
Bytecode 2009 Preliminar Version

User-Definable Resource Usage

Bounds Analysis for Java Bytecode

Jorge Navas1,4

1School of Computing
National University of Singapore

Republic of Singapore

Mario Méndez-Lojo2,4

2Department of Computer Science
University Texas at Austin

Austin, TX (USA)

Manuel V. Hermenegildo3,4,5

3IMDEA-Software, Madrid (Spain),
Departments of Computer Science

4University of New Mexico, Albuquerque, NM (USA)
and 5Technical University of Madrid, Madrid (Spain).

Abstract

Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources
such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as
static debugging and/or certification of user-level properties (including for mobile code) makes it interesting
to develop analyses for resource notions that are actually application-dependent. This may include, for
example, bytes sent or received by an application, number of files left open, number of SMSs sent or
received, number of accesses to a database, money spent, energy consumption, etc. We present a fully
automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of
application programmer-definable resources. In our context, a resource is defined by programmer-provided
annotations which state the basic consumption that certain program elements make of that resource. From
these definitions our analysis derives functions which return an upper bound on the usage that the whole
program (and individual blocks) make of that resource for any given set of input data sizes. The analysis
proposed is independent of the particular resource. We also present some experimental results from a
prototype implementation of the approach covering a significant set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of com-

putations is widely recognized since such information is useful in a large num-

ber of applications including performance debugging, verification, and resource-

oriented specialization. The kinds of costs which have received most attention so

far are related to execution steps as well as, sometimes, execution time or memory

(see, e.g., [27,34,36,20,9,21,40] for functional languages, [38,8,19,42] for imperative

languages, and [17,16,18,32] for logic languages). These and other types of cost

analyses have been used in the context of applications such as granularity control

in parallel and distributed computing (e.g., [29]), resource-oriented specialization

(e.g., [13,33]), or, more recently, certification of the resources used by mobile code

(e.g., [14,6,12,5,22]). Specially in these more recent applications, the properties of

interest are often higher-level, user-oriented, and application-dependent rather than

1 Email: navas@comp.nus.edu.sg
2 Email: marioml@ices.utexas.edu
3 Email: herme@fi.upm.es

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:navas@comp.nus.edu.sg
mailto:marioml@ices.utexas.edu
mailto:herme@fi.upm.es

(or, rather, in addition to) the predefined, more traditional costs such as steps, time,

or memory. Regarding the object of certification, in the case of mobile code the cer-

tification and checking process is often performed at the bytecode level [28], since,

in addition to other reasons of syntactic convenience, bytecode is what is most often

available at the receiving (checker) end.

We propose a fully automated framework which infers upper bounds on the usage

that a Java bytecode program makes of application programmer-definable resources.

Examples of such programmer-definable resources are bytes sent or received by

an application over a socket, number of files left open, number of SMSs sent or

received, number of accesses to a database, number of licenses consumed, monetary

units spent, energy consumed, disk space used, and of course, execution steps (or

bytecode instructions), time, or memory. A key issue in approach is that resources

are defined by programmers and by means of annotations. The annotations defining

each resource must provide for some relevant user-selected elements corresponding

to the bytecode program being analyzed (classes, methods, variables, etc.), a value

that describes the cost of that element for that particular resource. These values can

be constants or, more generally, functions of the input data sizes. The objective of

our analysis is then to statically derive from these elementary costs an upper bound

on the amount of those resources that the program as a whole (as well as individual

blocks) will consume or provide.

Our approach builds on the work of [17,16] for logic programs, where cost func-

tions are inferred by solving recurrence equations derived from the syntactic struc-

ture of the program. Most previous work deals only with concrete, traditional

resources (e.g., execution steps, time, or memory). The analysis of [32] also allows

program-level definition of resources, but it is designed for Prolog and works at the

source code level, and thus is not directly applicable to Java bytecode due to partic-

ularities like virtual method invocation, unstructured control flow, assignment, the

fact that statements are low-level bytecode instructions, the absence of backtracking

(which has a significant impact on the method used in [32]), etc. Also, the presen-

tation of [32] is descriptive in contrast to the concrete algorithm provided herein.

In [2], a cost analysis is described that does deal with Java bytecode and is capa-

ble of deriving cost relations which are functions of input data sizes. The authors

also presented in [3] an experimental evaluation of the approach. This approach is

generic, in the same sense as, e.g., [16], in that both the conceptual framework and

its implementation allow adaptation to different resources. However, this is done

typically in the implementation. Our approach is interesting in that it allows the

application programmer to define the resources through annotations directly in the

Java source, and without changing the analyzer code or tables in any way. Also,

without claiming it as any significant contribution of course, we provide for im-

plementation convenience a somewhat more concrete, algorithmic presentation, in

contrast to the more descriptive approach of previous work (including [17,16,32,2,3],

etc.).

2 User-Defined Resources: Overview of the Approach

A resource is a fundamental component in our approach. A resource is a user-defined

notion which associates a basic cost function with some user-selected elements (class,

2

import java . net . URLEncoder ;

public class CellPhone {

SmsPacket sendSms (SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

i f (smsPk != null) {
St r ing newSms = enc . format (smsPk . sms) ;
stm . send (newSms) ;
smsPk . next=sendSms (smsPk . next , enc , stm) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format (S t r ing data) ;

}
class TrimEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size (” s i z e (r e t)<=s i z e (s) ”)
public St r ing format (S t r ing s){

return s . tr im () ;
}

}
class UnicodeEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size (” s i z e (r e t)<=6∗ s i z e (s) ”)
public St r ing format (S t r ing s){

return URLEncoder . encode (s) ;
}

}
abstract class Stream{

@Cost ({ ” cent s ” , ”2∗ s i z e (data) ” })
native void send (St r ing data) ;

}

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Fig. 1. Motivating example: Java source code and Control Flow Graph

method, statement) in the program. This is expressed by adding Java annotations

to the code. The objective of the analysis is to approximate the usage that the

program makes of the resource.

