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Abstract. This paper describes the architecture of costa, an abstract
interpretation based cost and termination analyzer for Java bytecode.
The system receives as input a bytecode program, (a choice of) a resource

of interest and tries to obtain an upper bound of the resource consump-
tion of the program. costa provides several non-trivial notions of cost,
as the consumption of the heap, the number of bytecode instructions exe-
cuted and the number of calls to a specific method. Additionally, costa

tries to prove termination of the bytecode program which implies the
boundedness of any resource consumption. Having cost and termination
together is interesting, as both analyses share most of the machinery
to, respectively, infer cost upper bounds and to prove that the execu-
tion length is always finite (i.e., the program terminates). We report
on experimental results which show that costa can deal with programs
of realistic size and complexity, including programs which use Java li-
braries. To the best of our knowledge, this system provides for the first
time evidence that resource usage analysis can be applied to a realistic
object-oriented, bytecode programming language.

1 Introduction

Research about automatic cost analysis goes back to the seminal work by Weg-
breit in 1975 [29], which proposes to analyze the performance of a program
by deriving closed-form expressions for its execution behavior. This approach
consists of two phases.

(1) In the first phase, given a program and the description of some cost measure,
a set of equations is produced, which captures the cost of the program in
terms of the size of its input data. Such equations are generated by con-
verting the iteration constructs (loops and recursion) of the program into
recurrence, and by inferring size relations which approximate how the size
of arguments varies between calls. This set of equations can be regarded as
a set of Recurrence Relations (RR for short).

(2) The aim of the second phase is to obtain a non-recursive representation
(solution) of the equations, known as closed-form solution. In most cases, it
is not possible to find an exact solution, and the closed-form corresponds to
an upper bound.



There are a good number of cost analysis frameworks for a wide variety
of programming languages, including functional, logic and imperative [23, 14, 3].
Despite such a large amount of work, applying cost analysis to realistic languages,
and programs with realistic size and complexity, is still an open issue, and, there
is a lack of working tools.

Termination analysis [10, 19] can be regarded as another kind of resource
usage analysis, and it has also been studied in the context of several programming
languages. Termination analysis tries to prove that a program cannot infinitely
run by considering its iterative and recursive structures and by proving that the
number of times they can be executed in a program run is bounded. Putting
cost and termination analysis together in the same tool makes sense because of
the tight relation between them: proving termination implies that the amount
of resources used at runtime is finite. In practical terms, cost and termination
analysis share most of the system machinery, as they need to consider and infer
roughly the same information about the program. We will use the term resource

usage analysis (RUA) to refer to either cost or termination analyses.
The present paper describes the design and implementation features of costa,

a tool which is, to the best of our knowledge, the first RUA tool for an object-
oriented, stack-based programming language, namely, Java bytecode [21]. The
goal of the system is to infer the cost of a program with respect to some cost
measure, and to prove its termination. costa sets up an accurate RR from the
bytecode in an efficient way (phase 1 above) and is connected to a termination
prover [1] and to an upper bound solver [2] to carry out phase 2. costa can cur-
rently work with different cost models, formalizing the idea of what a resource is,
and how it is consumed at runtime: the number of instructions,Minst ; the heap

consumption in bytes, Mheap ; the number of calls to a given method, Mcalls

(e.g., the library method for sending text messages in mobile phones).
The system allows the user to decide whether the analysis has to consider

libraries as part of the analyzed program, i.e., if it must go and analyze the
library code, or take cost information in the form of cost interfaces. Interfaces
are needed when some code is not available, or is written in another language.
However, they can only be used if it is guaranteed that the external code will not
generate call-backs to the user code. In the absence of interfaces, the system gives
symbolic names to the cost of libraries, and they remain as unknown functions
in the upper bound. These options make costa a flexible RUA tool, as we show
in the next example.

Example 1. Figure 1 shows the Java and bytecode of the running example, whose
most relevant feature is the use of Java libraries. The Java code at the top is only
shown for clarity, since costa works directly on the bytecode. At the left-middle,
we depict the bytecode of the method inter, which computes the intersection of a
linked list l and an array a, both non-sorted and containing objects which imple-
ment the interface java.lang.Comparable. The class CompList is user-defined, and
implements a linked list of Comparable elements in the standard way. The result
of the intersection is stored in a java.util.ArrayList object al. The method main
(right-middle) allocates memory for a, l and al by means of their constructors.



public static void inter(CompList l,Comparable[ ] a,
ArrayList al){

while (l!=null){
for (int i=0; i<a.length; i++)

if (a[i].compareTo(l.data)==0) al.add(l.data);
l=l.next;

}}

public static void main (String[ ] args){
Comparable[ ] a = new Integer[12];
ArrayList al = new ArrayList();
CompList l = new CompList();
loadArray(a);
loadList(l);
inter(l,a,al);}

0 aload 0
1 ifnull 50
4 iconst 0
5 istore 3
6 iload 3
7 aload 1
8 arraylength
9 if icmpge 42
12 aload 1
13 iload 3
14 aaload
15 aload 0
16 getfield #2

//CompList.data

19 invokeinterface #3
//Comparable.compareTo

24 ifne 36
27 aload 2
28 aload 0
29 getfield #2

//CompList.data

32 invokevirtual #4
//ArrayList.add

35 pop
36 iinc 3, 1
39 goto 6
42 aload 0
43 getfield #5

//CompList.next

46 astore 0
47 goto 0
50 return

0 bipush 12
2 anewarray #6

//Integer

5 astore 1
6 new #7

//ArrayList

9 dup
10 invokespecial #8

//ArrayList

13 astore 2
14 new #9

//CompList

17 dup
18 invokespecial #10

//CompList

21 astore 3
22 aload 1
23 invokestatic #11

//loadArray

26 aload 3
27 invokestatic #12

//loadList

30 aload 3
31 aload 1
32 aload 2
33 invokestatic #13

//inter

36 return

With libraries

Minst (inter)=(l+1)∗(a∗(13+c6+c2)+6+
max{12+c6, 11+c6+c2})+1

Minst (main)=24∗(123+c5)+2∗c5+541
Mheap(inter)=(l+1)∗(a∗(c6+c2)+c6+c2)
Mheap(main)=26∗c5+612

Only user-defined code

Minst (inter)=(l+1)∗(a∗(13+c6+c2)+6+
max{12+c6, 11+c6+c2})+1

Minst (main)=24∗(13+c6+c2)+48+2∗max{9, 8+c6}
+2∗c3+12∗(10+c3)+c4+c1

Mheap(inter)=(l+1)∗(a∗(c6+c2)+c6+c2)
Mheap(main)=24∗(c6+c2)+2∗c6+14∗c3+c4+56+c1

Fig. 1. The running example, with upper bounds computed for different cost models.

