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Abstract

Analysis of the Java language (either in its source version or its compiled bytecode)

using the framework of abstract interpretation has been the subject of significant re-

search in the last decade. Most of this research concentrates on finding new abstract

domains that better approximate a particular concrete property of the program an-

alyzed in order to optimize compilation or statically verify certain properties about

the run-time behavior of the code. In contrast to this concentration and progress on

the development of new, refined domains, there has been comparatively little work

in the development of extensible, generic frameworks, an issue which is at the core

of the analysis. The first component in such a generic framework is a standard rep-

resentation of the program that facilitates later analyses or optimizations. Although
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many times the description of that Control Flow Graph is omitted, we show that a

uniform, compact representation is fundamental in order to manipulate similar con-

structions of the language in a uniform way. The Horn clause-based representation

chosen is general enough to represent not only object-oriented programs, but also

logic programming applications, or multi-language applications that combine both

paradigms.

In the context of the abstract interpretation framework, the fixpoint algorithm

that lies at its very core has been demonstrated to have dramatic impact in the effi-

ciency and precision of any analysis. A particularly optimal combination of the two

attributes can be achieved by a flow-sensitive, context-sensitive fixpoint algorithm,

provided certain optimizations are included. We present a detailed description of

such an algorithm, which handles mutually recursive nodes in the Control Flow

Graph and uses memoization for further efficiency.

Generic abstract interpretation frameworks work in conjunction with abstract

domains. Each domain captures a particular property of the program. A very

interesting characteristic to analyze is whether a set of variables share, i.e., whether

they might reach the same memory location. The information gathered by a sharing

domain is used for parallelization and/or for optimizing the compilation. What we

present is a combination of domains (sharing, nullity, and types) which can work

together to refine their results, i.e., be more precise. The approach is shown to

achieve better results than a previous sharing analysis.

The combinatorial nature of the set sharing domain has been the subject of intense

debate within the analysis community. The exponential complexity of some of the

operations (e.g., abstract unification in Prolog or field load/store in Java) seemed to

be a big obstacle that prevented the domain from being widely used. In this thesis,

we present a more efficient implementation of set sharing, which is based on a special

type of Binary Decision Diagrams, called Zero-supressed Binary Decision Diagrams
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(ZBDDs). By representing sets of sets with this data structure, we not only improve

the memory requirements of the analysis but also achieve better efficiency in terms

of the overall running time.
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Chapter 1

Introduction

1.1 Bytecode Analysis

Analysis of the Java bytecode [LY97] using the framework of abstract interpreta-

tion [CC77] has been the subject of significant research in the last decade (see,

e.g., [LC05] and its references). The abstract interpretation approach brings a useful

combination of characteristics: it is automatic and practical, producing useful re-

sults for a good number of applications, while at the same time being rigorous and

semantics-based. On the other hand, a low-level, object-oriented language such as

Java bytecode is interesting because it introduces novel challenges that complicate

the application of existing (for logic or imperative languages) analysis techniques: 1)

its unstructured control flow, e.g., the use of goto statements rather than recursive

structures; 2) its object-oriented features, like virtual invocations or static methods;

and 3) its stack-based model, in which stack cells store intermediate values.

Most of the research focused on Java bytecode concentrates on finding new ab-

stract domains that better approximate a particular concrete property of the program

analyzed in order to optimize compilation (e.g., [Bla99, Ruf00]) or statically verify
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Chapter 1. Introduction

certain properties about the run-time behavior of the code (e.g., [GS05, Ler01]). In

contrast to this concentration and progress on the development of novel domains,

there has been comparatively little work in the underlying representations, fixpoint

algorithms, and frameworks. In fact, many existing abstract interpretation-based

analyses do not actually describe the particular Control Flow Graph (representa-

tion of the program) format used [Log07], use relatively inefficient fixpoint algo-

rithms [Spo05], or use solutions tied to particular analyses and that cannot easily be

reused for other domains. We believe this can be improved upon: one of the stated

advantages of abstract interpretation-based tools is that they can be made highly

independent of the particular analysis, but the limitations mentioned make most of

the work done in the area comparatively difficult to reuse in other contexts.

A particular property of interest that has received much attention is the memory

state, i.e., the layout of the memory at any program point. This classic problem

has been approached using standard flow analyses, abstract interpretation, or hy-

brids for many different languages. Different categorizations of the existing solutions

are 1) alias analysis [WL95, BCCH94, HBCC99, LR92], which identifies variables

referring to the exact memory location; 2) shape analysis [GH96, SRW99, RS01],

which aims at providing a relatively accurate, graph-based abstraction of the mem-

ory layout at each program point, normally at some efficiency cost; 3) points-to

analysis [Ste96, BLQ+03, EGH94], which determines an approximation of the set of

variables and heap cells that are reachable from every variable of the program, includ-

ing those that are dynamically allocated; 4) sharing analysis [JL89, MH89, SS05],

which detects which variables do not share in memory, i.e., do not point (transi-

tively) to the same location. Another possible classification attends to properties

of the framework itself rather than the domain: flow-insensitive analyses do not

take into account the sequential order of the statements in the program, resulting

in lower running times but less accurate results when compared to flow-sensitive

counterparts. An analysis is context-sensitive if it differentiates among different calls

2



Chapter 1. Introduction

(calling points in the program, or, in some cases, calls from different states) to a

procedure. Context-insensitive analyses mix all such calls providing summary infor-

mation which is valid for all of them but of course also less precise. The additional

precision obtained from context sensitivity has been shown to be important in prac-

tice in, e.g., the heap analysis of logic programs [BdlBH99] and, more recently, in

object-oriented programs [WL04].

There has been extensive work in recent years on the use of Binary Decision Dia-

grams [Zhu02, BLQ+03, WL04, ZC04] to represent points-to information. The work

presented in [Lho06] represents a step forward towards a standard representation

of set-based domains using BDDs. Standard BDDs are a data structure frequently

used for representing large amounts of data within the static analysis and the model

checking (see [iM96] and its references) communities. However, BDDs do not perform

well in all problems. In particular, a variant of the standard BDD structure is needed

when confronted with the problem of how to represent sets of sets of elements. In

that environment, Zero-supressed BDDs seem to be a reasonable solution, assuming

certain properties about the sparsity of the data to be represented. ZBDDs were

introduced by Minato [iM93] and applied to a great diversity of problems in model

checking (e.g., [YHTiM96, Cou97, iM01]). More recently, Lhoták et al. have applied

ZBDDs to the exploration of infinite state spaces [LSJ07] in the context of points-to

analysis. Their main contribution -apart from the introduction of ZBDDs for static

analysis- is an experimental evaluation of the performance of existing points-to anal-

yses when the representation uses ZBDDs, and not BDDs. However, there is still

an open question about the use of ZBDDs for implementating domains that do not

have a natural representation using standard BDDs, as is the case of combinatorial

domains (type analyses that associate variables with sets of types, sharing sets, etc.).

3



Chapter 1. Introduction

1.2 Thesis Objectives

The first objective of the work presented in this thesis is to present a generic frame-

work for analysis of Java bytecode (although many concepts might be applied to sim-

ilar, object-oriented languages) by using abstract interpretation. The word generic

means in this context that a) the internal representation chosen for the program

isolates later analyses from intricate constructions of the language, and b) we can

perform different analyses without any change other than plugging in the different

abstractions. The second objective of our work is to show the applicability of such a

generic framework by implementing a more precise and efficient sharing analysis on

top of it, that benefits from both the more precise results obtained by complementary

abstract domains, and the compact intermediate representation chosen.

1.3 Overview of the Main Contributions

1. The first contribution is an intermediate representation used to represent any

bytecode program. Our solution is based on the use of Horn clauses, which rep-

resent naturally and in a simple way alternative program flows (conditionals,

virtual invocations, etc.), blocks, control, etc. The resulting graph is com-

pact and uniform, characteristics that translate into a more uniform view of

the original program for the analysis, and that facilitate performing compiler

optimizations at that level. This work has been done in collaboration with

Jorge Navas (University of New Mexico) and has been published at the Inter-

national Symposium on Logic-based Program Synthesis and Transformation in

2007 [MLNH07a]. I am the main contributor to this work.

2. We also propose an optimized fixpoint algorithm that receives a Control Flow

Graph and computes an approximation of the state of the program (in terms

4



Chapter 1. Introduction

of the abstraction chosen) for all the statements in that graph. Precision

is ensured by using a context-sensitive approach, while efficiency relies on

memoizing past computations. A first description [MLNH07b] of the algo-

rithm was published at the ETAPS Workshop on Bytecode Semantics, Verifi-

cation, Analysis and Transformation (BYTECODE’07) in 2007; an improved

version [NMLH07] was later published at the 9th Workshop on Formal Tech-

niques for Java-like Programs FTfJP 2007. In both cases I collaborated with

Jorge Navas, from the University of New Mexico. We have both contributed

in approximately equal amounts to this work.

3. We also introduce a sharing abstract domain that works in conjunction with

the fixpoint algorithm mentioned above. The abstract operations are shown to

improve the precision of the results, when compared to recent, related work.

The corresponding paper [MLH08] has been published at the 9th International

Conference on Verification, Model Checking, and Abstract Interpretation, VM-

CAI 2008. I am the main contributor in this work.

4. Finally, we also present a novel representation of the set sharing abstraction,

based on Zero-supressed Binary Decision Diagrams (ZBDDs). To the best of

our knowledge this is the first link provided between set sharing and ZBDDs.

This work has been done in collaboration with Ondřej Lhoták (University of

Waterloo, Canada) and has been published [MLLH08] at the 21st International

Workshop on Languages and Compilers for Parallel Computing (LCPC 2008).

I am the main contributor in this work.

Contribution 1 is the object of study in Chapter 2. The fixpoint algorithm (con-

tribution 2) is the main topic of Chapter 3. The set sharing abstract domain (con-

tribution 3) is presented in Chapter 4, while Chapter 5 provides an in-depth look at

the work performed in relating set sharing with ZBDDs (contribution 4). Finally,

Chapter 6 presents the conclusions and suggests the future work to be made.
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Chapter 2

Intermediate Representation

2.1 Motivation

The gap between programs and semantics is greater in the case of object-oriented

languages than in, for example, declarative languages. For this reason, static anal-

yses of object-oriented programs usually rely on intermediate languages that re-

spect the original semantics while having a more uniform and basic syntax (e.g.,

block-based representations) and a more declarative semantics (e.g., static single

assignment transformations). Some significant concrete examples which have been

proposed of such intermediate representations for object-oriented programs are Jim-

ple [VRHS+99] for Java or BoogiePL [DL05] for .NET.

In this chapter we propose the use of a Horn clause-based representation as an

intermediate language. This is useful for at least two reasons. The first advantage

derived from our approach is that we can then adapt and extend a mature logic

programming framework (in our case, CiaoPP [HPBLG03]) and apply the resulting

system to the analysis of Java bytecode. A second strength is that the new framework

can now be easily adapted to the analysis of other languages without having to

6



Chapter 2. Intermediate Representation

redefine the fixpoint algorithm, as we will see in Chapter 3. In fact, using the

transformation and intermediate representation that we propose, from the analyzer

point of view an object-oriented program is indistinguishable from, e.g., a Prolog

one (although of course different abstract domains and definitions of pseudo-builtins

are used). This brings in the additional advantage of being able to analyze multiple

languages within the same framework.

We start the chapter by looking at the main components of the analyzer (Sec-

tion 2.2). The transformation process is described in detail in Section 2.3. We

then illustrate the application of our approach to other languages, such as C# (Sec-

tion 2.5). Intermediate representations used by related abstract interpretation-based

frameworks are discussed in Section 2.6, and Section 2.7 presents the chapter con-

clusions.

2.2 Overview of the analysis framework

Our framework is composed of a front-end preprocessor and a back-end analyzer, as

shown in Figure 2.1. The preprocessor transforms an input in Java bytecode into

a set of Horn clauses that represent a safe approximation of its standard semantics

(Section 2.3). The decompilation process is based on a postprocessing of the Jimple

representation returned by the Soot [VRHS+99] tool.

The resulting Horn-clause intermediate representation is then analyzed using

a framework based on the CiaoPP analyzer [HPBLG03], thus benefiting from its

advanced features: efficient computation of fixpoints using memoization, context-

sensitivity, modularity, etc. The programmer needs only to implement the particular

abstract domain of interest, which includes also defining the abstract meaning of a

set of “built-in” predicates that represent the language-dependent semantics of the

basic operations of the source language. This has been the case with the set shar-

7



Chapter 2. Intermediate Representation

AnalysisTransformation

Java parser (in Ciao)

soot + Ciao

transform.

javac

Java bytecode

Java Source

Fixpoint

algorithm

Domains

Pre/Post pairs
Prog. Point Info

...

C#

Horn clauses
(including 

metainf.) ( based on CiaoPP)

Figure 2.1: Transformation and analysis pipeline.

ing (main topic of Chapters 4 and 5) domain and resource usage (please refer to

Chapter 6) analysis.

On the other hand, our approach does liberate the designer of an analysis from

the burden of coding a fast, reliable, and efficient abstract interpretation platform.

Analysis results are computed in the standard form (p, σ), where p uniquely identifies

a program point and σ is an abstract state which safely approximates all the possible

states at that program point during run time (more precisely, a set of abstract states,

one for each different abstract entry state into each block –see Chapter 3). Infor-

mation stored during the transformation process allows relating those line numbers

with the ones of the original bytecode or source program, making it possible to re-

flect back the results on the original program text (as JML-like assertions [LBR06]),

pinpoint errors in the original program, or implement compiler optimizations.

Other languages can be incorporated into the framework (i.e., analyzed) by pro-

8



Chapter 2. Intermediate Representation

viding a correct transformation for them. For example, support for other object-

oriented languages like C#, that share many syntactic and semantics features with

Java, is easily achievable as illustrated in Section 2.5. In addition, programs writ-

ten in Ciao [HC94, HBC+08, BCC+06] are also accepted by the system as input,

provided there is an appropriate abstract domain for them.

2.3 Transformation of Java bytecode

Analysis of a Java bytecode program normally requires its translation into an inter-

mediate representation that is easier to manipulate. In particular, our decompilation

(assisted by the Soot [VRHS+99] tool) involves elimination of stack variables, con-

version to three-address statements, static single assignment (SSA) transformation,

and generation of a Control Flow Graph (CFG) that is ultimately the subject of

analysis. Our ultimate objective is to support the full Java language but the cur-

rent transformation has some limitations: it does not yet support reflection, threads,

generics or runtime exceptions. The rest of the 1.5 specification is supported.

The compiler receives as input a Control Flow Graph, expressed in the Jimple

language, and outputs another Control Flow Graph. The following grammar de-

scribes that final intermediate representation; some of the elements in the tuples are

named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)

Sig ::= (class:Type,name:Id,pars:Type+)

Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)

V ar ::= (name:Id, type:Type)

The main rules followed by the compiler during the transformation are:

9



Chapter 2. Intermediate Representation

• Every Jimple block is transformed into a block method. A block method is

similar to a Java method, with some particularities: a) if the program flow

reaches it, every statement in it will be executed, i.e, it contains no branching;

b) its signature might not be unique: the CFG might contain several block

methods in the same class sharing the same name and formal parameter types.

A block method is the equivalent of a Horn clause in a logic program, while a set

of block methods with the same signature (name, number of formal parameters,

and types of the formal parameters) is the equivalent of a predicate in a logic

program.

• There is no branching within a block method. Instead, each conditional if

cond stmt1 else stmt2 in the Jimple program is replaced with an invocation

and two block methods which uniquely match its signature: the first block

corresponds to the stmt1 branch, and the second one to stmt2. To respect the

semantics of the language, we decorate the first block method with the result

of decompiling cond, while we attach cond to its sibling.

• We add an extra formal parameter to any non-static method call, in order to

include a reference to the callee object.

• We add an extra formal parameter to any non-void method, representing the

value returned.

• For every formal parameter (input formal parameter) of the original Java

method that might be modified, there is an extra formal parameter in the

block method that contains its final version in the SSA transformation (output

formal parameter).

• Variable declarations are removed; instead, all the statements in the interme-

diate representation are typed, thus the analysis can retrieve the type of a

variable from them.