We start by illustrating the overall approach through a working example. The

Java program in Fig. 1 emulates the process of sending text messages within a

cell phone. This example is not intended to be realistic, but rather a small piece

of code that illustrates a number of aspects of the approach. The source code is

provided here just for clarity, since the analyzer works directly on the corresponding

bytecode. The phone (class CellPhone) receives a list of packets (SmsPacket), each

one containing a single SMS, encodes them (Encoder), and sends them through a

stream (Stream). There are two types of encoding: TrimEncoder, which eliminates

any leading and trailing white spaces, and UnicodeEncoder, which converts any

special character into its Unicode(\uxxxx) equivalent. The length of the SMS

which the cell phone ultimately sends through the stream depends on the size of

the encoded message.

In the example, the resource is the cost in cents of a dollar for sending the

list of text messages. We will assume for the sake of discussion that the carrier

charges are proportional to the number of characters sent, and at 2 cents/char-

acter. This is reflected by the user in the method that is ultimately respon-

sible for the communication (Stream.send), by adding the annotation @Cost-

({"cents","2*size(data)"}). Similarly, the formatting of an SMS made in

3

any implementation of Encoder.format is free, as indicated by the @Cost-

({"cents","0")}) annotation (the actual system allows defining overall cost de-

faults but we express them here explicitly). The analysis then processes these local

resource usage expressions and uses them to infer a safe upper bound on the total

(global) usage of the defined resources made by the program.
As illustrated by the example, these Java annotations allow defining the re-

sources to be tracked (which is done by simply mentioning them in the annota-
tions) and to provide cost functions for the built-in and external (library) blocks
that are relevant to the particular resource (i.e., which affect the usage of such re-
source). They also allow defining data size relations among arguments and defining
and declaring size measures. The resource usage expressions are defined using the
following language (which we will call L):

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
P

|
Q

)〈expr〉

| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉

| 〈expr〉! | ∞ | num

| size([〈measure〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %

〈measure〉 ::= int | ref | . . .

We now summarize the fundamental steps of the analysis:

Step 1: Constructing the Control Flow Graph.

In the first step, the analysis translates the Java bytecode into an intermediate

representation building a Control Flow Graph (CFG). Edges in the CFG connect

block methods and describe the possible flows originated from conditional jumps,

exception handling, virtual invocations, etc. A (simplified) version of the CFG

corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that

share the same signature: class where declared, name (CellPhone.sendSms), and

number and type of the formal parameters. The bottom-most box represents the

base case, in which we return null, here represented as an assignment of null to

the return variable r5; the sibling corresponds to the recursive case. The virtual

invocation of format has been transformed into a static call to a block method

named Encoder.format. There are two block methods which are compatible

in signature with that invocation, and which serve as proxies for the intermedi-

ate representations of the interface implementations in TrimEncoder.format and

UnicodeEncoder.format. Note that the resource-related annotations have been

carried through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships.

The algorithm infers in this phase size relationships between the input and the

output formal parameters of every block method. We assume that the size of (the

contents of) a linked structure pointed to by a variable is the maximum number

of pointers we need to traverse, starting at the variable, until null is found. The

following equations are inferred by the analysis for the two CellPhone.sendSms

block methods (with sri
we denote the size of input formal parameter position i,

corresponding to variable ri):

4

Sizer5
sendSms(sr0 , 0, sr2 , sr3) ≤ 0

Sizer5
sendSms(sr0 , sr1 , sr2 , sr3) ≤ 7 × sr1 − 6 + Sizer5

sendSms(sr0 , sr1 − 1, sr2 , sr3)

The size of the returned value r5 is independent of the sizes of the input param-

eters this, enc, and stm (sr0 , sr2 and sr3 respectively) but not of the size sr1 of the

list of text messages smsPk (r1 in the graph). Such size relationships are computed

based on dependency graphs, which represent data dependencies between variables in

a block, and user annotations if available. In the example in Fig. 1, the user indicates

that the formatting in UnicodeEncoder results in strings that are at most six times

longer than the ones received as input @Size("size(ret)<=6*size(s)"), while the

trimming in TrimEncoder returns strings that are equal or shorter than the input

(@Size("size(ret)<=size(s)")). In this case the equations provide implicitly the

size measure (i.e., that the size of a string is its length). The equation system shown

above is approximated by a recurrence solver included in our analysis in order to

obtain the closed form solution Sizer5
sendSms(sr0 , sr1 , sr2 , sr3) ≤ 3.5× s2

r1
− 2.5× sr1 .

This is a reasonable bound given that we have not specified a maximum size for

each string.

Step 3: Resource Usage Analysis.

In this phase, the analysis uses the CFG, the data dependencies, and the size

relationships inferred in previous steps to infer a resource usage equation for each

block method in the CFG (possibly simplifying such equations) and obtain closed

form solutions (in general, approximated –upper bounds). Therefore, the objective

of the resource analysis is to statically derive safe upper bounds on the amount

of resources that each of the block methods in the CFG consumes or provides.