Afterwards, calls to static methods loadArray and loadList fill, resp., the array
and the list with objects of the library class java.lang.Integer, also implementing
java.lang.Comparable. For brevity, the code of both static (user-defined) meth-
ods, which terminate and have constant cost, is omitted. Note that parameters
a and l of inter are non-null and have constant length, and al is also non-null.
At the bottom, we show the upper bounds computed by costa for main and
inter, with the cost modelsMinst andMheap. Variables a and l in the solutions
denote, resp., the length of the array a and the maximal path-length (Sec. 5)
of l. The left column is computed by analyzing all required library methods.
In the right column, library methods are not analyzed; instead, their cost ap-
pears as c1, . . . , c6, where c1 and c2 stand for, resp., java.util.ArrayList.ArrayList
and java.util.ArrayList.add, and c3, . . . , c6 stand for Integer.Integer, Object.Object,
System.arraycopy and Comparable.compareTo, all from java.lang. When analyzing
libraries, upper bounds for main depend only on the cost of c5, which corre-
sponds to the native Java method arraycopy invoked within ArrayList.add inside
inter. When we analyze inter independently of main, c2 and c6 are not analyzed,
as the objects have not been created and their class is not statically known.
When libraries are not considered, c5 is not reached. While c1 and c2 are in-
voked, resp., in main and inter, c3 originates from loadList and loadArray, which
create Integer objects by invoking their constructor. Due to inheritance, c4 is
also required. InMheap , inter does not consume any heap locations by itself, as
it does not allocate any object. Yet, analysis considers the heap usage of c2 and
c6, which could allocate memory. 2
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Fig. 2. Architecture of costa

2 Architecture of the Cost and Termination Analyzer

Figure 2 shows the overall architecture of the costa analyzer. The dashed frames
represent the two main phases of the analysis: (i) the transformation of the
bytecode into a suitable internal representation; and (ii) the actual resource
usage analysis. Input and output of the system are depicted on the left: costa

takes a Java bytecode program JBC and a description of the cost model, and
yields as output an upper bound UB of its cost, and information TERM about
termination. Ellipses (as CFG) represent what the system produces at each
intermediate stage of the analysis; rounded boxes (as CFG build) indicate the
main steps of the analysis process; square boxes (as class analysis), which are
connected to the main steps by dashed arrows, denote auxiliary analyses which
allow to obtain more precise results or to improve efficiency.

During the first phase, depicted in the upper half of the figure, the incoming
JBC is transformed into a rule-based representation (RBR), through the con-
struction of the control flow graph (CFG). The purpose of this transformation
(Sec. 3) is twofold:

(1) to represent the unstructured control flow of the bytecode into a procedural
form (e.g., goto statements are transformed into recursion); and

(2) to have a uniform treatment of variables (e.g., operand stack cells are rep-
resented as local variables).

Several optimizations are performed on the rule-based representation to en-
able more efficient and accurate subsequent analyses: in particular, class analysis

is used to approximate the method instances which can be actually called at a
given program point in case of virtual invocation; loop extraction makes it possi-
ble to effectively deal with nested loops by extracting loop-like constructs from
the control flow graph; stack variables elimination, constant propagation and
static single assignment make the rest of the analyses simpler, more efficient
and precise. Essentially, the construction of the RBR turns out to be effective
for developing a (compositional) RUA (Sec. 3.5).

In the second phase, depicted in the lower half of the figure, the system per-
forms cost and termination analysis on the RBR. Abstract compilation, which
is helped by auxiliary static analyses, prepares the input to size analysis, whose
aim is to find interesting relations between execution states (Sec. 5). As usual in



object-oriented languages, nullity analysis improves the accuracy of size analy-
sis, together with class analysis, which was performed previously. Finally, sign

analysis helps in dealing with operations on integers. Afterwards, costa sets up
a Recurrence Relation (RR) for the selected cost model. The latter is given as an
input, selected among the available models. It is also trivial to define new cost
models in the system by just associating a cost to each bytecode instruction. For
the purpose of cost, the system performs slicing of the RBR in order to remove
those variables which are useless to cost analysis. Up to this point, phase (1)
in Sec. 1 has basically been achieved. In order to deal with phase (2), costa

integrates the dedicated upper bound solver of [2, 1], which finds closed-form
solutions for RRs and proves termination (Sec. 6).

3 From the Bytecode to the Rule-based Representation

Unlike other bytecode analyses performed directly on the CFG, in order to study
cost and termination, an essential step is to transform the JBC into an appro-
priate recursive rule-based representation. Basically, this will facilitate the task
of identifying loops (necessary for termination), and producing a recurrence re-
lation from (the RBR of) the bytecode which represents its cost.

3.1 The Java Bytecode Language

A (sequential) JBC program consists of a set of class files, one for each class. A
class file contains information about its name, the class it extends, and the fields
and methods it defines. Each method has a unique signature m containing the
class where it is defined, its name and its type. The bytecode associated to m is
a sequence 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruction and pci

is its address. Local variables are denoted by 〈l0, . . . , lk−1〉, where l0 is the this

reference (explicit in JBC) and l1, . . . , ln, with n < k, are the formal parameters
of m. Similarly, each field f has a unique signature, containing its name and the
name of the class it belongs to. It is out of the scope of this paper to provide a
thorough description of the JVM (see the specification [21] for details).