10
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import java . net . URLEncoder ;

public class CellPhone {

SmsPacket sendSms ( SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

i f ( smsPk != null ) {
St r ing newSms = enc . format ( smsPk . sms ) ;
stm . send (newSms ) ;
smsPk . next=sendSms ( smsPk . next , enc , stm ) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format ( S t r ing data ) ;

}
class TrimEncoder implements Encoder{

public St r ing format ( S t r ing s ){
return s . tr im ( ) ;

}
}
class UnicodeEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
public St r ing format ( S t r ing s ){

return URLEncoder . encode ( s ) ;
}

}
abstract class Stream{

native void send ( St r ing data ) ;
}

Figure 2.2: Motivating example: Java source code

• Return statements are removed. If they are nested within a non-void method,

the return statement is replaced by an assignment to the formal parameter that

represents the method output.

• Virtual invocations are replaced by static calls to all the block methods that

could possibly be invoked at runtime. A set of block methods with the same

signature sig can be retrieved by the function getBlocks(CFG, sig).

• In the Jimple representation, the control flow is implicit by each block hav-

ing a set of successors. In our IR, that relation is made explicit, since the

non-terminal block methods contain a static invocation to their successors.

Therefore, there are many more invocations in our IR than in the Jimple CFG.

• For every Jimple statement, there is a corresponding statement in our IR. For

instance, a Jimple AssignStmt is converted into a Builtin.asg statement.

• Every statement in a block method is an invocation, including builtins (assign-

ment asg, field dereference gtf, etc.), which are understood as block methods

of the class Builtin.

11
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CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)

Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)

Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)

CellPhone.sendSms(r0,r8,r2,r3,r9,r10)

Builtin.stf(r1,next,r10,r1_1)

Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)

Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)

java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)

Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Figure 2.3: Motivating example: resulting CFG

• Java 1.5 annotations are preserved as metainformation attached to each method

or class, even when the current version of Soot does not preserve annotations.

This is done instead directly by our tool.

Example 2.3.1 We now consider the source code for the CellPhone.sendSms method

listed in Figure 2.2. Its transformation results in the two leftmost clauses of the set

of block methods depicted in Figure 2.3. Input formal parameters r0, r1, r2, r3 cor-

respond to this, smsPk, enc, and stm, respectively. In the case of r1, the contents of

its fields next and sms are altered by invoking the stf (abbreviation for setfield)

builtin block method. The output formal parameter r4 contains the final state of r1

after those modifications. The value returned by the block methods is contained in

r5. The type information has been omitted from Fig. 2.3, although we mentioned be-

fore that every statement contains that information. In the case of Encoder.format,

for example, we say that there are two blocks with the same signature because they

are both defined in class Encoder, have the same name (format) and list of types of

formal parameters {Encoder,String,String}.

12



Chapter 2. Intermediate Representation

package examples;

public class Vector {

Element first;

public void add(int value){

Element e = new Element();

e.value = value;

Vector v = new Vector();

v.first = e;

append(v);

}

public void append(Vector v){

Element e = first;

if (e == null)

first = v.first;

else{

while (e.next != null)

e = e.next;

e.next = v.first;

}

}

}

class SubVector extends Vector{

public void append(Vector v){

//...

}

}

class ancestor

Vector Object
SubVector Vector
Element Object

method entry

Vector$init y
Vector$add y
Vector$dyn*append y
Vector$append y
Vector$append#1#2 n
Vector$append#3#4 n
SubVector$init y
SubVector$append y
Element$init y

Figure 2.4: Vector example: source code and corresponding metainformation.

2.4 Metainformation

The addition of metainformation during the transformation, although not strictly

required, can aid the fixpoint algorithm that is described in the next chapter, if some

characteristics related to the original source are known. In other cases, the abstract

domain can use certain information about the program not directly encoded in the

Horn clauses. Both demands are solved via the addition of metainformation to

the transformation. We illustrate this point with the example in Figure 2.4, which

shows an alternative version of the JDK Vector class. The descendant SubVector

contains an alternative version of the append method. The corresponding Horn

clauses, represented as a Control Flow Graph, are shown in Figure 2.5. We omitted

the constructor (init) clauses for simplicity.

Hierarchy and method type tables contained in the metainformation are shown
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asg(R0_,Vector,R0,Vector)
asg(R1_,Vector,R1,Vector)
gtf(R2,Element,R0_,Vector,first,Element)

Vector$append(Res,R0,R1)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

ne(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R2,Element,R2,Element,next,Element)
SubVector$append(Res,R0,R1)

ne(R2,Element,null,null_type)eq(R2,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R4,Element,R2,Element,next,Element)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

eq(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

stf(R0_,Vector,first,Element,R3,Element)

gtf(R3,Element,R1_,Vector,first,Element)

stf(R2,Element,next,Element,R5,Element)

gtf(R5,Element,R1_,Vector,first,Element)

stf(R3,Vector,first,Element,R2,Element)

Vector$dyn*append(Res,R0_,R3)

asg(R3,Vector,R4,Vector)
Vector$<init>#1650(_Void,R4)

new(R4,Vector)
stf(R2,Element,value,int,I0,int)

asg(R2,Element,R1,Element)
Element$<init>(_Void,R1)
new(R1,Element)
asg(R0_,Vector,R0,Vector)

Vector$add(Res,R0,I0)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

tot(R0_, [SubVector])

SubVector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

tot(R0_, [Vector])

Vector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

...

Figure 2.5: Call Graph for the example in Figure 2.4.

in Figure 2.4 (such tables are represented as sets of facts). In the case of the parent-

child relations, the purpose is to provide the abstract domain code with access to the

class tree, the more obvious application being class analysis [BS96]. The second table

contains a classification for each method, which can be y (entry) or n (internal). It is

used to optimize the performance of the fixpoint engine, by avoiding the projection

and extension operations [Bru91] that are sometimes computationally expensive.

These operations are domain dependent, and invoked from the fixpoint engine, as

shown in Chapter 3.

2.5 Transformation of other OO languages

Our framework can be adapted to other languages apart from Java, especially for

those like C# that share similar syntax and statement semantics to Java. The

examples in Figures 2.6 and 2.7 illustrate this point. The first snippet, in Figure 2.6,

is written in Java. The value returned by the getDefaultLanguage invocation in the
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public class Lang{

public void foo(Location loc){

String lang = loc.getDefaultLanguage();

...

}

}

class Location {

public String getDefaultLanguage(){

return "English";

}

}

class China extends Location{

public String getDefaultLanguage(){

return "Mandarin";

}

}

class Sichuan extends China{

}

Lang$foo(Res,R0,R1):-

asg(R0_,Lang,R0,Lang),

asg(R1_,Location,R1,Location),

Location$dyn*getDefaultLanguage(R4,R1_),

ret.

Location$getDefaultLanguage(Res,R0):-

asg(R0_,Location,R0,Location),

asg(Res,java.String,"English",java.String),

ret.

China$getDefaultLanguage(Res,R0):-

asg(R0_,China,R0,China),

asg(Res,java.String,"Mandarin",java.String),

ret.

Location$dyn*getDefaultLanguage(Res,R1_):-

tot(R1_, [China,Sichuan]),

China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-

tot(R1_, [Location]),

Location$getDefaultLanguage(Res,R1_).

Figure 2.6: Transformation of a virtual invocation in Java.

namespace Lang{

public class Lang{

public void foo(Location loc){

string lang = loc.getDefaultLanguage();

...

}

}

class Location {

public string getDefaultLanguage(){

return "English";

}

}

class China:Location{

private string getDefaultLanguage(){

return "Mandarin";

}

}

class HongKong:China{}

}

Lang$foo(Res,R0,R1):-

asg(R0_,Lang,R0,Lang),

asg(R1_,Location,R1,Location),

Location$dyn*getDefaultLanguage(R4,R1_),

ret.

Location$getDefaultLanguage(Res,R0):-

asg(R0_,Location,R0,Location),

asg(Res,string,"English",string),

ret.

China$getDefaultLanguage(Res,R0):-

asg(R0_,China,R0,China),

asg(Res,string,"Mandarin",string),

ret.

Location$dyn*getDefaultLanguage(Res,R1_):-

tot(R1_, [China]),

China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-

tot(R1_, [Location,HongKong]),

Location$getDefaultLanguage(Res,R1_).

Figure 2.7: Transformation of a virtual invocation in C#.

foo method returns English if loc has runtime type Location and Mandarin if the

runtime type is China or Sichuan, since this last class inherits the implementation of

getDefaultLanguage from China according to standard Java semantics [GJSB05].

The C# language is quite similar in most aspects, but polymorphic invocations have
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been further refined (and complicated). In Figure 2.7, snippet written in C#, only

class China overshadows the default definition for the getDefaultLanguage method

given in the superclass; HongKong inherits the Location implementation. Therefore,

an invocation like (new Hong Kong()).getDefaultLanguage() returns English.

When analyzing a virtual invocation like the one in the first line of foo, we could

have implemented internal mechanisms in the analyzer for differentiating the two

possible interpretations that the call might have in each language. That implies an

undesirable, double implementation of either the fixpoint algorithm or the abstract

domains, since the analyzer would then be language-dependent. To bypass this prob-

lem, we introduce additional pseudo-builtins that contain language-dependent fea-

tures. We can see in Figures 2.6 and 2.7 how the Horn clause representation is almost

identical in both cases, except for the bodies of the two Location$dyn*getDefault

Language clauses. In the case of Java, we indicate that the first clause is executed

if the runtime type of this (tot) is either China or Sichuan, while the second re-

quires that variable to be of runtime type Location. The situation is reversed in the

C# example, in which instances of Location and HongKong share the implementa-

tion Location$getDefaultLocation while invocations on objects of (exactly) class

China are redirected to China$getDefaultLocation.

In this particular case, the abstract domain is not required to know which actual

language is to be analyzed, but only to provide a common, correct transfer function

for the tot builtin, which will return as output state the same input state if the

instance happens to have a runtime type included in the list of accepted classes, and

⊥ if not.
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2.6 Related work

In [PJC06] the authors describe how to automatically derive Prolog versions of Java

programs that share the same operational semantics. However, the compilation ap-

plies to a smaller subset of Java than that supported in our work and no experimental

results are provided (in Chapter 3 we show some statistics for the compilation phase

of medium-sized programs).

More closely related to ours is the work presented in [AGZHP07], which draws

in part on the ideas of [PGS98]. The authors focus on how to reuse existing logic

programming tools, in order to analyze Java bytecode. The approach is based on

encoding an interpreter of the Java Virtual Machine bytecode in a logic language,

Ciao [BCC+04], and then partially evaluating this interpreter with respect to the

concrete program to be analyzed. This results in a residual program which has the

same semantics as the original one but is often easier to analyze than the original

set of bytecode+interpreter.

While the approach of [AGZHP07] is obviously very interesting, it also has the

shortcoming that it is quite dependent on the quality of the results obtained by

the partial evaluator. Given the state of the art in partial evaluation, this may

clearly vary significantly depending on the input program. The approach presented

herein is based instead on a direct translation from the Java program into a Horn

clause representation, which obviates this problem, at the cost of having to write

and prove correct the transformer. Also, in this translation we do not try to mimic

the operational semantics of the Java program in the Horn clause version (i.e., the

resulting program if run, e.g., on a Prolog system, would not necessarily produce

equivalent results to those of the Java program). Instead, the aim is to safely ap-

proximate the semantics of the Java program in the Horn clause representation by

taking advantage of the collecting SLD semantics assumed by the analyzer. This
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allows flexibility in the translation and eliminates the burden of having to simulate

exactly the operational semantics of the source language since we do not want to

execute the program but only to obtain safe results by analyzing it. The flexibility

and directness of this approach also allows supporting a much larger subset of the

language than in [AGZHP07], including exceptions, inheritance, interfaces, etc.

Another work that is closely related to ours is [AAG+07], in which a block-

based representation is presented. The main differences between [AAG+07] and our

compilation process are a) we deal with a bigger subset of Java b) in our approach,

each block in the CFG is treated as a method per se, thus all the different program

constructions (loops, if-then-else, etc) are transformed into the same intermediate

representation, while in the approach of [AAG+07] there is a clear distinction between

a method and a block.

In most of the (non CLP-based) abstract interpretation frameworks for analysis

of Java (e.g., [Bla99, CL05]) the authors prefer to focus on particular properties and

therefore their solutions (abstract domains and analysis algorithms) are tied to them,

even when if they may be explicitly labeled as multipurpose [LAS00]. In [Pol04] the

authors use a framework that is closely related to Gaia [LV94]. However, the interme-

diate representation is not described and the semantics of the interprocedural opera-

tions is again tied to the Java language. The more recent Julia framework [Spo05] is

intended to be generic from the point of view of domains but once more also targets

Java as unique source language. Finally, in [Log07] another interesting generic static

analyzer for the modular analysis and verification of Java classes is presented. The

algorithm presented is tailored specifically to Java source.
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2.7 Chapter conclusions

The framework introduced in this chapter consists of a two-step process: a transfor-

mation of the program into a set of Horn clauses, and a fixpoint algorithm. We claim

that our intermediate representation is flexible in the sense that is decoupled from

any language-dependent features. This characteristic allows us to design a fixpoint

algorithm, described in Chapter 3, that is also generic.
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Chapter 3

The Fixpoint Algorithm

3.1 Background and Motivation

As mentioned in Chapter 1, there has been relatively little work on the underlying

fixpoint algorithms used by abstract interpretation-based frameworks. In fact, most

of the existing analyzers use fixpoint algorithms that are relatively inefficient or

specific to a particular source language or analysis, thus cannot easily be reused in

other contexts.

In this chapter, we introduce a novel, efficient fixpoint algorithm, which accepts as

input the intermediate representation described in Chapter 2, and is therefore largely

independent from language-specific characteristics. The efficiency of the algorithm

relies on keeping dependencies between different methods during analysis so that only

the really affected parts need to be revisited after a change during the convergence

process. The algorithm deals thus efficiently with mutually recursive call graphs. In

addition, recomputation is avoided using memoization.

The proposed algorithm is also parametric with respect to the abstract domain,
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specifying a reduced number of basic operations that it must implement. Another

characteristic is that it is context sensitive –abstract calls to a given method that

represent different input patterns are automatically analyzed separately – and follows

a top-down approach, in order to allow modeling properties that depend on the

data flow characteristics of the program. To our knowledge, this is the first concise

and precise description of a top-down, context sensitive, and parametric fixpoint

algorithm for object oriented programs.

3.2 The Top-Down Analysis Algorithm

We now describe our top-down analysis algorithm, which calculates the least fixed

point given a control flow graph (equivalent to the intermediate representation intro-

duced in Chapter 2), and an initial abstract state. Intermediate results are stored in

a memo table, which contains the results of computations already performed and is

typically used to avoid needless recomputation. In our context it is used to store re-

sults obtained from an earlier round of iteration, and also to track whether a certain

entry represents final, stable results for the block, or intermediate approximations

obtained half way during the convergence of fixpoint computations. An entry in

the memo table has the following fields: block name, its projected call state (λ), its

status, its projected exit state (λ
′
) and a unique identifier. Along with the memo

table we assume operations which allow to query the status of an entry, retrieve the

projected exit state, and add or update an entry.

The pseudocode for the fixpoint algorithm is shown in Figs. 3.1 and 3.2. Builtins

are treated directly by each domain; external invocations can be handled in two dif-

ferent ways: 1) using a worst-case assumption, in which any reference to an external

method returns the top-most element in the domain for all the variables involved in

the call; b) using the results of a previous phase of the analysis performed over that
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topDownAnalyze(CFG,method, dom, in,mt, set)
case classify(CFG,method) of
not recursive:return analyzeNonRecMethod(CFG,method, dom, in,mt, set)
recursive:return analyzeRecMethod(CFG,method, dom, in,mt, set)
builtin : return dom.analyzeBuiltin(method, in,mt)
external : return dom.analyzeExternal(method, in,mt)

analyzeNonRecMethod(CFG,method, dom, in,mt, set)
name:=getName(method)
actPars:=getActualParams(method)
λ:=dom.project(in, actPars)
if mt.isComplete(〈name, λ〉) then
λ
′
:=mt.getOutput(〈name, λ〉)

else 〈λ′ ,mt, set〉:=
analyzeNonRecBlocks(CFG, name, dom, actPars, λ, complete,mt, set)

out:=dom.extend(in, actPars, λ
′
)

return 〈out,mt, set〉
analyzeNonRecBlocks(CFG, name, dom, actPars, λ, st,mt, set)

λ:=λ|{res,r0,...,rm}{actPar0,...,actParm}
blocks:=getNonRecBlocks(name)
λ
′
:=⊥

foreach block ∈ blocks
body:=getBody(block)
〈β′ ,mt, set〉:=analyzeBody(CFG, β, dom, body,mt, set)
λ
′
b:=dom.project(β

′
, {res, r0, . . . , rm})

λ
′
:=λ

′ t λ′b
λ
′
:=λ

′ |{actPar0,...,actParm}{res,r0,...,rm}
mt.insert(〈name, λ, λ′ , st〉)
return 〈λ′ ,mt, set〉

analyzeBody(CFG, β, body, dom,mt, set)
in:=β
foreach stmt ∈ body
〈out,mt, set〉:= topDownAnalyze(CFG, stmt, dom, in,mt, set)
in:=out

return 〈out,mt, set〉
Figure 3.1: The top-down fixpoint algorithm

external code.

