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Abstract. We present two new algorithms which perform automatic
parallelization via source-to-source transformations. The objective is to
exploit goal-level, unrestricted independent and-parallelism. The pro-
posed algorithms use as targets new parallel execution primitives which
are simpler and more flexible than the well-known &/2 parallel operator.
This makes it possible to generate better parallel expressions by exposing
more potential parallelism among the literals of a clause than is possible
with &/2. The difference between the two algorithms stems from whether
the order of the solutions obtained is preserved or not. We also report on
a preliminary evaluation of an implementation of our approach. We com-
pare the performance obtained to that of previous annotation algorithms
and show that relevant improvements can be obtained.

Keywords: Logic Programming, Automatic Parallelization, And-
Parallelism, Program Transformation.

1 Introduction

Parallelism capabilities are becoming ubiquitous thanks to the widespread use
of multi-core processors. Indeed, most laptops on the market contain two cores
(capable of running up to four threads simultaneously) and single-chip, 8-core
servers are now in widespread use. Furthermore, the trend is that the number
of on-chip cores will double with each processor generation. In this context,
being able to exploit such parallel execution capabilities in programs as easily
as possible becomes more and more a necessity. However, it is well-known [17]
that parallelizing programs is a hard challenge. This has renewed interest in
language-related designs and tools which can simplify the task of producing
parallel programs.

The comparatively higher level of abstraction of declarative languages and,
among them, logic programming languages, allows writing programs which are
closer to the specification of the solution. Besides, there is often more freedom in
the implementation of different operational semantics which respect the declar-
ative semantics. In particular, the notion of control in declarative languages
frequently allows for more flexibility to arrange the evaluation order of some
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operations, including executing them in parallel if deemed convenient, without
affecting the semantics of the original program. Additionally, the cleaner declara-
tive semantics makes it possible to automatically detect more accurately any lack
of dependencies among operations and hence to exploit opportunities for paral-
lelism more easily than in imperative languages. At the same time, in most other
respects in the case of logic programs the presence of dynamic data structures
with “declarative pointers” (logical variables), irregular computations, or com-
plex control makes the parallelization of logic programs a particularly interesting
case that allows tackling the more complex parallelization-related challenges in
a formally simple and well-understood context [11].

Because of this potential, automatic parallelization has received significant
attention in logic programming [10], where two main forms of parallelism have
been studied. Or-parallelism is exploited when the alternatives created by non-
deterministic goals are explored simultaneously. Some relevant or-parallelism
systems are Aurora [20] and MUSE [1]. And-parallelism aims at executing si-
multaneously (conjunctive) goals in clauses or in the resolvent. Examples of
systems that have exploited and-parallelism are DDAS [25] and &-Prolog [12].
Additionally, some systems such as ACE [9], AKL [16], and Andorra [24] exploit
certain combinations of both and- and or-parallelism. While or-parallelism can
only obtain speedups when there is search involved, and-parallelism can be used
in more algorithmic schemes, with divide-and-conquer and map-style algorithms
being classic representatives. In this paper, we concentrate on and-parallelism.

A correct parallelization has been defined as one that preserves during and-
parallel execution some key properties, typically correctness and no-slowdown
[14]. The preservation of these properties is ensured by executing in parallel
goals which meet some notion of independence, meaning that the goals to be
executed in parallel do not interfere with each other in some particular sense.
This can include for example absence of competition for binding variables plus
other considerations such as, e.g., absence of side effects. For simplicity, in the
rest of the paper we will assume that we are only dealing with side-effect free
program sections. Note however that this does not affect the generality of our
presentation, as we deal with dependencies in a generic way.

