
Annotation Algorithms for Unrestricted
Independent And-Parallelism in Logic Programs

Amadeo Casas1 Manuel Carro2 Manuel Hermenegildo1,2

1University of New Mexico (USA)
2Technical University of Madrid (Spain)

LOPSTR’07 - August 24th

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 1 / 1



Introduction

Introduction and motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures – even on laptops!

Declarative languages interesting for parallelization:
I Program close to problem description.
I Notion of control provides more flexibility.
I Amenability to semantics-preserving automatic parallelization.

Significant previous work in logic and functional programming.

Objective in this work:
I An efficient and more flexible approach for (automatically) exploiting

and-parallelism in logic programs.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 2 / 1



Introduction

Background: types of parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 3 / 1



Introduction

Background: types of parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

qsort([], []). qsort([], []).
qsort([X|L], R) :- qsort([X|L], R) :-

partition(L, X, SM, GT), partition(L, X, SM, GT),
qsort(GT, SrtGT), qsort(GT, SrtGT) &
qsort(SM, SrtSM), qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R). append(SrtSM, [X|SrtGT], R).

We will focus on and-parallelism.
I Need to detect independent tasks.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 3 / 1



Introduction

Background: parallel execution and independence

Correctness: same results as sequential execution.

Efficiency: execution time ≤ than seq. program (no slowdown),
assuming parallel execution has no overhead.

s1 Y := W+2; (+ (+ W 2) Y = W+2,
s2 X := Y+Z; Z) X = Y+Z,

Imperative Functional CLP

main :- p(X) :- X = [1,2,3].
s1 p(X),
s2 q(X), q(X) :- X = [], large computation.

write(X). q(X) :- X = [1,2,3].

Fundamental issue: p affects q (prunes its choices).
I q ahead of p is speculative.

Independence: correctness + efficiency.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 4 / 1



Introduction

Ciao

Ciao, new generation multi-paradigm language.
I Supports ISO-Prolog (as a library).

Predicates, functions (including laziness), constraints,
higher-order, objects, etc.

Global analyzer which infers many properties such as types,
pointer aliasing, non-failure, determinacy, termination, data sizes,
cost, etc.

Automatic verification of program assertions
(and bug detection if assertions are proved false).

Parallel, concurrent and distributed execution primitives +
automatic parallelization and automatic granularity control.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 5 / 1



Automatic Parallelization

CDG-based automatic parallelization

Conditional Dependency Graph:
I Vertices: possible sequential tasks (statements, calls, etc.)
I Edges: conditions needed for independence (e.g., variable sharing).

Local or global analysis to remove checks in the edges.

Annotation converts graph back to (now parallel) source code.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

( test(1−3) −> ( g1, g2 ) & g3
                  ;   g1, ( g2 & g3 ) )

g1, ( g2 & g3 )Alternative:
"Annotation"

Local/Global analysis 
and simplification

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 6 / 1



Automatic Parallelization

An alternative, more flexible source code annotation

Classical parallelism operator &/2: nested fork-join.
However, more flexible constructions can be used to denote
parallelism:

I G &> HG — schedules goal G for parallel execution and continues
executing the code after G &> HG.

F HG is a handler which contains / points to the state of goal G.

I HG <& — waits for the goal associated with HG to finish.
F The goal HG was associated to has produced a solution; bindings for the

output variables are available.

Operator &/2 can be written as:
A & B :- A &> H, call(B), H <&.

Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 7 / 1



Automatic Parallelization

Expressing more parallelism

More parallelism can be exploited
with these primitives.

Take the sequential code below
(dep. graph at the right) and
three possible parallelizations:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-
a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & d(Y,Z). a(X,Z),
c(Y), b(X) &> Hb,
d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),
d(Y,Z). Hb <&.

Sequential Restricted IAP Unrestricted IAP

In this case: unrestricted parallelization at least as good
(time-wise) as any restricted one, assuming no overhead.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 8 / 1



Automatic Parallelization

New annotation algorithms: general idea

Main idea:
I Publish goals (e.g., G &> H) as soon as possible.
I Wait for results (e.g., H <&) as late as possible.
I One clause at a time.

Limits to how soon a goal is published + how late results are
gathered are given by the dependencies with the rest of the goals
in the clause.

As with &/2, annotation may respect or not relative order of
goals in clause body.

I Order determined by &>/2.
I Order not respected ⇒ more flexibility in annotation.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 9 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep pvt ToPub ToWait Pub

∅

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 10 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a, c} {a} {a, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z) &> Ha,
Ha <&,

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 10 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a, c} {a} {a, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 10 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a, c} {a} {a, c}
{b, c} {d} d {b} {c} {a, b, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),
b(X) &> Hb,
Hc <&,

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 10 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a, c} {a} {a, c}
{b, c} {d} d {b} {c} {a, b, c}
{b, d} ∅ − {d} {b, d} {a, b, c, d}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),
b(X) &> Hb,
Hc <&,
d(Y,Z),
Hb <&.