Invocations of non-recursive methods are handled by analyzeNonRecMethod.
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analyzeRecMethod(CFG,method, dom, in,mt, set)
name:=getName(method)
actPars:=getActualParams(method)
λ:=dom.project(in, actPars)
if mt.isComplete(〈name, λ〉) then

λ
′
:=mt.getOutput(〈name, λ〉)

elseif mt.isFixpoint(〈name, λ〉) then
λ
′
:=mt.getOutput(〈name, λ〉)

set:=set ∪ {getUniqueID(name)}
elseif mt.isApproximate(〈name, λ〉) then

mt.update(〈name, λ〉, fixpoint)
〈λ′ ,mt, set〉:=analyzeRecBlocks(CFG,method, dom, λ,mt, set)

else
〈λ′ ,mt, set〉:=analyzeNonRecBlocks(CFG, name, dom, actPars, λ, fixpoint,mt, set)
set:=set ∪ {getUniqueID(name)}
〈λ′ ,mt, set〉:=analyzeRecBlocks(CFG,method, dom, λ, λ

′
,mt, set)

out:=dom.extend(in, actPars, λ
′
)

return 〈out,mt, set〉

updateDeps(method,mt, setmethod, set)
id:=getUniqueID(method)
if setmethod \ {id} = ∅ then

status:=complete
foreach id′ such that id′ depends on id

remove dependence between id′ and id
if id′ is independent then

let 〈nameid′ , λ
′
id′〉 be associated with id′

mt.update(〈nameid′ , λ
′
id′〉, complete)

status:=approximate
make id dependent from setmethod \ {id}

mt.update(〈name, λ′〉, status)
set:=set ∪ setmethod \ {id}
return 〈mt, set〉

Figure 3.2: The top-down fixpoint algorithm (continuation)

This procedure first checks if there is an entry in the memo table for the name

of the invoked method and its λ. In that case, we reuse the previously computed

value for λ
′
. Otherwise, the variables of its λ are renamed to the set of variables

{res, r0, . . . , rm} (we will assume a standard naming for the formal parameters of the
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analyzeRecBlocks(CFG,method, dom, λ, λ
′
,mt, set)

name:=getName(method)
actPars:=getActualParams(method)
λ:=λ|{res,r0,...,rm}{actPar0,...,actParm}
blocks:=getRecBlocks(name)
setmethod:=∅
fixpoint:=true
repeat

foreach block ∈ blocks
body:=getBody(block)
〈β′ ,mt, setbody〉:=

analyzeBody(CFG, β, dom, body,mt, ∅)
dom.project(β

′
, actPars)

λ
′
old:=λ

′

λ
′
:=λ

′
old t β

′ |{actPar0,...,actParm}{res,r0,...,rm}
if λ

′
old 6= λ

′
then

fixpoint:=false

mt.update(〈N,λ〉, λ′)
setmethod:=setmethod ∪ setbody

until (fixpoint = true)
〈mt, set〉:=updateDeps(method,mt, setmethod, set)
return 〈λ′ ,mt, set〉

Figure 3.3: The top-down fixpoint algorithm (continuation)

form res, r0, . . . , rm) and an exit state is calculated for each block the method is built

of. The results are then merged through the lub (least upper bound, usually denoted

by the symbol t) operation, renamed back to the scope of the callee, and inserted

as an entry in the memo table characterized as complete. Finally, λ
′

is reconciled

with the calling state through the extend operation, yielding the exit state.

When a method is recursive, the analyzeRecMethod procedure in Fig 3.2 repeats

the analysis until a fixpoint is reached for the abstract execution tree, i.e., until it

remains the same before and after one round of iteration. In order to do this, we keep
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track of a flag to signal the termination of the fixpoint computation. The procedure

starts the analysis in the non-recursive blocks of the invoked method, thus accel-

erating convergence since the initial λ
′

is different from ⊥. An entry in the memo

table is inserted with that tentative abstract state and characterized as fixpoint.

The remaining, recursive blocks are analyzed within analyzeRecBlocks, which re-

peats their analysis until the value of λ
′

does not change between two consecutive

iterations.

This basic scheme requires two extra features in order to work also for mutually

recursive calls. One is the addition of new possible values for the status field in memo

table entries. If the fixpoint has not been reached yet for a entry (m1, λ), we saw that

it is labeled as fixpoint; if it has been reached, but by using a possibly incomplete

value of λ
′

of some other method m2 (i.e., a value that does not correspond yet to

a fixpoint), we tag that entry as approximate . The second required artifact is a

table with dependencies between methods. Note that the fixpoint computation can

involve two or more mutually recursive methods, which will indefinetely wait for the

other to be complete before reaching that status. This deadlock scenario can be

avoided by pausing analysis in method m2 if it depends of a call to a method m1

which is already in fixpoint state; we will use the current approximation λ
′

for

m1 and wait until it reaches complete status and notifies (via updateDeps) all the

methods depending on it.

Computation of that fixpoint can be sometimes computationally expensive or

even prohibitive, so in order to speed it up we use a combination of techniques. The

first is memoization [Die87, HWD92, Mut91] since the memo table acts as a cache for

already computed tuples. Efficiency of the computation can be further improved by

keeping track of the dependencies between methods. In the above scenario, during

subsequent iterations for m1, the subtree for m2 is explored every time and its entry

in the memo table labeled as approximate. After the last round of iteration for m1,
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its entry in the memo table will be tagged as complete but the row for m2 remains as

approximate. The subtree for m2 has to undergo an unnecessary exploration, since

it has already used the complete value of the exit state of m1. In order to avoid this

redundant work, after each fixpoint iteration all those methods depending only on

another m that just changed its status to complete are automatically tagged with

the same status.

Another major feature of our algorithm is its accuracy. Although precision re-

mains in general a domain-related issue, our solution possesses inherent character-

istics that help yield more precise results. First, the algorithm offers results of the

analysis at each program point due to its top-down condition. Second, and more rel-

evant, the algorithm is fully context sensitive: every new encountered abstract state

for the set of formal parameters is independently stored in the memo table. More-

over, different caller contexts will use the same entry as long as the state of their

actual parameters is identical. Although not present in the pseudo-code, our current

implementation also supports path-sensitivity [DLS02], which allows independent

reasoning about different branches.

Example 1 We show how an example of mutual recursion (Vector$append) de-

scribed in Fig 3.4 is handled by the fixpoint algorithm defined in Figs. 3.1 and 3.2.

Both the source code and the CFG are identical to the ones presented in the previous

chapter; we reproduce them here for convenience. Also for simplicity, the abstract

domain used is nullity, capable of approximating which variables are definitely null

and which ones definitely point to a non-null location. The objective is not to fully

understand each of the entries of the memo table in Figure 3.5, which would require

a complementary explanation of the domain transfer functions and going through a

vast amount of intermediate states, but to illustrate how some interesting dependen-

cies and status change in a very specific subset of those states. The method names

have been shortened to fit into the tables.
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package examples;

public class Vector {

Element first;

public void add(int value){

Element e = new Element();

e.value = value;

Vector v = new Vector();

v.first = e;

append(v);

}

}

public void append(Vector v){

Element e = first;

if (e == null)

first = v.first;

else{

while (e.next != null)

e = e.next;

e.next = v.first;

}

}

class SubVector extends Vector{

public void append(Vector v){

//...

}

asg(R0_,Vector,R0,Vector)
asg(R1_,Vector,R1,Vector)
gtf(R2,Element,R0_,Vector,first,Element)

Vector$append(Res,R0,R1)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

ne(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R2,Element,R2,Element,next,Element)
SubVector$append(Res,R0,R1)

ne(R2,Element,null,null_type)eq(R2,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R4,Element,R2,Element,next,Element)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

eq(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

stf(R0_,Vector,first,Element,R3,Element)

gtf(R3,Element,R1_,Vector,first,Element)

stf(R2,Element,next,Element,R5,Element)

gtf(R5,Element,R1_,Vector,first,Element)

stf(R3,Vector,first,Element,R2,Element)

Vector$dyn*append(Res,R0_,R3)

asg(R3,Vector,R4,Vector)
Vector$<init>#1650(_Void,R4)

new(R4,Vector)
stf(R2,Element,value,int,I0,int)

asg(R2,Element,R1,Element)
Element$<init>(_Void,R1)
new(R1,Element)
asg(R0_,Vector,R0,Vector)

Vector$add(Res,R0,I0)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

tot(R0_, [SubVector])

SubVector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

tot(R0_, [Vector])

Vector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

...

Figure 3.4: Java source code and corresponding CFG.

In step 1 it is assumed that the non-recursive blocks for app34 and app12 have

already been analyzed. Both entries for these blocks are marked as fixpoint since

they correspond to recursive methods whose analyses have not converged to a fixpoint

yet. Note that there exist two different entries corrresponding to method app12 which

has been analyzed twice with different abstract call patterns: one when called from

app and another when called from app34 yielding 〈app12, λ1, λ
′
11〉 and 〈app12, λ3, λ

′
31〉,

respectively. In step 2, the analysis corresponding to the entry 〈app12, λ3, λ
′
31〉 has

converged to a fixpoint but using the incomplete value of 〈app34, λ2, λ
′
21〉. Therefore,

the entry is forced to approximate changing its exit state to λ
′
32. In step 3, the analysis

for the method app34 reaches a fixpoint and since it does not depend on other methods,
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step method λ λ
′

st dep

app12 λ1 λ
′
11 fix {app12}

1 app34 λ2 λ
′
21 fix {app34}

app12 λ3 λ
′
31 fix {app12}

app12 λ1 λ
′
11 fix {app12}

2 app34 λ2 λ
′
21 fix {app34}

app12 λ3 λ
′
32 app {app12, app34}

app12 λ1 λ
′
11 fix {app12}

3 app34 λ2 λ
′
22 com ∅

app12 λ3 λ
′
32 app {app12}

app12 λ1 λ
′
12 fix {app12}

4 app34 λ2 λ
′
22 com ∅

app12 λ3 λ
′
32 com ∅

app λ0 λ
′
0 com ∅

5 app12 λ1 λ
′
12 com ∅

app34 λ2 λ
′
22 com ∅

app12 λ3 λ
′
32 com ∅

Figure 3.5: Fixpoint calculation for Vector$append

the entry 〈app34, λ2, λ
′
21〉 is marked as complete and updated to 〈app34, λ2, λ

′
22〉. After

this step, the algorithm notices that 〈app12, λ3, λ
′
32〉 is approximate and waiting for

a complete value of 〈app34, λ2, λ
′
22〉 which has been already produced. Thus, the entry

〈app12, λ3, λ
′
32〉 is marked directly as complete and no extra iteration is required. This

change is illustrated in step 4. Finally, the analysis characterizes also the entry

〈app12, λ1, λ
′
12〉 as complete and terminates the semantics computation of app.

3.3 Experimental Results

We have completed a preliminary implementation of our framework and tested it

by using two abstractions. The first one is a nullity domain (denoted by N , see

Chapter 4) which associates every variable in the program with one out of three
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name k m b pp

Health 8 30 620 833
BH 9 70 1198 1473
Voronoi 6 73 988 1108
MST 6 36 443 304
Power 6 32 997 1143
TreeAdd 2 12 193 217
Em3d 4 22 444 566
Perimeter 10 45 543 770
BiSort 2 15 323 467
All 42 287 5168 6432

Table 3.1: General statistics about the benchmarks utilized.

possible states: null, non-null, or any. The second is a Class Hierarchy domain

(CHA, see also Chapter 4) [BS96], which uses the combination of the statically

declared type of an object and the class hierarchy of the program to determine

the set of possible targets of a virtual invocation. The use of a CHA shows the

scalability of our framework for a domain with non-linear worst-case complexity in

its operations. Our experimental results are summarized in Tables 3.1 and 3.2; the

benchmarks belong to the JOlden suite [jol]. The first table contain basic metrics

about the application: number of classes (k), methods (m) and bytecodes (b). Since

those numbers really correspond to the Jimple representation of the code, we also

list how many program points (pp) are present in the Control Flow Graph analyzed.

This metric differs slightly from the number of bytecodes in the sense that extra

blocks and builtins make it slightly larger; pp also provides a better approximation

for the size of the program analyzed because the semantics of the Java bytecodes

are made explicit, as seen in Chapter 2. The data in Table 3.2 strictly corresponds

to the analysis phase. Since our framework is context sensitive and can thus keep

track of different contexts at each program point, at the end of analysis there may be

more than one abstract state associated with each program point. Thus, the number
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name pt stN astN atN st
CHA

ast
CHA

at
CHA

Health 1.1 3.5 2964 4.7 3.8 3542 52.1
BH 3.2 4.2 6266 24.3 2.7 4757 59.4
Voronoi 2.2 2.6 2850 5.9 3.8 5147 81.3
MST 0.1 2.7 844 0.7 2.6 1609 11.6
Power 2.1 4.2 4743 12.1 2.3 2908 32.7
TreeAdd 2.0 2.2 468 0.3 2.6 529 6.1
Em3d 0.1 5.5 3100 4.8 4.9 3320 49.5
Perimeter 0.1 3.1 2366 1.8 4.5 3731 25.0
BiSort 0.1 4.2 1934 2.9 3.4 1614 15.6
All 10.5 6.1 39159 163.7 4.1 29586 39.2

Table 3.2: Compilation and analysis times on a Pentium M 1.73Ghz with 1Gb of
RAM.

of abstract states is typically larger than the number of reachable program points.

Column ast provides the total number of these abstract states inferred by analysis.

The level of precision is the ratio ast/pp, presented in column st. In general, such a

larger number for st tends to indicate more precise results.

Running times are listed in columns pt (time invested in preprocessing the pro-

gram and produce the corresponding CFG) and at (analysis); both are given in

seconds. The benchmarks have been tested on a Pentium M 1.73Ghz with 1Gb

of RAM. We chose to divide the total time because we expect the decompilation

process to be fully run only once; posterior executions can use incremental compi-

lation for those files that changed, thus the preprocessing phase is almost negligible

in medium and large programs. Although the same approach can be taken for the

analysis [PH96], we do not support incrementality at that level in the current im-

plementation. The results seem to support the feasibility of the approach, even if

further work is certainly required to see how applicable the technique is for large

programs.
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3.4 Related work

Most published analyses based on abstract interpretation for Java (source or byte-

code) do not provide much detail regarding the implementation of the fixpoint algo-

rithm. Also, most of the related research (e.g., [Bla99, CL05]) focuses on particular

properties and therefore their solutions (abstract domains) are tied to them, even

when they are explicitly multipurpose, like TVLA [LAS00]. In [Pol04] the authors

mention a choice of several context insensitive and sensitive computations, but no

further information is given. The more recent and quite interesting Julia frame-

work [Spo05] is intended to be generic and targets bytecode as in our case. Its fixpoint

technique is based on prioritizing analysis of non-recursive components over those

requiring fixpoint computations and using abstract compilation [HWD92]. However,

few implementation details are provided. Also, this is a bottom-up framework, while

our objective is to develop a top-down, context sensitive framework. While it is

well-known that bottom-up analyses can be adapted to perform top-down analy-

ses by subjecting the program to a “magic-sets”-style transformation [Ram91], the

resulting analyzers typically lack some of the characteristics that are the objective

of our proposal, and, specially, context sensitive results. Cibai [Log07] is another

generic static analyzer for the modular analysis and verification of Java classes. The

algorithm presented is top-down, and only a naive version of it (which is not efficient

for mutually recursive call graphs) is presented.