One of the best understood sufficient conditions for ensuring that goals meet
the efficiency and correctness criteria for parallelization is strict independence
[14], which entails the absence of shared variables at runtime between any two
goals being parallelized. It should be noted that some proposals exploit and-
parallelism between goals which do not meet this condition, but on which other
restrictions are imposed which also ensure no-slowdown and correctness. Ex-
amples of such restrictions are determinism and non-failure [14] (determinism
is exploited for example in [24]) and absence of conflicts due to the binding
of shared variables (as in non-strict independent and-parallelism [14]). Another
interesting issue is at what level of granularity the notion of independence is
applied: at the goal level, at the binding level, etc. Our work in this paper will
focus on goal-level (strict and non-strict) independent and-parallelism.
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One particularly successful approach to automatically parallelizing a logic
program uses three different stages [15,2,10]. The first one detects data (and
control) dependencies between pairs of literals in the original program. A depen-
dency graph (see Figure 1 as an example) is built to capture this information.
Nodes in the graph correspond to literals in the body of the clause and edges
represent dependencies between them. Edges are labeled with the associated de-
pendency conditions (which may be trivially true or false —we will not represent
those edges labeled with true). The second stage performs (global) analysis [3]
to gather information regarding, e.g., variable aliasing, groundness, side effects,
etc. in order to remove edges from the dependency graph or to simplify the con-
ditions labeling these edges, if they cannot be evaluated statically to completion.
Labeled edges will result in run-time checks if conditional parallel expressions
are allowed. Alternatively, unresolved dependencies can be assumed to always
hold, and parallel execution will be allowed only between literals which have been
statically determined to be independent. This approach saves run-time checks
at the expense of losing some parallelism. Finally, the third stage transforms the
original program into a parallel version by annotating it with parallel execution
operators using the information gathered by the analyzers [22]. This annotation
should respect the dependencies found in the original program while, at the same
time, exploiting as much parallelism as possible.

This annotation process is the focus of this paper. We will present and evaluate
new annotation algorithms which target and-parallelism primitives which can
express richer dependency graphs than those which can be encoded with the
nested fork-join approaches which have been previously proposed (e.g., [22]).
Our hope is that since the transformed programs will contain in some cases
more parallelism, we will be able to obtain better speedups for such cases.

2 Background and Motivation

We will introduce, with the help of an example, the well-known &/2 operator
for parallelism and its limitations, and we will show how better annotations for
parallelism are possible when other, simpler primitives, are used.

2.1 Fork-Join-Style Parallelization

We will use as running example the following clause:
p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 1. Dependency graph for p/3

and will assume that the dependen-
cies detected between the literals in
the predicate are defined by the graph
G = (V, E), shown in Figure 1. The
vertices V correspond to the literals
of the clause and there exists an edge
between two literals Li and Lj in E
if ind(Li, Lj) �= true (i.e., the literals
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p(X, Y, Z):-
(a(X, Z), b(X)) & c(Y),
d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-
a(X, Z) & c(Y),
b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Fig. 2. Fork-Join annotations for p/3 (Section 2)

Li and Lj are dependent and thus the literal Li has to be completed before the
literal Lj), where ind is the notion of independence. As mentioned before, this
information is obtained in our case from global data-flow analysis [3].

We will assume in the rest of the paper that all the dependencies are un-
conditional —i.e., conditional dependencies are assumed to be always false. This
brings simplicity and avoids potentially costly run-time checks in the parallelized
code at the expense of having fewer opportunities for parallelism. However, it
has been experimentally found to be a good compromise [22,3].

Conjunctive parallel execution has traditionally been denoted using the &/2
operator instead of the sequential comma (‘,’). The former binds more tightly
than the latter. Thus, the expression “a, b & c, d” means that literals b and c
can be safely executed in parallel after the execution of literal a finishes. When
both b and c have successfully finished, execution continues with d.

While this single operator is enough to parallelize many programs, the class of
dependencies it can express directly (i.e., dependency graphs with a nested fork-
join structure) is a subset of that which can possibly appear in a program [22].
This makes parallelism opportunities to be inevitably lost in cases with a complex
enough structure (e.g., that in Figure 1). Likewise, inter-procedural parallelism
(i.e., parallel conjunctions which span literals in different predicates) cannot be
exploited without program transformation.

