
Teaching Prolog with Active Logic Documents ∗

Jose F. Morales1,2, Salvador Abreu3, Daniela Ferreiro1,2, and Manuel V. Hermenegildo1,2

1 Universidad Politécnica de Madrid (UPM)
2 IMDEA Software Institute

3 NOVA LINCS / University of Évora
{josef.morales,daniela.ferreiro,manuel.hermenegildo}@imdea.org

spa@uevora.pt

Abstract. Teaching materials for programming languages, and Prolog
in particular, classically include textbooks, slides, notes, and exercise
sheets, together with some Prolog programming environment. However,
modern web technology offers many opportunities for embedding inter-
active components within such teaching materials. We report on our ex-
periences in developing and applying our approach and the correspond-
ing tools to facilitating this task, that we call Active Logic Documents
(ALD). ALD offers both a very easy way to add click-to-run capabili-
ties to any kind of teaching materials, independently of the tool used to
generate them, as well as a tool-set for generating web-based materials
with embedded examples and exercises. Both leverage on (components
of) the Ciao Prolog Playground. Fundamental principles of our approach
are that active parts run locally on the student’s browser, with no need
for a central infrastructure, and that output is generated from a single,
easy to use source that can be developed with any editor. We argue that
this has multiple advantages from the point of view of scalability, low
maintenance cost, security, ease of packaging and distribution, etc. over
other approaches.

Keywords: Active Logic Documents, Prolog Playgrounds, Teaching Prolog,
Prolog, Ciao-Prolog, Logic Programming, Web, Literate Programming.

1 Introduction

Teaching programming languages traditionally relies on an array of dispersed
materials, such as textbooks, class notes, slides, or exercise sheets, as well as
some programming environment(s) for students to run programs. Teaching Pro-
log is of course no exception. More recently, web-based technology has been
facilitating the combination or embedding of interactive components into such
? Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-I00 PRODIGY, and FJC2021-047102-I, by the Comunidad de Madrid pro-
gram P2018/TCS-4339 BLOQUES-CM, by FCT under strategic project UIDB/-
04516/2020 (NOVA LINCS) and by the Tezos foundation. The authors would also
like to thank the anonymous reviewers for very useful feedback on previous drafts
of this paper.

teaching materials. This, however, poses a number of challenges, since there are
multiple possible approaches to this end, and new technologies are constantly
appearing that offer different trade-offs and capabilities. In this paper we report
on our experiences in developing and applying two approaches and the corre-
sponding tools in order to facilitate this task, that we collectively call Active
Logic Documents – ALD, and which we believe offer interesting advantages over
other approaches.

Mixing text and code has long been a topic of research and development,
largely stemming from Knuth’s seminal Literate Programming [10] concept.
However, packaging and distribution of hybrid text and code systems has tra-
ditionally been complicated by dependencies on specific working environments,
such as, for instance, the need for a specific operating system or even a specific
version thereof, the availability of specific support software, library dependencies,
etc. Because of this, over the years, several efforts have been made to provide
online learning platforms such as the Khan Academy [13] which also strives to
present teaching materials in a game-like form, and the idea has more recently
materialized in web-based platforms, as exemplified by Jupyter notebooks 4. This
modern web technology affords dynamic and multimedia components, which
clearly make teaching materials more palatable. In the Prolog world, SWISH
provides a web-based platform for producing notebook-like sites that has been
used to create online courses and exercises for logic-based programming lan-
guages [15]. Flach et al. [3] offer a very interesting account of their efforts to
create progressively more interactive versions of their book, including combina-
tions with Jupyter notebooks and with SWISH. Independently, Brecklinghaus
et al. [2] implement a Jupyter kernel for SICStus Prolog and SWI-Prolog.

All these systems, however, rely on a server-side platform. Although this
is in principle convenient to the end user, server-centric architectures also have
drawbacks, e.g.: they introduce a dependency on the server; maintaining a server-
side infrastructure can represent a significant burden; the user content built on
such a platform is tied to the availability and reachability of such platform; the
approach may also affect other aspects, such as scalability or privacy; etc.