Example 2. Let us explain some instructions in Fig. 1 related to object-oriented
features. Indexes 0, . . . , 3 in the bytecode correspond, resp., to parameters l, a, al
and the local variable i. As the method is static, there is no this reference. The
instruction 15: aload 0 pushes the reference to l on the stack. Next instruction,
16: getfield #2;, fetches the field data from l: the top of the stack l is popped, and
#2 is used to build an index of the runtime constant pool (RCP) of the class
where the reference to the name is stored. When this reference is fetched, it is
pushed on the stack. As another example, 19: invokeinterface #3 pops a[i] and
l.data from the stack, and searches the closest method with the correct signature,
by looking up first in the class of the dispatching object, and then going up in
the inheritance chain. As before, #3 is used to search the name of the method
in the RCP. The method result is then pushed on the stack. 2

The execution environment of the JVM consists of a stack of activation records

and a heap. Each activation record contains a program counter, a local operand
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Fig. 3. CFGs for the Java bytecode program in Fig. 1 after loop extraction

stack, and a table of local variables. The heap is a global data structure which
contains objects (and arrays) allocated by the program. Each method invocation
generates a new activation record according to its signature, number and type
of local variables, and maximum size of operand stack. Different activation may
contain references to the same objects in the heap.

3.2 Generation of Control Flow Graphs guided by Class Analysis

The control flow of JBC is unstructured. Conditional and unconditional jumps
are allowed, as well as other implicit sources of branching such as virtual method
invocation and exception throwing. The notion of Control Flow Graph (CFG) fa-
cilitates reasoning about programs in unstructured languages. costa transforms
the bytecode of a method into CFGs by using techniques from compiler theory.
In particular, the instruction sequence is split into maximal sub-sequences of
non-branching instructions, which form the basic blocks (nodes) of the initial
graph. Basic blocks of a method m are given a unique identifier mi , where i

is an index, and are connected by guarded edges which describe all possible
transitions.

Guarded edges are introduced by considering the last bytecode instruction of
each block, and represent the condition for the control going from one block to
another one. Edges take the form 〈mi 7→mj , φij〉, where mi and mj are the source
and destination nodes, and φij is a boolean condition. Branching instructions
include conditional jumps, dynamic dispatching and exceptions.

Example 3. Figure 3 depicts the CFGs of method inter (Ex. 1). The edge from
inter1 to inter2 takes the form 〈inter1 7→inter2, ifnonnull〉, indicating that the top
of the stack must be non-null for the control going from pc 1 (last instruction of
inter1) to 4 (first one of inter2). Guards which are always true are left implicit.
2

Virtual invocation implies that more than one method can be executed at a
given program point. In practice, computing a precise approximation of the



reachable methods is not trivial, and asking the user to provide such information
is not practical. As customary in the analysis of OO languages, costa uses class

analysis [25] in order to precisely approximate this information. First, the CFG
of the initial method is built, and class analysis is applied in order to approximate
the possible runtime classes at each program point. This information is used to
resolve virtual invocations. Methods which can be called at runtime are loaded,
and their corresponding CFGs are constructed. Class analysis is applied to their
body to include possibly more classes, and the process continues iteratively.

Once a fixpoint is reached, it is guaranteed that all reachable methods have
been loaded, and the corresponding CFGs have been generated. To handle re-
alistic programs, we implemented a simple class analysis which does not keep
class information at the level of reference variables, but just computes the set
of reachable classes from any point in the program. This simple class analysis
turned out to be crucial for the overall practicality of the analyzer, especially to
analyze methods which are defined in the Object class as those found in most li-
braries. The simple class analysis used drastically reduces the number of methods
to be analyzed while remaining quite efficient in practice. In the running exam-
ple, class analysis detects that only one instance (the one in java.lang.Integer)
of compareTo and add can be called resp. at bytecodes 19 and 32, so that vir-
tual invocations invokeinterface and invokevirtual can be actually considered as
non-branching.

As regards exceptions, costa handles internal exceptions (i.e., those asso-
ciated to bytecodes as stated in the JVM specification), exceptions which are
thrown (bytecode athrow) and possibly propagated back in methods, as well as
finally clauses (even if they are compiled using the bytecode jsr). Exceptions are
handled by adding edges to the corresponding handlers. When the type of the
exception is not statically known, as it happens when exceptions come from calls
to methods, mutually exclusive edges are generated, which capture all possible
instantiations. In order to infer resource usage, costa provides the options of
ignoring only internal exceptions, all possible exceptions or considering them all.
In Fig. 3, exceptions are not explicitly shown as edges; instead, they are indi-
cated by marks (*) (see Ex. 4 and 5) in bytecodes producing them. For instance,
bytecode 8 might generate a (N) exception if a is null in the call (of a.length).

3.3 Compositional Analysis by means of Loop Extraction

A subsequent loop extraction transformation is applied to the initial CFG in
order to separate sub-graphs corresponding to loops. Loop extraction has been
well studied in the area of program decompilation [6] and it has been proposed in
termination analysis [1]; yet, to the best of our knowledge, its use in cost analysis
is new. It is crucial when the program contains nested loops, since it allows
analyzing the program compositionally, in the sense that it is possible to reason
on the termination and cost by taking one loop at a time. This is important for
finding ranking functions, which are required to bound the number of iterations
of loops (an essential piece of information for both cost and termination). costa

implements an existing efficient algorithm [26] to identify the loops, and modifies



it to have loops which, in addition to having a single entry, also have a single exit.
The latter condition is required to avoid multiple return branches from loops, and
is allowed when additional exits correspond to exceptions which can be caught
and thrown by the caller. Whenever a loop is extracted, the corresponding sub-
graph is replaced by a new instruction call loop(j, o), where j is a fresh integer
identifier, and o (often omitted for brevity) is the set of local variables of m which
are modified by the execution of the loop. Besides, a new CFG is generated
for each sub-graph, whose entry block has mj as its identifier. Hence, after
extracting the loops, there is one CFG which corresponds to the entry of m, and
the remaining CFGs correspond to loops.