Finally, our work is inspired by the ideas in [MH92], where a fixpoint engine for

Prolog is proposed. Although our algorithm is based on the ideas already present

in that work, we modified the algorithm in non-trivial ways so it is adapted to

our general intermediate representation, thus eliminating all those aspects that were

dependent of Prolog.
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3.5 Chapter conclusions

In this chapter, we have completed the presentation of our abstract interpretation

framework by introducing a novel fixpoint algorithm. The algorithm benefits from

acceleration techniques like memoization or dependency tracking, considerably re-

ducing the number of iterations. We also claim that the analysis has the potential

to be very accurate because of the top-down, context sensitive approach adopted.
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Chapter 4

The Set Sharing Abstract Domain

4.1 Background and Motivation

Sharing analysis [JL89, MH91, SS05] aims to detect which variables do not share in

memory, i.e., do not point (transitively) to the same location. It can be viewed as an

abstraction of the graph-based representations of memory used by certain classes of

alias analyses (see, e.g., [WL95, BCCH94, HBCC99, LR92]). Obtaining a safe (over-

approximation) of which instances might share allows parallelizing segments of code,

improving garbage collection, reordering execution, etc. Also, sharing information

can improve the precision of other analyses.

As mentioned in Chapter 3, nullity analysis is aimed at keeping track of null

variables. This allows for example verifying properties such as the absence of null-

pointer exceptions at compile time. In addition, by combining sharing and null

information it is possible to obtain more precise descriptions of the state of the

heap. As also mentioned in Chapter 3, in type-safe, object-oriented languages class

analysis [Age95, BS96, DGC95, PS91] (sometimes called type analysis) focuses on

determining, in the presence of polymorphic calls, which particular implementation
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of a given method will be executed at run-time, i.e., what is the specific class of

the called object in the hierarchy. Multiple compilation optimizations benefit from

having precise class descriptions: inlining, dead code elimination, etc. In addition,

class information may allow analyzing only a subset of the classes in the hierarchy,

which may result in additional precision.

We propose a novel analysis which infers in a combined way set sharing, nullity,

and class information for a subset of Java. The objective of using a reduced car-

dinal product [CC79] of these three abstract domains is to achieve a good balance

between precision and performance, since the information tracked by each compo-

nent helps refine that of the others. While in principle these three analyses could

be run separately, because they interact (we provide some examples of this), this

would result in a loss of precision or require an expensive iteration over the different

analyses until an overall fixpoint is reached [CMB+95, CC79]. In addition, note that

since our analysis is multivariant, and given the different nature of the properties

being tracked, performing analyses separately may result in different sets of abstract

values (contexts) for each analysis for each program point. This makes it difficult to

relate which abstract value of a given analysis corresponds to a given abstract value

of another analysis at a given point. At the other end of things, we prefer for clar-

ity and simplicity reasons to develop directly this three-component domain and the

operations on it, rather than resorting to the development of a more unified domain

through (semi-)automatic (but complex) techniques [CMB+95, CFR+97]. The final

objectives of our analysis include verification, static debugging, and optimization.

4.2 Standard Semantics

Figure 4.1 shows the motivating example for this chapter, an alternative implemen-

tation for the java.util.Vector class of the JDK in which vectors are represented
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class Element {

int value;

Element next;}

class Vector {

Element first;

public void add(Element el) {

Vector v = new Vector();

el.next = null;

v.first = el;

append(v);

}

}

public void append(Vector v) {

if (this != v) {

Element e = first;

if (e == null)

first = v.first;

else {

while (e.next != null)

e = e.next;

e.next = v.first;

}

}

}

Figure 4.1: Vector example.

as linked lists. It is important to note that we provide the source code so the reader

can get a better understanding of the example; the actual analysis works in the corre-

sponding bytecode by transforming it into the intermediate representation described

in Chapter 2. In the same fashion, we will refer to some Java source expressions and

statements during the rest of the chapter (as in new), even when the framework deals

with their transformed representation in the actual analysis.

4.2.1 Basic Notation

We first introduce some notation and auxiliary functions used in the rest of the

chapter. By 7→ we refer to total functions; for partial ones we use →. The powerset

of a set s is P(s); P+(s) is an abbreviation for P(s) \ {∅}. The dom function returns

all the elements for which a function is defined; for the codomain we will use rng. A

substitution f [k1 7→ v1, . . . , kn, 7→ vn] is equivalent to f(k1) = v1, . . . , f(kn) = vn. We

will overload the operator for lists so that f [K 7→ V ] assigns f(ki) = vi, i = 1, . . . ,m,
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assuming |K| = |V | = m. By f |−S we denote removing S from dom(f). Conversely,

f |S restricts dom(f) to S. For tuples (f1, . . . , fm)|S = (f1|S, . . . , fm|S). Renaming in

the set s of every variable in S by the one in the same position in T (|S| = |T |) is

written as s|TS . This operator can also be applied for renaming single variables. We

denote by B the set of Booleans.

4.2.2 Program State and Sharing

With M we designate the set of all method names defined in the program. For the

set of distinct identifiers (variables and fields) we use V . We assume that V also

includes the elements this (instance where the current method is executed), and res

(for the return value of the method). In the same way, K represents the program-

defined classes. We do not allow import declarations but assume as member of K

the predefined class Object.

K forms a lattice implied by a subclass relation ↓: K → P(K) such that if

t2 ∈ ↓ t1 then t2 ≤K t1. The semantics of the language implies ↓ Object = K.

Given def : K ×M 7→ B, that determines whether a particular class provides its

own implementation for a method, the Boolean function redef : K × K ×M 7→ B

checks if a class k1 redefines a method existing in the ancestor k2: redef(k1, k2,m) =

true iff ∃k s.t. def(k,m), k1≤K k<K k2.

Static types are accessed by means of a function π : V 7→ K that maps variables

to their declared types. The purpose of an environment π is twofold: it indicates

the set of variables accessible at a given program point and stores their declared

types. Additionally, we will use the auxiliary functions F (k) (which maps the fields

of k ∈ K to their declared type), and typeπ(expr), which maps expressions to types,

according to π.

The description of the memory state is based on the formalization in [SS05,
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HPS06]. We define a frame as an element of Frπ = {φ | φ ∈ dom(π) 7→ Loc ∪ {null}},

where Loc = I+ is the set of memory locations. A frame represents the first level

of indirection and maps variable names to locations except if they are null. The

set of all objects is Obj =
{
k ? φ | k ∈ K, φ ∈ FrF (k)

}
. Locations and objects are

linked together through the memory Mem = {µ | µ ∈ Loc 7→ Obj}. A new object

of class k is created as new(k) = k ? φ where φ(f) = null ∀f ∈ F (k). The object

pointed to by v in the frame φ and memory µ can be retrieved via the partial func-

tion obj(φ ? µ, v) = µ(φ(v)). A valid heap configuration (concrete state φ ? µ) is any

element of Σπ = {σ | φ ∈ Frπ, µ ∈Mem}. We will sometimes refer to a pair σ with

δ.

The set of locations Rπ(φ ? µ, v) reachable from v ∈ dom(π) in the particu-

lar state φ ? µ ∈ Σπ is calculated as Rπ(φ ? µ, v) = ∪{Ri
π(φ ? µ, v) | i ≥ 0}, the

base case being R0
π(φ ? µ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ ? µ, v) =

∪{rng(µ(l).φ))|Loc | l ∈ Ri
π(φ ? µ, v)}. Reachability is the basis of two fundamental

concepts: sharing and nullity. Distinct variables V = {v1, . . . , vn} share in the actual

memory configuration δ if there is at least one common location in their reachability

sets, i.e., shareπ(δ, V ) is true iff ∩ni=1Rπ(δ, vi) 6= ∅. A variable v ∈ dom(π) is null

in state δ if Rπ(δ, v) = ∅. Nullity is checked by means of nilπ : Σπ × dom(π) 7→ B,

defined as nilπ(φ ? µ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by ψπ : Σπ × dom(π) 7→ K,

which associates variables with their dynamic type, based on the information con-

tained in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and ψπ(δ, v) = π(v)

otherwise. In a type-safe language like Java runtime types are congruent with de-

clared types, i.e., ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π),∀δ ∈ Σπ. Therefore, a correct

approximation of ψπ can always be derived from π. Note that at the same program

point we might have different run-time type states ψ1
π and ψ2

π depending on the

particular program path executed, but the static type state is unique.
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Denotational (compositional) semantics of sequential Java has been the subject of

previous work (e.g., [AF99]). In our case we define a simpler version of that semantics

for the subset defined in Section 4.2, described as transformations in the frame-

memory state. The descriptions are similar to [SS05]. Expression functions EIπJK :

expr 7→ (Σπ 7→ Σπ′) define the meaning of Java expressions, augmenting the actual

scope π′ = π[res 7→ typeπ(exp)] with the temporal variable res. Command functions

CIπJK : com 7→ (Σπ 7→ Σπ) do the same for commands; semantics of a method m

defined in class k is returned by the function I(k.m) : Σinput(k.m) → Σoutput(k.m). The

definition of the respective environments, given a declaration in class k as tret m(this :

k, p1 : t1 . . . pn : tn) com, is input(k.m) = {this 7→ k, p1 7→ t1, . . . , pn 7→ tn} and

output(k.m) = input(k.m)[out 7→ tret].

Example 2 Assume that, in Figure 4.1, after entering in the method add of the

class Vector we have an initial state (φ0 ? µ0) s.t. loc1 = φ0(el) 6= null. After

executing Vector v = new Vector() the state is (φ1 ? µ1), with φ1(v) = loc2, and

µ1(loc2).φ(first) = null. The field assignment el.next = null results in (φ2 ? µ2),

verifying µ2(loc1).φ(next) = null. In the third line, v.first = el links loc1 and loc2

since now µ3(loc2).φ(first) = loc1. Now v and el share, since their reachability sets

intersect at least in {loc1}. Finally, assume that append attaches v to the end of the

current instance this resulting in a memory layout (φ4 ? µ4). Given loc3 = obj((φ4 ?

µ4)(this)).φ(first), it should hold that µ4(. . . µ4(loc3).φ(next) . . .).φ(next) = loc2.

Now this shares with v and therefore with el, because loc1 is reachable from loc2.

4.3 Abstract Semantics

An abstract state σ ∈ D in an environment π approximates the sharing, nullity, and

run-time type characteristics (as described in Section 4.2.2) of set of concrete states
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SEJnullK(sh, nl, τ) = (sh, nl′, τ ′)
nl′ = nl[res 7→ null]
τ ′ = τ [res 7→ ↓object]

SEJnew kK(sh, nl, τ) = (sh′, nl′, τ ′)
sh′ = sh ∪ {{res}}
nl′ = nl[res 7→ nnull]
τ ′ = τ [res 7→ {κ}]

SEJvK(sh, nl, τ) = (sh′, nl′, τ ′)
sh′ = ({{res}} ] shv) ∪ sh−v
nl′ = nl[res 7→ nl(v)]
τ ′ = τ [res 7→ τ(v)]

SEJv.fK(sh, nl, τ) =

{
⊥ if nl(v) = null
(sh′, nl′, τ ′) otherwise

sh′ = sh−v ∪
⋃
{P+(s|−v ∪ {res}) ] {{v}} | s ∈ shv}

nl′ = nl[res 7→ unk, v 7→ nnull]
τ ′ = τ [res 7→↓ F (π(v)(f))]

SEJv.m(v1, . . . , vn)K(sh, nl, τ) =

{
⊥ if nl(v) = null
σ′ otherwise

σ′ = SEJcall(v,m(v1, . . . , vn))K(sh, nl′, τ)
nl′ = nl[v 7→ nnull]

Figure 4.2: Abstract semantics for the expressions.

in Σπ. Every abstract state combines three abstractions: a sharing set sh ∈ DSπ, a

nullity set nl ∈ DN π, and a type member τ ∈ DT π, i.e., D = DSπ ×DN π ×DT π.

The sharing abstract domain DSπ = {{v1, . . . , vn} | {v1, . . . , vn} ∈ P(dom(π))

,∩ni=1Cπ(vi) 6= ∅} is constrained by a class reachability function which retrieves those

classes that are reachable from a particular variable: Cπ(v) = ∪{Ci
π(v) | i ≥ 0}, given

C0
π(v) =↓π(v) and Ci+1

π (v) = ∪{rng(F (k)) | k ∈ Ci
π(v)}. By using class reachability,

we avoid including in the sharing domain sets of variables which cannot share in

practice because of the language semantics. The partial order ≤DSπ is set inclusion.

We define several operators over sharing sets, standard in the sharing literature

[JL89, MH89]. The binary union ] : DSπ × DSπ 7→ DSπ, calculated as S1 ]
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S2 = {Sh1 ∪ Sh2 | Sh1 ∈ S1, Sh2 ∈ S2} and the closure under union ∗ : DSπ 7→ DSπ
operators, defined as S∗ = {∪SSh | SSh ∈ P+(S)}; we later filter their results using

class reachability. The relevant sharing with respect to v is shv = {s ∈ sh | v ∈ s},

which we overloaded for sets. Similarly, sh−v = {s ∈ sh | v /∈ s}. The projection

sh|V is equivalent to {S | S = S ′ ∩ V, S ′ ∈ sh}.

The nullity domain is DN π = P(dom(π) 7→ NV), where NV = {null, nnull,

unk}. The order ≤NV of the nullity values (null ≤NV unk, nnull ≤NV unk) in-

duces a partial order in DN π s.t. nl1 ≤DNπ nl2 if nl1(v) ≤NV nl2(v) ∀v ∈ dom(π).

Finally, the domain of types maps variables to sets of types congruent with π:

DT π= {(v, {t1, . . . , tn}) ∈ dom(π) 7→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpretation as defined in [CC77]

in terms of Galois insertions. The concretization function γπ : D 7→ P(Σπ) is

γπ(sh, nl, τ) = {δ ∈ Σπ | ∀V ⊆ dom(π), shareπ(δ, V ) and @W, V ⊂ W ⊆ dom(π)

s.t. shareπ(δ,W ) ⇒ V ∈ sh, and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) 6= ∅

if nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) ,∀v ∈ dom(π)}.

The abstract semantics of expressions and commands is listed in Figs. 4.2 and

4.3. As their concrete counterparts, they take an expression or command and map

an input state σ ∈ D to an output state σ′ ∈ Dσ
π′

where π = π
′

in commands and

π
′
= π[res 7→ typeπ(expr)] in expression expr.

The semantics of a method call is explained in Section 4.3.1. The use of set sharing

(rather than pair sharing) in the semantics prevents possible losses of precision, as

shown in Example 3.

Example 3 In the add method (Figure 4.1), assume that σ = ({{this, el} , {v}},

{this/nnull, el/nnull, v/nnull}) right before evaluating el in the third line (we skip

type information for simplicity). The expression el binds to res the location of

el, i.e., forces el and res to share. Since nl(el) 6= null the new sharing is sh′ =
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SCJv=exprKσ = ((sh′|−v)|vres, nl′|vres, τ
′′ |−res)

τ
′′

= τ ′[v 7→ (τ ′(v) ∩ τ ′(res))]
(sh′, nl′, τ ′) = SEJexprKσ

SCJv.f=exprKσ = (sh
′′
, nl

′′
, τ ′)|−res

sh
′′

=


⊥ if nl′(v) = null
sh′ if nl′(res) = null
shy ∪ sh′−{v,res} otherwise

nl
′′

= nl′[v 7→ nnull]
shy = (

⋃
{P(s|−v ∪ {res}) ] {{v}} | s ∈ sh′v} ∪⋃
{P(s|−res ∪ {v}) ] {{res}} | s ∈ sh′res})∗

(sh′, nl′, τ ′) = SEJexprKσ

SCJ if v==null com1

else com2

Kσ =


σ′1 if nl(v) = null
σ′2 if nl(v) = nnull
σ1 t σ2 if nl(v) = unk

σ′i = SCJcomiKσ
σ1 = SCJcom1K(sh|−v, nl[v 7→ null], τ [v 7→↓π(v)])
σ2 = SCJcom2K(sh, nl[v 7→ nnull], τ)

SCJ if v==w com1

else com2

K(sh, nl, τ) =


σ′1 if nl(v) = nl(w) = null
σ′2 if sh|{v,w} = ∅
σ′1 t σ′2 otherwise

σ′i = SCJcomiK(sh, nl, τ)

SCJcom1;com2Kσ = SCJcom2K(SCJcom1Kσ)

Figure 4.3: Abstract semantics for the commands.

({{res}} ] shel) ∪ sh−el = ({{res}} ] {{this, el}}) ∪ {{v}} = {{res, this, el} , {v}}.