In general, several annotations are possible for a given clause. As an example,
Figure 2 shows two annotations for our running example.1 Some goals appear
switched w.r.t. their order in the sequential clause. This respects the dependen-
cies in Figure 1, which reflects a valid notion of parallelism (i.e., if solution order
is not important). If additional ordering requirements are needed (due to, e.g.,
side effects or impurity), these should appear as additional edges in the graph.

Note that none of the annotations in Figure 2 fully exploits all parallelism
available in Figure 1: Figure 2(a) misses the parallelism between b(X) and d(Y,
Z), and Figure 2(b) misses the parallelism between b(X) and c(Y).

One relevant question is which of these two parallelizations is better. Ar-
guably, a meaningful measure of their quality is how long each of them takes
to execute. We will term those times Tfj1 and Tfj2 for Figures 2(a) and 2(b),
respectively. This length depends on the execution times of the goals involved
(i.e., Ta, Tb, Tc, Td), which we assume to be non-zero. Tfj1 and Tfj2 are:

Tfj1 = max(Ta + Tb, Tc) + Td (1)

1 The parallelization p :- a(X, Z), b(X) & c(Y), d(Y, Z) has been left out of Fig-
ure 2. It would not add anything to the discussion as it would not change the
comparison we make in Section 2.2.
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Tfj2 = max(Ta, Tc) + max(Tb, Td) (2)

Comparing the quality of the annotations in Figure 2(a) and Figure 2(b) boils
down to finding out whether it is possible to show that Tfj1 < Tfj2 or the other
way around. It turns out that they are non-comparable. In fact:

– Tfj1 < Tfj2 holds if, for example, Ta + Tb < Tc, Td < Tb, and then Tfj2 =
Tb + Tc, Tfj1 = Td + Tc, and

– Tfj2 < Tfj1 holds if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 =
Ta + Tb + Td, Tfj2 = Ta + Tb.

Several annotation algorithms have been proposed so far [22,4] which use the
&/2 operator as the basic construction to express parallelism between goals.
These annotators produce clauses that are parallelized differently, such as those
in Figure 2. It is in principle possible to statically decide (or, at least, approxi-
mate) whether some annotation is better than some other, for example by using
the number of goals annotated for parallelism in a clause or, more interestingly,
by using information regarding the expected runtime of goals (see, e.g., [21,19]
and its references). However, finding an optimal solution is a computationally
expensive combinatorial problem [22] and, in practice, annotators use heuristics
which may be more or less appropriate in concrete cases.

2.2 Parallelization with Finer Goal-Level Operators

It has been observed [4,5] that more basic constructions can be used to represent
and-parallelism by using two operators, &>/2 and <&/1, defined as follows:

Definition 1. G &> H schedules goal G for parallel execution and continues ex-
ecuting the code after G &> H. H is a handler which contains (or points to) the
state of goal G.

Definition 2. H <& waits for the goal associated with H to finish. After that
point any bindings made by G are available to the executing thread.

With the previous definitions, the &/2 operator can be written as
A & B :- A &> H, call(B), H <&. This indicates that any parallelization per-
formed using &/2 can be made using &>/2 and <&/1 without loss of parallelism.
We will term these operators dep-operators henceforth.

p(X, Y, Z) :-
c(Y) &> Hc,
a(X, Z),
b(X) &> Hb,
Hc <&,
d(Y, Z),
Hb <&.

Fig. 3. dep-operator-annotated clause

Two motivations justify the use
of these operators instead of &/2.
Firstly, their implementation is (in
our experience) actually easier to
devise and maintain than the mono-
lithic &/2 [8], and, secondly, the dep-
operators allow more freedom to the
annotator (and to the programmer, if
parallel code is written by hand) to
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express data dependencies and, therefore, to extract more potential parallelism.
We will now illustrate this last point (the former is out of our current scope).

Figure 3 shows an annotation of our running example using dep-operators.
Note that this code allows executing in parallel a/2 with c/1, b/2 with c/1, and
b/1 with d/2. The execution time of p/3, based on that of the individual goals,
is:

Tdep = max(Ta + Tb, Td + max(Ta, Tc)) (3)

If we compare expression (3) with expressions (1) and (2), it turns out that:

– It is possible that Tdep < Tfj1, Tdep < Tfj2, Tdep = Tfj1, and Tdep = Tfj2
(possibly with different lengths for every goal in each case).