In contrast, the fundamental principles of our ALD approach are that the
reactive parts of the materials (the Prolog code written by the course developer
or the student and all the related functionality) run locally on the student’s
web browser, with no need for a central infrastructure, and that the output is
generated from a single, easy to use source that can be developed with any editor.
We argue that this approach has multiple advantages from the point of view of
scalability, low maintenance cost, security, independence from unconventional
tools, etc. over other approaches. Our tools, described in the following sections,
are meant to help course developers in at least two basic scenarios:
– Some course developers prefer to develop (or have already developed) their

teaching materials with their own tools (such as, e.g., LaTeX, PowerPoint,
Pages, Word, etc.), which have been stable for a long time, and may be
reluctant to port these materials to a bespoke platform. For this case we

4 https://jupyter.org/

2

https://jupyter.org/

Fig. 1. The Ciao Playground

offer a “click-to-run” methodology, based on the Ciao Prolog playground,
which we describe in Section 2. This provides a very easy way to incorporate
click-to-run capabilities in any kind of teaching materials, independently of
the tool used to generate them or the generated format (pdf, html, etc.), and
with no dependencies on any central server.

– For course developers that are willing to port their materials, we offer a tool
(an extension of the LPdoc documenter) that greatly facilitates generating,
using any conventional editor, web-based materials with embedded examples
and exercises. These will run locally on the student’s browser, again with no
dependencies on any central server. We describe this part of our approach
in Section 3.

2 Embedding Runnable Code in Documents via
Browser-based “Click-to-Run”

A common method for adding interactivity to teaching materials is the “click
to run” approach. Code blocks in such materials become clickable elements that
load the code into a suitable environment for online execution. This functionality
has been traditionally supported by server-side playgrounds or notebooks, where
the code is run on a server and the examples need to be loaded and saved on
that server. In contrast, our approach incorporates two aspects that depart from
these classical methods: the first one is that, as mentioned before, code execution
is performed fully on the browser; the second one is that examples are stored
in the documents5 themselves, with no need to previously upload them or have
them stored in remote servers.

The main component providing such functionality in our approach is the
Ciao Playground 6 [4,5] which allows editing and running code locally on the
user’s web browser (See Figure 1). To this end, the playground uses modern Web
technology (WebAssembly and Emscripten, see Section 5) to run an off-the-shelf
Prolog engine and top level directly in the browser, able to fully access browser-
side local resources. The main advantage of this general architecture is that it is
easily reproducible and significantly alleviates maintenance effort and cost, as it
essentially eliminates the server-side infrastructure.

5 By “document” we mean the actual document (in pdf, or XML, etc.) which has been
produced by the course writer and which is being read by the student.

6 https://ciao-lang.org/playground

3

https://ciao-lang.org/playground

In addition to the previously mentioned functionality, the playground pro-
vides an easy way to embed short code snippets (or links to larger source code)
in web links themselves. These links can then be stored within documents and
passed on as Prolog code to the playground, to be locally executed on the stu-
dent’s browser. This approach makes it very easy to include runnable code in
manuals, tutorials, slides, exercises, etc., provided they are in a format that
has support for HTML links, such as pdf files, and also Google Docs, Jupyter
notebooks, Word, PowerPoint, LATEX, Pages, Keynote, Org mode, or web site
generators. Additionally, links can be easily shared by email or instant messaging
applications.

For example, assume that we would like to include in the teaching materials
being developed the classic append program:

1 app([],X,X).
2 app([X|Y],Z,[X|W]) :- app(Y,Z,W).

We will start by opening the playground in our browser (which, as men-
tioned before, will run locally), and pasting the program into the playground
editor pane (as in Figure 1). After perhaps testing the program to make sure it
has the functionality that we would like to illustrate, we will use the playground

button to generate and copy into the clipboard a link that contains
the program encoded within the link itself. Then we can add this link in any
LaTeX, Word, PowerPoint, HTML, etc. document to produce a clickable area
such as which, when accessed, starts a new instance of the Playground in the
browser, with the program preloaded. For LaTeX in particular, some macros
are provided with the system as a “prologrun” LaTeX style file that simpli-
fies the task even more. For example, the following simple LaTeX source code
(where https://ciao-lang.org/playground/... represents the link obtained
from the playground):

1 \codelink{https://ciao-lang.org/playground/...}
2 \begin{prologrun}
3 app([],X,X).
4 app([X|Y],Z,[X|W]) :- app(Y,Z,W).
5 \end{prologrun}

is rendered as follows (including the “run” button):

run I1 app([],X,X).
2 app([X|Y],Z,[X|W]) :-
3 app(Y,Z,W).