The result given by our analysis for the monetary cost of sending the messages

(CellPhone.sendSms) is

CostsendSms(sr0 , 0, sr2 , sr3) ≤ 0

CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 12 × sr1 − 12 + CostsendSms(sr0 , sr1 − 1, sr2 , sr3)

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1

in the CFG). Again, this equation system is solved by a recurrence solver, resulting

in the closed formula CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 6 × s2
r1
− 6 × sr1 .

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an inter-

mediate representation that is easier to manipulate. In particular, our decompilation

(assisted by the Soot [39] tool) involves elimination of stack variables, conversion to

three-address statements, static single assignment (SSA) transformation, and gen-

eration of a Control Flow Graph (CFG) that is ultimately the subject of analysis.

Note that in this representation loops are converted into recursive blocks. The de-

compilation process is an evolution of the work presented in [31], which has been

successfully used as the basis for other (non resource-related) analyses [30]. Our

ultimate objective is to support the full Java language but the current transforma-

5

tion has some limitations: it does not yet support reflection, threads, or runtime

exceptions. The following grammar describes the intermediate representation; some

of the elements in the tuples are named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)

Sig ::= (class:Type,name:Id,pars:Type+)

Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)

V ar ::= (name:Id, type:Type)

The Control Flow Graph is composed of block methods. A block method is similar

to a Java method, with some particularities: a) if the program flow reaches it,

every statement in it will be executed, i.e, it contains no branching; b) its signature

might not be unique: the CFG might contain several block methods in the same

class sharing the same name and formal parameter types; c) it always includes

as formal parameters the returned value ret and, unless it is static, the instance

self-reference this; d) for every formal parameter (input formal parameter) of the

original Java method that might be modified, there is an extra formal parameter in

the block method that contains its final version in the SSA transformation (output

formal parameter); e) every statement in a block method is an invocation, including

builtins (assignment asg, field dereference gtf, etc.), which are understood as block

methods of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each

conditional if cond stmt1 else stmt2 in the original program is replaced with an

invocation and two block methods which uniquely match its signature: the first

block corresponds to the stmt1 branch, and the second one to stmt2. To respect

the semantics of the language, we decorate the first block method with the result of

decompiling cond, while we attach cond to its sibling. A similar approach is used in

virtual invocations, for which we introduce as many block methods in the graph as

possible receivers of the call were in the original program. A set of block methods

with the same signature sig can be retrieved by the function getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java

1.5 which, unlike JML specifications, has the very useful characteristic of being

preserved in the bytecode. Annotations are carried over to our CFG representation,

as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which

are the result of (de)compiling the CellPhone.sendSms method. The input formal

parameters r0, r1, r2, r3 correspond to this, smsPk, enc, and stm, respectively. In

the case of r1, the contents of its fields next and sms are altered by invoking the

stf and accessed by invoking the gtf (abbreviation for setfield and getfield,

respectively) builtin block methods. The output formal parameter r4 contains the

final state of r1 after those modifications. The value returned by the block methods

is contained in r5. Space reasons prevent us from showing any type information

in the CFG in Fig 1. In the case of Encoder.format, for example, we say that

there are two blocks with the same signature because they are both defined in

class Encoder, have the same name (format) and the same list of types of formal

parameters {Encoder,String,String}.

6

resourceAnalysis (CFG, r e s) {
CFG← c l a s sAna l y s i s (CFG)
A l i a s e s← a l i a sAna l y s i s (CFG)
mt← i n i t i a l i z e (CFG)
dg←dataDependencyAnalysis (CFG, Al ia se s ,mt)
for (SCC: SCCs)

// in reve r s e t o p o l o g i c a l order
mt←genSizeEqs (SCC,mt ,CFG, dg)
mt←genResourceUsageEqs (SCC, res ,mt ,CFG)

return mt
}

normalize (Eqs) {
for (s i z e r e l a t i o n p ≤ e1 : Eqs)

do
i f (exp r e s s i on s appears in e1

and s ≤ e2 ∈Eqs)
r ep l a c e ocur r ence s o f s in e1 with e2

while the re i s change
return Eqs
}

Fig. 2. Generic resource analysis algorithm and normalization.

4 The resource usage analysis framework
We now describe our framework for inferring upper bounds on the usage that the

Java bytecode program makes of a set of resources defined by the application pro-

grammer, as described before. The algorithm in Fig 2 takes as input a Control

Flow Graph in the format described in the previous section, including the user an-

notations that assign elementary costs to certain graph elements for a particular

resource. The user also indicates the set of resources to be tracked by the analysis.

Without loss of generality we assume for conciseness in our presentation a single

resource.

A preliminary step in our approach is a class hierarchy analysis [15,30], aimed at

simplifying the CFG and therefore improving overall precision. More importantly,

we also require the existence of an alias analysis [35,26,11], whose results are used

by a third phase (described below) in which data dependencies between variables

in the CFG are inferred. The next step is the decomposition of the CFG into

its strongly-connected components. After these steps, two different analyses are

run separately on each strongly connected component: a) the size analysis, which

estimates parameter size relationships for each statement and output formal param-

eters as a function of the input formal parameter sizes (Sec. 4.1); and b) the actual

resource analysis, which computes the resource usage of each block method in terms

also of the input data sizes (Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields po-

sition dependency graphs for the block methods within a strongly con-

nected component. Each graph G = (V, E) represents data depen-

dencies between positions corresponding to statements in the same block

method, including its formal parameters. Vertexes in V denote positions,

CellPhone.TrimEncoder.format(1 , 2 , 3)

java.lang.String.trim(1 , 2)

Builtin.asg(1 , 2)