– It is not possible that Tdep > Tfj1 or that Tdep > Tfj2.

This means that the annotation in Figure 3 cannot be worse than those in
Figure 2, and can perform better in some cases. It is, therefore, a better option
than any of the others, assuming no preparation / startup time for the parallel
goals in either case.

In addition to these basic operators, other specialized versions can be defined
and implemented in order to increase performance by adapting better to some
particular cases. In particular, it appears interesting to introduce variants for
the very relevant and frequent case of deterministic goals. For this purpose we
propose additionally two new operators: &!>/2 and <&!/1. These specialized
versions do not perform backtracking and do not prepare the execution data
structures to cope with that possibility, which has previously been shown to
result in a significant efficiency increase in the underlying machinery [23].

3 The UOUDG and UUDG Algorithms

In this section we will present two concrete algorithms which generate code
annotated for unrestricted independent and-parallelism (as in Figure 3), starting
from sequential code. The proposed algorithms process one clause at a time
by working on a directed acyclic dependency graph G = (V, E), such as that
in Figure 1, where nodes are associated with body literals (or, as we will see,
sequences thereof) and which represent units of sequential work which cannot be
split. We require that literals which are lexically identical give rise to different
nodes, by, e.g., attaching a unique identifier to them. This is necessary in order
not to lose information when building sets of nodes.

The idea behind the annotation algorithms is to publish goals for parallel
execution as soon as possible and to delay issuing joins as much as possible —
but always respecting the dependencies in the graph (as in Figure 1). Intuitively,
this should maximize the number of goals available for parallel execution. In the
following, both algorithms will use the following auxiliary definitions. G|U will
denote the subgraph (U, E|U ) of G in which there are only edges connecting those
nodes in U . The relation (u � v) holds whenever a path from u to v exists. The
auxiliary definition incoming(v, E) = {u | (u, v) ∈ E} denotes the set of nodes
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which are connected to some particular node v. Finally, set difference is, as usual,
defined as A \ B = {x | x ∈ A, x /∈ B}.

Note that, as mentioned in Section 2.1, we will consider in this paper only un-
conditional parallelism. However, the algorithms that we describe can be adapted
to deal with conditional parallelism without too much effort.

3.1 Collapsing Mutually Dependent Goals

In order to ensure the correctness of the algorithms in Sections 3.2 and 3.3,
every sequence of mutually dependent goals has to be grouped into a unique
node of the dependency graph before each iteration. Since no parallelism can
be exploited between mutually dependent goals, no parallelism is lost by this
transformation. We will not describe this grouping process here in detail —we
will only sketch the conditions the resulting nodes have to fulfill. We will assume
that an adequate processing is performed at the beginning of each iteration. The
reader is referred to [7] for more precise details.

Let Gr be a sequence v1, . . . , vn of literals. They are said to be mutually
dependent if the following condition holds:

(∀vi, vj ∈ Gr, (vi � vj) ∨ (vj � vi)) ∧
(∀(vi, vj) ∈ E, vi /∈ Gr ⇒ vj /∈ Gr)

In addition, in the case of the UOUDG algorithm, those goals must be consecutive
in the original clause in order to preserve the order of the solutions.

Example 1. Suppose the following clause:

p:- a(X), b(X), c(X), d(Y), e(Y), f(X, Y).

The sequences 〈a/1, b/1, c/1〉 and 〈d/1,e/1〉 contain mutually dependent lit-
erals in the clause which have a single outgoing dependency on f/2, and therefore
they can be grouped to form a graph of three nodes. Every one of these sequences
of literals can, for efficiency reasons, be folded into a unique predicate in order
to avoid meta-interpretation of sequential conjunctions.

