Computational Logic
A Motivational Introduction

Note: slides with executable links. Follow the run example links to execute the example code.
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
    {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

• Is it correct? With respect to what?

• A suitable formalism is needed:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
 * Aristotle likes cookies, and
 * Plato is a friend of anyone who likes cookies
 imply that
 * Plato is a friend of Aristotle

• Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle, cookies}) \]
 \[a_2 : \forall X \ \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X}) \]
 \[t_1 : \text{friend}(\text{plato, aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

• But, can logic be used:
 ◦ To represent the problem (specifications)?
 ◦ *Even perhaps to solve the problem?*
Using Logic

- For expressing specifications and reasoning about the correctness of programs we need:
 - Specification languages (assertions), modeling, ...
 - Program semantics (models, axiomatic, denotational, fixpoint, ...).
 - Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \equiv 0 \quad 1 \equiv s(0) \quad 2 \equiv s(s(0)) \quad 3 \equiv s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:

 \[
 0 \text{ is a natural,} \quad 1 \text{ is a natural,} \quad 2 \text{ is a natural,} \quad \ldots \\
 nat(0) \quad \land \quad nat(s(0)) \quad \land \quad nat(s(s(0))) \quad \land \quad \ldots
 \]

 ◇ A better solution:

\[
\begin{align*}
 nat(0) \quad \land \quad \forall X \ (nat(X) \rightarrow nat(s(X)))
\end{align*}
\]
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \equiv 0 \quad 1 \equiv s(0) \quad 2 \equiv s(s(0)) \quad 3 \equiv s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:

\[0 \text{ is a natural,} \quad 1 \text{ is a natural,} \quad 2 \text{ is a natural,} \quad \ldots \]

\[\text{nat}(0) \quad \land \quad \text{nat}(s(0)) \quad \land \quad \text{nat}(s(s(0))) \quad \land \quad \ldots \]

◊ A better solution:

\[\text{nat}(0) \quad \land \quad \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals (less or equal than):

\[\text{le}(0, 0) \quad \text{le}(0, s(0)) \quad \text{le}(0, s(s(0))) \quad \ldots \]

\[\text{le}(s(0), s(0)) \quad \text{le}(s(0), s(s(0))) \quad \text{le}(s(0), s(s(s(0)))) \quad \ldots \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \]

\[\forall X \ (\text{nat}(X) \rightarrow \text{le}(0, X)) \quad \land \quad \forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y)))) \]
Generating Squares: A Specification (I)

Numbers — we will use “Peano” representation for simplicity:

\[0 \equiv 0 \quad 1 \equiv s(0) \quad 2 \equiv s(s(0)) \quad 3 \equiv s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:

 0 is a natural, 1 is a natural, 2 is a natural, \ldots

 \[\text{nat}(0) \quad \land \quad \text{nat}(s(0)) \quad \land \quad \text{nat}(s(s(0))) \quad \land \quad \ldots \]

 \[\text{\textbf{A better solution:}} \quad \text{nat}(0) \quad \land \quad \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals (less or equal than):

 \[\text{le}(0, 0) \quad \text{le}(0, s(0)) \quad \text{le}(0, s(s(0))) \quad \ldots \]

 \[\text{le}(s(0), s(0)) \quad \text{le}(s(0), s(s(0))) \quad \text{le}(s(0), s(s(s(0)))) \quad \ldots \]

 \[\forall X \ (\text{nat}(X) \rightarrow \text{le}(0, X)) \quad \land \quad \forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

- Addition of naturals:

 \[\text{add}(0, 0, 0) \quad \text{add}(0, s(0), s(0)) \quad \text{add}(0, s(s(0)), s(s(0))) \quad \ldots \]

 \[\text{add}(s(0), 0, s(0)) \quad \text{add}(s(0), s(0), s(s(0))) \quad \text{add}(s(0), s(s(0)), s(s(s(0)))) \quad \ldots \]

 \[\forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \quad \land \quad \forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]