Fig. 3:

and edges (s1, s2) ∈ E denote that s2 is depen-

dent on s1 (s1 is a predecessor of s2). We will

assume a predec function that takes a position

dependency graph, a statement, and a parame-

ter position and returns its nearest predecessor in

the graph. Fig. 3 shows the position dependency

graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the

data dependency analysis, inspired by the original ideas of [17,16]. Our goal is

7

to represent input and output size relationships for each statement as a function

defined in terms of the formal parameter sizes. Unless otherwise stated, whenever

we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a

function that, given a data structure, returns a number. Our method is parametric

on measures, which can be defined by the user and attached via annotations to

parameters or classes. For concreteness, we have defined herein two measures, int for

integer variables, and the longest path-length [37,2] ref for reference variables. The

longest path-length of a variable is the cardinality of the longest chain of pointers

than can be followed from it. More complex measures can be defined to handle

other data types such as cyclic structures, arrays, etc. The set of measures will be

denoted by M.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

(i) Assign an upper bound to the size of every parameter position of all statements,

including formal parameters, for all the block methods with the same signature

(genSigSize).

(ii) For a given signature, take the set of size inequations returned by (i) and

rename each size relation in terms of the sizes of input formal parameters

(normalize).

(iii) Repeat the first step for every signature in the same strongly-connected com-

ponent (genSizeEqs).

(iv) Simplify size relationships by resolving mutually recursive functions, and find

closed form solutions for the output formal parameters (genSizeEqs).

Intermediate results are cached in a memo table mt, which for every parameter

position stores measures, sizes, and resource usage expressions defined in the L

language.

The size of the parameter at position i in statement stmt, under measure m, is

referred to as size(m, stmt, i). We consider a parameter position to be input if it

is bound to some data when the statement is invoked. Otherwise, it is considered

an output parameter position. In the case of input parameter and output formal

parameter positions, an upper bound on that size is returned by getSize (Fig. 4).

The upper bound can be a concrete value when there is a constant in the referred

position, i.e., when the val function returns a non-infinite value:

Definition 4.1 The concrete size value for a parameter position under a particular

measure is returned by val : M × Stmt × N → L, which evaluates the syntactic

content of the actual parameter in that position:

val(m, stmt, i) =



















n if stmt.aparsi is an integer n and m=int

0 if stmt.aparsi is null and m=ref

∞ otherwise

If the content of that input parameter position is a variable, the algorithm

searches the data dependency graph for its immediate predecessor. Since the inter-

mediate representation is in SSA form, the only possible scenarios are that either

8

genSizeEqs (SCC,mt ,CFG, dg) {

Eqs← ∅|SCC|

for (s i g : SCC)
Eqs [s i g]←genS igS i z e (s ig ,mt ,SCC,CFG, dg)

So l s← r ecEqsSo lver (s imp l i f yEqs (Eqs))
for (s i g :SCC)

i n s e r t (mt , size , s i g , So l s [s i g])
return mt
}

genSigSize (s ig ,mt ,SCC,CFG, dg) {
Eqs← ∅
BMs←getBlocks (CFG, s i g)
for (bm:BMs)

Eqs←Eqs ∪ genBlockSize (bm,mt ,SCC, dg)
return normal ize (Eqs)
}

genBlockSize (bm,mt ,SCC, dg) {
Eqs← ∅
for (stmt :bm. body)

I←stmt input parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize (stmt , I ,mt , dg)
Eqs←Eqs ∪ genOutSize (stmt ,mt ,SCC)

K← bm output formal parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize (bm,K,mt , dg)
return Eqs
}

genInSize (elem , Pos ,mt , dg) {
Eqs← ∅
for (pos : Pos)

m← lookup (mt , measure , elem . s ig , pos)
s←g e tS i z e (m, elem . id , pos , dg)
Eqs←Eqs ∪ {size (m, elem . id , pos)≤s}

return Eqs
}

genOutSize (stmt ,mt ,SCC) {
{i1, . . . , il} ← stmt input p o s i t i o n s
s i g←stmt . s i g
{mi1 , . . . ,mil

} ←{ lookup (mt , measure , s i g , i 1) , . . . ,
lookup (mt , measure , s i g , i l)}

{s i1 , . . . ,s il
} ← {size (mi1 , stmt . id , i 1) , . . . ,

size (mil
, stmt . id , i l)

Eqs← ∅
O← stmt output parameter p o s i t i o n s
for (o :O)

mo ← lookup (mt , measure , s i g , o)
i f (s i g /∈SCC)

S i z euser ← Ao
sig(s i1 , . . . ,s il

)

S i z ealg′ ←max(lookup (mt , size , s i g , o))

S i z ealg ←S i z ealg′ (s i1 , . . . ,s il
)

S i z e o ←min(S i z euser , S i z ealg)
else

S i z e o ← Sizeo
sig(mo,s i1 , . . . ,s il

)

Eqs←Eqs ∪ {size (mo , stmt . id , o)≤ S i z e o}
return Eqs
}

getSize (m, id , pos , dg) {
r e s u l t←val (m, id , i)
i f (r e s u l t 6=∞)

return r e s u l t
else

i f (∃(elem , posp) ∈ predec (dg , id , pos))
mp ← lookup (mt , measure , elem . s ig , posp)
i f (m=mp)

return size (mp , elem . id , posp)
return ∞
}

Fig. 4. The size analysis algorithm

there is a unique predecessor whose size is assigned to that input parameter position,

or there is none, causing the input parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered

in genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive

invoke statement, either a size relationship function has already been computed re-

cursively (since the analysis traverses each strongly-connected component in reverse

topological order), or it is provided by the user through size annotations. In the

first case, the size function of the output parameter position can be retrieved from

the memo table by using the lookup operation, taking the maximum in case of several

size relationship functions, and then passing the input parameter size relationships

to this function to evaluate it. In the second scenario, the size function of the out-

put parameter position is provided by the user through size annotations, denoted

by the A function in the algorithm. In both cases, it will able to return an explicit

size relation function.