3.2 Order-Preserving Annotation: The UOUDG Algorithm

Algorithm 1 parallelizes a clause while preserving the order of the solutions
by respecting the relative order of literals in the original clause. In order to
keep track of that order, we assume that there is a relation ≺ on the literals
Li of the body of every clause H :- L1, L2, . . . , Lk−1, Lk such that Li ≺ Lj iff
i < j. Additionally, we assume that there is a partial function pred defined as
pred(Li+1) = Li, i.e., the literal at the left of some other literal in a clause. We
assume ≺ and pred are suitably extended to the nodes of the graph.2

2 Note, also, that the graph edges must respect the ≺ relation: (u, v) ∈ E ⇒ u ≺ v.
The graph would have been incorrectly generated otherwise.
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Algorithm: UOUDG(G, Pub)

Input : (1) A directed acyclic graph G = (V, E).
(2) A set of already forked goals.

Output: A clause parallelized in unrestricted and fashion in which the order of
the solutions in the original clause is preserved.

begin
if V = ∅ then return (true)
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {(v, Iv) | v ∈ V, Iv = incoming(v, E), Iv �= ∅, Iv ⊆ Indep};
if Dep = ∅ then

(pvt ,Join) ← (u, V ) s.t. ∀(w ∈ (V \ {u})) . w ≺ u;
else

(pvt ,Join) ←
(u, S) s.t. (u, S) ∈ Dep ∧ ∀((w,D) ∈ (Dep \ {(u, S)})) . u ≺ w;

end
Seq ← {v | v ∈ (Indep \ Pub), (v,pvt) ∈ E, v = pred(pvt)};
Fork ← {v | v ∈ (Indep \ Pub), v ≺ pvt} \ Seq ;
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G ← G|(V \Join)\Seq;
return (gen body(Fork, Seq, Join, ∅), UOUDG(G, Pub));

end
end

Algorithm 1. UOUDG annotation algorithm

At every recursion step, new nodes (i.e., literals) in the graph are selected to
be published, joined, and executed sequentially. Subsequent iterations proceed
with a simplified graph in which the literals which have been joined and executed
sequentially, together with their outgoing edges, have been removed. The set
of goals which have already been published is kept in a separate argument to
schedule goals for parallel execution only once.

Two sets are key in each iteration: Indep, which contains the sources (i.e., all
vertices without incoming edges in the current graph, which can therefore be
published), and Dep, which contains tuples (v, Iv) where, for each non-source
vertex v which can be reached from source vertices only, Iv is the set of source
vertices (Iv ⊆ Indep) on which v depends. I.e., Iv is the set of vertices to be
joined before v can start.

Also, pvt is the pivot vertex which will be used to decide which nodes are
to be joined, taking into account that we do not want to change the order of
solutions. If there are no Dep nodes, then all the remaining literals are already
independent and we can join up to the rightmost literal in the clause. Otherwise,
we select the leftmost node among those which have dependencies which can be
fulfilled in one step. These dependencies are readily available in Dep. Note that
as we select the leftmost node among those which can be joined, we are delaying
as much as possible joining nodes —or, alternatively, we are performing in every
step only the joins which are needed to continue one more step. This is aimed
at maximizing the number of goals being executed in parallel at any moment.
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It is possible for a literal to be scheduled to be forked and then immediately
joined. In order to detect these situations, which in practice would cause unnec-
essary overhead, we select (in Seq) the literal (only one) to which this applies,
and it is not taken into account for the set of Forked literals and removed from
the set of the Joined literals.

The algorithm then continues outputting a parallelized expression (returned
by gen body, Algorithm 3) composed with the parallelization of a simplified
graph, generated by a recursive call. Algorithm 3 is able to use determinism
information, if available, to reorder goals. Since Algorithm 1 preserves the order
of solutions, we do not use this capability at the moment. Therefore an empty
set is passed as determinism data and we define the function det(Lit, DetInfo)
(used by Algorithm 3) to return false if DetInfo = ∅, thus safely assuming
non-determinism.

Termination can be proved based on the following observation: G is a finite
graph and it is simplified in each iteration provided Join or Seq are non-empty.
But Join is always non-empty because it is either V (which is non-empty) when
Dep = ∅ or else it is the second component of a tuple in Dep when Dep �= ∅, and
this component is by definition non-empty. Note that we are not using acyclicity
to prove termination. However, all input graphs will be acyclic by definition.

