Annotation Algorithms for Unrestricted
Independent And-Parallelism in Logic Programs

Amadeo Casas' Manuel Carro?> Manuel Hermenegildo!-?

LUniversity of New Mexico (USA)
2Technical University of Madrid (Spain)

LOPSTR'07 - August 24

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR'07 - August 24th

1/1

Introduction

Introduction and motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures — even on laptops!

e Declarative languages interesting for parallelization:
» Program close to problem description.
» Notion of control provides more flexibility.
» Amenability to semantics-preserving automatic parallelization.

Significant previous work in logic and functional programming.

Objective in this work:

> An efficient and more flexible approach for (automatically) exploiting
and-parallelism in logic programs.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 2/1

Background: types of parallelism in LP

e Two main types:

> Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR'07 - August 24th

3/1

Background: types of parallelism in LP

e Two main types:
> Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

gsort([1, [1). gsort([1, [1).

gsort([X|L], R) :- gsort([X|L], R) :-
partition(L, X, SM, GT), partition(L, X, SM, GT),
gsort (GT, SrtGT), gsort (GT, SrtGT) &
gsort(SM, SrtSM), gsort (SM, SrtSM),
append (SrtSM, [X|SrtGT], R). append (SrtSM, [X|SrtGT], R).

o We will focus on and-parallelism.
» Need to detect independent tasks.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 3/1

Introduction

Background: parallel execution and independence

o Correctness: same results as sequential execution.
o Efficiency: execution time < than seq. program (no slowdown),
assuming parallel execution has no overhead.

s1 Y = W+2; (+(+wW2) Y = W+2,
S X :=Y+Z; Z) X =Y+Z,
Imperative Functional CLP
main :- p(X) :- X = [1,2,3].
S1 p(X),
) q(X), q(X) :- X = [1, large computation.
write(X). q(X) :- X = [1,2,3].

e Fundamental issue: p affects q (prunes its choices).
> q ahead of p is speculative.

e Independence: correctness + efficiency.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 4/1

Introduction

Ciao

e Ciao, new generation multi-paradigm language.
> Supports ISO-Prolog (as a library).

e Predicates, functions (including laziness), constraints,
higher-order, objects, etc.

o Global analyzer which infers many properties such as types,
pointer aliasing, non-failure, determinacy, termination, data sizes,
cost, etc.

e Automatic verification of program assertions
(and bug detection if assertions are proved false).

o Parallel, concurrent and distributed execution primitives +
automatic parallelization and automatic granularity control.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 5/1

Automatic Parallelization

CDG-based automatic parallelization

e Conditional Dependency Graph:

> Vertices: possible sequential tasks (statements, calls, etc.)
» Edges: conditions needed for independence (e.g., variable sharing).

@ Local or global analysis to remove checks in the edges.
e Annotation converts graph back to (now parallel) source code.

icond(1-3)

O e ey s

icond(2-3)

foo(...) :- @
g1(...),
g(...), Local/Global analysis
g3 C...). est(1-3) and simplification
@ O (test(1-3) >(1,02)&¢
; 1,(92&g3
"Annotation”
Alternative: g1, (g2 & g3
y
Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 6/1

Automatic Parallelization

An alternative, more flexible source code annotation

o Classical parallelism operator &/2: nested fork-join.
@ However, more flexible constructions can be used to denote
parallelism:

» G &> Hg — schedules goal G for parallel execution and continues
executing the code after G &> Hg.

* Hg is a handler which contains / points to the state of goal G.
» Hg <& — waits for the goal associated with Hg to finish.

* The goal Hg was associated to has produced a solution; bindings for the
output variables are available.

@ Operator &/2 can be written as:
A& B :- A& H, call(B), H <&.

o Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 7/1

Automatic Parallelization

Expressing more parallelism

@ More parallelism can be exploited
with these primitives.

o Take the sequential code below
(dep. graph at the right) and
three possible parallelizations:

pX,Y,Z2) :- pX,

a(X,2),
b(X),
c(Y),

d(y,2). p(X,

Sequential

Y,Z) :-
a(X,Z) & C(Y)s
b(X) & 4(Y,2).

Y,Z) :-
c(Y) & (a(X,2),b(X)),
d(y,z).

Restricted IAP

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,z2),
b(X) &> Hb,
He <&,
d(y,2),
Hb <&.

Unrestricted IAP

@ In this case: unrestricted parallelization at least as good
(time-wise) as any restricted one, assuming no overhead.

Casas, Carro, Herme (UNM and others)

Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24th

8/1

Automatic Parallelization

New annotation algorithms: general idea

e Main idea:
> Publish goals (e.g., G &> H) as soon as possible.
> Wait for results (e.g., H <&) as late as possible.
» One clause at a time.