Note goal order switched w.r.t. sequential version of clause.
Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 10 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep pvt ToPub ToWait Pub

∅

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 11 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a} {a} {a}

p(X,Y,Z) :-
a(X,Z),

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 11 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a} {a} {a}
{b, c} {d} d {b, c} {c} {a, b, c}

p(X,Y,Z) :-
a(X,Z),
b(X) &> Hb,
c(Y),

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 11 / 1



Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep pvt ToPub ToWait Pub

∅
{a, c} {b, d} b {a} {a} {a}
{b, c} {d} d {b, c} {c} {a, b, c}
{b, d} ∅ − {d} {b, d} {a, b, c, d}

p(X,Y,Z) :-
a(X,Z),
b(X) &> Hb,
c(Y),
d(Y,Z),
Hb <&.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 11 / 1



Performance Results

Performance results
Speedups

Benchm. Ann.
Number of processors

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49

UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19

UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67

UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 12 / 1



Performance Results

Performance results
Restricted vs. Unrestricted And-Parallelism

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1  2  3  4  5  6  7  8

MEL
UDG

UOUDG
UUDG

(a) AIAKL

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  3  4  5  6  7  8

MEL
UDG

UOUDG
UUDG

(b) Hanoi

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

MEL
UDG

UOUDG
UUDG

(c) FibFun

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1  2  3  4  5  6  7  8

MEL
UDG

UOUDG
UUDG

(d) Takeuchi
Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 13 / 1



Conclusions

Conclusions and future work

We have presented two algorithms to perform source-to-source
transformation of a logic program into an unrestricted
independent and-parallel version of itself.

I Both respecting or not the order of the solutions.

Unrestricted and-parallelism:
I Provides better observed speedups.
I Benefits are potentially larger for programs with high numbers of goals

in their clauses.

Currently improving parallelizers to take into account additional
compile-time information.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 14 / 1



Appendix A

FibFun

fib(0) := 0. fib(0,0). fib(0,0).
fib(1) := 1. fib(1,1). fib(1,1).
fib(N) := N>1 ? fib(N,M) :- fib(N,M) :-

fib(N+1) + N>1, N>1,
fib(N+2). N1 is N-1, N1 is N-1,

fib(N1,M1), fib(N1,M1) &> H,
N2 is N-2, N2 is N-2,
fib(N2,M2), fib(N2,M2),
M is M1 + M2. H <&,

M is M1 + M2.

Functional Logic Unrestricted IAP

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 15 / 1



Appendix B

Minimum time to execute a parallel expression (I)

b(X)

c(Y) d(Y,Z)

a(X,Z)

fj1

p(X,Y,Z) :-
a(X,Z) & c(Y), Tfj1 = max(Ta,Tc) + max(Tb,Td)
b(X) & d(Y,Z).

fj2

p(X,Y,Z) :-
(a(X,Z), b(X)) & c(Y), Tfj2 = max(Ta + Tb,Tc) + Td

d(Y,Z).

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 16 / 1



Appendix B

Minimum time to execute a parallel expression (II)

dep

p(X,Y,Z) :-
T1 = 0

c(Y) &> Hc
T2 = T1

a(X,Z)
T3 = T2 + Ta

b(X) &> Hb
T4 = T3

Hc <&
T5 = max(T3,T1 + Tc)

d(Y,Z)
T6 = T5 + Td

Hb <&
T7 = max(T6,T3 + Tb) = Tdep

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 17 / 1



Appendix B

Minimum time to execute a parallel expression (III)

Tfj1 = max(a, c) + max(b, d)

tfj1(A,B,C,D,T) :- max(X,Y,X):- X .>=. Y. positive([]).

positive([A,B,C,D,T]), max(X,Y,Y):- X .<. Y. positive([X|Xs]]):-

max(A,C,MAC), X .>. 0,

max(B,D,MBD), positive(Xs).

T .=. MAC + MBD.

Tfj2 = max(a+b, c) + d

tfj2(A,B,C,D,T) :-

positive([A,B,C,D,T]),

AB .=. A + B,

max(AB,C,MaxABC),

T .=. D + MaxABC.

Tdep = max(a+b, d + max(a,c))

tdep(A,B,C,D,T):-

positive([A,B,C,D,T]),

AB .=. A + B,

max(A, C, MaxAC),

DAC .=. D + MaxAC,

max(AB, DAC, T).

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 18 / 1



Appendix B

Minimum time to execute a parallel expression (IV)

In any fork-join parallelization always better than the other one?

?- tfj1(A,B,C,D,T1), ?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2), tfj2(A,B,C,D,T2),

T1 .<. T2. T2 .<. T1.

yes yes

Can fork-join parallelization be better than unrestricted parallelization?

?- tfj1(A,B,C,D,T1), ?- tfj2(A,B,C,D,T1),

tdep(A,B,C,D,T2), tdep(A,B,C,D,T2),

T1 .<. T2. T1 .<. T2.

no no

No combination of execution times can make the unrestricted
parallelization be worse than the restricted parallelization!

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR’07 - August 24th 19 / 1


