
Mark Marron, Mario Mendez-Lojo

Manuel Hermenegildo, Darko Stefanovic,
Deepak Kapur

1

� Want to optimize object-oriented programs
which make use of pointer rich structures
◦ In an Array or Collection (e.g. java.util.List) are there

any elements that appear multiple times?

◦ Differentiate structures like compiler AST
with/without interned symbols --- backbone is tree
with shared symbol objects or a pure tree

2

� Ability to answer these sharing questions
enables application of many classic
optimizations
◦ Thread Level Parallelization

◦ Redundancy Elimination

◦ Object co-location

◦ Vectorization, Loop Unroll Schedule

3

� Start with classic Abstract Heap Graph Model
and add additional instrumentation relations
◦ Nodes represent sets of objects (or recursive data

structures), edges represent sets of pointers

◦ Has natural representation for data structures and
connectivity properties

◦ Naturally groups related sets of pointers

◦ Efficient to work with

� Augment edges, which represent sets of
pointers with additional information on the
sharing relations between the pointers

4

5

� Region of the heap (O, P, Pc)
◦ O is a set of objects

◦ P is the set of the pointers between them

◦ Pc the references that enter/exit the region

� Given references r1, r2 in Pc pointing to
objects o1, o2 respectively we say:
◦ alias: o1 == o2

◦ related: o1 != o2 but in same weakly-connected
component

◦ unrelated: o1 and o2 in different weakly-connected
components

6

7

8

� Edges abstract sets of references (variable
references or pointers)

� Introduce 2 related abstract properties to
model sharing
◦ Interference: Does a single edge (which abstracts

possible many references) abstract only references
with disjoint targets or do some of these references
alias/related?

◦ Connectivity: Do two edges abstract sets of
references with disjoint targets or do some of these
references alias/related?

9

� For a single edge how are the targets of the
references it abstracts related

� Edge e is:
◦ non-interfering: all pairs of references r1, r2 in γ(e)

must be unrelated (there are none that alias or are
related).

◦ interfering: all pairs of references r1, r2 in γ(e), may
either be unrelated or related (there are none that
alias).

◦ share: all pairs of references r1, r2 in γ(e), may be
aliasing, unrelated or related.

10

11

� For two different edges how are the targets of
the references they abstract related

� Edges e1, e2 are:
◦ disjoint: all pairs of references r1 in γ(e1), r2 in γ(e2)

are unrelated (there are none that alias or are
related).

◦ connected: all pairs of references r1 in γ(e1), r2 in
γ(e2) may either be unrelated or related (there are
none that alias).

◦ share: all pairs of references r1 in γ(e1), r2 in γ(e2)
may be aliasing, unrelated or related.

12

13

� N-Body Simulation in 3-dimensions

� Uses Fast Multi-Pole method with space
decomposition tree
◦ For nearby bodies use naive n2 algorithm

◦ For distant bodies compute center of mass of many
bodies and treat as single point mass

� Dynamically Updates Space Decomposition
Tree to Account for Body Motion

� Has not been successfully analyzed with other
existing shape analysis methods

14

15

� Inline Double[] into MathVector objects, 23% serial
speedup 37% memory use reduction

16

� TLP update loop over bodyTabRev, factor 3.09
speedup on quad-core machine

17

18

BenchmarkBenchmarkBenchmarkBenchmark LOCLOCLOCLOC Analysis Analysis Analysis Analysis
TimeTimeTimeTime

bisort 560 0.26s

mst 668 0.12s

tsp 910 0.15s

em3d 1103 0.31s

health 1269 1.25s

voronoi 1324 1.80s

power 1752 0.36s

bh 2304 1.84s

db 1985 1.42s

raytrace 5809 37.09s

19

� Presented a practical abstraction for modeling
sharing in programs

� Allows us to accurately model how objects
are stored arrays (or Collections from
java.util)

� This information can be usefully applied to
compiler optimizations
◦ Thread-Level Parallelization

◦ Vectorization or Loop Unrolling

◦ Various memory locality optimizations

20

Demo of the (shape) analysis available at:

www.cs.unm.edu/~marron/software.html

22

