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Abstract

This paper describes costa, a cost and termination analyzer for Java bytecode. The system receives
as input a bytecode program and a selection of a resources of interest, and tries to bound the resource
consumption of the program with respect to such a cost model. costa provides several non-trivial notions
of resource, as the consumption of the heap, the number of bytecode instructions executed, the number of
calls to a specific method (e.g., the library method for sending text messages in mobile phones), etc. The
system uses the same machinery to infer upper bounds on cost, and for proving termination (which also
implies the boundedness of any resource consumption). The demo will describe the architecture of costa
and show it on a series of programs for which interesting bounds w.r.t. the above notions of resource can
be obtained. Also, examples for which the system cannot obtain upper bounds, but can prove termination,
will be presented.
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1 Introduction

Research about resource usage goes back to the seminal work by Wegbreit in 1975

[24], which proposes to analyze the performance of a program by deriving a math-

ematical expression which represents its runtime behavior. In a nutshell: given an

input program, cost analysis works as follows: (1) in the first step, it generates an

associated cost equation system (CES) from the program, which captures the rela-

tion between the different parts of the code. CESs are sets of recurrence equations

which express the cost of a program in terms of the size of its input arguments. (2)

In the second step, CESs can be often solved (or approximated) by typically rely-

ing on algebraic techniques, thus obtaining a closed form (e.g., without recurrence)

solution or upper (or lower) bound for it.
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Fig. 1. Input/Output of the costa System

On the other hand, termination analysis can be classified within the category of

cost analyses since termination implies that the resource consumption of a program

is finite. Indeed, when a resource analyzer finds an upper bound on certain measure

of resource consumption as for example the number of execution steps, then termi-

nation is directly entailed. Not surprisingly, techniques used to find upper bounds

on cost are very related to those used in termination analysis, and much of the

technology used by termination analyzers is also needed in cost analysis. Therefore,

it is useful to have both analyses integrated in the same tool.

There exist a good number of cost usage analysis frameworks for a wide variety

of programming languages, including logic [18,10], functional [19,21,12,6] and im-

perative languages [3,14,6,17]. In all cases, the steps described above are adapted to

the specific features of the language. Moreover, several termination analyzers have

been developed in the last decades [15,7,8,11]. In spite of such large amount of work

in the area, the application of resource usage analysis to a realistic programming

language, and to programs with a realistic size and complexity, is still, in many

cases, an open issue, and there is a lack of resource usage analysis tools.

This paper presents costa, a tool which is, to the best of our knowledge, the first

resource usage analyzer for an object-oriented, stack-based, low-level programming

language. The system works on Java bytecode programs [16], a language which is

widely used nowadays in a large number of applications. In the rest of the paper,

we discuss the design and implementation of the components which are included in

costa, and provide a brief outline of the planned tool demonstration.

2 An informal description of the system

Figure 1 shows a schema of costa, where the input and output of the system is

made visible. The analyzer is written in Prolog and relies on the theory of Abstract

Interpretation [9]. It uses some external libraries, such as the Parma Polyhedra

Library [5] and the CU Decision Diagram Package [22], for implementing some of

the underlying abstract domains (polyhedra and decision diagrams).

The input to the analyzer consists of three parts.

• A set of Java Bytecode classes, in the form of .class files.

• The signature of the initial method, as well as an abstract description of the

input arguments. The description of the input is basically information about the

abstract values of the arguments w.r.t. some of the abstract domains (e.g., that a

variable is non-null, or that its size is greater than zero, etc). This can definitely

help the rest of the analysis.
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• The cost model of interest, either user-defined or among those available in the

system. The system includes the definition of a set of useful cost models, such

as the number of executed bytecode instructions and the memory consumption,

and it is easy to define new cost models.

For each reachable method, the analyzer outputs, when possible, a closed form

function which is an upper bound of its actual cost with respect to the selected cost

model. Moreover, it is reported whether the analyzer has been able to prove ter-

mination. costa consists of several generic fixpoint engines, either goal-directed or

goal-independent, which can be used to implement different abstract interpretation

based analyses by providing the corresponding abstract operations.

We start by presenting the notion of cost model as it is formalized in the system.

Afterwards, we describe the basic components of costa and the main steps of the

analysis.