Example 4. Figure 3 shows the CFGs of inter after applying loop extraction.
The middle graph corresponds to the loop called in inter0 by call loop(1), while
the inner loop (right graph) is called from inter2. The (E) mark indicates that an
exception can be generated in the loop and propagated back to the caller block.
loop exit(j) denotes the normal exit from loops, which transfers the control to
the bytecode following call loop (bytecode 50, in the case of the outer loop).
Exceptional exits from loops are omitted for brevity. 2

3.4 Rule-based Representation

As already mentioned, for a method m and its CFGs, the system obtains a rule-

based representation (RBR) for m whose purpose is twofold: 1) to transform
iteration into recursion; and 2) to flatten the operand stack, in the sense that its
content is represented as a series of local variables. The latter is possible because,
in valid bytecode, the stack height can be statically decided. This is done in one
pass on the CFGs, where the stack height is computed at the entry and exit
of each block, and saved. The formal translation from a CFG to the rule-based
representation can be found in previous work [3, 1]. In the present paper, the
CFG is different, as class analysis and loop extraction have been introduced in
costa. This results in a more accurate and compositional representation.

Intuitively, the system computes the rule-based representation of a JBC pro-
gram by producing, for each basic block mj of its associated CFGs, a rule which:

(1) contains the set of bytecode instructions within the basic block with the vari-
ables (local and stack) it operates on, appearing explicitly in the instructions;

(2) if there is a method invocation within the instructions, includes a call to the
corresponding rule; and

(3) at the end, contains a call to a continuation rule mc
j . The definition of

a continuation must include mutually exclusive rules to cover all possible
continuations from the block, guarded by the respective conditions.

Example 5. When analyzing libraries, and by taking into account exceptions,
the RBR for inter contains 59 rules. Let us show the rules associated to block
inter4 in the CFG. For clarity, exception rules are not shown but we just annotate
with ”%” the instructions susceptible of throwing exceptions. For them, there
are rules in the RBR which capture the corresponding behavior.



inter4(〈l, a, al , i〉, 〈i〉) := aload(a, s1), iload(i, s2),
aaload(s1, s2, s1), % NullPointerException, IndexOutOfBoundsException

aload(l, s2),
getfield(CompList.data, s2, s2), % NullPointerException

nop(invokeinterface(compareTo(〈s1, s2〉, 〈s1〉))),
Integer compareTo(〈s1, s2〉, 〈s1〉),

% NullPointerException and exceptions coming from invocation

nop(ifne(s1)), interc4(〈l, a, al , i, s1〉, 〈i〉).

interc4(〈l, a, al , i, s1〉, 〈i〉) := guard(ifeq(s1)), inter5(〈l, a, al , i〉, 〈i〉).
interc4(〈l, a, al , i, s1〉, 〈i〉) := guard(ifne(s1)), inter6(〈l, a, al , i〉, 〈i〉).

It can be seen that there are two possible continuations (rule interc4), depending
on the result of comparing the method output with zero. The comparison is
the bytecode ifne, which is wrapped in a nop mark, meaning that the bytecode
must be ignored at this point, but its cost must be taken into account later. The
continuation rule may call inter5 or inter6, depending on which condition holds
at the entry, as made explicit by guards before the calls.

2

3.5 Optimizations on the Rule-based Representation

Several automatic transformations can be done on the RBR, to improve both
accuracy and efficiency of the rest of the analysis. Basically, optimizations aim
at removing variables to have a simpler program representation.

Static Single Assignment. A Static Single Assignment [13] (SSA) transfor-
mation is performed on the bytecodes of the RBR. SSA enables simple, yet effi-
cient, denotational program analyses. For example, an instruction iadd(s0, s1, s0)
is transformed into iadd(s0, s1, s

′
0) where s′0 refers to the value of s0 after the

instruction. Our implementation of SSA keeps, for each rule, a mapping from
variable names (as they appear in the rule) to new variable names (constraint
variables). E.g., the rule for block inter3 takes the following form after SSA:

inter3(〈l, a, al , i〉, 〈i′〉) := iload(i, s1), aload(a, s2), arraylength(s2, s′

2),
nop(ifcmpge(s1, s′

2)), interc3(〈l, a, al, i, s1, s′

2〉, 〈i
′〉).

Stack Variable Elimination. While SSA introduces new variables, it also
enables the removal of a large number of stack variables which correspond to
intermediate states. costa unifies stack elements, local variables and constants
occurring in instructions which move data to and from the stack, as iload, iconst,
istore and ireturn. These unifications reduce the number of (distinct) variables
which occur in the rule. After stack variable elimination, rule inter3 becomes:

inter3(〈l, a, al , i〉, 〈i′〉) := iload(i, i), aload(a, a), arraylength(a, a),
nop(icmpge(i, a)), interc3(〈l, a, al , i, i, a〉, 〈i′〉).

Note that the unification in arraylength does not mean that the length of a
is written in a. Actually, this kind of unification is only meant to make size
analysis easier. Most stack variables can be removed. In most cases, only those
stack variables associated to operations on the heap, such as aaload(s1, s2, s

′
1),

and the return value of methods, as s1 (s′1 after SSA) in inter5, are kept in the
RBR. Also, arguments which are duplicated in all possible call patterns to a rule
can be filtered out. Rules inter3 and interc3 are transformed into:



inter3(〈l, a, al , i〉, 〈i′〉) := iload(i, i), aload(a, a), arraylength(a, a),
nop(ifcmpge(i, a)), interc3(〈l, a, al, i〉, 〈i′〉).

interc3(〈l, a, al , i〉, 〈i′〉) := guard(ifcmplt(i, a)), inter4(〈l, a, al, i〉, 〈i′〉).
interc3(〈l, a, al , i〉, 〈i′〉) := guard(ifcmpge(i, a)), loop exit(3)(〈l, a, al, i〉, 〈i′〉).

Note that iload, aload and arraylength in the SSA form of rule inter3 have no effect
here, and can be ignored by size analysis. However, they are not removed since
their cost has to be taken into account when generating the recurrence relation.