The Playground is essentially a fully-fledged Prolog environment which in-
cludes much other functionality such as running tests, generating documenta-
tion, verifying program assertions, or specializing code, some of which will be-
come instrumental in the following steps. In addition, specialized instances of
the Playground can be easily created, an example of which is the s(CASP) play-

4

https://ciao-lang.org/playground/?code=app(link!
https://ciao-lang.org/playground/?code=app(%5B%5D%2CX%2CX).%0Aapp(%5BX%7CY%5D%2CZ%2C%5BX%7CW%5D)%20%3A-%20app(Y%2CZ%2CW).%0A

ground [5] 7. More information on the implementation of the Ciao WebAssembly
back end and the Playground architecture can be found in Section 5 and in [5]
(and for the s(CASP) system in [1]).

3 Active Logic Documents

While click-to-run functionality is convenient and highly portable, we have also
developed a more comprehensive tool (as an extension of the LPdoc documenter)
that greatly facilitates the generation of web-based materials with embedded ex-
amples and exercises, using any conventional editor. These full-fledged Active
Logic Documents are web pages with embedded Prolog programs, all sharing
a common environment. The examples run on the pages themselves, in an em-
bedded version of the playground, without the need for a separate playground
tab.

Creating Documents with Editable and Runnable Code using LPdoc
The basis of our approach is LPdoc [7,8], which pioneered automatic program
documentation in the context of Logic Programming and (C)LP.8 Its main ap-
plication is the generation of reference manuals directly from the actual code
(including any assertions used to formally describe predicates), as well as from
comments in the .pl source files or dedicated .lpdoc documentation files. How-
ever, LPdoc is often also used to generate other kinds of documents, such as tuto-
rials, and also web sites and other kinds of on-line linked documents. Like many
other tools, such as LATEX, or the Web itself, LPdoc uses a human-oriented doc-
umentation format 9 for typesetting and does not impose the use of a particular
WYSIWYG editor.10 In particular, LPdoc supports writing rich-text documents
in markdown syntax, with standard features like the inclusion of verbatim text
and code blocks, syntax highlighting, and more, which allows for the inclusion
of code segments in the midst of fairly flexible structured text, with hyperlinks.
The use of documentation generation systems to write whole reference manuals,
books, and teaching materials has become quite widespread in the past years.

To realize the ADL approach, the key step was to enhance LPdoc with the
possibility of embedding Prolog environments, based on the Ciao Playground,
which opens up a wide degree of possibilities for interaction. With this step,
documents with embedded editable and runnable examples can be generated
easily using LPdoc. The source that the developer of the course, tutorial, etc.
works with is one or more LPdoc source files, in, e.g., markdown format. LPdoc
7 https://ciao-lang.org/playground/scasp.html
8 Written in Prolog of course!
9 Editors like MS-Word use non-human oriented document formats: bloated with
metadata, often binary encoded and undocumented, almost impossible to modify
and maintain without the original tools, and really hard to integrate with code-
oriented version control systems.

10 However, note that once themarkup language is stable and well defined, it is perfectly
possible to implement rich WYSIWIG front-ends that can save documents in this
format. See for example Lyx, TeXmacs, etc. or rich-editors for Markdown.

5

https://ciao-lang.org/playground/scasp.html

processes these files and generates html pages in which the code fragments in
the source are automatically rendered as editable panes that can be run in place
in an embedded playground (as well as loaded into the standalone playground
as before). The generated pages can then be published easily as any other web
pages, e.g., in a course web site, in a personal public_html area, etc. Everything
needed, including the runnable examples, queries, etc., is contained in the pages
themselves. When students visit these pages with their browser, all executions
occur locally in their browser.

Interaction facilities for Self-assessment Especially in the context of a
self-taught Logic Programming course, the embedded playground approach al-
lows for very rich interactions. That is, code can be evaluated and edited directly
in the same document. This enables direct support for self-evaluation and testing
mechanisms. For example, code examples allow automated “semantic” evaluation
of user input, e.g., by running code tests on the solution provided by the stu-
dent. Document-level dependencies between examples, topics, and sections, allow
“gamification” (e.g., evaluating your progress, obtaining points and trophies, hid-
ing/showing tasks, un-blocking levels, etc.) of the learning activities, ensuring
that the reader can acquire the necessary confidence on basic topics before going
on to more advanced concepts.