3.3 Non Order-Preserving Annotation: The UUDG Algorithm

Algorithm 2 follows the same idea underlying Algorithm 1: publish early and join
late. However, it has more freedom to publish goals, since the order of solutions
does not need to be preserved. This is implemented by selecting, among the sets
of goals which can be joined at every moment, the one with the lowest cardinality
—i.e., we join as few goals as possible, thus postponing the rest of the joins as
much as possible, in order to exploit more parallelism. This is taken care of by
min card(S) = min({|s| | s ∈ S}, which returns the size of the smallest set in S.

Note that a random selection from a set is done at two points. Data regarding,
e.g., the relative run time of goals would allow us to take a more informed
decision and therefore precompute a perhaps better scheduling. Since we are not
using this information here, we just pick any available goal to join / execute
sequentially.

Algorithm 2 uses Algorithm 3 again to output a parallelized clause. In this
case Algorithm 3 makes use of determinism information as follows:

– Since we already have the possibility of switching goals around, we try to
minimize relaunching goals which are likely to be executed in parallel by
forking deterministic goals first.

– Additionally, when a goal is known to have exactly one solution, we can use
specialized versions of the dep-operators [8] which do not need to perform
bookkeeping for backtracking (always complex in parallel implementations),
and are thus more efficient.

This program information can often be automatically inferred by the abstract
interpretation-based determinism analyzer in CiaoPP [18], and is provided as
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Algorithm: UUDG(G, Pub, ID)

Input : (1) A directed acyclic graph G = (V, E). (2) A set of goals already
forked. (3) Determinacy information.

Output: An unrestricted parallelized clause in which the order of the solutions
in the original clause needs not be preserved.

begin
if V = ∅ then return (true);
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {Iv | v ∈ V, Iv = incoming(v, E), Iv �= ∅, Iv ⊆ Indep};
if Dep = ∅ then

SS ← ∅;
Join ← V ;

else
SS ← {I | I ∈ Dep, |I | = min card(Dep)};
Join ← s s.t. s ∈ SS ; /* s any element from SS */

end
if (Join ∩ (Indep \ Pub)) = ∅ then

Seq ← ∅;
else

Seq ← {v} s.t. v ∈ (Join ∩ (Indep \ Pub)) ; /* v any element */
end
Fork ← Indep \ (Pub ∪ Seq);
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G ← G|(V \Join)\Seq;
return (gen body(Fork, Seq, Join, ID), UUDG(G, Pub, ID));

end
end

Algorithm 2. UUDG annotation algorithm

input to the proposed annotators. Alternatively, this information can be stated
by the programmer via assertions [13].

Example 2 (UUDG Annotation). In order to illustrate how the UUDG algorithm
works, Table 1 shows the results obtained at each of the iterations of the paral-
lelization process for the p/3 predicate introduced in Section 2.1. Columns are
labeled with the first character of each of the variables they represent. Note
that in the first algorithm step, both a and c are candidates for parallel execu-
tion (they are in Indep). However, as a has to be joined too (it is necessary to
continue executing either b or d) it is selected to be sequentially executed.

Further examples and the total correctness proofs of both the UUDG and UOUDG
algorithms can be found in [7].

4 Performance Evaluation

Our annotation algorithms have been integrated in the Ciao/CiaoPP system [13].
Information gathered by the analyzers on variable sharing, groundness, and
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Algorithm: gen body(Fork, Seq, Join, ID)

Input : (1) A set of vertices to be forked. (2) A set of vertices to be
sequentialized. (3) A set of vertices to be joined. (4) Determinacy
information.