@ Limits to how soon a goal is published + how late results are
gathered are given by the dependencies with the rest of the goals
in the clause.

e As with &/2, annotation may respect or not relative order of
goals in clause body.

> Order determined by &>/2.
» Order not respected = more flexibility in annotation.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 9/1

Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled
but not finished goals.

Example (Unrestricted Annotation UUDG)

@ @ [indep | Dep | pvt | ToPub | ToWat | Pub
0

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24" 10 /1

Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled
but not finished goals.

Example (Unrestricted Annotation UUDG)

@ @ [Indep | Dep | pvt | ToPub | ToWat | Pub
fa,ct | {bd} b {a,c} {a}

{a,c}

p(X,Y,Z2) :-
c(Y) &> Hc,
a(X,Z) & Ha,
Ha <&,

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 10/1

Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled
but not finished goals.

Example (Unrestricted Annotation UUDG)

@ @ [Indep | Dep | pvt | ToPub | ToWat | Pub
0
fa,ct | {bd} b {a,c} {a} {a,c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,z),

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24" 10/1

Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

@ [indep | Dep | pvt | ToPub | ToWait | p;b
{a,c} {b,d} b {a, c} {a} {ac}
S I B R {c] | (oo
pX,Y,Z2) :-
c(Y) &> Hc,
a(X,2),
b(X) &> Hb,
He <&,

Casas, Carro, Herme (UNM and others)

Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24"

10/1

Automatic Parallelization

Automatic parallelization with alternative primitives
Non order-preserving, unrestricted annotation

pvt: nearest goal to be scheduled among those dependent on already scheduled

but not finished goals.

Example (Unrestricted Annotation UUDG)

Dep

| pvt | ToPub

| ToWait |

Pub

[Indep

{a,c}

{b,d}

{a,c}

{a} {a c}

b
d {b}

{c} fa, b, c}

|
d(Y.Z) {b, d}

{d}
0

{d}

{b,d} {a, b, c,d}

pX,Y,Z) :-
c(Y) & Hc,
a(Xx,z),
b(X) &> Hb,
Hc <&,
a(y,z),
Hb <&.

@ Note goal order switched w.r.t. sequential version of clause.

Casas, Carro, Herme (UNM and others)

Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24"

10/1

Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

@ @ [indep | Dep | pvt | ToPub | ToWat | Pub |
0

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 1 /1

Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

(o) | 2=

| Dep | pvt [ToPub | ToWait | Pub |
0
{a,c} | {b,d} b {a} {a} {a}
pX,Y,Z2) :-
a(X,2),

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24t

11 /1

Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

<E£%z> [Indep [Dep | pvt | ToPub | ToWait | p;b
{a,c} {b,d} b {a}) =]
e e R {ct | Gba
p(x’Y’Z) 5=
a(X,2),
b(X) &> Hb,
c(Y),

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 1 /1

Automatic Parallelization

Automatic parallelization with alternative primitives
Order-preserving, unrestricted annotation

Seq also constrained by left-to-right order.

Example (Unrestricted Annotation UOUDG)

[Indep

ib, d}

| Dep | pvt | ToPub | ToWait | Pub |
0
{a,c} | {b,d} b {a} {a} {a}
{d} d {b, c} {c} {a, b, c}
0 — {d} {b,d} {a, b,c,d}
p(X,Y,Z) :-
a(X,2),
b(X) &> Hb,
c(Y),
a(y,z),
Hb <&.

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24" 1/1

Performance Results

Performance results

Speedups
Number of processors

Benchm. Ann. 1 5 3 7 5 5 7 5
UMEL 0.97 | 097 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98
AIAKL UouDG | 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 097 [1.77 [166 | 1.67 | 1.67 | 1.67 | 1.67 | 1.67
UUDG 097 | 1.77 | 166 | 1.67 | 1.67 | 1.67 | 1.67 | 1.67
UMEL 0.89 | 098 | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.99
Hanoi UOUDG | 0.89 | 1.70 | 2.39 | 2.81 | 3.20 | 3.69 | 4.00 | 4.19
UDG 0.89 | 1.72 | 243 | 3.32 | 3.77 | 417 | 4.41 | 4.67
UUDG 0.89 1.72 | 243 | 3.32 | 3.77 | 417 | 441 | 4.67
UMEL 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
FibFun UOuUDG | 0.99 | 195 | 2.89 | 3.84 | 478 | 5.71 | 6.63 | 7.57
UDG 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
UUDG 099 | 195 | 2.89 | 3.84 | 478 | 5.71 | 6.63 | 7.57
UMEL 0.88 | 1.61 | 2.16 | 2.62 | 2.63 | 2.63 | 2.63 | 2.63
Takeuchi UOUDG | 0.88 | 1.62 | 2.17 | 2.64 | 2.67 | 2.67 | 2.67 | 2.67
UDG 0.88 1.61 216 | 262 | 2.63 | 2.63 | 2.63 | 2.63
UUDG 0.88 | 1.62 | 2.39 | 3.33 | 4.04 | 447 | 519 | 5.72

Casas, Carro, Herme (UNM and others)

Annotation Algorithms for Unrestricted. . .