Moreover, the Prolog top-level loop which underlies the Playground can in-
terpret terms which result from solutions to goals in more ways than just printing
them out. Similarly to Prolog’s display/1 predicate, some terms may be inter-
preted as giving rise to graphical or other user-interface components.

4 A Simple Example: Coding Factorial

We now illustrate through a concrete, worked-out example, the process of cre-
ating documents with editable and runnable examples using LPdoc. We will
develop an exercise where we present the student with a simple task: given a
factorial program which uses Peano arithmetic, to rewrite it using Prolog’s is/2.
We will show piecemeal how to put together the source for this example. We will
first show the part of the output that we want LPdoc to produce and then the
source that produces that particular output. The full source and output can be
found in Figure 3 in the appendix, and in the Ciao playground manual [4]. 11

We start the exercise with a title and recalling the code for factorial using
Peano arithmetic:

11 https://ciao-lang.org/ciao/build/doc/ciao_playground.html/

6

https://ciao-lang.org/ciao/build/doc/ciao_playground.html/

This first part of the output is generated by the following code:
1 \title Exercise: factorial using ISO-Prolog arithmetic
2
3 Consider again the factorial example, using Peano arithmetic:
4 ‘‘‘ciao_runnable
5 :- module(_, _, [assertions ,library(bf/bfall)]).
6 %
7 factorial(0,s(0)).
8 factorial(s(N),F) :-
9 factorial(N,F1),

10 times(s(N),F1,F).
11 %
12
13 nat_num(0).
14 nat_num(s(X)) :- nat_num(X).
15
16 times(0,Y,0) :- nat_num(Y).
17 times(s(X),Y,Z) :- plus(W,Y,Z), times(X,Y,W).
18
19 plus(0,Y,Y) :- nat_num(Y).
20 plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
21 ‘‘‘

We first note that, in addition to text in markdown format, code between
‘‘‘ciao_runnable and ‘‘‘ produces a panel in the output containing the
code, which is editable and runnable. The code can be in modules and/or in
’user’ files. We also note that it is possible to specify that only some parts of the
code should appear in the output, by placing those parts between begin focus
and end focus directives. This makes it possible to hide boilerplate lines (such
as, e.g., module declarations, imports, auxiliary code, etc.) when they are not
useful for the discussion. In this case we have hidden the auxiliary predicates
that we assume have already been seen by the student in another lesson.

The arrow in the code pane allows loading the code in the playground, but
we can also run the code in place within the document. One way to do this is to
add one or more queries:

This can be easily achieved with the following markdown with embedded Prolog
code:

7

1 Some facts to note about this version:
2 - It is fully reversible!
3 ‘‘‘ciao_runnable
4 ?- factorial(X,s(s(s(s(s(s(0))))))).
5 ‘‘‘

In the resulting panel, the query may be edited and pressing on the triangle
executes it in place:

Regarding scoping, there is essentially one Ciao Prolog top level per page: all
programs in the page are loaded into this Ciao Prolog top level and all queries
in the same page are executed in that top level, against all the code (possibly
separate modules) that has been loaded into the top level up to that point. Code
can be (re)loaded anytime by clicking on the green tick mark in the top left of the
pane; this facility could be used, for example, to reset the state of the program.

After perhaps mentioning that the Peano approach is elegant but inefficient,
we could propose an actual exercise, which is to rewrite the code using Prolog’s
is/2 (or constraints!):

Here the pane is again editable and contains the original (Peano) code adorned
with comments, all of which act as hints or instructions on how to proceed. Of
course, this description could also be somewhere else, e.g., in the surrounding
text. Clicking on the yellow face will perform the evaluation, in this case
running some (hidden) unit tests [11], on the code in order to give feedback to
the student. Other evaluation methods (e.g., running a program analysis or a
mere syntactic comparison) can also be useful. It is also possible for the student
to give up and ask for the solution, in which case the proposed solution will be
shown and can be executed.
All this functionality can be generated using the following code:

8

1 Try to encode the factorial program using ‘is/2‘:
2
3 ‘‘‘ ciao_runnable
4 :- module(_, _, [assertions]).
5
6 :- test factorial(5, B) => (B = 120) + (not_fails , is_det).
7 :- test factorial(0, 0) + fails.
8 :- test factorial(-1, B) + fails.
9

10 %
11 %
12
13 factorial(0,s(0)). %
14 factorial(M,F) :- %
15 M = s(N), %
16 factorial(N,F1), %
17 times(M,F1,F). %
18
19 %
20 %
21 %
22
23 %
24 factorial(0,1).
25 factorial(N,F) :-
26 N > 0,
27 N1 is N-1,
28 factorial(N1,F1),
29 F is F1*N.
30 %
31 ‘‘‘
32
33 Note that wrong goal order can raise an error (e.g., moving the last
34 call to ‘is/2‘ before the call to factorial).

The included unit tests are the ones that will be run to test the student’s code (a
small subset has been included for brevity). The segment within hint directives
behaves similarly to the focus segments but represents a hint or instructions, and
will be replaced by the solution, should it be asked for. The solution, if provided,
is marked with the corresponding directives.

The appendix provides a complete example of a class exercise based on the
code fragments above, showing the full source and the full output. The result-
ing, working Active Logic Document can be found, as mentioned before, as an
example in the Ciao playground manual [4]. 12

5 The Technical Approach

From a technical point of view the Ciao playground requires devising a means
for running Prolog code directly in the browser.

Our first attempt at this was the Ciao Prolog JavaScript compiler back-
end [12], that enabled the use of Prolog and, in general, (constraint) logic pro-
gramming to develop not just the server side, but also the client side of web
applications, running fully on the browser. Tau Prolog [14] and the tuProlog play-
ground 13 are recent Prolog interpreters written in JavaScript which also make
12 https://ciao-lang.org/ciao/build/doc/ciao_playground.html/
13 https://pika-lab.gitlab.io/tuprolog/2p-kt-web

9

https://ciao-lang.org/ciao/build/doc/ciao_playground.html/
https://pika-lab.gitlab.io/tuprolog/2p-kt-web

it easy to run Prolog in a web page, serverless. While these JavaScript-based
approaches are attractive, they also have drawbacks. Compilation to JavaScript
was a good option at the time, since it was a client (i.e., browser)-based solution
and the resulting speed made it useful for many applications. However, perfor-
mance does suffer with respect to native implementations (see [12]). This is even
more pronounced in the case of the Prolog interpreters written in JavaScript
mentioned above. It is precisely this performance impact that has led to the
development of the WebAssembly virtual machine [6] 14, which is currently sup-
ported by all major browsers.

WebAssembly and the supporting compilation toolchains, such as Em-
scripten [16], enable programs written in languages supported by LLVM to be
compiled to a form which can be executed entirely in the browser, i.e., without
any server-side intervention at runtime, all with very reasonable efficiency. This
is the approach used by the Ciao playground in order to be able to run Prolog
code in the browser. The playground uses the standard Ciao engine, compiled
to WebAssembly using the Emscripten C compiler and the Ciao library for C,
which offers functions for term creation, type conversions, term checks, queries,
and calls. The result is that in the playground Prolog code runs with performance
that is competitive with native Prolog implementations. Additionally, the Ciao
environment is comprised of several independent bundles (collections of modules)
which can be compiled independently and demand-loaded from WebAssembly.
The WebAssembly port of Ciao Prolog thus supports most of the system’s soft-
ware tools, such as LPdoc, CiaoPP (including the testing framework), etc., all
of which are written in Prolog.

6 Conclusions and Outlook

We have described the Active Logic Documents (ALD) approach and toolset,
that we have developed and been applying for embedding interactive Prolog
components within teaching materials. ALD offers on one hand, support for
easily adding click-to-run capabilities to any kind of teaching materials, inde-
pendently of the tool used to generate them, and on the other hand a tool for
generating web-based materials with embedded examples and exercises, based
on the LPdoc documenter and the embedded version of the playground. We have
also justified the fundamental principles of our approach which are that active
parts run locally on the student’s browser, with no need for a central infras-
tructure, and that the whole active document (tutorial, manual, exercise, etc.)
is generated from a single, easy to use source that can be written and modified
with any editor. We argue that this approach has multiple advantages from the
point of view of scalability, maintenance cost, security, ease of packaging and
distribution, etc.