In the case of pair-sharing, the transfer function [SS05] for the same initial state

sh = {{this, el} , {v, v}} returns sh′p = {{res, el}, {res, this} , {this, el} , {v, v}},

which translated to set sharing results in sh′′ = {{res, el}, {res, this} , {res, this,

el}, {this, el} , {v}}, a less precise representation (in terms of ≤DSπ) than sh′.

Example 4 Our multivariant analysis keeps two different call contexts for the append

method in the Vector class (Figure 4.1). Their different sharing information shows

how sharing can improve nullity results. The first context corresponds to external
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calls (invocation from other classes), because of the public visibility of the method:

σ1 = ({{this} , {this, v} , {v}}, {this/nnull, v/unk} , {this/ {vector} , v/ {vector}}).

The second corresponds to an internal (within the class) call, for which the analy-

sis infers that this and v do not share: σ2 = ({{this} , {v}}, {this/nnull, v/unk} ,

{this/ {vector} , v/ {vector}}). Inside append, we avoid creating a circular list by

checking that this 6= v. Only then is the last element of this linked to the first one

of v. We use com to represent the series of commands Element e = first; if

(e==null)...else.. and bdy for the whole body of the method. Independently of

whether the input state is σ1 or σ2 our analysis infers that SCJcomKσ1 = SCJcomKσ2 =

({{this, v}}, {this/nnull, v/nnull}, {this/ {vector} , v/ {vector}}) = σ3. However,

the more precise sharing information in σ2 results in a more precise analysis of

bdy, because of the guard (this!=v). In the case of the external calls, SCJbdyKσ1=

SCJcomKσ1 t SCJskipKσ1= σ1 t σ3 = σ1. When the entry state is σ2, the seman-

tics at the same program point is SCJbdyKσ2= SCJcomKσ2 = σ3 < σ1. So while the

internal call requires v 6= null to terminate, we cannot infer the final nullity of that

parameter in a public invocation, which might finish even if v is null.

4.3.1 Method Calls

The semantics of the expression call(v, m(v1, . . . , vn)) in state σ = (sh, nl, τ) is

calculated by implementing the top-down methodology described in [NMLH07]. We

will assume that the formal parameters follow the naming convention F in all the

implementations of the method; let A = {v, v1, . . . , vn} and F = dom(input(k.m))

be ordered lists. We first calculate the projection σp = σ|A and an entry state

σy = σp|FA. The abstract execution of the call takes place only in the set of classes

K = τ(v), resulting in an exit state σx =
⊔
{SCJk′.mKσy |k′ = lookup(k,m), k ∈ K},

where lookup returns the body of k’s implementation of m, which can be defined in

k or inherited from one of its ancestors. The abstract execution of the method in a
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subset K ⊆↓π(v) increases analysis precision and is the ultimate purpose of tracking

run-time types in our abstraction. We now remove the local variables σb = σx|F∪{out}
and rename back to the scope of the caller: σλ = σb|A∪{res}F∪{out}; the final state σf is

calculated as σf = extend(σ, σλ, A). The extend : D×D×P(dom(π)) 7→ D function

is described in Algorithm 1.

Algorithm 1: Extend operation

input : state before the call σ, result of analyzing the call σλ

and actual parameters A

output: resulting state σf

if σλ = ⊥ then
σf = ⊥

else

let σ = (sh, nl, τ), and σλ = (shλ, nlλ, τλ), and AR = A ∪ {res}

star = (shA ∪ {{res}})∗

shext = {s | s ∈ star, s|AR ∈ shλ}

shf = shext ∪ sh−A

nlf = nl[res 7→ nlλ(res)]

τf = τ [res 7→ τλ(res)]

σf = (shf , nlf , τf )

end

In Java references to objects are passed by value in a method call. Therefore, they

cannot be modified. However, the call might introduce new sharing between actual

parameters through assignments to their fields, given that the formal parameters

they correspond to have not been reassigned. We keep the original information

by copying all the formal parameters at the beginning of each call, as suggested

in [Pol04]. Those copies cannot be modified during the execution of the call, so a

meaningful correspondence can be established between A and F .
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We can do better by realizing that analysis might refine the information about

the actual parameters within a method and propagating the new values discov-

ered back to σf . For example, in a method foo(Vector v){if v!=null skip else

throw null}, it is clear that we can only finish normally if nlx(v) = nnull, but in the

actual semantics we do not change the nullity value for the corresponding argument

in the call, which can only be more imprecise. Note that the example is different

from foo(Vector v){v = new Vector}, which also finishes with nlx(v) = nnull.

The distinction over whether new attributes are preserved or not relies on keep-

ing track of those variables which have been assigned inside the method, and then

applying the propagation only for the unset variables.

Example 5 Assume an extra snippet of code in the Vector class of the form if

(v2!=null) v1.append(v2) else com, which is analyzed in state σ = ({{v1} ,

{v2}}, {v1/nnull, v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nullity in-

formation, it is possible to identify the block com as dead code. In contrast, sharing-

only analyses can only tell if a variable is definitely null, but never if it is definitely

non-null. The call is analyzed as follows. Let A = {v1, v2} and F = {this, v}, then

σp = σ|A = σ and the entry state σy is σ|FA = ({{this} , {v}} , {this/nnull, v/nnull} ,

{this/ {vector} , v/ {vector}}). The only class where append can be executed is

Vector and results (see Example 4) in an exit state for the formal parameters

and the return variable σb = ({{this, v}} , {this/nnull, v/nnull, out/null}, {this/

{vector} , v/ {vector} , out/ {void}}),

which is further renamed to the scope of the caller obtaining σλ = ({{v1, v2}} , {v1/

nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} , res/ {void}}). Since the method

returns a void type we can treat res as a primitive (null) variable so σf = extend(σ,

σλ, {v1, v2}) = ({{v1, v2}} , {v1/nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} ,

res/{void}}).

Example 6 The extend operation used during interprocedural analysis is a point
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where there can be significant loss of precision and where set sharing shows its

strengths. For simplicity, we will describe the example only for the sharing com-

ponent; nullity and type information updates are trivial. Assume a scenario where a

call to append(v1,v2) in sharing state sh = {{v0, v1} , {v1} , {v2}} results in shλ =

{{v1, v2}}. Let A and AR be the sets {v1, v2} and {v1, v2, res} respectively. The

extend operation proceeds as follows: first we calculate star as (shA ∪ {{res}})∗ =

(sh∪{{res}})∗ = ({{v0, v1} , {v1} , {v2} , {res}})∗ = {{v0, v1} , {v0, v1, v2} , {v0, v1, v2,

res}, {v0, v1, res} , {v1} , {v1, v2} , {v1, v2, res} , {v1, res} , {v2} , {v2, res} , {res}}, from

which we delete those elements whose projection over AR is not included in shλ, ob-

taining shext = {{v0, v1, v2} , {v1, v2}}. The resulting sharing component is the union

of that shext with sh−A = ∅, so shf1 = shext = {{v0, v1, v2} , {v1, v2}}.

When the same sh and shλ are represented in their pair sharing versions shp =

{{v0, v1} , {vo, v0} , {v1, v1} , {v2, v2}} and shpλ = {{v1, v2} , {v1, v1} , {v2, v2}}, the

extend operation in [SS05] introduces spurious sharings in shf because of the lower

precision of the pair-sharing representation. In this case, shpf2 = (sh ∪ shpλ)∗A =

{{v0, v1} , {v0, v2} , {v1, v2} , {v0, v0} , {v1, v1} , {v2, v1}}. This information, expressed

in terms of set sharing, results in shf2 = {{v0, v1} , {v0, v2} , {v0, v1, v2}, {v1, v2} ,

{v0} , {v1} , {v2}}, which is much less precise that shf1.

4.4 Proofs

We have to prove that απ(EIπJexprK(γπ(σ)) ≤ SEJexprKσ (in the case of commands,

απ(CIπJcomK(γπ(σ)) ≤ SCJcomKσ). We denote by LHS the left-hand side of the

equation, which will be further rewritten until showing that it is approximated

by the right-hand side (RHS), the semantics described in Fig. 4.2 and 4.3. The

abstraction function for the sharing component is απ(S) = {V ⊆ dom(π) | ∃δ ∈
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S s.t.
⋂
vi∈V

Rπ(δ, vi) 6= ∅ and @W ⊆ dom(π) s.t. V ⊂ W and
⋂
wi∈W

Rπ(δ, wi) 6= ∅}.

For the nullity component the abstraction is απ(S) = {vi/null ∈ dom(π)×DN π | ∀δ ∈

S, Rπ(δ, vi) = ∅} ∪{wi/nnull ∈ dom(π)×DN π | ∀δ ∈ S, Rπ(δ, wi) 6= ∅} ∪{yi/unk ∈

dom(π)×DN π | yi /∈ V, yi /∈ W}. Finally, types in the set of states S are abstracted

as απ(S) = {v/T ∈ dom(π)× P(K) | ∀δ ∈ S, ψπ(δ, v) ∈ T}.

null

LHS = απ({φ[res 7→ null]?µ |φ?µ ∈ γπ(σ)}). However, the addition of null variables

cannot affect the sharing (from the definition of απ) but only the nullity component.

Therefore, LHS =απ({φ ? µ | φ ? µ ∈ γπ(σ)}).nl[res 7→ null] = απ(γπ(σ)).nl[res 7→

null] = (sh, nl[res 7→ null], τ) ≤ SEJnullKσ. The nullity value for res is trivially

correct; the rest of the variables are unaffected. The type value of res is the most

general one and therefore correct.

new k

LHS = απ({φ[res 7→ l] ? µ[l 7→ o] | φ ? µ ∈ γπ(σ)}). Since l is a fresh location,

res cannot reach any location already pointed to by another variable, so we can

separate the memory state after the expression in two independent parts. By se-

mantics of the language, l is a non-null location and therefore the nullity value for

res correctly approximates the standard semantics; the type value for res is just the

one of the class constructor invoked; the rest of the variables see no changes and

their current values for nl and τ remain correct. LHS= απ({φ ? µ | φ ? µ ∈ γπ(σ)})∪

({{res}} , {res/nnull} , {res/ {k}}) = απ(γπ(sh))∪({{res}} , {res/nnull}, {res/ {k}})

= SEJnew kKσ

v

LHS = απ({φ[res 7→ φ(v)] ? µ | φ ? µ ∈ γπ(σ)}). We will call the new frame φ′.
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Since res is removed after evaluating an expression, we only have to check whether

its addition to the frame is properly approximated. The new nullity and type values

correctly approximate the effect of evaluating the expression, since v was correctly

approximated by nl and τ and now res is a synonym of v; the rest of the variables

remain unchanged so (nl[res 7→ nl(v)], τ [res 7→ τ(v)]) is a correct approximation for

them.

If nl(v) = null the semantics is the same as in null; if not, in the new state φ′ ?µ

there is a subset of variables which did not reach any location reachable from v.

Those variables are unaffected and their previous approximation sh−v is correct. For

the rest of the variables, if shv approximated their reachability then shv ] {{res}}

is the minimal approximation for φ′ ? µ, since Rπ(φ′ ? µ, v) = Rπ(φ′ ? µ, res) and

therefore there cannot be any sharing in which v is included but res is not.

v.f

LHS = απ({φ[res 7→ l] ? µ | l = (obj(φ ? µ, v).φ)(f) , φ ? µ ∈ γπ(σ)})=απ({φ′ ? µ}).

In a normal execution all those variables which did not reach a location reachable

from v cannot be reached from res, and therefore they are correctly approximated by

sh−v. Variables {w1, . . . , wn} in any σ verifying Rπ(φ?µ,wi)∩Rπ(φ?µ, v) 6= ∅ might

reach the l location or be reached from it. However, the only definitive information

is that Rπ(φ′ ? µ, v) ∩ Rπ(φ′ ? µ, res) 6= ∅, information captured by applying the

] operator between {{v}} and any sharing set where res appears. The remaining

possibilities (including those already existing in φ ? µ) are correctly abstracted by

{{{v}} ] P(s|−v ∪ {res}) | s ∈ shv}, since we create a set for every possibility in

a sharing set of shv but without introducing impossible sharings: for example, if

{{v, a} , {v, b}} was the starting state, the expression v.f cannot introduce sharing

between a and b and the result is {{v, a} , {v, a, res} , {v, b} , {v, b, res} , {v, res}}.

The nullity value for res is correct since it is the most general one; type information
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is also trivially correct.

call(v,m(v1, . . . , vn))

(We provide here an informal proof; the reader interested in the how the fixpoint is

calculated in the presence of method calls can refer to Chapter 3).

In Java method calls cannot alter the caller frame (Frπ), but just subsequent

levels of indirection: fields of variables in the scope of the caller. The only excep-

tion to this is the returned value res. Hence, an analysis of the call which strictly

computes the most general sharing for the actual parameters and res starting at the

caller state, and that assumes the most general nullity and type values for res, is

always correct.

An initial approximation for σf is therefore star = ((shA∪{{res}})∗∪sh−A, nl[res 7→

unk], τ [res 7→ (↓π(res))]). We can improve precision by using the semantics of the

callees σλ. That semantics is correct since it approximates the call in all the class

hierarchy of π(v), including ψπ(v).

The nullity and type value are trivial, since they cannot change during the call

(but we can possibly find a more precise value for them, see Sect.4.3.1) except for

res: we just copy the new values for that variable to nlf and τf , which for the rest

are clones of nl and τ , respectively. The sharing case is more complicated. On one

hand we have shstar, which (provably) is an over-approximation for shf , and on the

other shλ, which describes the final state exclusively about the actual parameters.

We now filter out from the former those elements such that their information about

the actual parameters and res is incompatible with shλ, regardless of the other ele-

ments in the set, obtaining shext = {s | s ∈ shstar, s|AR ∈ shλ}. All the sharings not

related to the actual parameters are preserved, resulting in shf = shext ∪ sh−A.
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v = expr

LHS =(απ({φ′[v 7→ φ′(res)])|−res) ? µ′ | φ ? µ ∈ γπ(σ)}). The proof is analogous

to the one of the v expression. Assume that the semantics EIπJexprK is correct, the

concrete semantics of the assignment is identical to that of expression evaluation, just

exchanging the res and v variables. In the case of nullity and types, the resulting

state just replaces res by v, which is the result of overwriting v values with those of

res and then removing any occurrence of res.

The sharing component is more complex. First, all previous sharings of v are

deleted (sh′ = sh|−{v}) and it now appears in all sharing groups where res was,

approximated by (sh′−res ∪ (shres ] {{v}}))|−res = sh′−res ∪ (sh′res|vres) = sh′|vres =

(SCJv=exprKσ).sh.

v.f= expr

Analogous to the v.f proof, but taking into account that res might share with other

variables (and has to be removed after the assignment).

if v==w com1 else com2

If sh|{v,w} = ∅, then @δ ∈ γπ(σ) s.t. φ(v) = φ(w) by definition of γπ(σ). There-

fore, LHS=απ(CIπJif...K({φ ? µ ∈ γπ(σ) | φ(v) 6= φ(w)}))=απ(CIπJcom2K({φ ? µ ∈

γπ(σ) | φ(v) 6= φ(w)}))=απ(CIπJcom2K({φ ? µ ∈ γπ(σ)}))≤ SCJcom2Kσ =RHS.

If sh|{v,w} 6= ∅, then we might have φ(v) = φ(w) and LHS= απ(CIπJcom1K({φ?µ ∈

γπ(σ) | φ(v) = φ(w)})) t απ(CIπJcom2K({φ ? µ ∈ γπ(σ) | φ(v) 6= φ(w)})) ≤

απ(CIπJcom1K ({φ ? µ ∈ γπ(σ)})) t απ(CIπJcom2K({φ ? µ ∈ γπ(σ)})) ≤ SCJcom1Kσ t

SCJcom2Kσ=RHS.

if v==null com1 else com2

If σ.nl[v] = null, the concretization function ensures φ(v) = null ∀φ ? µ ∈ γπ(σ)
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thus LHS=απ(CIπJif...K({φ ? µ ∈ γπ(σ) | φ(v) = null})) =απ(CIπJcom1K({φ ? µ ∈

γπ(σ) | φ(v) = null}))= απ(CIπJcom1K({φ ? µ ∈ γπ(σ)})) ≤ SCJcom1Kσ =RHS. A

similar reasoning can be applied for the case where nl[v] = nnull.

If nl[v] = unk, LHS=απ(CIπJif...K({φ?µ ∈ γπ(σ)|φ(v) = null}))tαπ(CIπJif...K({φ?