Example 2 We have already shown in the CellPhone example how a class can be

annotated. The Builtin class includes the assignment method asg, annotated as

follows:

public class Bu i l t i n {

@Size{” s i z e (r e t)<=s i z e (o) ”}
public stat ic native Object asg (Object o) ;

9

// . . . r e s t o f annotated b u i l t i n s
}

which results in equation A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0) .

If the output parameter position corresponds to a recursive invoke statement, the

size relationships between the output and input parameters are built as a symbolic

size function. Since the input parameter size relations have already been computed,

we can establish each output parameter position size as a function described in

terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions

within a block method.

However, those relations are either constants or given in terms of the immediate

predecessor in the dependency graph. The algorithm rewrites the equation system

such that we obtain an equivalent system in which only formal parameter positions

are involved. This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods

in the same strongly-connected component (SCC). Once every component has been

processed, the analysis further simplifies the equations in order to resolve mutually

recursive calls among block methods within the same SCC in the simplifyEqs procedure.

In the final step, the analysis submits the simplified system to a recurrence

equation solver (recEqsSolver, called from genSizeEqs) in order to obtain approximated

upper-bound closed forms. The interesting subject of how the equations are solved

is beyond the scope of this paper (see, e.g., [41]). Our implementation does provide

a simple built-in solver (an evolution of the solver of the Caslog system [16]) which

covers a reasonable set of recurrence equations such as first-order and higher-order

linear recurrence equations in one variable with constant and polynomial coeffi-

cients, divide and conquer recurrence equations, etc. However, it also includes an

interface to the Parma Polyhedra Library [7] (and previously to other tools such

as Mathematica, Matlab, etc.). Work is also under way to interface with the quite

interesting solver of [1].

Example 3 We now illustrate the definitions and algorithm with an example of

how the size relations are inferred for the two CellPhone.sendSms block methods

(Fig. 1), using the ref measure for reference variables. We will refer to the k-th oc-

currence of a statement stmt in a block method as stmtk, and denote CellPhone.-

sendSms, Encoder.format, and Stream.send by sendSms, format, and send re-

spectively. Finally, as mentioned before, we refer to the size of the input formal

parameter position i, corresponding to variable ri, as sri
.

The main steps in the process are listed in Fig. 5. The first block of rows

contains the most relevant size parameter relationship equations for the recursive

block method, while the second block of rows corresponds to the base case. These

size parameter relationship equations are constructed by the analysis by first fol-

lowing the algorithm in Fig. 4, and then normalizing them (expressing them in

terms of the input formal parameter sizes sri
). Also, in the first block of rows we

observe that the algorithm has returned 6 × size(ref, format, 1) as upper bound

for the size of the formatted string, max(lookup(mt, size, format, 2)). The result is

10

Size parameter relationship equations (normalized)

size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0

size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ sr1

size(ref, gtf1, 2) ≤ A2
gtf

(ref, size(ref, gtf1, 0),) ≤ sr1 − 1

size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ sr1 − 1

size(ref, format, 2) ≤ max(lookup(mt, size, format, 2))(size(ref, format, 2))

≤ max(sr1, 6× sr1)(sr1
− 1)

≤ 6× (sr1 − 1)

size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ sr1

size(ref, gtf2, 2) ≤ A2
gtf

(ref, size(ref, gtf2, 0),) ≤ sr1 − 1

size(ref, sendSms, 5) ≤ Sizer5
sendSms

(ref, , size(ref, sendSms, 1), ,)

≤ Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ sr1

size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 3) ≤ A3
stf

(ref, size(ref, stf1, 0), , size(ref, stf1, 2))

≤ sr1 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ sr1 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, stf2, 3) ≤ A3
stf

(ref, size(ref, stf2, 0), , size(ref, stf2, 2))

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 0) ≤ size(ref, stf2, 3)

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0))

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0

size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0)) ≤ 0

Output parameter size functions for builtins (provided through annotations)

A2
gtf(ref, size(ref, gtf, 0),) ≤ size(ref, gtf, 0)− 1

A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)

A3
stf(ref, size(ref, stf, 0), , size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

Sizer5
sendSms

(ref, sr0, sr1, sr2, sr3) ≤

(

0 if sr1 = 0

7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Sizer5
sendSms

(ref, sr0, sr1, sr2, sr3) ≤ 3.5× s2
r1 − 2.5× sr1

Fig. 5. Size equations example

the maximum of the two upper bounds given by the user for the two implementa-

tions for Encoder.format since TrimEncoder.format eliminates any leading and

trailing white spaces (thus the output is at most as bigger as the input), whereas

UnicodeEncoder.format converts any special character into its Unicode equivalent

(thus the output is at most six times the size of the input), a safe upper bound for

the output parameter position size is given by the second annotation.