Inter-Block Constant Propagation. The above optimizations only achieve
intra-block constant propagation, as variables are unified with values within the
scope of a rule (i.e., a block), but are not propagated to other rules. Clearly,
inter-block constant propagation is interesting in terms of both accuracy (more
knowledge about values) and efficiency (less variables to consider). costa does
a simple, yet effective constant propagation post-process, where constants are
propagated forward to continuation rules. In a nutshell, when a block call is
found, the current calling pattern is stored and, if it is guaranteed that such block
is only invoked from that point, constants in the calling pattern are propagated
to its body. For instance, the call pattern to inter3 from call loop(3) takes 0 for
the counter i. However, this block is also invoked from inter6, so that the value
cannot be propagated. For correctness, constant propagation must be stopped
as soon as variables whose value is being propagated are assigned a new value.
This is automatically dealt with by using unification in the SSA transformation
above.

4 Context-Sensitive (Pre-)Analyses to Improve Accuracy

costa implements two context-sensitive analyses based on abstract interpreta-
tion [11]: nullity and sign. The aim of these analyses is to improve the accuracy
(and efficiency) of subsequent steps. Both analyses infer information from indi-
vidual bytecodes, and propagate it via a standard, top-down fixpoint computa-
tion. They are designed to achieve good performance by implementing abstract
operations using bitmaps, which allow accessing and updating the analysis in-
formation in constant time.

4.1 Nullity Analysis

A simple nullity analysis is performed on the RBR in order to keep track of non-

null objects. For instance, the bytecode new(si) allows to assign the abstract
value non-null to si. Afterwards, this information can be propagated by means
of bytecodes like astore(si, lj), which copies the non-null abstract value of si

into lj . The results of nullity analysis often allow to remove rules corresponding
to NullPointerException, essentially those guarded by guard(ifnull(si)). Nullity
analysis is very effective when methods are analyzed context-sensitively. For
instance, in the main program in Fig. 1, which calls inter with non-null lists
l and al, and a non-null array a, nullity analysis of inter guarantees that no
NullPointerException can be thrown when accessing fields or invoking methods
belonging to the arguments of inter. Thus, bytecode instructions annotated with
(N) in Fig. 3 will not generate exception branches. This is clearly beneficial both
in terms of precision and efficiency of the remaining analysis steps.



4.2 Sign Analysis

Sign analysis keeps track of the sign of variables. The abstract domain contains
the elements ≥, ≤, >, <, = 0, 6= 0, ⊤ and ⊥, partially ordered in a lattice.
Domain operations can be efficiently implemented with bitmaps (three bits for
each abstract value). For instance, sign analysis of const(si, V ) evaluates the
integer value V and assigns the corresponding abstract value = 0, > or < to
si, depending, resp., on if V is zero, positive or negative [11]. Information from
arithmetic bytecode instructions is inferred as expected.

Knowing the sign of data allows to remove RBR rules associated to arith-
metic exceptions which are guaranteed never to be thrown. In addition, sign
information plays a crucial role in cost analysis, as it allows obtaining accurate
upper bounds for logarithmic methods. E.g., consider a method with a simple re-
cursive call of the form void m(int n) { .. m(n/2);..} for which we want to measure
number of instructions executed. According to the JVM specification, without
knowing the sign of n, it is not possible to know whether n/2 will be rounded to
the next (if negative) or previous (if positive) integer. Therefore, unless accurate
sign information is available, it is not possible to obtain a logarithmic upper
bound for m; instead, a less accurate (linear) upper bound is found.

After this step, a post-process on the RBR unfolds intermediate rules which
correspond to unique continuations. This iterative process finishes when a con-
tinuation is not unique, or when direct recursion is reached.

5 Size Analysis of Java Bytecode

From the RBR, size analysis takes care of inferring the relations between the
values of variables at different points in the execution. To this end, the notion
of size measure is crucial. The size of a piece of data at a given program point
is an abstraction of the information it contains, which may be fundamental to
prove termination and infer cost. The costa system uses several size measures:

– Integer-value maps an integer value to its value (i.e., the size of an integer
is the value itself). It is typically used in loops with an integer counter to
approximate the number of iterations by detecting how the size of the counter
changes at each pass through the loop body.

– Path-length [18] maps an object to the length of the maximum path reachable
from it by dereferencing. E.g., null has size 0 and, in a non-null reference x,
the size of x is 1 plus the maximum path-length of fields in x which are in
turn references. Therefore, for a non-cyclic data structure x, the size of x
is greater than the size of any reference field of x, i.e., the size of a data
structure decreases as fields are dereferenced. This measure can be used to
predict the behavior of loops which go through objects, since the path-length
is supposed to strictly decrease through the loop.

– Array-length maps an array to its length and is used to predict the behavior
of loops which traverse arrays.

Sec. 5.1 shows how it is possible to improve the efficiency of size analysis by
simplifying the abstract compilation removing useless information. Finally, a
description of the actual size analysis is given in Sec. 5.2 and 5.3.



5.1 Slicing of Useless Variables

When looking at the RBR, it is sometimes possible to note that some variables
are not relevant for the specific purpose of getting cost information, and can
therefore be removed in order to make the analysis more efficient and the solving
process more feasible [4]. In this sense, a variable is relevant if it directly or
indirectly affects some guards, i.e., the control flow (thus, potentially, the cost),
or is needed by the cost model (e.g., in our example,Mheap needs the length of an
array created by newarray to infer the allocated memory). Non-relevant variables
can be removed from the RBR. As an example, an accumulator variable, which
only stores partial results of a computation (e.g., the sum of the elements of a
list, where a temporary variable is updated during the loop) is essential to the
semantics, but can be removed since, in general, does not affect the cost.

To this end, a variant of backward program slicing [27] is used, where variables
are removed instead of program statements. The slicing criterion consists of the
variables occurring in guards or needed by the cost model, which are propagated
backwards through the rules by means of a simple dependency calculus, so that
variables which directly or indirectly affect the criterion are kept in the slice. As
a result, variables which cannot affect the cost are removed.