Our tools evolved as a side-effect of the development of our own materials
over the years for teaching logic programming15, embedding runnable code and
14 https://webassembly.org/
15 See also [9] in this same book.

10

https://webassembly.org/

Fig. 2. Adding gameplay functionality in a course for children. This task is accompa-
nied with introductory text (not shown here) that carefully explains that above(X,Y)
must be read as X is above Y, etc. Rather than introducing infix operators at this
very early stage, the course begins with trivial formalization tasks to get familiar with
syntax and abstraction.

exercises in tutorials 16, slides 17, manuals, etc., and they are currently being
used in other projects, such as for example in the development of a Program-
ming course for young children (around 10 years old) within the Year of Prolog
initiatives. The latter effort has implied the inclusion of additional useful fea-
tures in the toolset, such as a “gameplay” which progressively discloses more
advanced parts of the course while striving to keep the interaction interesting
and challenging (see Fig. 2). The JavaScript interface provided by the tools and
the access to Web technology enable endless possibilities for richer Web-based
interaction (e.g., SVG visualization of facts), media rich interactions, touch/click
inputs, audio, graphics or videos, etc.

16 E.g., Interactive CiaoPP tutorials https://ciao-lang.org/ciao/build/doc/ciaop
p_tutorials.html/

17 E.g., Course material in Computational Logic: https://cliplab.org/~logalg

11

https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://cliplab.org/~logalg

Appendix

1 \title Exercise: factorial using ISO-Prolog arithmetic
2
3 Consider again the factorial example, using Peano arithmetic:
4
5 ‘‘‘ciao_runnable
6 :- module(_, _, [assertions ,library(bf/bfall)]).
7 %
8 factorial(0,s(0)).
9 factorial(s(N),F) :-

10 factorial(N,F1),
11 times(s(N),F1,F).
12 %
13
14 nat_num(0).
15 nat_num(s(X)) :- nat_num(X).
16
17 times(0,Y,0) :- nat_num(Y).
18 times(s(X),Y,Z) :- plus(W,Y,Z), times(X,Y,W).
19
20 plus(0,Y,Y) :- nat_num(Y).
21 plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
22 ‘‘‘
23
24 Some facts to note about this version:
25 - It is fully reversible!
26 ‘‘‘ciao_runnable
27 ?- factorial(X,s(s(s(s(s(s(0))))))).
28 ‘‘‘
29 - But also inefficient...
30 ‘‘‘ciao_runnable
31 ?- factorial(s(s(s(s(0)))),Y).
32 ‘‘‘
33
34 We can also code it using ISO-Prolog arithmetic , i.e., ‘is/2‘:
35 ‘‘‘ciao
36 ... Z is X * Y ...
37 ‘‘‘
38 Note that this type of arithmetic has limitations: it only works in
39 one direction , i.e., ‘X‘ and ‘Y‘ must be bound to arithmetic terms.
40
41 But it provides a (large!) performance gain. Also, meta-logical
42 tests (see later) allow using it in more modes.
43
44 Try to encode the factorial program using ‘is/2‘:
45 ‘‘‘ciao_runnable
46 :- module(_, _, [assertions]).
47 :- test factorial(5, B) => (B = 120) + (not_fails , is_det).
48 :- test factorial(0, 0) + fails.
49 :- test factorial(-1, B) + fails.
50 %
51 %
52
53 factorial(0,s(0)). %
54 factorial(M,F) :- %
55 M = s(N), %
56 factorial(N,F1), %
57 times(M,F1,F). %
58
59 %
60 %
61 %
62 %
63 factorial(0,1).
64 factorial(N,F) :-
65 N > 0,
66 N1 is N-1,
67 factorial(N1,F1),
68 F is F1*N.
69 %
70 ‘‘‘
71
72 Note that wrong goal order can raise an error (e.g., moving the last
73 call to ‘is/2‘ before the call to factorial).
74
75 **Next:** Let’s try using constraints instead!

Fig. 3. The full source and LPdoc output for the Active Logic Document for the simple
factorial exercise.