µ ∈ γπ(σ) | φ(v) = nnull})). The first term is equivalent to απ(CIπJcom1K)({φ ? µ ∈

γπ(σ) | φ(v) = null})) = απ(CIπJcom1K)({φ ? µ ∈ γπ(sh|−v, nl[v 7→ null])}) (by defi-

nition of γπ), which is ≤ SCJcom1K(sh|−v, nl[v 7→ null]). In an analogous way, the

second term is απ(CIπJcom2K({φ?µ ∈ γπ(σ) |φ(v) 6= null})) = απ(CIπJcom2K)({φ?µ ∈

γπ(sh, nl[v 7→ nnull])}) ≤ SCJcom2K(sh, nl[v 7→ nnull]). Therefore, the left-hand

side of the equation is approximated by the semantics given.

com1;com2

True by correctness of the composition of correct operations.

4.5 Experimental results

We now provide some precision and cost results obtained from the implementation

in the framework described in the Chapters 2 and 3 of our set-sharing, nullity, and

class (SSNlTau) analysis. In order to be able to provide a comparison with the

closest previous work, we also implemented the pair sharing (PS) analysis proposed

in [SS05]. We have extended the operations described in [SS05], enabling them to

handle some additional cases required by our benchmark programs such as primitive

variables, visibility of methods, etc. Also, to allow direct comparison, we imple-

mented a version of our SSNlTau analysis, which is referred to simply as SS, that

tracks set sharing using only declared type information and does not utilize the (non-

)nullity component. In order to study the influence of tracking run-time types we

have implemented a version of our analysis with set sharing and (non-)nullity, but
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PS SS
#tp #rp #up #σ t #rp #up #σ t %∆t

dyndisp* 71 68 3 114 30 68 3 114 29 -2
clone 41 38 3 42 52 38 3 50 81 55
dfs 102 98 4 103 68 98 4 108 68 0
passau* 167 164 3 296 97 164 3 304 120 23
qsort 185 142 43 182 125 142 43 204 165 32
intqsort 191 148 43 159 110 148 43 197 122 10
pollet01* 154 126 28 276 196 126 28 423 256 30
zipvector* 272 269 3 513 388 269 3 712 1029 164
cleanness* 314 277 37 360 233 277 37 385 504 116

overall 1497 1330 167 2045 1299 1330 167 2497 2374 82.75

Figure 4.4: Analysis times, number of program points, and number of abstract states.

again using only the static types, which we will refer to as SSNl. In these versions

without dynamic type inference only declared types can affect τ and thus the dy-

namic typing information that can be propagated from initializations, assignments,

or correspondence between arguments and formal parameters on method calls is not

used. Note however that the version that includes tracking of dynamic typing can of

course only improve analysis results in the presence of polymorphism in the program:

the results should be identical (except perhaps for the analysis time) in the rest of

the cases. The polymorphic programs are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous literature on either ab-

stract interpretation for Java or points-to analysis [SS05, PLC01, Pol04, SS00]. We

added two different versions of the Vector example of Figure 4.1. Our experimental

results are summarized in Tables 4.4, 4.5, and 4.6.

The first column (#tp) in Tables 4.4 and 4.5 shows the total number of program

points (commands or expressions) for each program. Column #rp then provides, for

each analysis, the total number of reachable program points, i.e., the number of pro-
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SSNl SSNlTau
#tp #rp #up #σ t %∆t #rp #up #σ t %∆t

dyndis* 71 61 10 103 53 77 61 10 77 20 -33
clone 41 31 10 34 100 92 31 10 34 90 74
dfs 102 91 11 91 129 89 91 11 91 181 166
passau* 167 157 10 288 117 18 157 10 270 114 17
qsort 185 142 43 196 283 125 142 43 196 275 119
intqsort 191 148 43 202 228 107 148 43 202 356 224
pollet01* 154 119 35 364 388 98 98 56 296 264 35
zipvect* 272 269 3 791 530 36 245 27 676 921 136
cleanss* 314 276 38 383 276 38 266 48 385 413 77
overall 1497 1294 203 2452 2104 61 1239 258 2227 2634 102

Figure 4.5: Analysis times, number of program points, and number of abstract states.

gram points that the analysis explores, while #up represents the (#tp−#rp) points

that are not analyzed because the analysis determines that they are unreachable. It

can be observed that tracking (non-)nullity (Nl) reduces the number of reachable

program points (and increases conversely the number of unreachable points) because

certain parts of the code can be discarded as dead code (and not analyzed) when

variables are known to be non-null. Tracking dynamic types (Tau) also reduces the

number of reachable points, but, as expected, only for (some of) the programs that

are polymorphic. This is due to the fact that the class analysis allows considering

fewer implementations of methods, but obviously only in the presence of polymor-

phism.

Since our framework is multivariant and thus tracks many different contexts at

each program point, at the end of analysis there may be more than one abstract state

associated with each program point. Thus, the number of abstract states inferred is

typically larger than the number of reachable program points. Column #σ provides

the total number of these abstract states inferred by the analysis. The level of

multivariance is the ratio #σ/#rp. It can be observed that the simple set sharing
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analysis (SS) creates more abstract states for the same number of reachable points.

In general, such a larger number for #σ tends to indicate more precise results (as

we will see later). On the other hand, the fact that addition of Nl and Tau reduces

the number of reachable program points interacts with precision to obtain the final

#σ value, so that while there may be an increase in the number of abstract states

because of increased precision, on the other hand there may be a decrease because

more program points are detected as dead code by the analysis. Thus, the #σ values

for SSNl and SSNlTau in some cases actually decrease with respect to those of PS

and SS.

The t column in Tables 4.4 and 4.5 provides the running times for the different

analyses, in milliseconds, on a Pentium M 1.73Ghz, 1Gb of RAM, running Fedora

Core 4.0, and averaging several runs after eliminating the best and worst values. The

%∆t columns show the percentage variation in the analysis time with respect to the

reference pair-sharing (PS) analysis, calculated as ∆dom%t = 100 ∗ (tdom− tPS)/tPS.

The more complex analyses tend to take longer times, while in any case remaining

reasonable. However, sometimes more complex analyses actually take less time,

again because the increased precision and the ensuing dead code detection reduces

the amount of program that must be analyzed.

Table 4.6 shows precision results in terms of sharing, concentrating on the SP and

SS domains, which allow direct comparison. A more usage-oriented way of measuring

precision would be to study the effect of the increased precision in an application

that is known to be sensitive to sharing information, such as, for example, program

parallelization [BdlBH99]. On the other hand this also complicates matters in the

sense that then many other factors come into play (such as, for example, the level of

intrinsic parallelism in the benchmarks and the parallelization algorithms) so that it

is then also harder to observe the precision of the analysis itself. Such a client-level

comparison is beyond the scope of this chapter, and we concentrate here instead on
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PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

overall 20363 73.39 15439 80.24

Figure 4.6: Sharing precision results.

measuring sharing precision directly.

Following [CMB+95], and in order to be able to compare precision directly in

terms of sharing, column #sh provides the sum over all abstract states in all reachable

program points of the cardinality of the sharing sets calculated by the analysis. For

the case of pair sharing, we converted the pairs into their equivalent set representation

(as in [CMB+95]) for comparison. Since the results are always correct, a smaller

number of sharing sets indicates more precision (recall that > is the power set).

This is of course assuming σ is constant, which as we have seen is not the case for

all of our analyses. On the other hand, if we compare PS and SS, we see that SS

has consistently more abstract states than PS and consistently lower numbers of

sharing sets, and the trend is thus clear that it indeed brings in more precision. The

only apparent exception is pollet01 but we can see that the number of sharing sets

is similar for a significantly larger number of abstract states.

An arguably better metric for measuring the relative precision of sharing is the

ratio %Max = 100 ∗ (1 − #sh/(2#vo − 1)) which gives #sh as a percentage of its
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SEJnullK(SH)

SH ′ = SH

SEJnew kK(SH)

SH ′ = SH ∪ {{res}}
SEJvK(SH)

SH ′ = ({{res}} ] SHv) ∪ SH−v
SEJv.fK(SH)

SH ′=

 ⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} ]
⋃

S∈SHv

P(S|−v)) else

Figure 4.7: Abstract semantics for the expressions as set operations

maximum possible value, where #vo is the total number of object variables in all the

states. The results are given in column %sh. In this metric 0% means all abstract

states are > (i.e., contain no useful information) and 100% means all variables in

all abstract states are detected not to share. Thus, larger values in this column

indicate more precision, since analysis has been able to infer smaller sharing sets.

This relative measure shows an average improvement of 7% for SS over PS.

4.6 A more precise set of abstract operations

In this section, we review the abstract set sharing semantics that was defined in

Section 4.3, and improve the precision for two of the operations: the field load and

the field store. Figs. 4.7 and 4.10 contain the semantics of expressions and commands,

respectively. They represent the transition from an initial abstract state SH to a

final abstract state SH ′.

Our abstract state has now been reduced to a pair composed of an abstract set
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sharing and a type component τ . The latter helps in determining which variables

are non null and which ones may be null, thus the nullity component of the abstract

domain in Section 4.3 can be eliminated. If we consider null as another type [Ler03],

then a variable may be null if null is one of its possible types: mayBeNull(τ, v) =

(mustBeNull(SH, v) and null ∈ τ(v)). For clarity, we omitted the type component

from the transfer functions in Figure 4.7 and 4.10.

4.6.1 Semantics of Expressions (refinement)

Null, New and Variable Load: The null expression loads the null constant into

the special variable res, so it has no effect on the abstract state, since res does not

point to any object, and therefore does not share with any variable (including itself),

both before and after evaluating the expression. The new expression adds the sin-

gleton {res} to the current set sharing, since it creates a fresh object that cannot be

reached from any of the existing variables. A variable load v forces res to be an alias

of v, and therefore res shares with all those variables with which v shares. Sharings in

SH−v remain unaffected, since the addition of res cannot change the reachability set

of any variable not reachable from v. For instance, given SH = {{v0, v1, v2} , {v3}},

the variable load v0 results in SH ′ = SH−v ∪ ({{res}}]SHv) = {{v3}}∪ ({{res}}]

{{v0, v1, v2}})={{v3}} ∪ {{res} ∪ {v0, v1, v2}} = {{v0, v1, v2, res} , {v3}}.

Field Load: In the case that v.f is null, there is no change in the existing set

sharing. Because the expression of SH ′ includes SH, that case is correctly approx-

imated. When v.f is not null, we know that the object being assigned to res is

reachable from v. The other variables that share with v in SH may or may not share

with res in SH ′. In the state G0 of Figure 4.8, although v2 shares with v0 in the

initial and final states, it does not share with res in the final state; however, v1 will
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Figure 4.8: Three concrete states.

share with both res and v0 after the load. We write {{v, res}} ]
⋃

S∈SHv

P(S|−v)) to

account for objects reachable from v which become also reachable from res, and may

be reachable from any subset of the variables that shared with v in SH. Objects not

reachable from v (SH−v) are accounted for by the union with SH. For instance, in

the same state G0, if {v3} ∈ SH, then the load of v0.f does not alter that particular

element, which has to also be present in SH ′.

Example 7 The graphs in Figure 4.8 illustrate three different memory states before

the evaluation of v0.f. The initial set sharing is identical in all cases: sh(G0) =

sh(G1) = sh(G2) = {{v0, v1, v2} , {v3}}. However, the evaluation results in a dif-

ferent set sharing for each resulting graph G′i: sh(G′0) = {{v0, v1, v2} , {v0, v1, res} ,

{v3}}, sh(G′1) = {{v0, v1, v2, res} , {v3}}, and sh(G′2) = {{v0, v1, v2} , {v0, res} , {v3}}.

Assume that the abstract state that approximates all the initial concrete states is also

SH = {{v0, v1, v2} , {v3}}. The transfer function for v0.f results in a final abstract

state SH ′ = SH ∪ ({{v0, res}}]P({v1, v2})) = {{v0, v1, v2} , {v3}}∪ ({{v0, res}} ]

{{} , {v1} , {v2} , {v1, v2}}) = {{v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v0, v2, res} ,

{v0, res} , {v3}}. As required, all the sharings sh(G′0), sh(G′1), and sh(G′2) are in-

cluded in SH ′.
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4.6.2 Semantics of Commands (refinement)

Variable Store: For a store of the form v=expr, the semantics comprises three

steps. First, the expression on the right-hand side is evaluated. Second, all ocur-

rences of v are removed from the current abstract state, since the value of v is being

overwritten. Finally, all appearances of res are replaced by v, which deletes res from

the abstract state.

Field Store: First, we evaluate the expression whose result is being stored; SH1

contains that intermediate value. Sharings in SH1 unrelated to v or res are unaffected

by the store and contained in SH2 = SH1−{v,res} , which is a subset of the final state.

For each sharing in SH1v , the store might affect the reachability set of each variable

involved and result in many smaller sharings. For example, in a memory state like

G in Figure 4.9, an assignment to v0.f destroys any sharing between v0 and v1

(note that res does not share with v1), but not the one between v0 and v2. All the

possible combinations for the final sharings that have to do with v are contained in

SH3 =
⋃

S∈SH1v

P(S) \ {{}}.

Now, for every sharing in SH3 that contains v we have two possibilities: all the

variables share also with res (and therefore, with SH1res), or none of them does.

Note that every possible intermediate case in which just a few of the variables share

with SH1res is represented by a smaller subset in SH3 containing only those variables.

While SH4 = SH1res ] SH3v includes the combinations in which all the variables do

share with SH1res , SH3 approximates the situations in which none of them do share

with res.

Example 3. Assume an initial state (after evaluating the expression) G depicted

in Figure 4.9. The dotted edge indicates where v0.f will point after the execution of

v0.f= expr. The initial set sharing is sh(G) = {{v0, v1} , {v0, v2} , {res}}. After the
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Figure 4.9: Graph G.

load, sh(G′) = {{v0, v2} , {v0, res} , {v1}}. Assume that the starting abstract state,

after the evaluation of the expression expr, is also SH1 = {{v0, v1} , {v0, v2} , {res}}.

Since there is no sharing unrelated to v or res, SH2 = ∅. The next step is to calculate

SH3 = P({v0, v1})∪P({v0, v2})\{{}}= {{v0} , {v0, v1} , {v1}}∪{{v0} , {v0, v2} , {v2}}

= {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}}. Since SH1res = {{res}} and SH3v0 =

{{v0} , {v0, v1} , {v0, v2}}, SH4 = {{v0, res} , {v0, v1, res} , {v0, v2, res}}. The final

abstract state SH ′ = {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}} is the union of SH3|−res =

SH3 and SH4|−res ⊂ SH3. As required, sh(G′) ⊆ SH ′ holds after the removal of the

auxiliary variable res from G′.

Conditional Statements: In the case where the guard is (v==null), the type

component may contain definite information about whether a variable v is not null

(null /∈ τ(v)). If we cannot determine exactly the nullity of v (i.e., mayBeNull(τ, v)

is true), then the final state is the least upper bound of the resulting set sharing for

the two branches. In particular, SH1 t SH2 = SH1 ∪ SH2.

In the case where the condition is v==w, the sharing information may be enough to

tell that the two variables are definitely equal, because they are both null and there-
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SCJv=exprK(SH)

SH1 = SEJexprK(SH)

SH2 = SH1|−v
SH ′ = SH2|vres

SCJv.f=exprK(SH)

SH1 = SEJexprK(SH)

SH2 = SH1−{v,res}

SH3 =
⋃

S∈SH1v

P(S) \ {{}}

SH4 = SH1res ] SH3v

SH ′ =

{
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

SCJif v==null com1 else com2K(SH)

SH1 = SCJcom1K(SH|−v)
SH2 = SCJcom2K(SH)

SH ′ =


SH1 if mustBeNull(SH, v)

SH1 ∪ SH2 if mayBeNull(τ, v)

SH2 else

SCJif v==w com1 else com2K(SH)

SH1 = SCJcom1K(SH)

SH2 = SCJcom2K(SH)

SH ′ =


SH1 if mustAlias(SH, v, w)

SH1 ∪ SH2 if mayAlias(SH, v, w)

SH2 else

SCJcom1;com2K(SH)

SH ′ = SCJcom2K(SCJcom1K(SH))

Figure 4.10: Abstract semantics for the commands.

fore mustAlias(SH, v, w) = (mustBeNull(SH, v) and mustBeNull(SH,w)). On

the other hand, v and w do not share if they do not appear together within a subset

of SH. Therefore mayAlias(SH, v, w) = (mustAlias(SH, v, w) and SH{v,w} 6= ∅).
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It is important to see that sharing information does not imply equality: a set sharing

like {{v, w}} indicates that v and w might reach a common object, not that they

must be aliases.