LOPSTR'07 - August 24"

12/1

Performance Results

Performance results
Restricted vs. Unrestricted And-Parallelism

MEL MEL ——

i ferc—
UoUDBG
UgoS

aki

(c) FibFun (d) Takeuchi

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 13/1

Conclusions

Conclusions and future work

@ We have presented two algorithms to perform source-to-source
transformation of a logic program into an unrestricted
independent and-parallel version of itself.

» Both respecting or not the order of the solutions.

@ Unrestricted and-parallelism:
» Provides better observed speedups.

» Benefits are potentially larger for programs with high numbers of goals
in their clauses.

o Currently improving parallelizers to take into account additional
compile-time information.

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 14 /1

FibFun
fib(0) := 0. £ib(0,0) . fib(0,0) .
fib(1) := 1. fib(1,1). fib(1,1).
fib(N) := N>1 7 fib(N,M) :- fib(N,M) :-
fib(N+1) + N>1, N>1,
fib(N+2) . N1 is N-1, N1 is N-1,
fib(N1,M1), fib(N1,M1) &> H,
N2 is N-2, N2 is N-2,
fib(N2,M2), fib(N2,M2),
M is M1 + M2. H <&,
M is M1 + M2.
Functional Logic Unrestricted IAP

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24th 15/1

Appendix B

Minimum time to execute a parallel expression (1)

fil
pX,Y,Z2) :-
a(X,Z) & c(Y), Tﬁl = max(T,, Tc) =F max(Tb7 Td)
b(X) & 4(Y,Z2).
)
p(X,Y,Z) :-
(a(X,Z2), b(X)) & c(Y), | Tho = max(T,+ Tp, Te) + Ty
d(y,2).

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 16 /1

Appendix B

Minimum time to execute a parallel expression (1)

dep
p(X,Y,Z) :-
T =0
c(Y) &> Hc
=T
a(X,z2)
T3=T,+ T,
b(X) &> Hb
Ty =T3
Hc <&
T5 = max(T3, Tl =+ TC)
da(Y,z2)
Hb <&
T; = max(Te, T3 + Tb) = Tdep

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 17 /1

Appendix B

Minimum time to execute a parallel expression (l11)
Tfjl = max(a, c) + max(b, d)

t£j1(A,B,C,D,T) :- max(X,Y,X):- X .>=. Y. positive([]).
positive([A,B,C,D,T]), max(X,Y,Y):- X .<. Y. positive([X|Xs]]):-
max(A,C,MAC), X .>. 0,
max (B,D,MBD), positive(Xs).
T .=. MAC + MBD.

Tfj2 = max(a+b, c) + d

t£j2(A,B,C,D,T) :-
positive([A,B,C,D,T]),
AB .=. A + B,
max (AB,C,MaxABC) ,
T .=. D + MaxABC.

Tdep = max(a+b, d + max(a,c))

tdep(A,B,C,D,T):—
positive([A,B,C,D,T]),
AB .=. A + B,
max (A, C, MaxAC),
DAC .=. D + MaxAC,
max (AB, DAC, T).

v

Casas, Carro, Herme (UNM and others) | Annotation Algorithms for Unrestricted. .. LOPSTR'07 - August 24" 18 /1

Appendix B

Minimum time to execute a parallel expression (1V)

In any fork-join parallelization always better than the other one?

?- t£j1(A,B,C,D,T1), ?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2), tfj2(A,B,C,D,T2),
T1 .<. T2. T2 .<. Ti1.
yes yes

Can fork-join parallelization be better than unrestricted parallelization?

?- t£j1(A,B,C,D,T1), | ?- t£j2(A,B,C,D,T1),

tdep(4,B,C,D,T2), tdep(A,B,C,D,T2),
T1 .<. T2. T1 .<. T2.
no no

o No combination of execution times can make the unrestricted
parallelization be worse than the restricted parallelization!

Casas, Carro, Herme (UNM and others) Annotation Algorithms for Unrestricted. . . LOPSTR'07 - August 24th

19/1