Unlike in normal slicing, soundness is not an issue here: removing variables
which are actually relevant may result in a loss of precision, but the correct-
ness of (upper bound) cost and termination results is preserved. In fact, losing
precision would make the upper bound bigger (possibly infinite, meaning that
it was impossible at all to infer the cost of the program), or make it impossible
to prove termination, but such result would not lose correctness (since a bigger
upper bound is correct whenever a smaller one is correct, and not proving ter-
mination is trivially correct). Because of this, the treatment of calls to methods
or loop rules can be simplified: when a call to m is found, relevant variables of
m are taken (i.e., those which affect its cost), but relevant variables in the caller
rule are not propagated through the call (context-insensitivity). Such a slicing
on the rules is unsound, and different with respect to a previous, analogous al-
gorithm [4], where this information is correctly dealt with (context-sensitivity).
This results in a less precise and unsound, but more efficient and importantly,
scalable slicing.

5.2 Abstract Compilation

The purpose of size analysis is to detect how the size of variables changes
during execution [14]. For example, when analyzing a loop where an integer
counter i goes from 0 to a threshold, as in the inner loop of Ex. 1, size analy-
sis w.r.t. Integer-value should see that the size of i in the n-th iteration of the
loop is greater by 1 than its size in the n−1-th iteration. This information is
essential for inferring how many times the loop body will be executed, which is
a crucial piece of information in cost and termination analyses. Each bytecode,
call or guard is abstracted by linear constraints on the size of its variables: for
example, iadd(s0, s1, s

′
0) will be abstracted by the constraint s′0=s1+s0, meaning

that the size of s0 after executing the instruction is the sum of the size of s0 and



s1 before. Similarly, getfield(f, s0, s
′
0) is abstracted by s0>s′0, meaning that the

(Path-length) output size is less than the input size, due to the field access. This
only holds if non-cyclicity of s0 can be proven; otherwise, no information can
be obtained, and an empty constraint is produced. We refer to [18] for details
on path-length and its requirements. This step results in an abstract constraint

program, or simply abstract compilation, which approximates the cost and termi-
nation behavior of the original program w.r.t. the chosen size abstractions. E.g.,
rules inter3 and interc3, after RBR optimizations, are abstract-compiled into:

inter3(〈l, a, al , i〉, 〈i′〉) := {} ⋄ interc3(〈l, a,al , i〉, 〈i′〉)
interc3(〈l, a, al , i〉, 〈i′〉) := {i<a} ⋄ inter4(〈l, a,al , i〉, 〈i′〉)
interc3(〈l, a, al , i〉, 〈i′〉) := {i≥a} ⋄ loop exit(3)(〈l, a, al , i〉, 〈i′〉)

Expressions in brackets are constraints which describe the behavior of the byte-
codes. Abstract rules for the loops in the example are:

inter2(〈l, a, al , i〉, 〈l′′, i′′′〉) := {i′=0, l>l′} ⋄ inter3(〈l, a,al , i′〉, 〈i′′〉),
inter1(〈l

′, a, al , i′′〉, 〈l′′, i′′′〉)
inter6(〈l, a, al , i〉, 〈i′〉) := {i′=i+1} ⋄ inter3(〈l, a,al , i′〉, 〈i′〉)

The first rule corresponds to the outermost loop, which calls the inner loop with
i = 0. Note that, provided l is non-cyclic and does not share memory locations
in the heap with other variables, size analysis finds a size decreasing in the outer
loop. Moreover, by applying the Integer-value measure, it is inferred that i (the
counter of the internal loop) increases by one between the input of rule inter6
and that of inter3 (the condition of the loop). In both cases, a useful size relation
has been found, thus allowing the subsequent cost analysis to understand the
behavior of loops.

5.3 Bottom-Up Fixpoint Computation

Linear constraints replacing parts of the program can be propagated via a stan-
dard, bottom-up fixpoint computation, in order to combine the information
about single rules. The goal of this global analysis is to have size relations on
variables between the input of a rule (i.e., a block in the CFG) and that of
another one which can be (directly or indirectly) called by the first one.

In practice, we can often take a trivial over-approximation where for any
rules there is no information, i.e., p(x, y)← true. This is often enough to prove
termination and find upper bounds on the cost of many programs, and results
in a more efficient implementation. It is enough in our example, but not in cases
where the call modifies the data structure over which a loop of the caller goes.
For instance, it would be needed in the example if methods invoked within the
loop (either compareTo or add) modify the length of l or the value of i. However,
experiments suggest that this is not very likely to occur in imperative programs.

6 Inferring Cost and Termination

Once the bytecode program has been transformed into its RBR (Sec. 3 and 4),
and size relations have been inferred (Sec. 5), all the pieces are available to prove



termination and infer a closed-form upper bound for the cost of the bytecode.
To this purpose, costa first sets up a recurrence relation system (RR) which
captures the cost of the rule-based program and its termination behavior in
terms of the input values, and, afterwards, uses a generic RR solver [2] to obtain
an upper bound and prove termination.

6.1 Setting up Recurrence Relations

Setting up a RR from the bytecode culminates the phase 1 of cost analysis
(Sec. 1). In particular, for each rule in the RBR, costa generates a cost equation
of the form rp(xp) = exp + [cj(xj)+]rq(xq), ϕ by using the abstract rule to
generate ϕ, and the original rule together with the selected cost model to generate
exp (i.e., the cost expression has to represent the cost of the bytecodes in the
rule w.r.t. the model). Here, the optional cj is the cost of a method invoked from
within a rule. Variables x are the set of corresponding variables relevant to the
cost. Essentially, the equation states that, for given (abstract) values vp such
that ϕ |= ∧xp = vp, a possible cost for rp(vp) is exp[xp 7→ vp] plus the sum of the
costs of cj(vj) and rq(vq), where values vj and vq are obtained from vp and the
constraints. For example, inMinst , the RR for inter comes to be (as in Ex. 1, c2

is the cost of add, while c6 is the cost of compareTo):

inter(l, a) = 1 + r1(l, a), {}
r1(l, a) = 2 + r2(l, a, l), {}

r2(l, a, l) = 6 + r3(a, 0) + r1(l
′, a), {l > l′, l′ ≥ 0, a ≥ 0}

r2(0, a, 0) = 0, {}
r3(a, i) = 4 + r4(a, i, i, a), {}

r4(a, i, i, a) = 6 + c6 + r5(a, i, s1), {a > i}
r4(a, i, i, a) = 0, {a ≤ i}
r5(a, i, s1) = r6(a, i), {s1 6= 0}
r5(a, i, s1) = 4 + c2 + r6(a, i), {s1 = 0}

r6(a, i) = 2 + r3(a, i′), {i′ = i + 1}

Consider the outer loop: the execution of r1 (corresponding to block inter1) costs
2 bytecodes plus the cost of r2. In r2, 6 bytecodes are executed (those in block
inter2) in the loop body, so that the cost is 6 plus that of the call r3 to the inner
loop, and of r1. This goes on until a call to r2(0, a, 0) ends the loop. Note that r1

is called by r2 with the first argument decreased, which guarantees termination.
The above RR has been simplified by eliminating intermediate equations by
means of unfolding, as costa actually does.