The Notion of Cost Model

This paragraph gives an informal account of how the notion of cost has to be

interpreted. First, bytecode instructions are assumed to be annotated with their

input and output variables. For example, iadd(a, b, c) is the annotated version of

iadd , where a and b are the input variables (i.e., the last two elements of the stack),

and c is the output variable (i.e., the last element of the stack after the input has

been popped).

A cost model M is a mapping from annotated bytecode instructions to cost ex-

pressions, which are non-negative symbolic arithmetic expressions defining the cost

of executing the corresponding bytecode instruction [2]. Executions of sequential

Java bytecode programs can be regarded as traces. Execution begins in an initial

state S0. According to the particular instruction in the current program counter

Si, another state Si+1 is obtained, and we say that there is a transition between

Si and Si+1. We use Si ;bi
Si+1 to denote that, by applying the (annotated) in-

struction bi, which is the current one at Si, the state Si+1 is obtained. The cost of

a trace S0 ;b0
· · ·Sn ;bn

Sn+1 is simply the sum of the cost of all transitions, i.e.
∑

i=n

i=0 M(Si), where the state Si also contains information about the next instruction

bi to be executed.

The costa analyzer aims at approximating the cost with respect to a given

cost model and an initial state, or proving the absence of infinite traces (i.e., the

termination of the program).

As already mentioned, useful cost models include:

• the number of executed instructions, which gives cost 1 to every transition, and

approximates the length of the execution trace;

• the heap consumption, which approximates the amount of heap used at execution

time [4];

• the number of method calls for a given method, which is useful when the focus is

on a specific functionality of the program (e.g., the method sending text messages

in a mobile application).

It is important to note that proving the termination of a program implies a finite
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bound on the cost for any reasonable cost model. However, the inverse direction

does not hold, since a non terminating program could even have a null cost with

respect to some cost measure (for example, the heap consumption for code which

has a non-terminating loop, but does not even use the heap). This inverse direction

holds, however, for cost models which always assign infinite cost to infinite traces.

This is the case of models where any transition has a non-zero cost. On the other

hand, in the heap consumption cost model, or in the one counting method calls,

there are transitions with cost zero, and it is possible to have infinite traces which

only involve such no-cost transitions.

From the Java Bytecode to the Control Flow Graph

The control flow of a program is essential when reasoning about its cost and ter-

mination, since it provides valuable information about the possible paths which

may be taken during the execution, and about the parts which are executed itera-

tively. Java Bytecode is a low-level, object-oriented programming language. Unlike

high-level, structured programming languages such as Java, it has an unstructured

nature, so that it may impose a rather complicated control flow: conditional and

unconditional jumps are allowed, as well as virtual method invocation and exception

handling. In this step, the analyzer recovers the structure of the bytecode program

by means of a set of control flow graphs (CFGs for short), each one consisting of

basic blocks (containing sequential instructions) and conditional edges, describing

the condition under which control can go from the end of one block to the begin-

ning of another block. These edges stem from explicit (jumps, etc.) and implicit

(exceptions) conditions in the original program.

The use of virtual invocation implies the need to consider more than one method

for execution at a given program point. In practice, computing a precise approxi-

mation of the reachable methods is not trivial, and asking the user to provide such

information is not practical. To this end, costa uses Class Analysis in order to

precisely approximate this information, as follows. First, the CFG of the initial

method is built, and class analysis is applied in order to approximate the possible

runtime classes of each reference variable at each program point. Afterwards, this

information is used to decide which methods may be called for each virtual invo-

cation. Such methods are loaded and their corresponding CFGs are constructed.

Class analysis is applied to their body, and the process continues iteratively. Clearly,

class analysis may compute an over-approximation of the set of possible runtime

classes, but the approximation is acceptable in most cases. Once a fixed-point is

reached, it is guaranteed that all reachable methods have been loaded and their

corresponding CFGs have been generated. The use of class analysis to approximate

the set of reachable methods is crucial for the overall practicality of the analyzer,

especially to analyze methods which are defined in the Object class as those found

in most libraries, since it drastically reduces the number of methods to be analyzed.