In the particular case of builtins and methods for which we do not have the

code, size relationships are not computed but rather taken from the user @Size

annotations. These functions are illustrated in the third block of rows. Finally,

in the fourth block of rows we show the recurrence equations built for the output

11

genResourceUsageEqs (SCC, res ,mt ,CFG) {

Eqs← ∅|SCC|

for (s i g :SCC)
Eqs [s i g]←genSigRU (s ig , res ,mt ,SCC,CFG)

So l s← r ecEqsSo lver (s imp l i f yEqs (Eqs))
for (s i g :SCC)

i n s e r t (mt , cost ,max(So l s [s i g]))
return mt
}

genSigRU(s ig , res ,mt ,SCC,CFG) {
Eqs← ∅
BMs←getBlocks (CFG, s i g)
for (bm:BMs)

body←bm. body
Costbody ← 0
for (stmt : body)

Coststmt ←genStmtRU(stmt , res ,mt ,SCC)
Costbody ←Costbody + Coststmt

Costbm ←genBlockRU(bm, res ,mt)
Eqs←Eqs ∪ {Costbm ≤Costbody}

}

genStmtRU(stmt , res ,mt ,SCC) {
{i1, . . . , ik} ← stmt input parameter p o s i t i o n s
{si1 , . . . , sik

} ←
{max(lookup (mt , size , stmt . s ig , i 1)) , . . . ,
max(lookup (mt , size , stmt . s ig , i k))}

i f (stmt . s i g /∈ SCC)
Costuser ← Astmt.sig (res , s i1 , . . . , s ik

)
Costalg′ ← lookup (mt , cost , res , stmt . s i g)

Costalg ←Costalg′ (s i1 , . . . , s ik
)

return min(Costalg , Costuser)
else return Cost (stmt . s ig , res , s i1 , . . . , s ik

)
}

genBlockRU(bm, res ,mt) {
{i1, . . . , il} ← bm input formal parameter p o s i t i o n s
{si1 , . . . , sil

} ←
{ lookup (mt , size ,bm. id , i 1) , . . . ,

lookup (mt , size ,bm. id , i l)
return Cost (bm. id , res , s i1 , . . . , s il

)
}

Fig. 6. The resource usage analysis algorithm

parameter sizes in the block method and in the final row the closed form solution

obtained.

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is

shown in Fig 6. It takes a strongly-connected component of the CFG, including the

set of annotations which provide the application programmer-provided resources and

cost functions, and calculates a resource usage function which is an upper bound on

the usage made by the program of those resources. The algorithm manipulates the

same memo table described in Sec. 4.1 in order to avoid recomputations and access

the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which

also allows us to draw from it to keep the explanation within space limits): for

each element of the strongly-connected component the algorithm will construct an

equation for each block method that shares the same signature representing the

resource usage of that block. To do this, the algorithm will visit each invoke state-

ment. There are three possible scenarios, covered by the genStmtRU function. If the

signatures of caller and callee(s) belong to the same strongly-connected component,

we are analyzing a recursive invoke statement. Then, we add to the body resource

usage a symbolic resource usage function, in an analogous fashion to the case of

output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a

resource usage function Costalg for the callee has been previously computed, or there

is a user annotation Costusr that matches the given signature, or both. In the latter

case, the minimum between these two functions is chosen (i.e., the most precise safe

upper bound assigned by the analysis to the resource usage of the non-recursive

invoke statement) or a warning is issued.

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms

12

Resource usage equations

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, ne),

@Cost(”cents”,”0”)=0
z }| {

Ane($, sr1,))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,))

+min(

0
z }| {

lookup(mt, cost, $, format)(, sr1 − 1),

∞
z }| {

Aformat($, , sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, send),

@Cost(”cents”,”2∗size(r1)”)=12×(sr1−1)
z }| {

Asend($, , 6× (sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,)) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, asg),

@Cost(”cents”,”0”)=0
z }| {

Aasg($,))

≤ 12× (sr1 − 1) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

Cost
sendSms

($, sr0, 0, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, eq) ,

@Cost(”cents”,”0”)=0
z }| {

Aeq($, 0,))

+ min(lookup(mt, cost, $, asg)
| {z }

∞

, Aasg($, 0))
| {z }

@Cost(”cents”,”0”)=0

≤ 0

Simplified resource usage equations and closed form solution

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤

(

0 if sr1 = 0

12 ∗ sr1 − 12 + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ 6× s2
r1 − 6× sr1

Fig. 7. Resource equations example

block method matches the signature of the block method itself and thus it is re-

cursive. The first four parameter positions are of input type. The upper-bound

expression returned by genStmtRU is Cost
sendSms

($, sr0, sr1−1, sr2, sr3). Note that the input

size relationships were already normalized during the size analysis. Now consider

the invocation of Stream.send. The resource usage expression for the statement

is defined by the function Asend($, , 6 × (sr1 − 1)) since the input parameter at

position one is at most six times the size of the second input formal parameter, as

calculated by the size analysis in Fig. 5. Note also that there is a resource anno-

tation @Cost({"cents","2*size(r1)"}) attached to the block method describing

the behavior of Asend and yielding the expression Costuser = 12 × (sr1 − 1). On

the other hand, the absence of any callee code to analyze –the original method is

native– results in Costalg = ∞. Then, the upper bound obtained by the analysis

for the statement is min(Costalg, Costuser) = Costuser.

At this point, the analysis has built a resource usage function (denoted by

Costbody) that reflects the resource usage of the statements within the block. Fi-

nally, it yields a resource usage equation of the form Costblock ≤ Costbody where

Costblock is again a symbolic resource usage function built by replacing each input

formal parameter position with its size relations in that block method. These re-

source usage equations are simplified by calling simplifyEqs and, finally, they are solved

calling recEqsSolver, both already defined in Sec. 4.1. This process yields an (in gen-

13

eral, approximate, but always safe) closed form upper bound on the resource usage

of the block methods in each strongly-connected component. Note that given a

signature the analysis constructs a closed form solution for every block method that

shares that signature. These solutions approximate the resource usage consumed in

or provided by each block method. In order to compute the total resource usage of

the signature the analysis returns the maximum of these solutions yielding a safe

global upper bound.
Example 5 The resource usage equations generated by our algorithm for the two

sendSms block methods and the “$” resource (monetary cost of sending the SMSs)

are listed in Fig. 7. The computation is partially based on the size relations in Fig. 5.