6.2 Finding Closed-form Upper Bounds and Proving Termination

RRs have a great potential: they are not limited to any complexity class, and can
be used for counting different resources. However, unless a closed-form solution

describing the cost of a program only in terms of its input variables is found (i.e.,
with no references to other equations), RRs turn out not to be practical (see the
applications pointed out in Sec. 9). This is the so-called phase 2 in Sec. 1.

Basically, a RR is a non-deterministic constraint functional program which
allows to use generic tools both to find closed-form solutions and to prove ter-
mination. Non-determinism might occur due to the loss of precision inherent



to (static) size analysis. This means that, for given input values vp, the query
Cp(vp) may result in several solutions. It can be seen in the above example
that size relations are inexact: e.g., size analysis has inferred that the size of
a data structure l0 decreases, but does not tell how much. In such cases, size
relations cannot be applied; instead, they are kept in the cost equations. Yet,
it is guaranteed that (1) one of the solutions corresponds to the actual cost of
the rule-based program; and (2) if Cp(vp) has a finite number of solutions and
does not lead to any infinite computations, then the original bytecode program
terminates for any corresponding concrete input. Due to the non-decidable and
non-deterministic features of RRs, in most cases, it is not possible to obtain
an exact solution (see [2]). Rather, the aim is to obtain non-asymptotic3 upper
bounds.

Upper bounds. RR are independent of the language in which the original
program was written. This traditionally has allowed relying on existing com-
puter algebra systems (e.g., Maple, Mathematica, Maxima) to carry out phase
2 of cost analysis. In our case, costa is connected to an existing upper bound
solver [2], which is especially designed to handle RR output by automatic cost
analysis. The differences between a RR and a standard recurrence equation sys-
tem are explained in detail in that work. The solver is available on the web
(http://www.cliplab.org/Systems/PUBS). It is independent of the language
the RR is obtained from, and handles a large set of complexity classes, such as
logarithmic, linear, polynomial, and exponential. In the example, the obtained
upper bound is Minst (inter), shown in Fig. 1. Details of the solving process are
rather technical, and are outside the scope of this paper [2].

Termination from RR. As already mentioned, proving termination involves
guaranteeing that a finite upper bound for the system exists, even if it cannot be
found explicitly. As a RR is a non-deterministic constraint functional program,
well-studied techniques used for proving termination in such languages can be
directly adapted to our setting. The solver actually proves termination on the
above representation by using semantic-based techniques, relying on binary un-

folding combined with ranking functions, as those in [10]. In the example, it is
able to prove termination of inter alone, and also of main. Termination on the
non-deterministic constraint functional representation implies, in turn, termina-
tion of the Java bytecode program, as proven in previous work [1].

7 Experimental Results

The costa system is implemented in Prolog and, as an external component, it
uses the Parma Polyhedra Library [8] for manipulating linear constraints and
it is connected to the solver of [2, 1] to find upper bounds and prove termina-
tion. In contrast to previous experimental work on cost analysis, a main goal
of our experiments is to be able to analyze realistic programs which are not

3 I.e., which hold for every input value, not only for values greater than a threshold.



Bench #M CFG #R Null Sign #Rr AC SA #T #UB

compInter 5 84 146 28 36 113 76 1124 5 5
19 4600 1997 908 1104 293 216 1828 19 19

stackRev 17 436 496 104 96 332 248 1536 17 17
27 1848 602 112 112 390 300 1856 27 27

josephus 23 924 986 260 280 780 520 11713 23 23∗

89 6752 2993 1112 1364 2187 1732 16049 77 8
arrayMax 3 120 163 24 28 137 96 536 3 3

34 3096 1096 344 476 786 588 4504 29 1
ArrayList 34 8917 1649 308 332 1381 1096 3124 33 30

529 51567 15828 6400 6704 11413 9137 63120 26 23
Character 43 14337 758 116 160 684 364 1684 43 43∗

166 53971 2829 560 464 2464 1544 2296 166 166
Integer 52 24054 2059 784 928 1704 3008 5468 46 43∗

217 49043 8758 5320 6488 4963 11029 29198 103 18

Table 1. costa Analysis Times and Results for Benchmarks using Libraries

hand-crafted but rather are taken from different benchmark suites, namely from
the own Java libraries and the book [15] and do not use predefined assertions
but rather analyze all necessary code. The first benchmark, compInter, is our
running example which, as we have seen through the paper, uses several classes
and interfaces from the Java libraries. The next set of benchmarks stackRev,
josephus and arrayMax appear in [15] and all of them use Java libraries. The
next three benchmarks are Java libraries: java.util.ArrayList, java.lang.Character
and java.lang.Integer.

Table 1 shows the efficiency and accuracy of costa on the above examples.
For each benchmark, we have two rows: the upper one corresponds to the case
where we analyze only user-defined code, and the lower row includes the analysis
of all required library methods. The column #M shows the number of methods
to be analyzed for each benchmark. We can observe that the benchmarks are
reasonably large, up to 529 methods analyzed for arrayList (with libraries). The
experiments have been performed on an Intel Core 2 Duo 1.86GHz with 2GB
of RAM. Times are in milliseconds and measure the runtime of each of the
phases undertaken by the analyzer. In particular, columns CFG, Null, Sign,
AC and SA show, resp., the time of building the CFG, nullity analysis, sign
analysis, abstract compilation and size analysis. We argue that analysis times
are reasonable given the large size of the benchmarks. Only size analysis is
comparatively more expensive. Interestingly, it is often not required in order
to prove termination nor to infer upper bounds, in particular, when the loops
conditions do not depend on the return value from a method. In the table, we
mark the upper bounds with “*” in the three cases when size analysis is required.
Columns #R and #Rr show the number of rules in the RBR of the bytecode
program, resp., prior to nullity and sign analysis and after applying them (as
explained in Sec. 4). It can be observed that the reduction is significant in all
benchmarks. This is crucial for both the efficiency and accuracy of the analysis.