Output: A parallelized sequence of literals Exp.
begin

Exp ← (true);
ForkDet ← {g | g ∈ Fork, det(g, ID)};
ForkNonDet ← {g | g ∈ Fork, ¬det(g, ID)};
JoinDet ← {g | g ∈ Join, det(g, ID)};
JoinNonDet ← {g | g ∈ Join, ¬det(g, ID)};
forall vi ∈ ForkDet do Exp ← (Exp, vi &!> Hvi);
forall vi ∈ ForkNonDet do Exp ← (Exp, vi &> Hvi);
if Seq = {v} then Exp ← (Exp, v);
forall vi ∈ JoinDet do Exp ← (Exp, Hvi <&!);
forall vi ∈ JoinNonDet do Exp ← (Exp, Hvi <&);
return Exp;

end
Algorithm 3. Determinism-aware generation of a parallel body

Table 1. Iterations of the UUDG algorithm when parallelizing p/3

G=(V,E) I D J S F J\S P Parallel Code

({a, b, c, d},{(a, b), (a, d), (c, d)}) ∅ p(X,Y,Z) :-
({a, b, c, d},{(a, b), (a, d), (c, d)}) {a, c} {b, d} {a} {a} {c} ∅ {a, c} c(Y) &> Hc, a(X,Z),

({b, c, d},{(c, d)}) {b, c} {d} {c} ∅ {b} {c} {a, b, c} b(X) &> Hb, Hc <&,
({b, d},∅) {b, d} ∅ {b, d} {d} ∅ {b} {a, b, c, d} d(Y,Z), Hb <&.

(∅,∅)

freeness is used to determine goal independence, using the libraries available
in CiaoPP. Determinism is used in the annotators as described previously.

As execution platform we have used a high level implementation of the proposed
parallelism primitives [8], which we have developed as an extension of the Ciao sys-
tem. This implementation is an evolution and simplification of [12] which is based
on raising the level of certain components to the level of the source language and
keeping only some selected operations (related to thread handling, locking, etc.)
at a lower level. This approach does not eliminate altogether modifications to the
abstract machine, but it greatly simplifies them. It should be noted however that
the dep-operators do not assume any particular architecture: while our current
implementation and all the performance results were obtained on a multicore ma-
chine, the techniques presented can be also applied in distributed memory ma-
chines —and in fact, the first prototype implementation of the dep-operators [5,4]
was actually made with a distributed environment in mind.

We have evaluated the impact of the different annotations on the execution
time by running a series of benchmarks (briefly described in Table 2) in parallel.
Table 3 shows the speedups obtained with respect to the sequential execution,
i.e., they are actual speedups,3 when using from 1 to 8 threads. The machine we
3 This is the reason why some speedups start below 1 for, e.g., one thread.
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Table 2. Benchmark programs

AIAKL An abstract interpreter for the AKL language.
FFT An implementation of the Fast Fourier transform.
FibFun A version of Fib written in functional notation.
Hamming A program to compute the first N Hamming numbers.
Hanoi A program to compute movements to solve the well-known puzzle.
Takeuchi Computes the Takeuchi function.
WMS2 A scheduler assigning a number of workers to a series of jobs.

Table 3. Speedups for several benchmarks and annotators

Benchmark Annotator
Number of threads

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

FFT

UMEL 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UOUDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UUDG 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming

UMEL 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UOUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
UDG 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2

UMEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

used is a Sun UltraSparc T2000 (a Niagara) with 8 4-thread cores.4 The fork-join
annotators we chose to compare with are MEL [22] (which preserves goal order
4 We did not use more than 8 threads (1 in each core) since otherwise, and due to

access conflicts to shared units, speedups can be significantly sublinear even for
completely independent tasks.
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and tries to maximize the length of the parallel expressions) and UDG [4] (which
can reorder goals). MEL can add runtime checks to decide dynamically whether
to execute or not in parallel. In order to make the annotation unconditional
(as the rest of the annotators we are dealing with), we simply removed the
conditional parallelism in the places where it was not being exploited. This is
why it appears in Table 3 under the name UMEL.

All the benchmarks executed were parallelized automatically by CiaoPP,
starting from their sequential code. Since UOUDG and UUDG can improve the
results of fork-join annotators only when the code to parallelize has at least a cer-
tain level of complexity, not all benchmarks with (independent) parallelism can
benefit from using the dep-operators. Additionally, comparing speedups obtained
with programs parallelized using order-preserving and non-order-preserving an-
notators is not completely meaningful.