In addition to constructing the CFGs, the analyzer simultaneously computes the

height of the operand stack and the types of its elements (reference, integer, etc.) at

each program point. This can be done statically by means of standard techniques,

4



Albert, Arenas, Genaim, Puebla, Zanardini

as in the virtual machine 1 . Information about the stack height is used in order to

represent stack elements as local variables, and type information helps to restrict

the underlying static analysis (the part approximating the heap) only to reference

variables, thus improving performance.

Moreover, the user can choose to perform an additional analysis of the code,

which tries to extract loops into separate CFGs. Loop extraction is implemented

efficiently using algorithms which have been developed in the context of decompila-

tion [23]. It is essential to improve the accuracy of both cost and termination when

the program involves nested loops.

From the Control Flow Graph to the Rule-Based Language

In order to facilitate cost and termination analyses, CFGs are transformed into an

intermediate language, referred to as rule-based representation, which has a simpler

control flow: (1) there is only one iterative construct, implemented by means of

recursion; (2) there is only one conditional construct, implemented by means of

guarded rules; (3) there is only one kind of variable (the local variables), and no stack

(it is transformed into additional local variables); (4) there is no virtual method

invocation; and (5) the heap is similar to the one of Java Bytecode. A rule-based

program consists of a set of procedures. Each procedure p is defined by a set of

mutually exclusive rules of the form p(x̄, ȳ)::=g, b1, . . . , bn, where p is the procedure

name, x̄ are the input variables, ȳ are the output variables, g is a Boolean condition

(guard) under which the rule can be applied, and each bi is either an annotated

bytecode instruction (see above) or a call (by value) to another procedure. Note

that bytecode instructions are annotated by using the stack height information

previously computed. Briefly, when calling a procedure p, the rule to be executed

is the (unique) one whose guard is satisfiable (the rules of a procedure are mutually

exclusive), and its body is executed sequentially from left to right.

Obtaining the rule-based representation which corresponds to a CFG is done by

generating one rule for each CFG block. The rule contains annotated bytecode in-

structions and possibly calls to other rules which correspond to method invocations

in the bytecode of the corresponding block. Moreover, the rule contains the call

to a continuation procedure, defined as a set of guarded rules which decide which

rule the control should be transferred to. Guards of the continuation rules originate

from the corresponding conditional edges in the graph. It is possible to provide an

operational semantics for the rule-based representation which is equivalent to that

of the original bytecode program. Furthermore, given an execution trace at the

rule-based level, it is straightforward to obtain the trace which the JVM semantics

would produce for the same initial call and input values. Therefore, thanks to this

straightforward correspondence between traces at the rule-based level and the JVM

level, we can develop our analysis at the simpler rule-based level and produce results

about the cost of execution and termination at the JVM level.

Note that a similar approach could be done for other related programming lan-

guages, such as .NET, by proposing a translation into our rule-based representation

1 Note that the bytecode is supposed to be a valid one, i.e., the stack height and the type of operands are
consistent with respect to the static checks of the virtual machine.
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together with a mapping from traces at the rule-based level to the .NET level.

Inferring linear relations between the (abstract) values of program variables

In order to bound the cost of a rule-based program or prove its termination, it

is required to infer information which approximates how many times the program

goes through its loops (i.e., the number of times each rule may be traversed). This

is done in costa by an abstract interpretation based analysis which infers linear

relations between the program variables with respect to the following abstractions:

• The abstract value for a reference variable represents the length of the maximal

path reachable from that reference [13] by dereferencing. This is used to handle

loops which traverse structures on the heap;

• The abstract value for an array reference variable represents the length of the

array. This is used to handle loops which traverse the elements of arrays;

• The abstract value for an integer variable corresponds to its possible concrete

values [9]. This is used to handle loops with termination conditions on integer

variables, and to approximate the values of the variables which are used in the

cost model.

• The remaining variables are abstracted to unknown.