Example 9 Given a command like if (cond) v0 = v1 else {v0 = null; v1 =

null}, and assuming an initial abstract state SH = ∅ that does not contain enough

information to determine cond, the set sharing corresponding to the if branch is

SH1 = {{v0, v1}}. The abstract state after simulating the else branch is SH2 = {}.

Therefore, the final state is SH ′ = SH1 ∪ SH2 = {{v0, v1}}. However, SH ′ does

not imply that v0 necessarily shares with v1, even when they appear together in SH ′,

but that v0 might reach an object reachable from v1 in some of the concrete states

approximatted by SH ′; in the example, if cond would be false, both variables are null

and do not share.

4.7 Related Work

The closest related work is that of [SS05] which develops a pair-sharing [Søn86]

analysis for object-oriented languages and, in particular, Java. Our description of

the set sharing part of our domain is in fact based on their elegant formalization.

The fundamental difference is that we track set sharing instead of pair sharing,

which provides increased accuracy in many situations and can be more appropriate

for certain applications, such as detecting independence for program parallelization.

Also, our domain and abstract semantics track additionally nullity and classes in

a combined fashion which, as we have argued above, is particularly useful in the

presence of multivariance. In addition, we deal directly with a larger set of object

features such as inheritance and visibility. Finally, we have implemented our domains

(as well as the pair sharing domain of [SS05]), integrated them in our multivariant

analysis and verification framework, and benchmarked the system. Our experimental
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results are encouraging in the sense that they seem to support that our contributions

improve the analysis precision at reasonable cost.

In [Pol04, PLC01], the authors use a distinctness domain in the context of

an abstract interpretation framework that resembles our sharing domain: if two

variables point to different abstract locations, they do not share at the concrete

level. Their approach is closer to shape analysis [SRW99] than to sharing analysis,

which can be inferred from the former. Although information retrieved in this way is

generally more precise, it is also more computationally demanding and the abstract

operations are more difficult to design. We also support some language constructs

(e.g., visibility of methods) and provide detailed experimental results, which are not

provided in their work.

Most recent work [SB06, MRR02, WL04] has focused on context-sensitive ap-

proaches to the points-to problem for Java. These solutions are quite efficient, but

flow-insensitive and overly conservative. Therefore, a verification tool based on the

results of those algorithms may raise spurious warnings. In our case, we are able to

express sharing information in a safe manner, as invariants that all program execu-

tions verify at the given program point.

4.8 Chapter conclusions

We have proposed an analysis based on abstract interpretation for deriving precise

sharing information for a Java-like language. Our analysis is multivariant, which

allows separating different contexts, and combines Set Sharing, Nullity, and Classes:

the domain captures which instances definitely do not share or are definitively null,

and uses the classes to refine the static information when inheritance is present. We

have implemented the analysis, as well as previously proposed analyses based on

pair sharing, and obtained encouraging results: for all the examples the set sharing
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domains (even without combining with Nullity or Classes) offer more precision than

the pair sharing counterparts while the increase in analysis times appears reasonable.

In fact the additional precision (also when combined with nullity and classes) brings

in some cases analysis time reductions. This seems to support that our contributions

bring more precision at reasonable cost.
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Chapter 5

Using ZBDDs to represent Set

Sharing

5.1 Background and Motivation

In the previous chapter we have shown that set sharing is a more precise alterna-

tive than pair sharing. However, some of the intrinsic operations of the set sharing

domain are exponential in the number of local variables being tracked, which can

become a problem for certain programs and has limited so far its wider application.

This intrinsic complexity can be dealt with in part by introducing widenings, i.e.,

simplifying the sharing sets conservatively when they become too large, but of course

at the expense of losing precision [CC92, Fec96, ZBH99, NBH06]. Finding signifi-

cantly more efficient implementations reduces the need for resorting to such lossy

solutions and consequently improves practicality.

To this end, we introduce a new, efficient implementation of the set sharing

domain using Zero-supressed Binary Decision Diagrams (ZBDDs). ZBDDs were de-

signed to represent sets of combinations (i.e., sets of sets), so they can represent very
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naturally the elements of the set sharing domain. To the best of our knowledge this

is the first link provided between set sharing and ZBDDs. We start by showing how

to express the operations needed for implementing the set sharing transfer functions

in terms of basic ZBDD operations. Also, for some of the operations, we propose

custom ZBDD algorithms that are more appropriate for these particular cases than

those in the standard ZBDD libraries. In particular we provide a design for native

ZBDD operations that emulate non-standard set manipulations. The introduction

of ZBDDs is done at the implementation level and does not alter the definition of the

domain operations, so that the domain designer does not need to be aware of their

presence. Due to the new, underlying data structure, we were able to scale from the

small set of experiments in Chapter 4 (involving at most 50 elements at a time) up

to thousands of sharings and still get reasonable times.

Additionally, we provide performance results comparing two implementations of

the set-sharing domain: an efficient, compact, bitset-based alternative (representing

a highly-tuned version of the traditional approach) and our ZBDD-based implemen-

tation. The results show that the ZBDD version performs better in terms of both

memory usage and running time. Our custom ZBDD algorithms are also shown to

perform better in practice than the stock ones.

5.2 Semantics as ZBDD operations

Zero-suppressed BDDs (ZBDDs) [iM93, iM96] are a data structure similar to bi-

nary decision diagrams (BDDs) [Bry92], but designed to encode sets of combinations

(i.e., sets of sets of primitive elements). To encode the set sharing domain using

ZBDDs, we define the primitive elements to be the variables in the program being

analyzed. ZBDDs have been demostrated to perform better [MT98, LSJ07] than

standard BDDs when encoding sets of combinations that are sparse in the sense that
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Figure 5.1: ZBDD representing {{v0, v2} , {v1}}

a) the set contains just a small fraction of all the possible combinations, and b) each

combination contains just a few literals. A ZBDD is a rooted directed acyclic graph

(DAG) of non-terminal and terminal nodes. Each non-terminal ZBDD node is la-

beled with a variable, and has two outgoing edges to other nodes, called the zero-edge

and the one-edge. There are two terminal nodes, the zero node and the one node.

They do not have variables or outgoing edges. The universe of all variables is totally

ordered, and the order of the variables appearing on the nodes of any path through

the ZBDD is consistent with the total order. Each path through the ZBDD that

ends at the one terminal node defines a set of variables. The set contains a variable

v if the path passes through a node labeled with v, and leaves the node along its

one edge. Assuming the variable ordering is fixed, the smallest ZBDD representing

a given set of sets is unique.

Example 5. Assume a set of variables V ar = {v0, v1, v2} and the variable ordering

v0, v1, v2. The unique smallest ZBDD representing the set of sets {{v0, v2} , {v1}} is

the ZBDD shown in Figure 5.1. There are two paths from the root of the ZBDD to

the one terminal node. On the path containing the v0 and v1, only the node labeled

v1 is exited through the one edge; thus, this path represents the set {v1}. On the
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path containing v0 and v2, both nodes are exited through their one edges; thus, this

path represents the set {v0, v2}.

Efficient algorithms exist for common operations on the set of sets encoded by

a ZBDD, including union (denoted +), intersection, set difference, product (SH1 ∗

SH2 = {S1 ∪ S2 | S1 ∈ SH1 and S2 ∈ SH2}), and rest (SH%v = {S ∈ SH | v 6∈ S}),

and division (SH/v = {S \ {v} | S ∈ SH and v ∈ S}).

A set sharing like SH = {{v0, v2} , {v1}} is expressed in ZBDD notation as SH =

v0v2 + v1. Note that we will denote single literal sets by a single lower case letter

(like v), while generic ZBDDs will be referred to with double upper case (normally,

SH). For instance, given the set sharings SH = v0v2 + v1 and v0 , an expression like

SH ∗ v0 = v0v1 + v0v2 is legal. The empty set is written as 0, and the set containing

only the empty set is written as 1.

5.2.1 Expressions and Commands; Native Operations

Figs. 5.2 and 5.3 show the ZBDD version of the transfer functions in Figure 4.7

and 4.10. For most of the set operations, there is an equivalent native ZBDD op-

eration. For instance, SH1 ] SH2 is equivalent to SH1 ∗ SH2 and SH−v is equiva-

lent to SH%v. This correspondence is useful because it results in no gap between

the denotational semantics of Section 4.6 and the implementation. However, we

added a number of non-standard ZBDD operators to improve the readability of the

equations. The set of elements in SH containing v (SHv, in set notation) is ob-

tained via SH//v = SH/v ∗ v. We delete all the ocurrences of v in SH using

projOut(SH, v) = SH/v + SH%v − 1. The unit set 1 (which represents the set

containing the empty set) has to be deleted because SH might contain the single

literal v, as we did in the corresponding project out set operator SH|−v.

In other occasions, we created new ZBDD operators because of efficiency reasons.
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SEJnullK(SH)

SH ′ = SH

SEJnew kK(SH)

SH ′ = SH + res

SEJvK(SH)

SH ′ = setResEqTo(SH, v)

SEJv.fK(SH)

SH ′=

{
⊥ if mustBeNull(SH, v)

SH + v ∗ res ∗ powUnion(SH/v) else

Figure 5.2: Abstract semantics for the expressions as ZBDD operations

For instance, the variable load set equation SH ′ = ({{res}} ] SHv) ∪ SH−v can be

expressed as SH ′ = res∗(SH//v)+SH%v. This combination of standard operators,

while intuitive, has the disadvantage of being inefficient in practice. Since we expect

this function to be invoked with high frequency (every time a variable is on the

right hand side of an assignment), we devised a dedicated (i.e., an algorithm that

manipulates the graph itself instead of relying on a combination of the primitive

operators) ZBDD algorithm that computes the same result, setResEqTo(SH, v).

The algorithm, shown in Figure 5.4, uses the same notation as in [iM96]: P0 and P1 for

the graph reachable through the zero-edge and one-edge, respectively, P.top for the

current variable, and Getnode(v, P0, P1) for the procedure that generates a node with

the variable v and subgraphs P0 and P1. The correctness of setResEqTo(SH, v) is

based on a variable order in which res is always the last variable, the one closer to

the leaves. Given this precondition, we only need to find v in the graph, and then

multiply its one-edge child by res, which will preserve the variable order.

With the basic ZBDD operators and setResEqTo we can understand the transfer

functions of the null, new, and variable load expressions. The field load, on the other
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SCJv=exprK(SH)

SH1 = SEJexprK(SH)

SH2 = projOut(SH1%res, v)

SH ′ = SH1/res ∗ v + SH2

SCJv.f=exprK(SH)

SH1 = SEJexprK(SH)

SH2 = SH1%v%res

SH3 = projOut(

powUnion(SH1//v)− 1, res)

SH4 = (SH1/res) ∗ (SH3//v)

SH ′ =

{
⊥ if mustBeNull(SH1, v)

SH2 + SH3 + SH4 else

SCJif v==null com1 else com2K(SH)

SH1 = SCJcom1K(projOut(SH, v))

SH2 = SCJcom2K(SH)

SH ′ =


SH1 if mustBeNull(SH, v)

SH1 + SH2 if mayBeNull(τ, v)

SH2 else

SCJif v==w com1 else com2K(SH)

SH1 = SCJcom1K(SH)

SH2 = SCJcom2K(SH)

SH ′ =


SH1 if mustAlias(SH, v, w)

SH1 + SH2 if mayAlias(SH, v, w)

SH2 else

SCJcom1;com2K(SH)

SH ′ = SCJcom2K(SCJcom1K(SH))

Figure 5.3: Abstract semantics for the commands as ZBDD operations.

hand, depends on the ZBDD version of the predicate that determines whether a

variable is null: mustBeNull(SH, v) = (SH/v = 0). It also requires computing
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setResEqTo (P) {
i f (P = 0 or P = 1 or P.top > v )

return P ;
i f (P.top < v))

return Getnode (P.top ,P0 ,P1 ) ;
return Getnode (P.top ,P0 , r e s ∗P1 ) ;

}

powUnion (P) {
i f (P = 0 or P = 1)

return P ;
R0 ← powUnion(P0) ;
R1 ← powUnion(P1) ;
return Getnode (P.top ,Ro +R1 ,1 +R1 ) ;

}

Figure 5.4: Native operations setResEqTo and powUnion

the union of the powersets of the elements of a set sharing SH: {P(S) | S ∈ SH}.

Although this seems to be a complex operation, it has a very natural description

in terms of an algorithm in ZBDDs. We have devised a native ZBDD algorithm,

powUnion(SH), shown in pseucode in Figure 5.4. This native implementation

will prove to be fundamental for the efficiency of the analysis (Section 5.3). The

correctness proof of the algorithm follows:

Proof 1 powUnion(SH) correctly computes
⋃

S∈SH

P(S):

powUnion(ZBDD(a, P0, P1)) = powUnion(P0 + a ∗ P1) = powUnion(Po) +

powUnion(a ∗P1) =
⋃
S∈P0

P(S) ∪
⋃
S∈P1

(P(S ∪{a}) =
⋃
S∈P0

P(S) ∪{{a}}∪
⋃
S∈P1

(P(S)]

{{} , {a}}) =
⋃
S∈P0

P(S) ∪
⋃
S∈P1

P(S) ∪ {{a}} ∪
⋃
S∈P1

(P(S) ] {{a}}) =
⋃

S∈P0∪P1

P(S) ∪

{{a}}∪ ({{a}}]
⋃
S∈P1

P(S)) = ZBDD(a,powUnion(P0 +P1), 1 +powUnion(P1)).
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Figure 5.5: ZBDDs representing v0v2, 1 + v2, and 1 + v0 + v0v2 + v2.

Example 11 We show how the native algorithm computes powUnion(v0v2). Fig-

ure 5.5 contains the initial ZBDD representing v0v2 (left). To compute powUnion

for the original ZBDD, we first recursively compute powUnion for the node la-

beled v2. When powUnion is applied to the node labeled v2, which represents the

set v2, we have R0 = P0 = 0 and R1 = P1 = 1. The result is a node labeled v2

with zero successor R0 + R1 = 1 and one successor 1 + R1 = 1 + 1 = 1, shown in

the center of the figure. This ZBDD represents the powerset of v2, namely 1 + v2.

We will call this ZBDD N . When we compute powUnion of the original ZBDD,

R0 = P0 = 0, and R1 = N . This step generates a node with value v0, zero successor

R0 + R1 = 0 + N = N , and one successor 1 + R1 = 1 + N = N . Because both

nodes are identical ( reduction rule applied within Getnode), we can delete one of

them and change both edges of v0 to lead to just one N , as shown in the right ZBDD

in Figure 5.5. The resulting graph represents 1 + v0 + v0v2 + v2.

The command semantics (Figure 5.3) is described in terms of the operators listed

before. We only add a new predicate, used when checking if two variables might be

aliases: mayAlias(SH, v, w) = (mustAlias(SH, v, w) and SH/(v ∗ w) 6= 0). The

following example shows how the field store from Example 3 would be calculated

using ZBDDs.
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Example 12 Assume we start evaluating v0.f= expr in an abstract set sharing

SH1 = v0v1+v0v2+res. Because all the sharings in SH1 contain v0 or res, SH2 = 0.

The union of the powersets of SH1//v0 = v0v1 + v0v2 is calculated in a very similar

fashion to the last example, and results in a set sharing 1 + v0 + v0v1 + v0v2 + v1 + v2.

Therefore, SH3 = projOut(v0 +v0v1 +v0v2 +v1 +v2, res) = v0 +v0v1 +v0v2 +v1 +v2.

The last component of the result is SH4 = (SH1/res)∗ (SH3//v0) = 1∗ (SH3//v0) =

v0+v0v1+v0v2. The result is SH ′ = 0+SH3+SH4 = SH3 = v0+v0v1+v0v2+v1+v2,

which is the same result obtained in the set example.

5.3 Experiments

To evaluate the efficiency (in terms of memory usage and running time) of the ZBDD

approach, we compared it to an alternative representation for set sharings based on

sets of bitsets. Bitsets are a fast, light representation compared to other ways of

representing a set sharing. In a bitset, each bit bi indicates if the variable vi is in

the sharing (bi = 1) or not (bi = 0). Our first implementation used the Java library

where a BitSet is an array of double words. However, our first experiments showed

that this approach does not scale beyond set sharings with more than a few thousand

elements. For this reason, we replaced the library implementation by a lightweight

version, which only requires a single word to represent each sharing. This effectively

limits the number of variables to be not more than 32 for the bitset approach, which

is reasonable when confronted with powerset operations. In all the experiments we

assume that the number of variables n is bounded by 32, but note that the ZBDD

implementation performs well for larger set sharings, and could handle bigger values

of n. Our ZBDD implementation of set sharing is based on the JDD library [Vah08].