The resource usage of each block method is calculated by building an equation such

that the left part is a symbolic function constructed by replacing each parameter

position with its size (i.e., Cost
sendSms

($, sr0, sr1, sr2, sr3) and Cost
sendSms

($, sr0, 0, sr2, sr3)), and

the rest of the equation consists of adding the resource usage of the invoke statements

in the block method. These are calculated by computing the minimum between the

resource usage function inferred by the analysis and the function provided by the

user. The equations corresponding to the recursive and non-recursive block methods

are in the first and second row, respectively. They can be simplified (third row) and

expressed in closed form (fourth row), obtaining a final upper bound for the charge

incurred by sending the list of text messages of 6 × s2
r1 − 6 × sr1.

5 Experimental results

We have completed an implementation of our framework (in Ciao [10], using com-

ponents from CiaoPP [23], and with help from the Soot tool [39], as mentioned

before), and tested it for a representative set of benchmarks and resources. Our

experimental results are summarized in Table 1. Column Program provides the

name of the main class to be analyzed. Column Resource(s) shows the resource(s)

defined and tracked. Column ts shows the time (in milliseconds) required by the size

analysis to construct the size relations (including the data dependency analysis and

class hierarchy analysis) and obtain the closed form. Column tr lists the time taken

to build the resource usage expressions for all method blocks and obtain their closed

form solutions. t provides the total times for the whole analysis process. Finally,

column Resource Usage Func. provides the upper bound functions inferred for

the resource usage. For space reasons, we only show the most important (asymp-

totic) component of these functions, but the analysis yields concrete functions with

constants.

Regarding the benchmarks we have covered a reasonable set of data-structures

used in object-oriented programming and also standard Java libraries used in real

applications. We have also covered an ample set of application-dependent resources

which we believe can be relevant in those applications. In particular, not only have

we represented high-level resources such as cost of SMS, bytes received (including

a coarse measure of bandwidth, as a ratio of data per program step), and files left

open, but also other low-level (i.e., bytecode level) resources such as stack usage or

energy consumption. The resource usage functions obtained can be used for several

purposes. In program Files (a fragment characteristic of operating system kernel

14

Program Resource(s) ts tr t Resource Usage Func.

BST Heap usage 250 22 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 271 17 386 O(n2) n ≡ packets length

Client Bytes received and 391 38 527 O(n) n ≡ stream length

bandwidth required O(1) —

Dhrystone Energy consumption 602 47 759 O(n) n ≡ int value

Divbytwo Stack usage 142 13 219 O(log2(n)) n ≡ int value

Files Files left open and 508 53 649 O(n) n ≡ number of files

Data stored O(n×m) m ≡ stream length

Join DB accesses 334 19 460 O(n×m) n, m ≡ records in tables

Screen Screen width 388 38 536 O(n) n ≡ stream length

Table 1
Times of different phases of the resource analysis and resource usage functions.

code) we kept track of the number of file descriptors left open. The data inferred for

this resource can be clearly useful, e.g., for debugging: the resource usage function

inferred in this case (O(n)) denotes that the programmer did not close O(n) file

descriptors previously opened. In program Join (a database transaction which

carries out accesses to different tables) we decided to measure the number of accesses

to such external tables. This information can be used, e.g., for resource-oriented

specialization in order to perform optimized checkpoints in transactional systems.

The rest of the benchmarks include other definitions of resources which are also

typically useful for verifying application-specific properties: BST (a generic binary

search tree, used in [4] where a heap space analysis for Java bytecode is presented),

CellPhone (extended version of program in Figure 1), Client (a socket-based client

application), Dhrystone (a modified version of a program from [25] where a general

framework is defined for estimating the energy consumption of embedded JVM

applications; the complete table with the energy consumption costs that we used

can be found there), DivByTwo (a simple arithmetic operation), and Screen (a

MIDP application for a cellphone, where the analysis is used to make sure that

message lines do not exceed the phone screen width). The benchmarks also cover

a good range of complexity functions (O(1), O(log(n), O(n), O(n2) . . . , O(2n), . . .)

and different types of structural recursion such as simple, indirect, and mutual.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the

usage that a Java bytecode program makes of a set of application programmer-

definable resources. Our analysis derives a vector of functions, one for each defined

resource. Each of these functions returns, for each given set of input data sizes, an

upper bound on the usage that the whole program (and each individual method)

make of the corresponding resource. Our approach allows the application program-

mer to define the resources to be tracked by writing simple resource descriptions

via source-level annotations, The current results suggest that the proposed analysis

can obtain non-trivial bounds on a wide range of interesting resources in reasonable

time. Our approach allows using the annotations also for a number of other pur-

poses such as stating the resource usage of external methods, which is instrumental

in allowing modular composition and thus scalability. In addition, our annotations

allow stating the resource usage of any method for which the automatic analysis

infers a value that is not accurate enough to prevent inaccuracies in the automatic

15

inference from propagating. Annotations are also used by the size and resource

usage analysis to express their output. Finally, the annotation language can also

be used to state specifications related to resource usage, which can then be proved

or disproved based on the results of analysis following, e.g., the scheme of [24,5,22]

thus finding resource bugs or verifying the resource usage of the program.