The analysis consists of two steps. In the first step, a static-single assignment trans-

formation (SSA) is applied to the rules, and each guard and bytecode instruction is

replaced by the linear constraints it imposes on its variables. E.g., iadd(s0, s1, s0)

results in the constraint s′0 = s0 + s1 (meaning that the output s′0, whose name is

obtained by SSA, is the sum of the inputs); getfield(f, s0, s
′
0) is abstracted, as long

as s0 is not cyclical, into s0 > s′0 (meaning that the maximal path reachable from

o.f is shorter than the maximal one reachable from o); and the guard gt(s0, s1)

results in the constraint s0 > s1. This step results in an abstract constraint program

which approximates the behavior of the original program with respect to the above

abstractions. In the second step, a fixpoint computation is applied to infer the

input-output denotations for each rule. This abstract compilation relies on several

pre-analyses, such as (i) cyclicity analysis [20], which is required for path-length

(see above the abstraction of getfield); (ii) sign and constant propagation analysis,

which are needed to improve the precision of division operations; and (iii) nullity

analysis, improving the analysis of reference values. In addition, annotations (rela-

tive to the chosen abstract domains) for external code can be incorporated in this

step, provided it is guaranteed that such external code will not generate any call

back to the user code.

Generating Cost Equation Systems

The next step consists in setting up a cost equation system (CES) which captures

the cost of the rule-based program and its termination behavior in terms of the

input values. A CES is a set of equations of the form:

p0(x̄0) = exp + p1(x̄1) + · · · + pn(x̄n), ϕ
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where ϕ is a conjunction of linear constraints describing the relation between the

values of the variables, and exp is a cost expression. The above equation states

that, for given (abstract) values x̄i = v̄i such that ϕ |= ∧x̄i = v̄i, a possible cost

for p0(v̄) is exp[xi 7→ vi] plus the sum of the costs of p1(v̄1) · · · pn(v̄n). For each

rule in the rule-based representation, the analyzer generates a corresponding cost

equation by using the abstract rule to generate ϕ, and the original rule together with

the selected cost model to generate exp (i.e., the cost expression has to represent

the cost of the bytecodes in the rule w.r.t. the model). The differences between a

CES and a recurrence equation systems are explained in [2]. Basically, a CES is

a non-deterministic constraint functional program. Non-determinism might appear

due to the loss of precision inherent to (static) size analysis. This means that, for

given input values v̄0, the query p0(v̄0) may result in several solutions. Yet, it is

guaranteed that (1) one of the solutions corresponds to the actual cost of the rule-

based program; and (2) if p0(v̄0) has a finite number of solutions and does not lead

to any infinite computation, then the original bytecode program terminates for the

corresponding concrete input. More details can be found in [2].

Inferring Upper Bounds and Proving Termination from CES

Unless a closed form solution which describes the cost of a program only in terms

of its input variables (i.e., with no references to other equations) is found, cost

equation systems turn out not to be practical. Due to the non-decidable and non-

deterministic features of CESs, in most cases, it is not possible to obtain an exact

solution (see [2]). Therefore, the aim is to obtain non-asymptotic 2 upper (or lower)

bounds. costa includes a practical CES solver [2], which, for a given CES, com-

putes a non-asymptotic closed form upper bound. The solver handles a large set of

complexity classes, such as logarithmic, linear, polynomial, and exponential.

In addition to the cost of a program, the focus of the analysis may also be on its

termination. As already mentioned, proving termination involves guaranteeing that

a finite upper bound for the system exists, even if it cannot be found explicitly. Our

system incorporates techniques used in constraint logic programming, as described

in [1], to prove termination on the above non-deterministic constraint functional

representation, which in turn implies termination of the Java bytecode program.

Plan of the Demo

The demonstration of costa will basically go through some examples which illus-

trate how the analyzer works. In particular, it will be shown how costa auto-

matically deals with the analysis, from the original bytecode program to the cost

upper bound or the termination behavior, without user intervention. We will show

the definition of the current cost models that the system incorporates. Significant

examples with different cost models will be provided, which will shed light on the

capability of the system to deal with differently structured programs and different

notions of resource consumption. Moreover, the demo will include an example where

an upper bound cannot be found, but termination can be proven by guaranteeing

2 I.e., which hold for every input value, not only for values greater than a threshold.
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that such a bound exists. This shows how most parts of costa are common to

both analyses, and how, on the other hand, termination and cost can pose different

problems to static analyzers.
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[17] J.-Y. Marion and R. Pèchoux. Resource control of object-oriented programs. In International LICS
affiliated Workshop on Logic and Computational Complexity (LCC 2007), Wroclaw, Poland, 2007.
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