The last two columns #T and #UB indicate, resp., the number of methods
for which we are able to prove termination and infer an upper bound forMinst .
We believe our results are quite encouraging. We have proved termination and
obtained upper bounds for all methods in compInter, stackRev and Character.
As expected, obtaining upper bounds for Minst is strictly more difficult than
proving termination: if we fail to find a well-founded decreasing measure for a
loop which ensures its termination, we also fail to bound the number of iterations



of such loop. Most of the examples where costa fails, e.g., in arrayMax and
josephus with libraries, contain loops whose number of iterations depends on
the values of fields. This is currently not supported by our size analysis and,
moreover, we are not aware of any analysis that can infer such information. In
other examples, PUBS [2] fails to find an upper bound because the RR obtained
is too large. This happens for some methods in arrayMax, josephus and ArrayList.

Regarding the language, there are some features of Java bytecode that costa

does not support such as non-sequential, native code, dynamic code generation
and reflection. costa can still deal with some of them (like native code) by
giving symbolic names to their cost, as we have shown along the paper. All in
all, we believe that our experiments thus far allow us to conclude that RUA can
be applied to a realistic programming language, and to programs with a realistic
size and complexity.

8 Related Work

Since the advent of mobile code, Java bytecode analysis has become an active
research area, and a number of tools are now available, e.g., the Soot framework
[28] and the generic analyzer Julia [24]. Soot is a framework to develop analyses
of Java bytecode, and already includes points-to, purity and dynamic data struc-

ture analysis. Similarly to costa, such systems transform bytecode into a proce-
dural representation. Indeed, intermediate representations are common practice
in JBC analysis (see also BoogiePL [20]). The main differences w.r.t. our rule-
based representation are: (1) though Soot also performs SSA when generating
the Shimple representation, neither Shimple nor BoogiePL do the optimizations
described in Sec. 3.5: our system can eliminate, in one pass, almost all stack
variables in the RBR and, besides, slice out variables which do not affect the
cost; this results in a more efficient subsequent size analysis. (2) Neither Soot
nor BoogiePL perform loop extraction, which is important for compositionality
in cost analysis. Julia provides a generic analysis engine where sharing, class,
nullity, information flow, escape and static initialization analyses have been in-
tegrated. None of these systems include resource usage analysis, though Julia
implements some components (in particular class, nullity, sharing and cyclicity

analyses) which are required by size analysis (Sec. 5).
Focusing on cost analysis, important effort has been devoted to adapt the

general framework by Wegbreit [29] to different languages and programming
paradigms. A main goal in this line is defining a setting where RRs can be gen-
erated from different languages. In the context of Java bytecode, a cost analysis
framework is presented in [3] which shows that standard cost analysis can be
performed on Java bytecode. Moreover, the framework has been instantiated
to heap consumption inference [5]. Essentially, it proposes to (1) transform the
bytecode into a high-level recursive representation; and (2) perform size analysis
on it to generate the RR. This work has heavily influenced the design of costa,
which follows the same basic steps. However, though providing convincing argu-
ments for the feasibility of cost analysis in a bytecode language, this work has
not yet provided the components needed for the design and implementation of a



scalable and realistic resource analyzer. In particular, the recursive representa-
tion lacked class analysis (Sec. 3.2), loop extraction (Sec. 3.3) and optimizations
in Sec. 3.5, which are fundamental to design a manageable bytecode represen-
tation to infer resource usage. The removal of useless variables is the subject
of previous work [4], but that algorithm is less efficient, as already discussed in
Sec. 5.1. As regards the cost process itself, it lacked the analysis steps described
in Sec. 4.1 and 4.2, and did not perform abstract compilation to implement the
size analysis (Sec. 5.3). All the new components presented in this paper are re-
quired to achieve efficient and accurate cost and termination analyses, and apply
them to realistic benchmarks.

9 Discussion and Applications

The costa system provides a platform for integrating resource usage analysis
for Java bytecode by providing the notion of resource as a black box component.
The analyzer follows the traditional approach to cost analysis, i.e., generating
and solving recurrence relations. This approach is very powerful, as it is not
restricted to any complexity class, and can be used to measure several interesting
resources. Also, a unique feature of costa is that it works at the bytecode level,
which makes it possible to obtain more accurate upper bounds w.r.t. the source
level, as compiler optimizations at the level of the JVM are already accounted
for. Java bytecode analysis implies problems typically occurring in those arising
in the object-oriented paradigm. Our approach handles these issues, and can be
applied in the usual fields related to resource usage analysis:

Granularity Control [14, 16]. Parallel computers have currently become
mainstream with multicore processors. In parallel systems, knowledge about
the cost of different procedures in the object code can be used to guide the
partitioning, allocation and scheduling of parallel processes.

Performance Debugging and Validation [17]. This is a direct application
of cost analysis, where the analyzer checks assertions about the efficiency of the
program, written by the programmer. Assertions possibly refer to source code,
but can be easily translated to be understandable by the bytecode analyzer.
Likewise, analysis results obtained on the bytecode are somehow closer to the
actual runtime behavior, and can be easily related to the Java program.

Resource Bound Certification [12, 7, 9]. It refers to the certification of safety
properties involving cost requirements, i.e., that the untrusted code adheres to
specific bounds on resource consumption. This is a key point in the design of
Proof-Carrying code [22] architectures, where the user wants some guarantees
that running the code will not take too much an amount of resources. Previous
work deals with linear bounds [12, 7], semi-automatic techniques [9], or source
code [17]. Our approach shows that it is possible to automatically generate cost-

bound certificates for realistic mobile, Java bytecode languages.
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