Note that in this paper we are not focusing on the speedups themselves.
Although of utmost practical interest, raw speed is very connected with the
implementation of the underlying parallel abstract machine, and improvements
on it can be expected to uniformly affect all parallelized programs. Rather, our
main focus of attention is in the comparison among the speedups obtained using
different annotators.

A first examination of the experimental results in Table 3 allows inferring
that in no case is UUDG worse than any other annotator, and in no case is
UOUDG worse than (U)MEL. They should therefore be the annotators of choice
if available. Besides, there are cases where UOUDG is better than UDG, and the
other way around, which is in accordance with the non-comparable nature of
these two algorithms.

Among the cases in which a better speedup is obtained by some of the
U(O)UDG annotators, improvements range between “no improvement” (because
no benefit is obtained for some particular cases and combinations of annotators)
to an increase of 757% in speedup, with several other stages in between. Also,
it is worth pointing out that the speedup does not stabilize in any benchmark
(at least in a sizable amount) as the number of threads increases; moreover, in
some cases the difference in speedup between the restricted and the unrestricted
versions grows substantially with the number of threads. This can (clearly) be
seen in, e.g., Figure 4(b).

Finally, we would like to comment specially on three benchmarks. FibFun
is the result of parallelizing a definition of the Fibonacci numbers written using
the functional notation capabilities of Ciao [6]. Because of the order in which
code is generated in the (automatic) translation into Prolog, the result is only
parallelizable by UOUDG and UUDG, hence the speedup obtained in this case.
The case of Hanoi is also interesting, as it is the first example in [22]: in the arena
of order-preserving parallelizers, UOUDG can extract more parallelism than MEL
for this benchmark. Lastly, the Takeuchi benchmark has a relatively small loop
which only allows parallelizing with a simple &/2. However, by unrolling one
iteration the resulting body has dependencies which are complex enough to take
advantage of the increased flexibility of the dep-operator annotators.
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Fig. 4. Speedups with different annotations for Hanoi and Takeuchi

5 Conclusions

We have proposed two annotation algorithms which perform a source-to-source
transformation of a logic program into an unrestricted independent and-parallel
version of itself. Both algorithms rely on the use of more basic high-level primi-
tives than the fork-join operator, and differ on whether the order of the solutions
in the original program must be preserved or not. We have implemented the pro-
posed algorithms in the CiaoPP system, which infers automatically groundness,
sharing, and determinacy information, used to simplify the initial dependency
graph. The results of the experiments performed show that, although the paral-
lelization provided by the new annotation algorithms is the same in quite a few
of the traditional parallel benchmarks, it is never worse and in some cases it is
significantly better. This supports the observations made based on the expected
performance of the annotations. We have also noticed that the benefits are larger
for programs with high numbers of goals in their clauses, since more complex
graphs make the ability to exploit unrestricted parallelism more relevant.

Acknowledgments. This work was funded in part by Ministry of Education
and Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS, by Min-
istry of Industry (MIN) PROFIT project FIT-350400-2006-44 GGCC, by Madrid
Regional Government (CM) project S-0505/TIC/0407 PROMESAS, and by IST
program of the European Commission FP6 FET project IST-15905 MOBIUS.
Manuel Hermenegildo and Amadeo Casas were also funded in part by the Prince
of Asturias Chair in Information Science and Technology at UNM.

References

1. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Perfor-
mance. In: 1990 North American Conference on Logic Programming, pp. 757–776.
MIT Press, Cambridge (1990)

2. Bueno, F., de la Banda, M.G., Hermenegildo, M.: Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
Transactions on Programming Languages and Systems 21(2), 189–238 (1999)



152 A. Casas, M. Carro, and M.V. Hermenegildo

3. Bueno, F., de la Banda, M.G., Hermenegildo, M.: Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
TOPLAS 21(2), 189–238 (1999)

4. Cabeza, D.: An Extensible, Global Analysis Friendly Logic Programming Sys-
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