7
Generating Squares: A Specification (II)

- **Multiplication of naturals:**

 “Multiply \(X \) and \(Y \)” is “add \(Y \) to itself \(X \) times,” e.g.

 \[
 \text{mult}(3, 2, 6) \equiv \text{three times 2 is 6} \, \equiv \, 2 + 2 + 2 = 6
 \]

 \[
 \text{mult}(3, 2, 6) \land \text{add}(6, 2, 8) \rightarrow \text{mult}(4, 2, 8) \, 2 + 2 + 2 + 2 = 8
 \]

 \[
 \forall X \, (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \, (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z))
 \]

- **Squares of the naturals:**

 \[
 \forall X \forall Y \, (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y))
 \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 “Multiply X and Y” is “add Y to itself X times,” e.g.
 $\text{mult}(3, 2, 6) \equiv \text{“three times 2 is 6” (adding 2, 3 times is 6) } \equiv 2 + 2 + 2 = 6$
 $\text{mult}(3, 2, 6) \land \text{add}(6, 2, 8) \rightarrow \text{mult}(4, 2, 8) \quad 2 + 2 + 2 + 2 = 8$

\[
\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \\
\forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z))
\]

- Squares of the naturals:
 $\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y))$

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- Precondition (empty):
 true

- Postcondition:
 $\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0)))))) \land \text{nat_square}(Y, X)))$
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

But, it would be interesting to also improve:

- The process of implementing solutions to problems.
- The importance of Programming Languages (and tools).
- Interesting question: can logic help here too?
From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) *a new view of problem solving and computing is possible* [Green]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable *representation* for the problem (i.e., the *specification*),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nat(s(0)) ?</td>
<td>(yes)</td>
</tr>
<tr>
<td>∃X add(s(0), s(s(0)), X) ?</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>∃X add(s(0), X, s(s(s(0)))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>∃X nat(X) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots)</td>
</tr>
<tr>
<td>∃X∃Y add(X, Y, s(0)) ?</td>
<td>((X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0))</td>
</tr>
<tr>
<td>∃X nat_square(s(s(0)), X) ?</td>
<td>(X = s(s(s(s(0)))))</td>
</tr>
<tr>
<td>∃X nat_square(X, s(s(s(s(0))))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>∃X∃Y nat_square(X, Y) ?</td>
<td>((X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))) \lor \ldots)</td>
</tr>
<tr>
<td>∃X output(X) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(s(s(s(0))))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0))</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - \(\lambda \)-calculus
 - ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing
 - ...

Issues

- We try to **maximize expressive power**. Example: propositions vs. first-order formulas.

 - *Propositional* logic:

 "spot is a dog" \(p \)
 "dogs have tail" \(q \)

 But how can we conclude that Spot has a tail?

 - *Predicate* logic extends the *expressive power* of propositional logic:

 \[
 \text{dog} (\text{spot}) \\
 \forall X \text{dog}(X) \rightarrow \text{has_tail}(X)
 \]

 Now, using deduction we can conclude:

 \(\text{has_tail}(\text{spot}) \)

- But one of the main issues is whether we have an **effective reasoning procedure**.

 → It is important to understand the underlying properties and the theoretical limits!
Comparison of Logics (I)

- **Propositional** logic:

 "spot is a dog" \(p \)

 + decidability

 - limited expressive power

 + practical deduction mechanism

\[\rightarrow \text{Circuit design, “answer set” programming, ...} \]

- **Predicate logic**: (first order)

 "spot is a dog" \(\text{dog}(\text{spot}) \)

 +/- decidability

 +/- good expressive power

 + practical deduction mechanism (e.g., SLD-resolution)

\[\rightarrow \text{Classical logic programming!} \]
Comparison of Logics (II)

- **Higher-order predicate logic:**

 “There is a relationship for spot” \(X(spot) \)

 - decidability
 - good expressive power
 - practical deduction mechanism

 But interesting subsets → HO logic programming, functional-logic prog., ...