In our experiments we assumed a fixed variable ordering: the variables are numbered,

and the smaller the number, the closer to the root they are.
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Several characteristics of set sharings influence the memory usage and the perfor-

mance of the data structure representing them. Although the number of variables n

seems to be important, our two representations are independent of this parameter. In

the case of the bitsets, because we use 32 bits to store every sharing, independently

of the number of variables. In the case of ZBDDs, only the statistical distribution of

the sharings (i.e., their sparsity) influences the number of nodes required to represent

the information, and therefore the memory usage and performance of the ZBDD. For

the same reason, the behavior of the two data structures is independent of the shar-

ing density of SH, i.e., the proportion of the number of sharings over the maximum

possible: SHd = |SH|/2n.

The most decisive factor is the number of sharings |SH|. Because we allocate a

new bitset every time a new sharing is added, the performance of the set of bitsets

approach is inversely proportional to |SH|. In the case of ZBDDs we also have to
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Figure 5.6: Memory usage experiments. Over 25 runs.
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take into account the variable density. This metric is the average number of vari-

ables per sharing: vd = 1
n∗|SH| ∗

∑
S∈SH|S|. A small variable density is synonymous

with a sparse set sharing, and therefore we can expect the ZBDD to perform in-

versely proportional to the metric. We now examine how the number of sharings

and the variable density relate to memory consumption and execution times in our

experiments.

Memory Usage: We generated random set sharings and measured the space

requirements for the Java objects backing the set of bitsets and ZBDD as reported by

a profiler [JPr]. The different memory usages are shown on the left of Figure 5.6. The

plot shows that the ZBDD performs better than the bitset solution. The differences

are more significant (a factor of 5) for large values of |SH|. A set of bitsets uses 56

bytes per sharing, less than the 80 required by a set of the JDK 1.5 BitSet class.
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At one million sharings, the set of bitsets requires more than 56Mb, while the same

information occupies 12Mb in the ZBDD version (vd = 0.28). The staircase behavior

of the ZBDD memory usage function is due to the capacity of the array storing the

node list (ZBDDs are represented as arrays in JDD), which doubles when the load

exceeds a certain threshold.

In the leftmost graph in Figure 5.6 we did not take into account the effect of

variable density. The other plot in that figure demonstrates how ZBDDs benefit

from sparse variable distributions. This time we do not show the number of Kbytes

in the y-axis, but rather the number of nodes in the binary decision diagram. As

expected, sparse sharings require fewer nodes than those that are more dense in terms

of vd. In the experiments, the number of nodes goes down by an average 38.2% from

vd = 0.34 to vd = 0.22.

 0

 50

 100

 150

 200

 250

 300

 350

 50  100  150  200  250  300  350  400  450  500

T
im

e 
(m

s.
)

Number of sharings (in thousands)

Variable Load (vd=0.28)

BitSet
ZBDD

Figure 5.8: Performance of a set of bitsets vs ZBDD (variable load). Over 25 runs..

75



Chapter 5. Using ZBDDs to represent Set Sharing

 0

 200

 400

 600

 800

 1000

 1200

 50  100  150  200  250  300  350  400  450  500

T
im

e 
(m

s.
)

Number of sharings (in thousands)

Var Store (vd=0.21)

BitSet
ZBDD
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Speed: We measured the number of milliseconds required to compute the semantics

of the most significant operations (variable load/store, and field load/store), given a

random initial set sharing. We disabled the JDD cache for the experiments. All the

measurements were done on a Pentium M 1.73Ghz with 1Gb of RAM. The virtual

machine was Sun’s JVM 1.5.0 running on Ubuntu 6.06. The results are in Figs. 5.8-

and 5.11.

The time required to simulate a variable load presents a similar, linear behavior in

both cases; the bitset version is 14.6% faster in the average. Although not reflected in

Figure 5.10, the native operation setResEqto takes half the time of the equivalent

composition of ZBDD operations (see Section 5.2). For the variable store, both

running times are roughly linear in the number of sharings. However, the lack of a

native ZBDD implementation results in running times noticeably slower than those of

the set of bitsets. It remains an open question whether a dedicated ZBDD algorithm
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can be devised for this command.

The powerset operation is a major obstacle for a feasible implementation of set

sharing using the sets of bitsets. Both the field load and field store transfer functions

depend on this operation. While the ZBDD powUnion algorithm requires reason-

able times for calculating the union of many powersets, the bitset implementation

presents exponential growth with respect to the number of sharings. For example, it

needs half a minute to compute the output state for a field load in which the initial

sharing has 5,000 elements. The ZBDD implementation finishes the same operation

in less than 600ms. The field store (Figure 5.11), which is a more complex operation,

presents a similar pattern, although the running times are always significantly larger

than for the field load.
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5.4 Related Work

There has been extensive work in recent years on the use of BDDs [Zhu02, BLQ+03,

WL04, ZC04] to represent (abstract) points-to information. In these abstractions,

information is stored in the form of (v, a) pairs, where each such pair indicates that

v may point to the allocation site a. As mentioned before, set sharing information

can be interpreted as an abstraction of points-to information where instead of rep-

resenting which exact objects can be pointed to by a variable, the domain captures

only which sets of variables may point transitively to the same object. Thus, our

analysis works at a different level since the set sharing encoding can result in some

loss of precision, but offers the advantage of more compact representation.

ZBDDs were introduced by Minato [iM93] and applied to a great diversity of

problems in model checking (e.g., [YHTiM96, Cou97, iM01]). More recently, Lhoták
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et al. have applied ZBDDs to the exploration of infinite state spaces [LSJ07] in the

context of points-to analysis. The main differences between this work and [LSJ07] are

one hand the abstraction used (set sharing vs. points-to pairs) and on the other that

in the approach proposed the domain does not require relational information, i.e.,

we can use existing ZBDD libraries [Som05, Vah08] directly in our implementation.

To the extent of our knowledge, this is the first work that relates set sharing

analysis with ZBDDs or presents implementation results for the set-sharing domain

using any type of binary decision diagram. In the logic programming realm, there

has been a significant amount of work related to set sharing-based analysis for the

automatic parallelization of Prolog programs (e.g., [JL89, MH89, MH91, BdlBH99]).

However, the abstract operations show significant differences with the ones required

for an imperative/OO language. Furthermore, to the best of our knowledge, all

existing implementations use lists of lists to represent set sharings. In [CSS99] a

connection between the set sharing domain and standard BDDs is suggested, but

no implementation or experimental results are provided and there is no mention

of ZBDDs. More recent work [PS07] for Java presents results for a BDD-based

implementation of the less precise pair sharing domain. Because in this case the

abstraction is a set of pairs (and not a set of sets), the representation used is quite

different from ours.
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Conclusions and Future Work

6.1 Conclusions

Static analysis frameworks usually comprise many interrelated phases; the final com-

plexity, generality, and accuracy of the analyzer depends on all of them. Our objec-

tive has been to show that we can achieve a high degree of abstraction when facing the

problems of how to represent the source to be analyzed, how to efficiently compute

a safe upper approximation of the semantics of that program, and how to determine

certain sharing characteristics that might allow later compiler optimizations such as

scheduling, load/store elimination, etc.

The first part of this thesis (Chapters 2 and 3) has dealt with two common analy-

sis problems: the intermediate representation and the fixpoint engine. In Chapter 2,

we showed how a Horn clause-based language is a suitable and convenient IR that

permits an unique framework to analyze a variety of languages. In particular, pro-

grams written in Java and Prolog are accepted as input, even though the particular

abstract domain in use does change depending on the source language.
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In Chapter 3, we provided a description of the algorithm that makes the analysis

possible, since in most of the existing abstract interpretation literature this compo-

nent is taken for granted, even when it is responsible for an important percentage of

the final efficiency and accuracy of any analysis that sits on top of it. Memoization,

abstract state summaries, a top-down approach, and assertions are the fundamental

characteristics of the described fixpoint engine.

The second part of this work (Chapters 4 and 5) has focused on the design and

implementation of an abstract domain that can accurately track certain properties

of the program. We have chosen the sharing property (i.e., whether two or more

variables definitely do not point to the same memory location), as it represents a

summary of the points-to information of the program, and opens the possibility

for many compiler optimizations. We selected the set sharing abstraction, as it

is able to express more complicated predicates about the program variables than

the existing pair sharing alternative. Our initial work showed how that theoretical,

intuitive precision gain also translates into practical gains in our set of experiments

(%7 improvement).

In many occasions, the set sharing domain has been considered inefficient, given

its intrinsic combinatorial nature. In fact, there are quite efficient implementations of

the pair sharing abstraction using Binary Decision Diagrams (BDDs). Our challenge

was to come up with the adecuate data structure to manipulate sets of sets of vari-

ables; the answer found is Zero-supressed Binary Decision Diagrams (ZBDDs). This

is the first time (to the extent of our knowledge) that a compact representation of

sharing sets is made possible, either in the logic programming or the object-oriented

realms. Chapter 5 describes the abstract operations of Chapter 4 in terms of ZBDD

operators.

Although not included in this thesis, we also worked in the development of analy-

ses which extend the classic concept of resource consumption (which generally refers
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to execution steps, time, memory), in order to cover more application-dependent

notions of resources such as bytes sent or received by an application, files left open,

etc. We created a fully automated analysis [NMLH08] for inferring upper bounds on

the usage that a Java bytecode program makes of a set of application programmer-

definable resources. In our context, a resource is defined by programmer-provided

annotations which state the basic consumption that certain program elements make

of that resource. From these definitions our analysis derives functions which return

an upper bound on the usage that the program makes of that resource for any given

set of input data sizes. The analysis proposed is independent of the particular re-

source. In [NMLH08] we also present experimental results covering an ample set of

interesting resources.

6.2 Future Work

Set sharing is considered to be a storeless abstraction of the heap, i.e., we only

abstract information relative to the local variables themselves. More elaborate store

models consider also tracking information about the program that takes into account

the shape of memory at a program point (i.e., their internal representation is closer

to the actual graph structure of the heap). Although there are many interesting

properties that are tracked in this type of shape analyses (such as, e.g., those of

Marron et al. [MSHK07] or Sagiv et al. [LAS00]), we have focused our attention on

the sharing attributes of the program being analyzed. The ultimate goal is to show

how deep sharing is abstracted by the domain, thus allowing parallelization of loops

that manipulate lists and arrays, if no sharing occurs.

Another interesting problem is the empirical study of the performance gains ob-

tained by using the described ZBDD-based set sharing implementation. Our experi-

ments in Chapter 5 just showed memory and performance gains in comparison with
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a BitSet alternative for individual abstract operations; it remains to determinate

what the real gain in performance is in the actual set sharing analysis. For that

reason, we plan to compare the two versions within two contexts: a) the set sharing

analysis presented in Section 4; b) the logic programming analysis with the same

name (and abstract representation), using the CiaoPP analyzer, in which previous

implementations using lists of lists or the clique domain [NBH06] are available for

comparison.

The ultimate purpose of the framework presented in this dissertation is the use

of the analysis information provided by the particular abstract domain for optimiza-

tion, debugging or verification purposes. Additional work needs to be completed in

order to assess the usefulness of the set sharing domain. In particular, we need to

choose a client application and show how the information inferred by analysis helps

in improving the results of that particular application. For instance, we would like

to show that the sharing information can be used in the automatic parallelization of

interesting applications, and that their parallel versions run faster.
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[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, McGill University, January 2006.

[Log07] Francesco Logozzo. Cibai: An abstract interpretation-based static ana-
lyzer for modular analysis and verification of java classes. In VMCAI’07,
number 4349 in LNCS. Springer, Jan 2007.

[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing (with retrospective). In Kathryn S.
McKinley, editor, Best of PLDI, pages 473–489. ACM, 1992.

[LSJ07] O. Lhoták, S.Curial, and J.N.Amaral. Using ZBDDs in Points-to Anal-
ysis. In Proceedings of the 20th International Workshop on Languages
and Compilers for Parallel Computing, 2007.

88



Bibliography

[LV94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a
Generic Abstract Interpretation Algorithm for Prolog. ACM Transac-
tions on Programming Languages and Systems, 16(1):35–101, 1994.

[LY97] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1997.

[MH89] K. Muthukumar and M. Hermenegildo. Determination of Variable De-
pendence Information at Compile-Time Through Abstract Interpreta-
tion. In 1989 North American Conference on Logic Programming, pages
166–189. MIT Press, October 1989.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of
Sharing and Freeness of Program Variables Through Abstract Interpre-
tation. In 1991 International Conference on Logic Programming, pages
49–63. MIT Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of
Variable Dependency Using Abstract Interpretation. Journal of Logic
Programming, 13(2/3):315–347, July 1992. Originally published as
Technical Report FIM 59.1/IA/90, Computer Science Dept, Univer-
sidad Politecnica de Madrid, Spain, August 1990.

[MLH08] M. Méndez-Lojo and M. Hermenegildo. Precise Set Sharing Analysis for
Java-style Programs. In 9th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’08), number 4905
in LNCS, pages 172–187. Springer-Verlag, January 2008.

[MLLH08] M. Méndez-Lojo, O. Lhoták, and M. Hermenegildo. Efficient Set Shar-
ing using ZBDDs. In 21st International Workshop on Languages and
Compilers for Parallel Computing (LCPC’08), LNCS. Springer-Verlag,
August 2008. To appear.

[MLNH07a] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-
Based Approach to the Analysis of Object-Oriented Programs. In 17th
International Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR’07), August 2007.

[MLNH07b] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. An Efficient, Para-
metric Fixpoint Algorithm for Analysis of Java Bytecode. In ETAPS
Workshop on Bytecode Semantics, Verification, Analysis and Transfor-
mation (BYTECODE’07), Electronic Notes in Theoretical Computer
Science. Elsevier - North Holland, March 2007.

89



Bibliography

[MRR02] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
Object Sensitivity for Points-to and Side-effect Analyses for Java. In
ISSTA, pages 1–11, 2002.

[MSHK07] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap Anal-
ysis in the Presence of Collection Libraries. In ACM WS on Program
Analysis for Software Tools and Engineering (PASTE’07). ACM, June
2007.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Struc-
tures in VLSI Design. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1998.

[Mut91] Kalyan Muthukumar. Compile-time Algorithms for Efficient Parallel
Implementation of Logic Programs. PhD thesis, University of Texas at
Austin, August 1991.

[NBH06] J. Navas, F. Bueno, and M. Hermenegildo. Efficient top-down set-
sharing analysis using cliques. In Eight International Symposium on
Practical Aspects of Declarative Languages, number 2819 in LNCS,
pages 183–198. Springer-Verlag, January 2006.

[NMLH07] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. An Efficient, Context
and Path Sensitive Analysis Framework for Java Programs. In 9th
Workshop on Formal Techniques for Java-like Programs FTfJP 2007,
July 2007.

[NMLH08] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Re-
source Usage Analysis for Java Bytecode. Technical Report UNM TR-
CS-2008-02 - CLIP1/2008.0, University of New Mexico, Department of
Computer Science, UNM, January 2008. Submitted for publication.

[PGS98] J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative pro-
grams through analysis of constraint logic programs. In G. Levi, editor,
Static Analysis. 5th International Symposium, SAS’98, Pisa, volume
1503 of LNCS, pages 246–261, 1998.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incre-
mental Analysis of Logic Programs. In International Static Analysis
Symposium, number 1145 in LNCS, pages 270–284. Springer-Verlag,
September 1996.

90



Bibliography

[PJC06] J. Peralta and J.Cruz-Carlon. From static single-assignment form to
definite programs and back. Extended abstract in International Sym-
posium on Logic-based Program Synthesis and Transformation (LOP-
STR), July 2006.

[PLC01] Isabelle Pollet, Baudouin Le Charlier, and Agostino Cortesi. Distinct-
ness and sharing domains for static analysis of java programs. In
ECOOP ’01: 15th European Conference on Object-Oriented Program-
ming, London, UK, 2001.

[Pol04] Isabelle Pollet. Towards a generic framework for the abstract interpre-
tation of Java. PhD thesis, Catholic University of Louvain, 2004. Dept.
of Computer Science.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. In OOPSLA, pages 146–161, 1991.
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