12

References

1. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint Answer Set
Programming without Grounding. Theory and Practice of Logic Programming
18(3-4), 337–354 (2018). https://doi.org/10.1017/S1471068418000285 2

2. Brecklinghaus, A., Koerner, P.: A Jupyter kernel for Prolog. In: Proc. 36th Work-
shop on (Constraint) Logic Lrogramming (WLP 2022). Lecture Notes in Informat-
ics (LNI), Gesellschaft für Informatik, Bonn (September 2022) 1

3. Flach, P., Sokol, K., Wielemaker, J.: Simply Logical - The First Three Decades.
In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F.
(eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023) 1

4. Garcia-Pradales, G., Morales, J., Hermenegildo, M.V.: The Ciao Playground. Tech.
rep., Technical University of Madrid (UPM) and IMDEA Software Institute (2021),
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playgro
und_manual.html 2, 4, 4

5. Garcia-Pradales, G., Morales, J., Hermenegildo, M.V., Arias, J., Carro, M.: An
s(CASP) In-Browser Playground based on Ciao Prolog. In: ICLP’22 Workshop on
Goal-directed Execution of Answer Set Programs (August 2022) 2, 2

6. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.F.: Bringing the web up to speed with webassem-
bly. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017. pp. 185–200. ACM (2017). https://doi.org/
10.1145/3062341.3062363, https://doi.org/10.1145/3062341.3062363 5

7. Hermenegildo, M.V.: A Documentation Generator for (C)LP Systems. In: Inter-
national Conference on Computational Logic, CL2000. pp. 1345–1361. No. 1861 in
LNAI, Springer-Verlag (July 2000) 3

8. Hermenegildo, M.V., Morales, J.: The LPdoc Documentation Generator. Ref. Man-
ual (v3.0). Tech. rep., UPM (July 2011), available at http://ciao-lang.org 3

9. Hermenegildo, M., Morales, J.: Some Thoughts on How to Teach Prolog. In: War-
ren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023) 15

10. Knuth, D.: Literate programming. Computer Journal 27, 97–111 (1984) 1
11. Mera, E., Lopez-Garcia, P., Hermenegildo, M.V.: Integrating Software Testing and

Run-Time Checking in an Assertion Verification Framework. In: 25th Int’l. Con-
ference on Logic Programming (ICLP’09). LNCS, vol. 5649, pp. 281–295. Springer-
Verlag (July 2009) 4

12. Morales, J.F., Haemmerlé, R., Carro, M., Hermenegildo, M.V.: Lightweight com-
pilation of (C)LP to JavaScript. Theory and Practice of Logic Programming, 28th
Int’l. Conference on Logic Programming (ICLP’12) Special Issue 12(4-5), 755–773
(2012) 5

13. Morrison, B.B., DiSalvo, B.J.: Khan academy gamifies computer science. In:
Dougherty, J.D., Nagel, K., Decker, A., Eiselt, K. (eds.) The 45th ACM Tech-
nical Symposium on Computer Science Education, SIGCSE 2014, Atlanta, GA,
USA, March 5-8, 2014. pp. 39–44. ACM (2014). https://doi.org/10.1145/2538
862.2538946, https://doi.org/10.1145/2538862.2538946 1

14. τProlog — an open source Prolog interpreter in javascript. http://tau-prolog.o
rg (2021), last access: April 28, 20235

15. Wielemaker, J., Riguzzi, F., Kowalski, R.A., Lager, T., Sadri, F., Calejo, M.: Using
SWISH to realize interactive web-based tutorials for logic-based languages. Theory

13

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2538862.2538946
http://tau-prolog.org
http://tau-prolog.org

Pract. Log. Program. 19(2), 229–261 (2019). https://doi.org/10.1017/S14710
68418000522, https://doi.org/10.1017/S1471068418000522 1

16. Zakai, A.: Emscripten: an llvm-to-javascript compiler. In: Proceedings of the ACM
international conference companion on Object oriented programming systems lan-
guages and applications. pp. 301–312. SPLASH ’11, ACM, New York, NY, USA
(2011). https://doi.org/10.1145/2048147.2048224, http://doi.acm.org/10.1
145/2048147.2048224 5

14

https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/2048147.2048224
http://doi.acm.org/10.1145/2048147.2048224
http://doi.acm.org/10.1145/2048147.2048224

	Teaching Prolog with Active Logic Documents *