- **Other logics:** Decidability? Expressive power? Practical deduction mechanism?

 Often (very useful) variants of previous ones:

 ◊ Predicate logic + constraints (in place of unification)
 → constraint programming!

 ◊ Propositional temporal logic, etc.

- **Interesting case:** \(\lambda \)-calculus

 + similar to predicate logic in results, allows higher order
 - does not support predicates (relations), only functions

 → Functional programming!
We code the problem as definite (Horn) clauses:

- $\text{nat}(0)$
- $\neg \text{nat}(X) \lor \text{nat}(s(X))$
- $\neg \text{nat}(X) \lor \text{add}(0, X, X))$
- $\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))$
- $\neg \text{nat}(X) \lor \text{mult}(0, X, 0)$
- $\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z)$
- $\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat}_\text{square}(X, Y)$

Query: $\text{nat}(s(0))$?

- In order to refute: $\neg \text{nat}(s(0))$
- Resolution:
 - $\neg \text{nat}(s(0))$ and $\neg \text{nat}(X) \lor \text{nat}(s(X))$ with unifier $\{X/0\}$ giving $\neg \text{nat}(0)$
 - $\neg \text{nat}(0)$ and $\text{nat}(0)$ with unifier $\{}$ giving \Box
- Answer: (yes)
We code the problem as definite (Horn) clauses:

\[
\begin{align*}
nat(0) \\
\neg nat(X) \lor nat(s(X)) \\
\neg nat(X) \lor add(0, X, X) \\
\neg add(X, Y, Z) \lor add(s(X), Y, s(Z)) \\
\neg nat(X) \lor mult(0, X, 0) \\
\neg mult(X, Y, W) \lor \neg add(W, Y, Z) \lor mult(s(X), Y, Z) \\
\neg nat(X) \lor \neg nat(Y) \lor mult(X, X, Y) \lor nat_square(X, Y)
\end{align*}
\]

Query: \(\exists X \exists Y \ add(X, Y, s(0)) \) ?

\(\diamond \) In order to refute: \(\neg add(X, Y, s(0)) \)

\(\diamond \) Resolution:

\(\neg add(X, Y, s(0)) \) and \(\neg nat(X) \lor add(0, X, X) \) with unifier \(\{ X = 0, Y = s(0) \} \)

giving \(\neg nat(s(0)) \) (and \(\neg nat(s(0)) \) is resolved as before)

\(\diamond \) Answer: \(X = 0, Y = s(0) \)

\(\diamond \) Alternative:

\(\neg add(X, Y, s(0)) \) with \(\neg add(X, Y, Z) \lor add(s(X), Y, s(Z)) \) giving \(\neg add(X, Y, 0) \) ...
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- nat(s(0)).</td>
<td>yes</td>
</tr>
<tr>
<td>?- add(s(0),s(s(0)),X).</td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td>?- add(s(0),X,s(s(s(0))))</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td>?- add(X,Y,s(0)).</td>
<td>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td>?- nat_square(s(s(0)), X).</td>
<td>X = s(s(s(0))))</td>
</tr>
<tr>
<td>?- nat_square(X,s(s(s(0))))</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat_square(X,Y).</td>
<td>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(0)))) ; ...</td>
</tr>
<tr>
<td>?- output(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(0)))) ; ...</td>
</tr>
</tbody>
</table>
father_of(john, peter)
father_of(john, mary)
father_of(peter, michael)
mother_of(mary, david)
∀X∀Y(∃Z(father_of(X, Z) ∧ father_of(Z, Y)) → grandfather_of(X, Y))
∀X∀Y(∃Z(father_of(X, Z) ∧ mother_of(Z, Y)) → grandfather_of(X, Y))

• How can grandmother_of/2 be represented?
• What does grandfather_of(X, david) mean? And grandfather_of(john, X)?
Additional examples (II) - Testing membership in lists

