 151–160. ACM Press, 2008.

[10] R. DeLine and K.R.M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical Report MSR-TR-
2005-70, Microsoft Research, 2005.

[11] M. Fähndrich. Static Verification for Code Contracts. In Proc. of
SAS’10, volume 6337 of LNCS, pages 2–5. Springer, 2010.

[12] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and
efficient static estimation of program computational complexity. In
Proc. of POPL’09, pages 127–139. ACM, 2009.

[13] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polynomial Potential. In Proc. of ESOP’10, volume 6012 of LNCS,
pages 287–306. Springer, 2010.

[14] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Anal-
ysis. In Proc. of ESOP’06, volume 3924 of LNCS, pages 22–37.
Springer, 2006.

[15] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, New York, 1993.

[16] J. K. Lee and J. Palsberg. Featherweight X10: A Core Calculus for
Async-Finish Parallelism. In Proc. of PPoPP’10, pages 25–36. ACM,
2010.

[17] Antoine Miné. Field-sensitive value analysis of embedded c programs
with union types and pointer arithmetics. In Proc. of LCTES’06, pages
54–63. ACM, 2006.

[18] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated
Termination Analysis of Java Bytecode by Term Rewriting. In Proc.
of RTA’10, volume 6 of LIPIcs, pages 259–276, 2010.

[19] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Efficient
data race detection for async-finish parallelism. In Proc. of RV’10,
volume 6418 of LNCS, pages 368–383. Springer, 2010.

[20] V. A. Saraswat and R. Jagadeesan. Concurrent Clustered Program-
ming. In Proc. of CONCUR’05, volume 3653 of LNCS, pages 353–
367. Springer, 2005.

[21] F. Spoto, F. Mesnard, and É. Payet. A Termination Analyser for
Java Bytecode based on Path-Length. Transactions on Programming
Languages and Systems, 32(3), 2010.

[22] W. Zou T. Wei, J. Mao and Y. Chen. A new algorithm for identifying
loops in decompilation. In Proc. of SAS’07, volume 4634 of LNCS,
pages 170–183, 2007.

[23] L. Unnikrishnan and S. Stoller. Parametric heap usage analysis for
functional programs. In Proc. of ISMM’09, pages 139–148. ACM
Press, 2009.

[24] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap
Bound Analysis. In Proc. of VMCAI’03, volume 2575 of LNCS, pages
70–85. Springer, 2003.

[25] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java Optimization Framework. In Proc. of CAS-
CON’99, pages 125–135. IBM, 1999.

[26] M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic Verifi-
cation of Determinism for Structured Parallel Programs. In Proc. of
SAS’10, volume 6337 of LNCS, pages 455–471. Springer, 2010.

[27] B. Wegbreit. Mechanical Program Analysis. Communications of the
ACM, 18(9), 1975.