Acknowledgments: This work was funded in part by the Prince of Asturias Chair

in Information Science and Technology at UNM, EU projects FP6 FET IST-15905

MOBIUS, IST-215483 SCUBE, and 06042-ESPASS, Ministry of Science projects

TIN-2008-05624 DOVES, TIN2005-09207-C03 MERIT-COMVERS, Ministry of In-

dustry project FIT-340005-2007-14, and CAM project S-0505/TIC/0407 PROME-

SAS. Thanks also to Pedro López Garćıa for comments on drafts of this paper.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Recurrence
Relations in Cost Analysis. In SAS, LNCS 5079, pages 221–237, 2008.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode. In
ESOP, LNCS 4421, pages 157–172. Springer, 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in Cost Analysis of Java
Bytecode. In ETAPS Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE’07), volume 190, Issue 1 of Electronic Notes in Theoretical Computer Science, pages
67–83. Elsevier - North Holland, July 2007.

[4] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java Bytecode. In ISMM ’07:
Proceedings of the 6th international symposium on Memory management, pages 105–116, New York,
NY, USA, October 2007. ACM Press.

[5] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of LPAR’04, volume
3452 of LNAI. Springer, 2005.

[6] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guarantees for Smart
Devices. In CASSIS’04, LNCS 3362, pages 1–27. Springer-Verlag, 2005.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

[8] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for portable worst-case execution-
time analysis. In 5th IEEE Int’l. Symp. on Object-oriented Real-time Distributed Computing, Apr.
2002.

[9] R. Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci., 318(1-2), 2004.

[10] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla (Eds.). The
Ciao System. Ref. Manual (v1.13). Technical report, C. S. School (UPM), 2006. Available at
http://www.ciaohome.org.

[11] Michael G. Burke, Paul R. Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive interprocedural
alias analysis in the presence of pointers. In LCPC, pages 234–250, 1994.

[12] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Necula. Enforcing resource
bounds via static verification of dynamic checks. In European Symposium on Programming (ESOP),
number 3444 in LNCS, pages 311–325. Springer-Verlag, 2005.

[13] S.J. Craig and M. Leuschel. Self-Tuning Resource Aware Specialisation for Prolog. In Proc. of
PPDP’05, pages 23–34. ACM Press, 2005.

[14] K. Crary and S. Weirich. Resource bound certification. In POPL’00. ACM Press, 2000.

[15] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Programs Using
Static Class Hierarchy Analysis. In ECOOP, pages 77–101, 1995.

[16] S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5), 1993.

16

[17] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs. In
Proc. PLDI’90, pages 174–188. ACM, June 1990.

[18] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation for
Logic Programs. In ILPS’97. MIT Press, 1997.

[19] J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic identification
of timing anomalies for cycle-accurate worst-case execution time analysis. In Proc. of DDECS. IEEE
Computer Society, 2006.

[20] G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Language. In Proceedings
of the Symposium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM). ACM
Press, 2002.

[21] B. Grobauer. Cost recurrences for DML programs. In Int’l. Conf. on Functional Programming, pages
253–264, 2001.

[22] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction Carrying Code and Resource-
Awareness. In PPDP. ACM Press, 2005.

[23] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Comp. Progr., 58(1–2), 2005.

[24] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140, October 2005.

[25] Sébastien Lafond and Johan Lilius. Energy consumption analysis for two embedded java virtual
machines. J. Syst. Archit., 53(5-6):328–337, 2007.

[26] William Landi and Barbara G. Ryder. A safe approximate algorithm for interprocedural pointer
aliasing. In PLDI, 1992.

[27] D. Le Metayer. ACE: An Automatic Complexity Evaluator. TOPLAS, 10(2), 1988.

[28] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.

[29] P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based Control
of Parallelism in Logic Programs. J. of Symbolic Computation, Special Issue on Parallel Symbolic
Computation, 21:715–734, 1996.

[30] M. Méndez-Lojo and M. Hermenegildo. Precise Set Sharing Analysis for Java-style Programs. In 9th
International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’08),
number 4905 in LNCS, pages 172–187. Springer-Verlag, January 2008.

[31] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the Analysis
of Object-Oriented Programs. In 17th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’07), August 2007.

[32] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-definable resource bounds analysis for
logic programs. In ICLP, LNCS, 2007.

[33] G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In Proc. of PPDP’06, pages 261–271.
ACM Press, 2006.

[34] M. Rosendahl. Automatic Complexity Analysis. In Proc. ACM Conference on Functional Programming
Languages and Computer Architecture, pages 144–156. ACM, New York, 1989.

[35] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java using annotated
constraints. In Conference on Object-Oriented, pages 43–55, 2001.

[36] D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput., 5(4), 1995.

[37] F. Spoto, P.M. Hill, and E. Payet. Path-length analysis of object-oriented programs. In EAAI’06,
ENTCS. Elsevier, 2006.

[38] Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In Perspectives Workshop: Design
of Systems with Predictable Behaviour, 2004.

[39] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java optimization
framework. In Proc. of Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 125–135, 1999.

[40] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymorphic and Higher-
Order Functional Programs. In IFL, volume 3145 of LNCS. Springer, 2003.

[41] H. S. Wilf. Algorithms and Complexity. A.K. Peters Ltd, 2002.

[42] R. Wilhelm. Timing analysis and timing predictability. In Proc. FMCO, LNCS. Springer-Verlag, 2004.

17

	Introduction
	User-Defined Resources: Overview of the Approach
	Intermediate program representation
	The resource usage analysis framework
	Size analysis
	Resource usage analysis

	Experimental results
	Conclusions
	References