- **Declarative view:**
 - Suppose there is a functor $f/2$ such that $f(H,T)$ represents a list with head H and tail T.
 - Membership definition: $X \in L \iff \begin{cases} X \text{ is the head of } L \\ \text{or } X \text{ is member of the tail of } L \end{cases}$
 - Using logic:
 \[
 \forall X \forall L (\exists T (L = f(X,T) \rightarrow \text{member}(X,L))) \\
 \forall X \forall L (\exists Z \exists T (L = f(Z,T) \land \text{member}(X,T) \rightarrow \text{member}(X,L)))
 \]
 - Using Prolog:
    ```prolog
    member(X, f(X, T)).
    member(X, f(Z, T)) :- member(X, T).
    ```

- **Procedural view (but for checking membership only!):**
 - Traverse the list comparing each element until X is found or list is finished
    ```c
    /* Testing array membership in C */
    int member(int x, int list[LISTSIZE]) {
        for (int i = 0; i < LISTSIZE; i++)
            if (x == list[i]) return TRUE;
        return FALSE;
    }
    ```
A (very brief) History of Logic Programming (I)

- 60’s
 - Green: programming as problem solving.
 - Robinson: resolution.

- 70’s
 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: First Prolog (“Programmation et Logique”) interpreter.
 - Kowalski: procedural interpretation of Horn clause logic. Read: A if B_1 and B_2 and \cdots and B_n as:
 to solve (execute) A, solve (execute) B_1 and B_2 and,..., B_n
 Algorithm = logic + control.

- D.H.D. Warren develops first compiler, DEC-10 Prolog, almost completely written in Prolog. Very efficient (same as Lisp). Top-level, debugger, very useful builtins, ... becomes the standard.
A (very brief) History of Logic Programming (II)

- **80’s, 90’s**
 - Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects), leading to the current EU “framework research programs”.
 - Numerous commercial Prolog implementations, programming books, using the *de facto* standard, the Edinburgh Prolog family.
 - Leading in 1995 to The ISO Prolog standard.
 - Parallel and concurrent logic programming systems.
 - Constraint Logic Programming (CLP): A major extension – opened new areas and even communities:
 * Commercial CLP systems with fielded applications.
 * Concurrent constraint programming systems.

- **2000-...**
 - Many other extensions: full higher order, support for types/modes, concurrency, distribution, objects, functional syntax, ...
 - Highly optimizing compilers, automatic, automatic parallelism, automatic verification and debugging, advanced environments.

Also, Datalog, Answer Set Programming (ASP) – support for negation through stable models.
Applications (I)

- Many applications:
 - Natural language processing
 - Scheduling/Optimization problems
 - Many AI-related problems, (Multi) agent programming
 - Heterogeneous data integration
 - Program analyzers and verifiers
 - ...

 Many in combination with other languages.

- Some examples:
 - The IBM Watson System (2011) has important parts written in Prolog.
 - Clarissa, a voice user interface by NASA for browsing ISS procedures.
 - The first Erlang interpreter was developed in Prolog by Joe Armstrong.
 - The Microsoft Windows NT Networking Installation and Configuration system.
 - The Ericsson Network Resource Manager (NRM).
 - “A flight booking system handling nearly a third of all airline tickets in the world” (SICStus).
 - The java abstract machine specification is written in Prolog.
 - ...

 ...
Applications (II)

The IBM Watson system (from WikipediA):

“Watson is a question-answering computer system capable of answering questions posed in natural language, developed in IBM’s DeepQA project... it competed on Jeopardy! against champions Brad Rutter and Ken Jennings, winning the first place prize of $1 million.”

“Prior to our decision to use Prolog for this task, we had implemented custom pattern-matching frameworks over parses. These frameworks ended up replicating some of the features of Prolog but lacked the full feature set of Prolog or the efficiency of a good Prolog implementation. Using Prolog for this task has significantly improved our productivity in developing new pattern-matching rules and has delivered the execution efficiency necessary to be competitive in a Jeopardy! game.”